Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation

Abstract

How tissues generate and maintain the correct number of cells is a fundamental problem in biology. In principle, tissue turnover can occur by the differentiation of stem cells, as is well documented for blood, skin and intestine, or by the duplication of existing differentiated cells. Recent work on adult stem cells has highlighted their potential contribution to organ maintenance and repair. However, the extent to which stem cells actually participate in these processes in vivo is not clear. Here we introduce a method for genetic lineage tracing to determine the contribution of stem cells to a tissue of interest. We focus on pancreatic β-cells, whose postnatal origins remain controversial. Our analysis shows that pre-existing β-cells, rather than pluripotent stem cells, are the major source of new β-cells during adult life and after pancreatectomy in mice. These results suggest that terminally differentiated β-cells retain a significant proliferative capacity in vivo and cast doubt on the idea that adult stem cells have a significant role in β-cell replenishment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A pulse-chase system for determining the origin of β-cells.
Figure 2: Specificity and dose dependence of recombination.
Figure 3: Analysis of islets and β-cells in pulse–chase experiments.
Figure 4: Total number of β-cells increases with age.
Figure 5: Analysis of β-cells after pancreatectomy.

Similar content being viewed by others

References

  1. Messier, B. & Leblond, C. P. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am. J. Anat. 106, 247–285 (1960)

    Article  CAS  Google Scholar 

  2. Leblond, C. P. in International Symposium on the Control of Cell Division and the Induction of Cancer (ed. Congdon, C. C.) 119–150 (Natl Cancer Inst., Bethesda, Maryland, 1964)

    Google Scholar 

  3. Tsubouchi, S., Kano, E. & Suzuki, H. Demonstration of expanding cell populations in mouse pancreatic acini and islets. Anat. Rec. 218, 111–115 (1987)

    Article  CAS  Google Scholar 

  4. Bonner-Weir, S. & Sharma, A. Pancreatic stem cells. J. Pathol. 197, 519–526 (2002)

    Article  Google Scholar 

  5. Bonner-Weir, S., Baxter, L. A., Schuppin, G. T. & Smith, F. E. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42, 1715–1720 (1993)

    Article  CAS  Google Scholar 

  6. Zajicek, G., Arber, N., Schwartz-Arad, D. & Ariel, I. Streaming pancreas: islet cell kinetics. Diabetes Res. 13, 121–125 (1990)

    CAS  PubMed  Google Scholar 

  7. Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001)

    Article  CAS  Google Scholar 

  8. Ianus, A., Holz, G. G., Theise, N. D. & Hussain, M. A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 111, 843–850 (2003)

    Article  CAS  Google Scholar 

  9. Lipsett, M. & Finegood, D. T. Beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes 51, 1834–1841 (2002)

    Article  CAS  Google Scholar 

  10. Guz, Y., Nasir, I. & Teitelman, G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 142, 4956–4968 (2001)

    Article  CAS  Google Scholar 

  11. Kodama, S., Kuhtreiber, W., Fujimura, S., Dale, E. A. & Faustman, D. L. Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302, 1223–1227 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Bonner-Weir, S. Life and death of the pancreatic beta cells. Trends Endocrinol. Metab. 11, 375–378 (2000)

    Article  CAS  Google Scholar 

  13. Finegood, D. T., Scaglia, L. & Bonner-Weir, S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44, 249–256 (1995)

    Article  CAS  Google Scholar 

  14. Slack, J. M. Developmental biology of the pancreas. Development 121, 1569–1580 (1995)

    CAS  PubMed  Google Scholar 

  15. Hanahan, D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985)

    Article  ADS  CAS  Google Scholar 

  16. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. & McMahon, A. P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998)

    Article  CAS  Google Scholar 

  17. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3 + cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002)

    CAS  PubMed  Google Scholar 

  18. Lobe, C. G. et al. Z/AP, a double reporter for cre-mediated recombination. Dev. Biol. 208, 281–292 (1999)

    Article  CAS  Google Scholar 

  19. Wang, R. N., Kloppel, G. & Bouwens, L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38, 1405–1411 (1995)

    Article  CAS  Google Scholar 

  20. Yamamoto, K. et al. Recombinant human betacellulin promotes the neogenesis of beta-cells and ameliorates glucose intolerance in mice with diabetes induced by selective alloxan perfusion. Diabetes 49, 2021–2027 (2000)

    Article  CAS  Google Scholar 

  21. Waguri, M. et al. Demonstration of two different processes of beta-cell regeneration in a new diabetic mouse model induced by selective perfusion of alloxan. Diabetes 46, 1281–1290 (1997)

    Article  CAS  Google Scholar 

  22. Paris, M., Bernard-Kargar, C., Berthault, M. F., Bouwens, L. & Ktorza, A. Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144, 2717–2727 (2003)

    Article  CAS  Google Scholar 

  23. Rooman, I., Lardon, J. & Bouwens, L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690 (2002)

    Article  CAS  Google Scholar 

  24. Alison, M. R. Liver regeneration with reference to stem cells. Semin. Cell Dev. Biol. 13, 385–387 (2002)

    Article  Google Scholar 

  25. Oh, S. H., Hatch, H. M. & Petersen, B. E. Hepatic oval ‘stem’ cell in liver regeneration. Semin. Cell Dev. Biol. 13, 405–409 (2002)

    Article  CAS  Google Scholar 

  26. Liu, Y. Q., Montanya, E. & Leahy, J. L. Increased islet DNA synthesis and glucose-derived lipid and amino acid production in association with beta-cell hyperproliferation in normoglycaemic 60% pancreatectomy rats. Diabetologia 44, 1026–1033 (2001)

    Article  CAS  Google Scholar 

  27. Fong, I., Hulinsky, I., Fortuna, R. & Silink, M. Mitotic activity and DNA synthesis of rat islet cells following partial pancreatectomy. Pancreas 7, 453–459 (1992)

    Article  CAS  Google Scholar 

  28. Finegood, D. T., Weir, G. C. & Bonner-Weir, S. Prior streptozotocin treatment does not inhibit pancreas regeneration after 90% pancreatectomy in rats. Am. J. Physiol. 276, E822–E827 (1999)

    CAS  PubMed  Google Scholar 

  29. Hardikar, A. A., Karandikar, M. S. & Bhonde, R. R. Effect of partial pancreatectomy on diabetic status in BALB/c mice. J. Endocrinol. 162, 189–195 (1999)

    Article  CAS  Google Scholar 

  30. Fausto, N. & Campbell, J. S. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev. 120, 117–130 (2003)

    Article  CAS  Google Scholar 

  31. Carmeliet, P. Angiogenesis in health and disease. Nature Med. 9, 653–660 (2003)

    Article  CAS  Google Scholar 

  32. Bunnag, S. C. Postnatal neogenesis of islets of Langerhans in the mouse. Diabetes 15, 480–491 (1966)

    Article  CAS  Google Scholar 

  33. Kushner, J. A. et al. Pdx1 restores beta cell function in Irs2 knockout mice. J. Clin. Invest. 109, 1193–1201 (2002)

    Article  CAS  Google Scholar 

  34. Skau, M., Pakkenberg, B., Buschard, K. & Bock, T. Linear correlation between the total islet mass and the volume-weighted mean islet volume. Diabetes 50, 1763–1770 (2001)

    Article  CAS  Google Scholar 

  35. Bock, T., Pakkenberg, B. & Buschard, K. Increased islet volume but unchanged islet number in ob/ob mice. Diabetes 52, 1716–1722 (2003)

    Article  CAS  Google Scholar 

  36. Wu, K. L. et al. Hepatocyte nuclear factor 3β is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene. Mol. Cell. Biol. 17, 6002–6013 (1997)

    Article  CAS  Google Scholar 

  37. Freshney, R. I. Culture of Animal Cells: A Manual of Basic Technique (Wiley-Liss, New York, 2000)

    Google Scholar 

  38. Arkle, S., Lee, C. M., Cullen, M. J. & Argent, B. E. Isolation of ducts from the pancreas of copper-deficient rats. Q. J. Exp. Physiol. 71, 249–265 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Dubauskaite for zygote injection, G. Kenty for help with fluorescence-activated cell sorting analysis, H. Hsieh for technical assistance, and S. Bonner-Weir, A. Regev and members of the Melton laboratory for discussions. D.A.M. is a Howard Hughes Medical Institute Investigator. Y.D. was supported by EMBO and JDRF postdoctoral fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Melton.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dor, Y., Brown, J., Martinez, O. et al. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004). https://doi.org/10.1038/nature02520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing