Abstract
Two ensembles of low-density parity-check (LDPC) codes with low-complexity decoding algorithms are considered. The first ensemble consists of generalized LDPC codes, and the second consists of concatenated codes with an outer LDPC code. Error exponent lower bounds for these ensembles under the corresponding low-complexity decoding algorithms are compared. A modification of the decoding algorithm of a generalized LDPC code with a special construction is proposed. The error exponent lower bound for the modified decoding algorithm is obtained. Finally, numerical results for the considered error exponent lower bounds are presented and analyzed.
Similar content being viewed by others
References
Forney, G.D. Jr., Concatenated Codes, Cambridge: MIT Press, 1966. Translated under the title Kaskadnye kody, Moscow: Mir, 1970.
Blokh, E.L. and Zyablov, V.V. Lineinye kaskadnye kody (Linear Concatenated Codes), Moscow: Nauka, 1982.
Gallager, R.G. Low-Density Parity-Check Codes, Cambridge: MIT Press, 1963. Translated under the title Kody s maloi plotnost’yu proverok na chetnost’, Moscow: Mir, 1966.
Zyablov, V.V. and Pinsker, M.S. Estimation of the Error-Correction Complexity for Gallager Low-Density Codes, Probl. Peredachi Inf., 1975, vol. 11, no. 1, pp. 23–36 [Probl. Inf. Trans. (Engl. Transl.), 1975, vol. 11, no. 1, pp. 18–28].
Zyablov, V.V. Johannesson, R., and Loncar, M., Low-Complexity Error Correction of Hamming-Code- Based LDPC Codes, Probl. Peredachi Inf., 2009, vol. 45, no. 2, pp. 25–40 [Probl. Inf. Trans. (Engl. Transl.), 2009, vol. 45, no. 2, pp. 95–109].
Zyablov, V.V. and Rybin, P.S. Analysis of the Relation between Properties of LDPC Codes and the Tanner Graph, Probl. Peredachi Inf., 2012, vol. 48, no. 4, pp. 3–29 [Probl. Inf. Trans. (Engl. Transl.), 2012, vol. 48, no. 4, pp. 297–323].
Rybin, P. On the Error-Correcting Capabilities of Low-Complexity Decoded Irregular LDPC codes, in Proc. 2014 IEEE Int. Sympos. on Information Theory (ISIT’2014), Honolulu, HI,USA, June 29–July 4, 2014, pp. 3165–3169.
Barg, A. and Zémor, G. Error Exponents of Expander Codes, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 6, pp. 1725–1729.
Barg, A. and Zémor, G. Error Exponents of Expander Codes under Linear-Complexity Decoding, SIAM J. Discret. Math., 2004, vol. 17, no. 3, pp. 426–445.
Zyablov, V.V. and Rybin, P.S. Estimation of the Exponent of the Decoding Error Probability for a Special Generalized LDPC Code, Inform. Protsessy, 2012, vol. 12, no. 1, pp. 84–97 [J. Commun. Technol. Electron. (Engl. Transl.), (Engl. Transl.), 2012, vol. 57, no. 8, pp. 946–952].
Gallager, R.G. Information Theory and Reliable Communication, New York: Wiley, 1968. Translated under the title Teoriya informatsii i nadezhnaya svyaz’, Moscow: Sov. Radio, 1974.
Frolov, A.A. and Zyablov, V.V. Asymptotic Estimation of the Fraction of Errors Correctable by q-ary LDPC Codes, Probl. Peredachi Inf., 2010, vol. 46, no. 2, pp. 47–65 [Probl. Inf. Trans. (Engl. Transl.), 2010, vol. 46, no. 2, pp. 142–159].
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © P.S. Rybin, V.V. Zyablov, 2015, published in Problemy Peredachi Informatsii, 2015, Vol. 51, No. 3, pp. 3–14.
The research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
Rights and permissions
About this article
Cite this article
Rybin, P.S., Zyablov, V.V. Asymptotic bounds on the decoding error probability for two ensembles of LDPC codes. Probl Inf Transm 51, 205–216 (2015). https://doi.org/10.1134/S0032946015030011
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0032946015030011