Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK–mediated activation of the p16Ink4a-p19Arf pathway

Abstract

Modulation of tumor suppressor activities may provide new opportunities for cancer therapy. Here we show that disruption of the gene Ppm1d encoding Wip1 phosphatase activated the p53 and p16 (also called Ink4a)–p19 (also called ARF) pathways through p38 MAPK signaling and suppressed in vitro transformation of mouse embryo fibroblasts (MEFs) by oncogenes. Disruption of the gene Cdkn2a (encoding p16 and p19), but not of Trp53 (encoding p53), reconstituted cell transformation in Ppm1d-null MEFs. In vivo, deletion of Ppm1d in mice bearing mouse mammary tumor virus (MMTV) promoter–driven oncogenes Erbb2 (also called c-neu) or Hras1 impaired mammary carcinogenesis, whereas reduced expression of p16 and p19 by methylation-induced silencing or inactivation of p38 MAPK correlated with tumor appearance. We conclude that inactivation or depletion of the Wip1 phosphatase with resultant p38 MAPK activation suppresses tumor appearance by modulating the Cdkn2a tumor-suppressor locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistance of Ppm1d-null MEFs to oncogene-induced transformation in vitro.
Figure 2: Induction of p53 and p16-p19 in Ppm1d-null MEFs.
Figure 3: The p16-p19 pathway rendered Ppm1d-null MEFs resistant to oncogenic transformation.
Figure 4: Deregulation of the p16-pRb pathway in mammary tissues of Ppm1d-null mice.
Figure 5: Ppm1d deficiency impaired mammary tumorigenesis in vivo.
Figure 6: Tumor formation in Ppm1d−/− MMTV-Erbb2 females correlated with lower levels of p16 and p19.
Figure 7: Inactivation of p38 MAPK reduced p16 and p19 expression and correlated with tumor formation in Ppm1d−/− Erbb2 mice.

Similar content being viewed by others

References

  1. Fiscella, M. et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc. Natl. Acad. Sci. USA 94, 6048–6053 (1997).

    Article  CAS  Google Scholar 

  2. Takekawa, M. et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 19, 6517–6526 (2000).

    Article  CAS  Google Scholar 

  3. Bulavin, D.V. et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet. 31, 210–215 (2002).

    Article  CAS  Google Scholar 

  4. Li, J. et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat. Genet. 31, 133–134 (2002).

    Article  CAS  Google Scholar 

  5. Saito-Ohara, F. et al. PPM1D is a potential target for 17q gain in neuroblastoma. Cancer Res. 63, 1876–1883 (2003).

    CAS  PubMed  Google Scholar 

  6. Hirasawa, A. et al. Association of 17q21-q24 gain in ovarian clear cell adenocarcinomas with poor prognosis and identification of PPM1D and APPBP2 as likely amplification targets. Clin. Cancer Res. 9, 1995–2004 (2003).

    CAS  PubMed  Google Scholar 

  7. Casanovas, O. et al. Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J. Biol. Chem. 275, 35091–35097 (2000).

    Article  CAS  Google Scholar 

  8. Lavoie, J.N., L'Allemain, G., Brunet, A., Müller, R. & Pouysségur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996).

    Article  CAS  Google Scholar 

  9. Goloudina, A. et al. Regulation of human Cdc25A stability by serine 75 phosphorylation is not sufficient to activate a S-phase checkpoint. Cell Cycle 2, 473–478 (2003).

    Article  CAS  Google Scholar 

  10. Bulavin, D.V. et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411, 102–107 (2001).

    Article  CAS  Google Scholar 

  11. Bulavin, D.V. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18, 6845–6854 (1999).

    Article  CAS  Google Scholar 

  12. Brancho, D. et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17, 1969–1978 (2003).

    Article  CAS  Google Scholar 

  13. Choi, J. et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol. Cell. Biol. 22, 1094–1105 (2002).

    Article  CAS  Google Scholar 

  14. Lowe, S.W., Jacks, T., Housman, D.E. & Ruley, H.E. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. Natl. Acad. Sci. USA 91, 2026–2030 (1994).

    Article  CAS  Google Scholar 

  15. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  Google Scholar 

  16. Sherr, C.J. & Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149–1163 (1995).

    Article  CAS  Google Scholar 

  17. Kitagawa, M. et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 15, 7060–7069 (1996).

    Article  CAS  Google Scholar 

  18. Bowe, D.B., Kenney, N.J., Adereth, Y. & Maroulakou, I.G. Suppression of Neu-induced mammary tumor growth in cyclin D1 deficient mice is compensated for by cyclin E. Oncogene 21, 291–298 (2002).

    Article  CAS  Google Scholar 

  19. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    Article  CAS  Google Scholar 

  20. Rocco, J.W. & Sidransky, D. p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell Res. 264, 42–55 (2001).

    Article  CAS  Google Scholar 

  21. Lee, J.C., Kassis, S., Kumar, S., Badger, A. & Adams, J.L. p38 mitogen-activated protein kinase inhibitors—mechanisms and therapeutic potentials. Pharmacol. Ther. 82, 389–397 (1999).

    Article  CAS  Google Scholar 

  22. Choi, J., Appella, E. & Donehower, L.A. The structure and expression of the murine wildtype p53-induced phosphatase 1 (Wip1) gene. Genomics 64, 298–306 (2000).

    Article  CAS  Google Scholar 

  23. Dickson, C. et al. Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer. Cancer Lett. 90, 43–50 (1995).

    Article  CAS  Google Scholar 

  24. Bartkova, J. et al. Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer 57, 353–361 (1994).

    Article  CAS  Google Scholar 

  25. Gillett, C. et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 54, 1812–1817 (1994).

    CAS  PubMed  Google Scholar 

  26. Bièche, I. & Lidereau, R. Genetic alterations in breast cancer. Genes Chromosomes Cancer 14, 227–251 (1995).

    Article  Google Scholar 

  27. Nielsen, N.H., Roos, G., Emdin, S.O. & Landberg, G. Methylation of the p16Ink4a tumor suppressor gene 5′-CpG island in breast cancer. Cancer Lett. 163, 59–69 (2001).

    Article  CAS  Google Scholar 

  28. Bulavin, D.V., Amundson, S.A. & Fornace, J.A.J. p38 and Chk1 kinases: different conductors for the G2/M checkpoint symphony. Curr. Opin. Genet. Dev. 12, 92–97 (2002).

    Article  CAS  Google Scholar 

  29. Muller, W.J., Sinn, E., Pattengale, P.K., Wallace, R. & Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105–115 (1988).

    Article  CAS  Google Scholar 

  30. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).

    Article  CAS  Google Scholar 

  31. Tsukamoto, A.S., Grosschedl, R., Guzman, R.C., Parslow, T. & Varmus, H.E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).

    Article  CAS  Google Scholar 

  32. Sharpless, M.E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    Article  CAS  Google Scholar 

  33. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

  34. Herman, J.G., Graff, J.R., Myöhänen, S., Nelkin, B.D. & Baylin, S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  Google Scholar 

  35. Bulavin, D.V., Tararova, N.D., Aksenov, N.D., Pospelov, V.A. & Pospelova, T.V. Deregulation of p53/p21Cip1/Waf1 pathway contributes to polyploidy and apoptosis of E1A+cHa-ras transformed cells after gamma-irradiation. Oncogene 18, 5611–5619 (1999).

    Article  CAS  Google Scholar 

  36. Zhang, S. et al. p16INK4a gene promoter variation and differential binding of a repressor, the ras-responsive zinc-finger transcription factor, RREB. Oncogene 22, 2285–2295 (2003).

    Article  CAS  Google Scholar 

  37. Robertson, K.D. & Jones, P.A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).

    Article  CAS  Google Scholar 

  38. Koch-Paiz, C.A., Momenan, R., Amundson, S.A., Lamoreaux, E. & Fornace, A.J. Jr. Estimation of relative mRNA content by filter hybridization to a polyuridylic probe. Biotechniques 29, 706, 708, 712, 714 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Deng for discussions and comments, D. Medina for help with whole–mammary gland staining, P. Sicinski for pBabe-puro-NeuT, H. Varmus for MMTV-Wnt-1 transgenic mice and M. Roussel for p16-null and p16/p19-null MEFs. O.T. is a Ph.D. student at the Institute of Cytology, St. Petersburg, Russia; his fellowship was sponsored by the US National Institutes of Health Exchange Program. C.W.A. was supported in part by a US Army Breast Cancer Idea Award at the Brookhaven National Laboratory under contract with the US Department of Energy. B.N. was supported by a US Army Breast Cancer Research Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry V Bulavin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulavin, D., Phillips, C., Nannenga, B. et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK–mediated activation of the p16Ink4a-p19Arf pathway. Nat Genet 36, 343–350 (2004). https://doi.org/10.1038/ng1317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1317

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing