Abstract
Uterine leiomyomata (fibroids) are common and clinically important tumors, but little is known about their etiology and pathogenesis1,2,3. We previously mapped a gene that predisposes to multiple fibroids, cutaneous leiomyomata and renal cell carcinoma to chromosome 1q42.3–q43 (refs 4–6). Here we show, through a combination of mapping critical recombinants, identifying individuals with germline mutations and screening known and predicted transcripts, that this gene encodes fumarate hydratase, an enzyme of the tricarboxylic acid cycle. Leiomyomatosis-associated mutations are predicted to result in absent or truncated protein, or substitutions or deletions of highly conserved amino acids. Activity of fumarate hydratase is reduced in lymphoblastoid cells from individuals with leiomyomatosis. This enzyme acts as a tumor suppressor in familial leiomyomata, and its measured activity is very low or absent in tumors from individuals with leiomyomatosis. Mutations in FH also occur in the recessive condition fumarate hydratase deficiency7,8,9,10,11, and some parents of people with this condition are susceptible to leiomyomata. Thus, heterozygous and homozygous or compound heterozygous mutants have very different clinical phenotypes. Our results provide clues to the pathogenesis of fibroids and emphasize the importance of mutations of housekeeping and mitochondrial proteins in the pathogenesis of common types of tumor12,13,14.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Vikhlyaeva, E.M., Khodzhaeva, Z.S. & Fantschenko, N.D. Familial predisposition to uterine leiomyomas. Int. J. Gynaecol. Obstet. 51, 127–131 (1995).
Luoto, R. et al. Heritability and risk factors of uterine fibroids—the Finnish Twin Cohort study. Maturitas 37, 15–26 (2000).
Takamizawa, S. et al. Risk of complications and uterine malignancies in women undergoing hysterectomy for presumed benign leiomyomas. Gynecol. Obstet. Invest. 48, 193–196 (1999).
Alam, N.A. et al. Localization of a gene (MCUL1) for multiple cutaneous leiomyomata and uterine fibroids to chromosome 1q42.3–q43. Am. J. Hum. Genet. 68, 1264–1269 (2001).
Kiuru, M. et al. Familial cutaneous leiomyomatosis is a two-hit condition associated with renal cell cancer of characteristic histopathology. Am. J. Pathol. 159, 825–829 (2001).
Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl Acad. Sci. USA 98, 3387–3392 (2001).
Gellera, C. et al. Fumarase deficiency is an autosomal recessive encephalopathy affecting both the mitochondrial and the cytosolic enzymes. Neurology 40, 495–499 (1990).
Liochev, S.I. & Fridovich, I. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc. Natl Acad. Sci. USA 89, 5892–5896 (1992).
Bourgeron, T. et al. Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J. Clin. Invest. 93, 2514–2518 (1994).
Rustin, P. et al. Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim. Biophys. Acta 1361, 185–197 (1997).
Coughlin, E.M. et al. Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol. Genet. Metab. 63, 254–262 (1998).
Baysal, B.E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000).
Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268–270 (2000).
Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).
Hatch, M.D. A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts. Anal. Biochem. 85, 271–275 (1978).
Weaver, T., Lees, M. & Banaszak, L. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci. 6, 834–842 (1997).
Kaelin, W.G. Jr & Maher, E.R. The VHL tumour-suppressor gene paradigm. Trends Genet. 14, 423–426 (1998).
Acknowledgements
We are grateful to the families involved and their clinicians (H.M. Nelson, E. Healy, A.C. Pembroke, E. Calonje, S. Jablonska, J.R.S. Rendall, P.J. August, P.S. Friedman, R. Ratnavel, C.S. Munro, P.W. Bowers, R.J. Mann, A. MacDonald, F. Camacho-Martinez, N.P. Burrows, C. Fuller, K. Dalziel, G. Guillet, A.C. Pembroke, J.A.R. Anderson, M.G. Davies, S.E. Hadfield-Jones, S.P. MacDonald- Hull, S.M. Wilkinson, R.H. Felix, J. Leonard and M. Suri). We thank E. Pukkala and the Finnish Cancer Registry for help in characterizing the Finnish families; S. Marttinen, S. Lindh, S. Lindroos, R. Mattlar, K. Laukkanen and A. Leskinen for technical assistance; and S. Gregory and C. Gillson for providing advice and BAC clones for FISH. Group 1 received support from the Imperial Cancer Research Fund and is grateful for help from the ICRF Equipment Park and Cell Production. Group 2 was supported by the Cancer Research Campaign and the Wellcome Trust. Group 3 was supported by grants from the Helsinki University Central Hospital, Biocentrum Helsinki, the Sigrid Juselius Foundation, the Finnish Cancer Society, the Finnish Medical Duodecim, Kidney Foundation and the Academy of Finland (Finnish Center of Excellence Programme).
Author information
Authors and Affiliations
Consortia
Corresponding authors
Ethics declarations
Competing interests
The author declare no competing financial interests.
Rights and permissions
About this article
Cite this article
The Multiple Leiomyoma Consortium. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30, 406–410 (2002). https://doi.org/10.1038/ng849
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng849