Abstract
Lasing, light amplification by stimulated emission of radiation, is a key attribute for many important applications in optical communications, medicine and defence. Conversely, anti-lasing represents the time-reversed counterpart of laser emission, where incoming radiation is coherently absorbed. Here, we experimentally realize lasing and anti-lasing at the same frequency in a single cavity using parity–time symmetry. Because of the time-reversal property, the demonstrated lasing and anti-lasing resonances share common resonant features such as identical frequency dependence, coherent in-phase response and fine spectral resolution. Lasing and anti-lasing in a single device offers a new route for light modulation with high contrast approaching the ultimate limit.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Xiao, S. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010).
Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010).
Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).
Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).
Noh, H., Chong, Y., Stone, A. D. & Cao, H. Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108, 186805 (2012).
Pu, M. et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012).
Fan, Y., Zhang, F., Zhao, Q., Wei, Z. & Li, H. Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt. Lett. 39, 6269–6272 (2014).
Bruck, R. & Muskens, O. L. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21, 27652–27661 (2013).
Longhi, S. -symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010).
Longhi, S. & Feng, L. -symmetric microring laser-absorber. Opt. Lett. 39, 5026–5029 (2014).
Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010).
Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).
Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).
Hochberg, M. et al. Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater. 5, 703–709 (2006).
Schackert, F., Roy, A., Hatridge, M., Devoret, M. H. & Stone, A. D. Three-wave mixing with three incoming waves: signal-idler coherent attenuation and gain enhancement in a parametric amplifier. Phys. Rev. Lett. 111, 073903 (2013).
Bender, C. M. & Böttcher, S. Real spectra in non-Hermitian Hamiltonians having symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007).
Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in -symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).
Klaiman, S., Guenther, U. & Moiseyev, N. Visualization of branch points in symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).
Longhi, S. Bloch oscillations in complex crystals with symmetry. Phys. Rev. Lett. 103, 123601 (2009).
Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).
Baum, B., Alaeian, H. & Dionne, J. A parity-time symmetric coherent plasmonic absorber-amplifier. J. Appl. Phys. 117, 063106 (2015).
Lin, Z. et al. Unidirectional invisibility induced by -symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity–time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).
Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).
Brandstetter et al. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014).
Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).
Schomerus, P. Quantum noise and self-sustained radiation of -symmetric systems. Phys. Rev. Lett. 104, 233061 (2010).
Chong, Y. D., Ge, L. & Stone, A. D. -symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).
Ghafouri-Shiraz, H. Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003).
Türeci, H. E., Stone, A. D., Ge, L., Rotter, S. & Tandy, R. J. Ab initio self-consistent laser theory and random lasers. Nonlinearity 22, C1–C18 (2009).
Acknowledgements
This work was primarily funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy within the Metamaterials Program (KC12XZ). L.F. acknowledges the US Army Research Office (W911NF-15-1-0152) that supports the simulation. We thank the Molecular Foundry, Lawrence Berkeley National Laboratory for the technical support in nanofabrication, and D. Olynick for discussions.
Author information
Authors and Affiliations
Contributions
Z.J.W., L.F. and X.Z. designed the experiment. Y.-L.X., Z.J.W. and L.F. performed the theoretical calculations and numerical simulations. Z.J.W. fabricated the samples. J.K., Y.-L.X., Z.J.W. and K.O.B. built the optical set-up, Z.J.W., Y.-L.X. and J.K. carried out the measurements and data analysis. All authors contributed to discussions and writing of the manuscript. X.Z., L.F. and Y.W. guided the research.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1735 kb)
Rights and permissions
About this article
Cite this article
Wong, Z., Xu, YL., Kim, J. et al. Lasing and anti-lasing in a single cavity. Nature Photon 10, 796–801 (2016). https://doi.org/10.1038/nphoton.2016.216
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2016.216