Abstract
Antiestrogen-resistant and triple-negative breast tumors pose a serious clinical challenge because of limited treatment options. We assessed global gene expression changes in antiestrogen-sensitive compared with antiestrogen-resistant (two tamoxifen resistant and two fulvestrant resistant) MCF-7 breast cancer cell lines. The branched-chain amino acid transaminase 1 (BCAT1), which catalyzes the first step in the breakdown of branched-chain amino acids, was among the most upregulated transcripts in antiestrogen-resistant cells. Elevated BCAT1 expression was confirmed in relapsed tamoxifen-resistant breast tumor specimens. High intratumoral BCAT1 levels were associated with a reduced relapse-free survival in adjuvant tamoxifen-treated patients and overall survival in unselected patients. On a tissue microarray (n=1421), BCAT1 expression was detectable in 58% of unselected primary breast carcinomas and linked to a higher Ki-67 proliferation index, as well as histological grade. Interestingly, BCAT1 was predominantly expressed in estrogen receptor-α-negative/human epidermal growth factor receptor-2-positive (ERα-negative/HER-2-positive) and triple-negative breast cancers in independent patient cohorts. The inverse relationship between BCAT1 and ERα was corroborated in various breast cancer cell lines and pharmacological long-term depletion of ERα induced BCAT1 expression in vitro. Mechanistically, BCAT1 indirectly controlled expression of the cell cycle inhibitor p27Kip1 thereby affecting pRB. Correspondingly, phenotypic analyses using a lentiviral-mediated BCAT1 short hairpin RNA knockdown revealed that BCAT1 sustains proliferation in addition to migration and invasion and that its overexpression enhanced the capacity of antiestrogen-sensitive cells to grow in the presence of antiestrogens. Importantly, silencing of BCAT1 in an orthotopic triple-negative xenograft model resulted in a massive reduction of tumor volume in vivo, supporting our findings that BCAT1 is necessary for the growth of hormone-independent breast tumors.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
265,23 € per year
only 5,30 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359–E386.
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.
Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–1717.
Jordan VC, O'Malley BW . Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 2007; 25: 5815–5824.
Robertson JF . ICI 182,780 (Fulvestrant)—the first oestrogen receptor down-regulator—current clinical data. Br J Cancer 2001; 85 (Suppl 2): 11–14.
Osborne CK, Schiff R . Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011; 62: 233–247.
Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA . New strategies for triple-negative breast cancer—deciphering the heterogeneity. Clin Cancer Res 2014; 20: 782–790.
Rimawi MF, Schiff R, Osborne CK . Targeting HER2 for the treatment of breast cancer. Annu Rev Med 2015; 66: 111–128.
Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 2013; 19: 901–908.
Zhou W, Feng X, Li H, Wang L, Li H, Zhu B et al. Functional evidence for a nasopharyngeal carcinoma-related gene BCAT1 located at 12p12. Oncol Res 2007; 16: 405–413.
Frogne T, Benjaminsen RV, Sonne-Hansen K, Sorensen BS, Nexo E, Laenkholm AV et al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Res Treat 2009; 114: 263–275.
Thrane S, Lykkesfeldt AE, Larsen MS, Sorensen BS, Yde CW . Estrogen receptor alpha is the major driving factor for growth in tamoxifen-resistant breast cancer and supported by HER/ERK signaling. Breast Cancer Res Treat 2013; 139: 71–80.
Gonzalez-Malerva L, Park J, Zou L, Hu Y, Moradpour Z, Pearlberg J et al. High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci USA 2011; 108: 2058–2063.
Zhang Y, Sieuwerts AM, McGreevy M, Casey G, Cufer T, Paradiso A et al. The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat 2009; 116: 303–309.
Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.
Lu X, Lu X, Wang ZC, Iglehart JD, Zhang X, Richardson AL . Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 2008; 108: 191–201.
Al Saleh S, Al Mulla F, Luqmani YA . Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One 2011; 6: e20610.
Lykkesfeldt AE, Madsen MW, Briand P . Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164384 and ICI 182780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res 1994; 54: 1587–1595.
Lykkesfeldt AE, Larsen SS, Briand P . Human breast cancer cell lines resistant to pure anti-estrogens are sensitive to tamoxifen treatment. Int J Cancer 1995; 61: 529–534.
Zschocke J, Hoffmann GF Vademecum Metabolicum. Friedrichsdorf: Schattauer; 2004. 164 p.
Prest SJ, Rees RC, Murdoch C, Marshall JF, Cooper PA, Bibby M et al. Chemokines induce the cellular migration of MCF-7 human breast carcinoma cells: subpopulations of tumour cells display positive and negative chemotaxis and differential in vivo growth potentials. Clin Exp Metastasis 1999; 17: 389–396.
Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM, Zeng Y et al. Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene 2006; 25: 2328–2338.
Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L . Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 2012; 9: 16–32.
Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346–350.
Mishra P, Ambs S . Metabolic signatures of human breast cancer. Mol Cell Oncol 2015; 2: e992217-1–e992217-10.
DeSantiago S, Torres N, Hutson S, Tovar AR . Induction of expression of branched-chain aminotransferase and alpha-keto acid dehydrogenase in rat tissues during lactation. Adv Exp Med Biol 2001; 501: 93–99.
Coser KR, Wittner BS, Rosenthal NF, Collins SC, Melas A, Smith SL et al. Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor. Proc Natl Acad Sci USA 2009; 106: 14536–14541.
Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med 2015; 21: 751–759.
Rodriguez S, Jafer O, Goker H, Summersgill BM, Zafarana G, Gillis AJ et al. Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene 2003; 22: 1880–1891.
Shajahan-Haq AN, Cook KL, Schwartz-Roberts JL, Eltayeb AE, Demas DM, Warri AM et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol Cancer 2014; 13: 239.
Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013; 24: 450–465.
Hull J, Hindy ME, Kehoe PG, Chalmers K, Love S, Conway ME . Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J Neurochem 2012; 123: 997–1009.
Hutson S . Structure and function of branched chain aminotransferases. Prog Nucleic Acid Res Mol Biol 2001; 70: 175–206.
Zong WX, Rabinowitz JD, White E . Mitochondria and cancer. Mol Cell 2016; 61: 667–676.
Knudsen ES, Knudsen KE . Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 2008; 8: 714–724.
Mihaylova MM, Shaw RJ . The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016–1023.
Peyton KJ, Liu XM, Yu Y, Yates B, Durante W . Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells. J Pharmacol Exp Ther 2012; 342: 827–834.
Yoshikawa R, Yanagi H, Shen CS, Fujiwara Y, Noda M, Yagyu T et al. ECA39 is a novel distant metastasis-related biomarker in colorectal cancer. World J Gastroenterol 2006; 12: 5884–5889.
Chang IW, Wu WJ, Wang YH, Wu TF, Liang PI, He HL et al. BCAT1 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. Histopathology 2015; 68: 520–532.
Ju W, Yoo BC, Kim IJ, Kim JW, Kim SC, Lee HP . Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 2009; 18: 47–56.
Harvell DM, Spoelstra NS, Singh M, McManaman JL, Finlayson C, Phang T et al. Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance. Breast Cancer Res Treat 2008; 112: 475–488.
Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM . Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem 2014; 289: 18793–18804.
Chaumeil MM, Larson PE, Woods SM, Cai L, Eriksson P, Robinson AE et al. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Cancer Res 2014; 74: 4247–4257.
Briand P, Lykkesfeldt AE . Effect of estrogen and antiestrogen on the human breast cancer cell line MCF-7 adapted to growth at low serum concentration. Cancer Res 1984; 44: 1114–1119.
Castro F, Dirks WG, Fahnrich S, Hotz-Wagenblatt A, Pawlita M, Schmitt M . High-throughput SNP-based authentication of human cell lines. Int J Cancer 2013; 132: 308–314.
Heck S, Rom J, Thewes V, Becker N, Blume B, Sinn HP et al. Estrogen-related receptor alpha expression and function is associated with the transcriptional coregulator AIB1 in breast carcinoma. Cancer Res 2009; 69: 5186–5193.
Thewes V, Simon R, Schroeter P, Schlotter M, Anzeneder T, Buttner R et al. Reprogramming of the ERRalpha and ERalpha target gene landscape triggers tamoxifen resistance in breast cancer. Cancer Res 2015; 75: 720–731.
Waldmann A, Anzeneder T, Katalinic A . Patients and methods of the PATH Biobank - a resource for breast cancer research. Geburtshilfe und Frauenheilkunde 2014; 74: 361–369.
Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P et al. Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer 2006; 118: 2190–2194.
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 2013; 24: 2206–2223.
Acknowledgements
We highly appreciate the excellent technical assistance of Karin Pfleger and Achim Stephan. Further, we thank Nicolas Hafner and Yashna Paul for experimental and computational support and appreciate the help and constructive discussions from Martina Seiffert, and Michael Fletcher. Moreover, we thank the patients, pathologists and gynecologists associated with the PATH Biobank (http://path-biobank.org/index.php/en/) for their support. This work was supported by the Strategic Alliance of Bayer Healthcare and the German Cancer Research Center (DKFZ). VT was supported by a scholarship from the Helmholtz-Graduate School for Cancer Research.
Author contributions
VT, MH, UD, AS, SH, AEL, MZ, BR, PL and MT conceived the project and designed the experiments. VT, MS, PS and MT performed in vitro experiments. YW and WW conducted MassARRAY analyses. KS and JGO conducted mass spectrometry analyses. TA, NM, RB, HPS, AS and GS provided and evaluated tumor specimens and clinical data. VT, RS, NM, HPS, AS, RB and MZ generated and analyzed clinical data. MH, MZ and RS performed computational analyses. MS prepared lentiviral particles with help of PW, SK and HH-S conducted animal experiments. PS and MK prepared xenograft sections with the help of NK. VT, UD, SH, MZ, BR, PL and MT analyzed data and wrote the manuscript with the help of other authors.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Stefan Kaulfuss and Holger Hess-Stumpp are employees of Bayer Pharma AG. However, no respective chemical compounds were used in the manuscript and the collaboration was for scientific purposes. The remaining authors declare no conflict of interest.
Additional information
Supplementary Information accompanies this paper on the Oncogene website
Supplementary information
Rights and permissions
About this article
Cite this article
Thewes, V., Simon, R., Hlevnjak, M. et al. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene 36, 4124–4134 (2017). https://doi.org/10.1038/onc.2017.32
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/onc.2017.32
This article is cited by
-
HuR promotes castration-resistant prostate cancer progression by altering ERK5 activation via posttranscriptional regulation of BCAT1
Journal of Translational Medicine (2024)
-
Research advances in branched-chain amino acid metabolism in tumors
Molecular and Cellular Biochemistry (2024)
-
BCAT1 controls embryonic neural stem cells proliferation and differentiation in the upper layer neurons
Molecular Brain (2023)
-
Inhibition of branched-chain alpha-keto acid dehydrogenase kinase augments the sensitivity of ovarian and breast cancer cells to paclitaxel
British Journal of Cancer (2023)
-
Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma
Cellular and Molecular Life Sciences (2021)