Abstract
During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world1,2,3. A new coronavirus (SARS-CoV) was identified as the SARS pathogen4,5,6,7, which triggered severe pneumonia and acute, often lethal, lung failure8. Moreover, among infected individuals influenza such as the Spanish flu9,10 and the emergence of new respiratory disease viruses11,12 have caused high lethality resulting from acute lung failure13. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor14. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Accession codes
References
Tsang, K.W. et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1977–1985 (2003).
Lee, N. et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1986–1994 (2003).
Poutanen, S.M. et al. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 348, 1995–2005 (2003).
Ksiazek, T.G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).
Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).
Rota, P.A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399 (2003).
Marra, M.A. et al. The Genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003).
Severe Acute Respiratory Syndrome (SARS) Epidemiology Working Group. WHO consensus document on the epidemiology of severe acute respiratory syndrome (SARS). (http://www.who.int/csr/sars/en/WHOconsensus.pdf, 2003).
Oxford, J.S. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev. Med. Virol. 10, 119–133 (2000).
Johnson, N.P. & Mueller, J. Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76, 105–115 (2002).
Tran, T.H. et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N. Engl. J. Med. 350, 1179–1188 (2004).
World Health Organization. Confirmed human cases of avian influenza A (H5N1), 7 September 2004. (http://www.who.int/csr/disease/avian_influenza/country/ cases_table_2004_09_07/en/print.html, 2004).
Fouchier, R.A. et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA 101, 1356–1361 (2004).
Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
Jeffers, S.A. et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 20, 20 (2004).
Crackower, M.A. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417, 822–828 (2002).
Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).
Imai, Y. et al. The SARS-coronavirus receptor angiotensin coverting enzyme 2 protects from severe acute lung failure. Nature (in the press).
Pelchen-Matthews, A., Signoret, N., Klasse, P.J., Fraile-Ramos, A. & Marsh, M. Chemokine receptor trafficking and viral replication. Immunol. Rev. 168, 33–49 (1999).
Yang, Z.Y. et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78, 5642–5650 (2004).
Wong, S.K., Li, W., Moore, M.J., Choe, H. & Farzan, M.A. 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201 (2004).
Roberts, A. et al. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J. Virol. 79, 5833–5838 (2005).
Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, E1–9 (2000).
Tipnis, S.R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).
Corvol, P., Williams, T.A. & Soubrier, F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol. 248, 283–305 (1995).
Inagami, T. et al. Cloning, expression and regulation of angiotensin II receptors. Adv. Exp. Med. Biol. 377, 311–317 (1995).
Myint, S.H. Human coronaviruses-a brief review. Rev. Med. Virol. 4, 35–46 (1994).
Itoyama, S. et al. ACE1 polymorphism and progression of SARS. Biochem. Biophys. Res. Commun. 323, 1124–9 (2004).
Zou, K. et al. Analysis on the SARS-CoV genome of PUMC01 isolate. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 25, 495–498 (2003).
Imai, Y. et al. Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J. Appl. Physiol. 91, 1836–1844 (2001).
Acknowledgements
We thank C. Richardson and all members of our laboratory for discussions. We also thank B. Seed for discussion and providing the systems to generate recombinant Spike proteins. We thank Q. Zhu, L. Ruan and L. Zhang for sharing unpublished data of SARS coronavirus infection on mice and protocols of virus infections. This work is supported by the Institute for Molecular Biotechnology of the Austrian Academy of Sciences and the Jubilaeumsfonds of the Austrian National Bank. K.K. is supported by a Marie Curie Fellowship from the EU. C.J. is supported by Beijing Committee of Science and Technology grant H030230010930, National Natural Science Foundation of China innovation group grant 30421003 and SARS donation from Joincare Corporation. A.S. is supported in part by the Canadian Institutes of Health Research and the Canada Foundation for Innovation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The Institute for Molecular Biotechnology of the Austrian Academy of Sciences has applied for a patent on modulating the renin-angiotension system for treatment of lung edema.
Supplementary information
Supplementary Fig. 1
Recombinant Spike-Fc proteins and reduced ACE2 expression by Spike (S318-510)-Fc. (PDF 2890 kb)
Rights and permissions
About this article
Cite this article
Kuba, K., Imai, Y., Rao, S. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med 11, 875–879 (2005). https://doi.org/10.1038/nm1267
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nm1267
This article is cited by
-
The renin angiotensin aldosterone system
Pflügers Archiv - European Journal of Physiology (2024)
-
The Association Between Genetic Variants in ACE1and ACE2 Genes with Susceptibility to COVID-19 Infection
Biochemical Genetics (2024)
-
Therapeutic potential and possible mechanisms of ginseng for depression associated with COVID-19
Inflammopharmacology (2024)
-
Vitamin D status in hospitalized COVID‑19 patients is associated with disease severity and IL-5 production
Virology Journal (2023)
-
Effect of olmesartan and amlodipine on serum angiotensin-(1–7) levels and kidney and vascular function in patients with type 2 diabetes and hypertension
Diabetology & Metabolic Syndrome (2023)