Abstract
Förster (or Fluorescence) Resonance Energy Transfer (FRET) is unique in generating fluorescence signals sensitive to molecular conformation, association, and separation in the 1–10 nm range. We introduce a revised photophysical framework for the phenomenon and provide a systematic catalog of FRET techniques adapted to imaging systems, including new approaches proposed as suitable prospects for implementation. Applications extending from a single molecule to live cells will benefit from multidimensional microscopy techniques, particularly those adapted for optical sectioning and incorporating new algorithms for resolving the component contributions to images of complex molecular systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Wieb Van Der Meer, B., Coker, G. III & Simon Chen, S.-Y. Resonance Energy Transfer: Theory and Data (VCH, New York, 1994).
Hink, M.A., Bisselin, T. & Visser, A.J. Imaging protein–protein interactions in living cells. Plant Mol. Biol. 50, 871–883 (2002).
Hoppe, A., Christensen, K. & Swanson, J.A. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83, 3652–3664 (2002).
Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).
Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).
Meyer, T. & Teruel, M.N. Fluorescence imaging of signaling networks. Trends Cell Biol. 13, 101–106 (2003).
Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).
Sekar, R.B. & Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633 (2003).
Marriott, G. & Parker, I. (eds.). Biophotonics, Part A. Methods in Enzymology, vol. 360 (Academic Press, San Diego, CA, 2003).
Marriott, G. & Parker, I. (eds.). Biophotonics, Part B. Methods in Enzymology, vol. 361 (Academic Press, San Diego, CA, 2003).
Berney, C. & Danuser, G. FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010 (2003).
Andrews, D.L. & Demidov, A.A. (eds.). Resonance Energy Transfer (John Wiley & Sons, Chicester, UK, 1999).
Valeur, B. Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, 2002).
Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).
Clegg, R.M. Fluorescence resonance energy transfer (FRET) in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 179–252 (John Wiley & Sons, New York, 1996).
Edelhoch, H., Brand, L. & Wilchek, M. Fluorescence studies with tryptophyl peptides. Isr. J. Chem. 1, 216–217 (1963).
Clegg, R.M., Holub, O. & Gohlke, C. Fluorescence lifetime-resolved imaging: measuring lifetimes in an image. Methods Enzymol. 360, 509–542 (2003).
Förster, T. Delocalized excitation and excitation transer in Modern Quantum Chemistry Part III: Action of Light and Organic Crystals (ed. Sinanoglu, O.) 93–137 (Academic Press, New York, 1965).
Volkmer, A., Subramaniam, V., Birch, D.J. & Jovin, T.M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598 (2000).
Subramaniam, V., Hanley, Q.S., Clayton, A.H.A. & Jovin, T.M. Photophysics of green and red fluorescent proteins: implications for quantitative microscopy. Methods Enzymol. 360, 178–201 (2003).
Patterson, G.H., Piston, D.W. & Barisas, B.G. Förster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440 (2000).
Kuhn, H. in Physical Methods of Chemistry, vol. 1 (eds. Weissberger, A. & Rossiter, B.) 579–650 (John Wiley & Sons, New York, 1972).
Schönle, A., Hänninen, P.E. & Hell, S.W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig) 8, 115–133 (1999).
Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy (SPEM)—a novel concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).
Jovin, T.M. & Arndt-Jovin, D.J. FRET microscopy: digital imaging of fluorescence resonance energy transfer. in Cell Structure and Function by Microspectrofluometry (eds. Kohen, E., Hirschberg, J.G. & Ploem, J.S.) 99–117 (Academic Press, London, 1989).
Bastiaens, P.I.H. & Jovin, T.M. Fluorescence resonance energy transfer microscopy in Cell Biology: A Laboratory Handbook, vol. 3, edn. 2 (ed. Celis, J.E.) 136–146 (Academic Press, New York, 1998).
Giordano, L., Jovin, T.M., Irie, M. & Jares-Erijman, E.A. Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J. Am. Chem. Soc. 124, 7481–7489 (2002).
Song, L., Jares-Erijman, E.A. & Jovin, T.M. A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. A 150, 177–185 (2002).
Hänninen, P.E., Lehtelä, L. & Hell, S.W. Two- and multiphoton excitation of conjugate-dyes using a continuous wave laser. Optics Comm. 130, 29–33 (1996).
Mekler, V.M. A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem. Photobiol. 39, 615–620 (1994).
Clayton, A.H.A., Hanley, Q.S., Arndt-Jovin, D.J., Subramaniam, V. & Jovin, T.M. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys. J. 83, 1631–1649 (2002).
Lidke, D.S. et al. Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem. Soc. Trans., 31, 1020–1027 (2003).
Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E.T. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).
Sato, M., Ozawa, T., Inukai, K., Asano, T. & Umezawa, Y. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat. Biotechnol. 20, 287–294 (2002).
Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).
Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).
Ozawa, T. & Umezawa, Y. Peptide assemblies in living cells. Methods for detecting protein–protein interactions. Supramol. Chem. 14, 271–280 (2002).
Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed. Neuron 38, 225–235 (2003).
Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).
Falk, M.M. Genetic tags for labelling live cells: gap junctions and beyond. Trends Cell Biol. 12, 399–404 (2002).
Farinas, J. & Verkman, A.S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem. 274, 7603–7606 (1999).
Karlström, A. & Nygren, P.-A. Dual labeling of a binding protein allows for specific fluorescence detection of native protein. Anal. Biochem. 295, 22–30 (2001).
Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).
Wu, X.Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).
Jaiswal, J.K., Mattoussi, H., Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003).
Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).
Fancy, D.A. et al. Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. Chem. Biol. 7, 697–708 (2000).
Haustein, E., Jahnz, M. & Schwille, P. Triple FRET: a tool for studying long-range molecular interactions. Chemphyschem 4, 745–748 (2003).
Sauer, M. Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew. Chem. Int. Ed. Engl. 42, 1790–1793 (2003).
Michalet, X. & Weiss, S. Single-molecule spectroscopy and microscopy. C.R. Phys. 3, 619–644 (2002).
Ishijima, A. & Yanagida, T. Single molecule nanobioscience. Trends Biochem. Sci. 26, 438–444 (2001).
Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).
Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
Widengren, J., Schweinberger, E., Berger, S. & Seidel, C.A.M. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A 105, 6851–6866 (2001).
Rocheleau, J.V., Wiseman, P.W. & Petersen, N.O. Isolation of bright aggregate fluctuations in a multipopulation image correlation spectroscopy system using intensity subtraction. Biophys. J. 84, 4011–4022 (2003).
He, Y., Wang, G., Cox, J. & Geng, L. Two-dimensional fluorescence correlation spectroscopy with modulated excitation. Anal. Chem. 73, 2302–2309 (2001).
Hopmeier, M., Guss, W., Deussen, M., Gobel, E.O. & Mahrt, R.F. Control of the energy transfer with the optical microcavity. Int. J. Mod. Phys. B 15, 3704–3708 (2001).
Shubeita, G.T., Sekatskii, S.K., Dietler, G. & Letokhov, V.S. Local fluorescent probes for the fluorescence resonance energy transfer scanning near-field optical microscopy. Appl. Phys. Lett. 80, 2625–2627 (2002).
Shubeita, G.T. et al. Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source. J. Microsc. 210, 274–278 (2003).
Sekatskii, S.K., Chergui, M. & Dietler, G. Coherent fluorescence resonance energy transfer: construction of nonlocal multiparticle entangled states and quantum computing. Europhys. Lett. 63, 21–27 (2003).
Guijt-van Duijn, R.A. et al. Miniaturized analytical assays in biotechnology. Biotechnol. Adv. 21, 431–444 (2003).
Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).
Tramier, M. et al. Homo-FRET versus hetero-FRET to probe homodimers in living cells. Methods Enzymol. 360, 580–597 (2003).
Krishnan, R.V., Varma, R. & Mayor, S. Fluorescence methods to probe nanometer-scale organization of molecules in living cell membranes. J. Fluoresc. 11, 211–226 (2001).
Wallrabe, H., Elangovan, M.A.B., Periasamy, A. & Barroso, M. Confocal FRET microscopy to measure clustering of ligand–receptor complexes in endocytic membranes. Biophys. J. 85, 559–571 (2003).
Garini, Y., Katzir, N., Cabib, D. & Buckwald, R.A. Spectral bio-imaging in Fluorescence Imaging Spectroscopy and Microscopy (eds. Wang, X.F. & Herman, B.) 87–124 (John Wiley & Sons, New York, 1996).
Jares-Erijman, E. & Jovin, T.M. Determination of DNA helical handedness by fluorescence resonance energy transfer. J. Mol. Biol. 257, 597–617 (1996).
Hiraoka, Y., Shimi, T. & Haraguchi, T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct. Funct. 27, 367–374 (2002).
Elangovan, M. et al. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29, 58–73 (2003).
Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002).
Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156 (1999).
Gadella, T.W.J. Jr., van der Krogt, G.N.M. & Bisseling, T. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4, 287–291 (1999).
Schönle, A., Glatz, M. & Hell, S.W. Four-dimensional multiphoton microscopy with time-correlated single-photon counting. Appl. Opt. 39, 6306–6311 (2000).
Yu, W., Mantulin, W.W. & Gratton, E. Fluorescence lifetime imaging: new microscopy techniques in Emerging Tools for Single Cell Analysis (eds. Durack, G. & Robinson, J.P.) 139–173 (Wiley-Liss, New York, 2000).
Harpur, A.G., Wouters, F.S. & Bastiaens, P.I.H. Imaging FRET between spectrally similar GFP molecules in single cells. Nat. Biotechnol. 19, 167–169 (2001).
Carlsson, K. & Philip, J. Theoretical investigation of the signal-to-noise-ratio for different fluorescence lifetime imaging techniques. SPIE Proc. 4622, 70–78 (2002).
Elson, D.S. et al. Wide-field fluorescence lifetime imaging with optical sectioning and spectral resolution applied to biological samples. J. Mod. Opt. 49, 985–995 (2002).
Gerritsen, H.C., Asselbergs, M.A.H., Agronskaia, A.V. & van Sark, W.G.J.H.M. Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution. J. Microsc. 206, 218–224 (2002).
Hanley, Q.S., Arndt-Jovin, D.J. & Jovin, T.M. Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spectrosc. 56, 155–166 (2002).
Calleja, V. et al. Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochem. J. 372, 33–40 (2003).
Knemeyer, J.-P., Herten, D.-P. & Sauer, M. Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Anal. Chem. 75, 2147–2153 (2003).
Krishnan, R.V., Saitoh, H., Terada, H., Centonze, V.E. & Herman, B. Development of a multiphoton fluorescence lifetime imaging microscopy (FLIM) system using a streak camera. Rev. Sci. Instrum. 74, 2714–2721 (2003).
Siegel, J. et al. Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): imaging the rotational mobility of a fluorophore. Rev. Sci. Instrum. 74 (2003).
Jovin, T.M. & Arndt-Jovin, D.J. Luminescence digital imaging microscopy. Annu. Rev. Biophys. Biophys. Chem. 18, 271–308 (1989).
Young, R.M., Arnette, J.K., Roess, D.A. & Barisas, B.G. Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. Biophys. J. 67, 881–888 (1994).
Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).
Kenworthy, A.K. Imaging protein–protein interactions using fluorescence resonance energy transfer microscopy. Methods 24, 289–296 (2001).
Matkó, J., Jenei, A., Matyus, L., Ameloot, M. & Damjanovich, S. Mapping of cell surface protein-patterns by combined fluorescence anisotropy and energy transfer measurements. J. Photochem. Photobiol. B 19, 71–73 (1993).
Runnels, L.W. & Scarlata, S.F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys. J. 69, 1569–1583 (1995).
Yan, Y. & Marriott, G. Fluorescence resonance energy transfer imaging microscopy and fluorescence polarization imaging microscopy. Methods Enzymol. 360, 561–580 (2003).
Buehler, C., Dong, C.Y., So, P.T.C., French, T. & Gratton, E. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy. Biophys. J. 79, 536–549 (2000).
Mathies, R.A., Peck, K. & Stryer, L. Optimization of high-sensitivity fluorescence detection. Anal. Chem. 62, 1786–1791 (1990).
Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R. & Zicha, D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc. 205, 109–112 (2002).
Acknowledgements
E.A.J.-E. is indebted to the Agencia Nacional de Promoción de la Ciencia y Tecnología (ANPCyT), Fundación Antorchas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Secretaría de Ciencia, Tecnología e Innovación Productiva (SECyT) and the Universidad de Buenos Aires (UBA) for financial support. T.M.J. was supported by the Max Planck Society, European Union FP5 Projects QLG1-2000-01260 and QLG2-CT-2001-02278, and the Center of the Molecular Physiology of the Brain funded by the German Research Council (DFG). The authors were the recipients of a joint grant from the Volkswagen Foundation for their work on photochromic compounds and acknowledge the contribution of graduate student Luciana Giordano to the research depicted in Figure 4, as well as the efforts of many colleagues over the years in the general area represented by this review. They are also indebted professionally and personally for the inspiration offered by the late Gregorio Weber, the acknowledged father of fluorescence in biology. We thank Rainer Heintzmann, Pedro Aramendía, Carla Spagnuolo and Vinod Subramaniam for critical reading of the manuscript.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Jares-Erijman, E., Jovin, T. FRET imaging. Nat Biotechnol 21, 1387–1395 (2003). https://doi.org/10.1038/nbt896
Published:
Issue Date:
DOI: https://doi.org/10.1038/nbt896