Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Spatial reconstruction of single-cell gene expression data

Abstract

Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview.
Figure 2: Single-cell RNA-seq from zebrafish embryos.
Figure 3: Seurat correctly infers the spatial position of cells.
Figure 4: Nine archetypal patterns discovered through spatial clustering.
Figure 5: Seurat spatially characterizes rare cell populations.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Graveley, B.R. et al. The developmental transcriptome of Drosophila melanogaster. Nature 471, 473–479 (2011).

    Article  CAS  Google Scholar 

  2. Gerstein, M.B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  Google Scholar 

  3. Schier, A.F. Genomics: zebrafish earns its stripes. Nature 496, 443–444 (2013).

    Article  CAS  Google Scholar 

  4. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    Article  CAS  Google Scholar 

  5. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  Google Scholar 

  6. Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  Google Scholar 

  7. Pollen, A.A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    Article  CAS  Google Scholar 

  8. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  Google Scholar 

  9. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  Google Scholar 

  10. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article  CAS  Google Scholar 

  11. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports 2, 666–673 (2012).

    Article  CAS  Google Scholar 

  12. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

    Article  CAS  Google Scholar 

  13. Lovatt, D. et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 11, 190–196 (2014).

    Article  CAS  Google Scholar 

  14. Lee, J.-H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    Article  CAS  Google Scholar 

  15. Ho, R. & Kimmel, C. Commitment of cell fate in the early zebrafish embryo. Science 261, 109–111 (1993).

    Article  CAS  Google Scholar 

  16. Schier, A.F. & Talbot, W.S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39, 561–613 (2005).

    Article  CAS  Google Scholar 

  17. Kimmel, C.B., Warga, R.M. & Schilling, T.F. Origin and organization of the zebrafish fate map. Development 108, 581–594 (1990).

    CAS  PubMed  Google Scholar 

  18. Roussigné, M., Blader, P. & Wilson, S.W. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain. Dev. Neurobiol. 72, 269–281 (2012).

    Article  Google Scholar 

  19. Solnica-Krezel, L. & Sepich, D.S. Gastrulation: making and shaping germ layers. Annu. Rev. Cell Dev. Biol. 28, 687–717 (2012).

    Article  CAS  Google Scholar 

  20. Durruthy-Durruthy, R. et al. Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157, 964–978 (2014).

    Article  CAS  Google Scholar 

  21. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    Article  CAS  Google Scholar 

  22. Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

    Article  CAS  Google Scholar 

  23. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol. 58, 267–288 (1996).

    Google Scholar 

  24. Howe, D.G. et al. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res. 41, D854–D860 (2013).

    Article  CAS  Google Scholar 

  25. Kudoh, T. et al. A gene expression screen in zebrafish embryogenesis. Genome Res. 11, 1979–1987 (2001).

    Article  CAS  Google Scholar 

  26. Thisse, B. et al. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 77, 505–519 (2004).

    Article  CAS  Google Scholar 

  27. Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A. & Mikkelsen, T. Characterization of directed differentiation by high-throughput single-cell RNA-seq. Preprint at http://biorxiv.org/content/early/2014/03/05/003236 (2014).

  28. Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

    Article  Google Scholar 

  29. Shalek, A.K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    Article  CAS  Google Scholar 

  30. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  31. Le Guellec, D., Morvan-Dubois, G. & Sire, J.-Y. Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int. J. Dev. Biol. 48, 217–231 (2004).

    Article  CAS  Google Scholar 

  32. Kikuchi, Y. Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15, 1493–1505 (2001).

    Article  CAS  Google Scholar 

  33. Yoon, C., Kawakami, K. & Hopkins, N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157–3165 (1997).

    CAS  PubMed  Google Scholar 

  34. Stachel, S.E., Grunwald, D.J. & Myers, P.Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261–1274 (1993).

    CAS  PubMed  Google Scholar 

  35. Fürthauer, M., Thisse, B. & Thisse, C. Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev. Biol. 214, 181–196 (1999).

    Article  Google Scholar 

  36. Kawahara, A., Wilm, T., Solnica-Krezel, L. & Dawid, I.B. Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc. Natl. Acad. Sci. USA 97, 12121–12126 (2000).

    Article  CAS  Google Scholar 

  37. Seo, H.-C., Drivenes, Ø., Ellingsen, S. & Fjose, A. Expression of two zebrafish homologues of the murine Six3 gene demarcates the initial eye primordia. Mech. Dev. 73, 45–57 (1998).

    Article  CAS  Google Scholar 

  38. Fodor, E. et al. Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS ONE 8, e70053 (2013).

    Article  CAS  Google Scholar 

  39. Pauli, A. et al. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science 343, 1248636 (2014).

    Article  Google Scholar 

  40. Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, doi:10.1038/nbt.3209 (13 April 2015).

  41. Combs, P.A. & Eisen, M.B. Sequencing mRNA from cryo-sliced Drosophila embryos to determine genome-wide spatial patterns of gene expression. PLoS ONE 8, e71820 (2013).

    Article  CAS  Google Scholar 

  42. Junker, J.P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662–675 (2014).

    Article  CAS  Google Scholar 

  43. Pauli, A. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22, 577–591 (2012).

    Article  CAS  Google Scholar 

  44. Bennett, J.T. et al. Nodal signaling activates differentiation genes during zebrafish gastrulation. Dev. Biol. 304, 525–540 (2007).

    Article  CAS  Google Scholar 

  45. Thisse, C., Thisse, B., Schilling, T.F. & Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).

    CAS  PubMed  Google Scholar 

  46. Clay, H. & Ramakrishnan, L. Multiplex fluorescent in situ hybridization in zebrafish embryos using tyramide signal amplification. Zebrafish 2, 105–111 (2005).

    Article  CAS  Google Scholar 

  47. Chung, N.C. & Storey, J.D. Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics 31, 545–554 (2015).

    Article  CAS  Google Scholar 

  48. Benaglia, T., Chauveau, D., Hunter, D. & Young, D. Mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29 (2009).

    Article  Google Scholar 

  49. McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 (2013).

    Article  CAS  Google Scholar 

  50. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Regev and Schier laboratories for helpful discussion, O. Wurtzel for assistance with the R markdown scripts, A. Pauli for sharing the aplnrb plasmid, K. Rogers for donating superior, unpublished in situ hybridizations. This work was supported by F32 HD075541 (R.S.), the Jane Coffin Childs Memorial Fund for Medical Research (J.A.F.), the NIH (A.F.S.), National Human Genome Research Institute, Center of Excellence in Genome Science 1P50HG006193, the Klarman Cell Observatory and Howard Hughes Medical Institute (A.R.).

Author information

Authors and Affiliations

Authors

Contributions

R.S., J.A.F., A.F.S. and A.R. conceived the research. R.S. and J.A.F. wrote the Seurat package and performed computational analysis of the RNA-seq data. J.A.F., D.G. and R.S. performed experimental work. J.A.F. and R.S. analyzed the data and produced figures. J.A.F., R.S., D.G., A.F.S. and A.R. wrote the manuscript.

Corresponding authors

Correspondence to Alexander F Schier or Aviv Regev.

Ethics declarations

Competing interests

A.R. is a consultant to the Driver Group, which analyzes tumor samples, a potential sample fodder for spatial analysis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2, Supplementary Text and Supplementary Note (PDF 6126 kb)

Supplementary Code

Seurat source code (ZIP 28 kb)

Dissection of blastula cap from zebrafish embryos from yolk cell for dissociation (MOV 7676 kb)

41587_2015_BFnbt3192_MOESM13_ESM.mov

Animal cap depletion and dissection of margin-enriched cell population from zebrafish embryos for dissociation (MOV 9690 kb)

Isolation of single reference cells from zebrafish embryos (MOV 6469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satija, R., Farrell, J., Gennert, D. et al. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33, 495–502 (2015). https://doi.org/10.1038/nbt.3192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3192

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing