Skip to main content
Log in

Nth-order smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigate smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger (GNLS) equation which contains higher-order nonlinear effects. With the help of generalized Darboux transformation (GDT) method, we construct Nth-order smooth positon solutions of GNLS equation. We study the effect of higher-order nonlinear terms on these solutions. Our investigations show that the positon solutions are highly compressed by higher-order nonlinear effects. The direction of positons also get changed. We also derive Nth-order breather-positon (B-P) solution with the help of GDT. We show that these B-Ps are well compressed by the effect of higher-order nonlinear terms, but the period of B-P solution is not affected as in the breather solution case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available within the article.

References

  1. M. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge University Press, New York, 2011)

    Book  MATH  Google Scholar 

  2. P.G. Drazin, R.S. Johnson, It Solitons: An Introduction (Cambridge University Press, New York, 1989)

    Book  MATH  Google Scholar 

  3. V.B. Matveev, Phys. Lett. A 166, 205–208 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. V.B. Matveev, Phys. Lett. A 166, 209–212 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Jaworski, J. Zagrodzifiski, Chaos Solitons Fractals 5, 2229–2233 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. V.B. Matveev, Theor. Math. Phys. 131, 483–497 (2002)

    Article  Google Scholar 

  7. P. Dubard, P. Gaillard, C. Kleina, V.B. Matveev, Eur. Phys. J. Special Top. 185, 247–258 (2010)

    Article  ADS  Google Scholar 

  8. H. Maisch, A.A. Stahlhofen, Phys. Scr. 52, 228–236 (1995)

    Article  ADS  Google Scholar 

  9. M. Onorato, S. Resitori, F. Baronio, Rogue and Shock Waves in Nonlinear Dispersive Media (Springer, Cham, 2016)

    Book  Google Scholar 

  10. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean: Observation, Theories and Modeling (Springer, New York, 2009)

    MATH  Google Scholar 

  11. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)

    Article  ADS  Google Scholar 

  12. N. Akhmediev, J.M. Dudely, D.R. Solli, S.K. Turitsyn, Recent progress in investigating optical rouge waves. J. Opt. 15, 060201 (2013)

    Article  ADS  Google Scholar 

  13. Y.V. Bludov, V.V. Konotop, N. Akhmediev, Eur. Phys. J. Spec. Top. 185, 169–180 (2010)

    Article  Google Scholar 

  14. V.B. Efimov, A.N. Ganshin, G.N. Kolmakov, P.V.E. McClintock, L.P. Mezhov-Deglin, Eur. Phys. J. Spec. Top. 185, 181–193 (2010)

    Article  Google Scholar 

  15. W.M. Moslem, P.K. Shukla, B. Eliasson, Europhys. Lett. 96, 25002 (2011)

    Article  ADS  Google Scholar 

  16. A.A. Stahlhofen, Ann. Phys. 1, 554–569 (1992)

    Article  MathSciNet  Google Scholar 

  17. A.A. Stahlhofen, V.B. Matveev, J. Phys. A Math. Gen. 28, 1957 (1995)

    Article  ADS  Google Scholar 

  18. R. Beutler, J. Math. Phys. 34, 3098 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Rasinariu, U. Sukhatme, A. Khare, J. Phys. A Math. Gen. 29, 1803–1823 (1996)

    Article  ADS  Google Scholar 

  20. Y. Zhang, D.Y. Chen, Chaos Solitons Fractals 23, 1055–1061 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. W.H. Xia, Z.Y. Bo, F.T. You, Commun. Theor. Phys. 49, 529–534 (2008)

    Article  ADS  Google Scholar 

  22. Y. Zeng, Y. Shao, W. Xue, J. Phys. A Math. Gen. 36, 5035–5043 (2003)

    Article  ADS  Google Scholar 

  23. L. Wang, J.S. He, H. Xu, J. Wang, K. Porsezian, Phys. Rev. E 95, 042217 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. H.C. Hu, Phys. Lett. A 373, 1750–1753 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. H.C. Hu, B. Tong, S.Y. Lou, Phys. Lett. A 351, 403–412 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. H. Hu, L. Liu, L. Zhang, Appl. Math. Comput. 219, 5743–5749 (2013)

    MathSciNet  Google Scholar 

  27. W. Song, S. Xu, M. Li, J. He, Nonlinear Dyn. 97, 2135–2145 (2019)

    Article  Google Scholar 

  28. X. Shi, J. Li, C. Wu, Chaos 29, 023120 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. Z. Zhang, X. Yang, B. Li, Appl. Math. Lett. 103, 106168 (2020)

    Article  MathSciNet  Google Scholar 

  30. D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 85, 066601 (2012)

    Article  ADS  Google Scholar 

  31. Y. Zhang, J. Rao, Y. Cheng, J. He, Physica D 399, 173–185 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Hu, M. Li, J. He, Nonlinear Dyn. 104, 4329–4338 (2021)

    Article  Google Scholar 

  33. A. Chowdury, W. Krolikowski, Phys. Rev. E 96, 042209 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Z. Zhang, X. Yang, B. Li, Nonlinear Dyn. 100, 1551–1557 (2020)

    Article  Google Scholar 

  35. D. Qiu, W. Cheng, Appl. Math. Lett. 98, 13–21 (2019)

    Article  MathSciNet  Google Scholar 

  36. L. Guo, Y. Cheng, D. Mihalache, J. He, Rom. J. Phys. 64, 104 (2019)

    Google Scholar 

  37. F. Yuan, Nonlinear Dyn. 102, 1761–1771 (2020)

    Article  Google Scholar 

  38. V.E. Zakharov, A.B. Shabat, Funct. Anal. Appl. 8, 226–235 (1974)

    Article  Google Scholar 

  39. L.H. Wang, K. Porsezian, J.S. He, Phys. Rev. E 87, 053202 (2013)

    Article  ADS  Google Scholar 

  40. M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A 133, 483 (1988)

    Article  ADS  Google Scholar 

  41. J.W. Yang, Y.T. Gao, C.Q. Su, Q.M. Wang, Z.Z. Lan, Commun. Nonlinear Sci. Numer. Simul. 48, 340 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  43. J. Cen, A. Fring, Physica D 397, 17–24 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

NVP wishes to thank IISc, Bangalore, for providing a fellowship in the form of Research Associateship. SM thanks RUSA 2.0 project for providing a fellowship to carry out this work. The work of MS forms part of a research project sponsored by NBHM, Government of India, under the Grant No. 02011/20/2018 NBHM (R.P)/R &D II/15064. The work of GR was supported by Centre for Advanced Study, UGC grant.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to M. Senthilvelan.

Appendices

Appendix A: Third-order smooth positon solution of GNLS equation

Third-order smooth positon solution of GNLS equation is given by

$$\begin{aligned} q[3]= & {} \frac{A_2}{B_2}, \end{aligned}$$
(25)
$$\begin{aligned} A_2= & {} A_{21}e^{i(x(\lambda _1-3\lambda _1^*)+2t(\lambda _1^2-3\lambda _1^{*2}-4\lambda _1^4\nu +12\lambda _1^{*4}\nu ))}+A_{22}e^{i(x(-3\lambda _1+\lambda _1^*)+2t(\lambda _1^{*2}-3\lambda _1^{2}-4\lambda _1^{*4}\nu +12\lambda _1^{4}\nu ))}\nonumber \\&+\,A_{23}e^{-i(x(\lambda _1+\lambda _1^*)+2t(\lambda _1^2+\lambda _1^{*2}-4\lambda _1^4\nu -4\lambda _1^{*4}\nu ))},\nonumber \\ A_{21}= & {} -4(\lambda _1-\lambda _1^*)\big (-3+2x^2(\lambda _1-\lambda _1^*)^2+32t^2\lambda _1^2(\lambda _1-\lambda _1^*)^2(1-8\lambda _1^2\nu )^2-4it(\lambda _1-\lambda _1^*)(-7\lambda _1+\lambda _1^*+72\lambda _1^3\nu -24\lambda _1^2\lambda _1^*\nu )\nonumber \\&-\,2x(\lambda _1-\lambda _1^*)(-3i+8t\lambda _1(\lambda _1-\lambda _1^*)(-1+8\lambda _1^2\nu ))\big )\nonumber \\ A_{22}= & {} -4(\lambda _1-\lambda _1^*)\big (-3+2x^2(\lambda _1-\lambda _1^*)^2+32t^2\lambda _1^{*2}(\lambda _1-\lambda _1^*)^2(1-8\lambda _1^{*2}\nu )^2-4it(\lambda _1-\lambda _1^*)(7\lambda _1^*-\lambda _1-72\lambda _1^{*3}\nu +24\lambda _1^{*2}\lambda _1\nu )\nonumber \\&-\,2x(\lambda _1-\lambda _1^*)(3i+8t\lambda _1^*(\lambda _1-\lambda _1^*)(-1+8\lambda _1^{*2}\nu ))\big )\nonumber \\ A_{23}= & {} -8(\lambda _1-\lambda _1^*)\bigg (-3-4x^2(\lambda _1-\lambda _1^*)^2+2x^4(\lambda _1-\lambda _1^*)^4+512t^4\lambda _1^2(\lambda _1-\lambda _1^*)^4\lambda _1^{*2}(1-8\lambda _1^2\nu )^2(1-8\lambda _1^{*2}\nu )^2-16t(\lambda _1-\lambda _1^*)^2\nonumber \\&(x^3(\lambda _1-\lambda _1^*)^2(\lambda _1+\lambda _1^*)(-1+8\lambda _1^2\nu -8\lambda _1\lambda _1^*\nu +8\lambda _1^{*2}\nu )+i(-1+9\lambda _1^2\nu +6\lambda _1\lambda _1^*\nu +9\lambda _1^{*2}\nu )-ix^2(\lambda _1-\lambda _1^*)^2(-1\nonumber \\&+\,10\lambda _1^2\nu +4\lambda _1\lambda _1^*\nu +10\lambda _1^{*2}\nu )-x(\lambda _1+\lambda _1^*)(-1+14\lambda _1^2\nu -20\lambda _1\lambda _1^*\nu +14\lambda _1^{*2}\nu ))+8t^2(\lambda _1-\lambda _1^*)^2(256x^2\lambda _1^8\nu ^2\nonumber \\&-\,256x\lambda _1^7(i+2x\lambda _1^*)\nu ^2+32x\lambda _1^5\nu (3i-24i\lambda _1^{*2}\nu +32x\lambda _1^{*3}\nu )+64\lambda _1^6\nu (-2\nu +4ix\lambda _1^*\nu +x^2(-1+4\lambda _1^{*2}\nu ))+\lambda _1^2(-1\nonumber \\&-\,48\lambda _1^{*2}\nu -192\lambda _1^{*4}\nu ^2+8x^2\lambda _1^{*2}(-3+24\lambda _1^{*2}\nu +32\lambda _1^{*4}\nu ^2)-8ix\lambda _1^*(-1+8\lambda _1^{*2}\nu +96\lambda _1^{*4}\nu ^2))-4\lambda _1^4(2\nu (-5+24\lambda _1^{*2}\nu )\nonumber \\&-\,8ix\lambda _1^*\nu (-1+24\lambda _1^{*2}\nu )+x^2(-1-48\lambda _1^{*2}\nu +512\lambda _1^{*4}\nu ^2))+\lambda _1^{*2}(-1+40\lambda _1^{*2}\nu -128\lambda _1^{*4}\nu ^2+4x^2\lambda _1^{*2}(1-8\lambda _1^{*2}\nu )^2\nonumber \\&-\,8ix(\lambda _1^*-12\lambda _1^{*3}\nu +32\lambda _1^{*5}\nu ^2))+8\lambda _1^3(2\lambda _1^*\nu (3+8\lambda _1^{*2}\nu )+ix(-1-8\lambda _1^{*2}\nu +96\lambda _1^{*4}\nu ^2)+x^2(\lambda _1^*-32\lambda _1^{*3}\nu +128\lambda _1^{*5}\nu ^2))\nonumber \\&+\,2\lambda _1\lambda _1^*(-3+24\lambda _1^{*2}\nu +4ix(\lambda _1^*-4\lambda _1^{*3}\nu +32\lambda _1^{*5}\nu ^2)+x^2(4\lambda _1^{*2}-256\lambda _1^{*6}\nu ^2)))-64t^3(\lambda _1-\lambda _1^*)^4\big (i\lambda _1^{*2}(1-8\lambda _1^{*2}\nu )^2\nonumber \\&-\,2\lambda _1\lambda _1^*(-i+2x\lambda _1^*)(1-8\lambda _1^{*2}\nu )^2-128i\lambda _1^5\lambda _1^*\nu ^2(-1+8\lambda _1^{*2}\nu )+32\lambda _1^3\lambda _1^*\nu (-1+8\lambda _1^{*2}\nu )(i-4i\lambda _1^{*2}\nu +x\lambda _1^*(-1+8\lambda _1^{*2}\nu ))\nonumber \\&+\,64\lambda _1^6\nu ^2(i-24i\lambda _1^{*2}\nu +4x\lambda _1^*(-1+8\lambda _1^{*2}\nu ))+16\lambda _1^4\nu (x(4\lambda _1^*-32\lambda _1^{*3}\nu )-i(1-32\lambda _1^{*2}\nu +64\lambda _1^{*4}\nu ^2))+\lambda _1^2(4x\lambda _1^*(-1\nonumber \\&+\,8\lambda _1^{*2}\nu )-i(-1+64\lambda _1^{*2}\nu -512\lambda _1^{*4}\nu ^2+1536\lambda _1^{*6}\nu ^3))\big )\bigg ),\nonumber \\ B_2= & {} 4e^{3i(x(-\lambda _1+\lambda _1^*)+2t(-\lambda _1^2+\lambda _1^{*2}+4\lambda _1^4\nu -4\lambda _1^{*4}\nu ))}+4e^{3i(x(\lambda _1-\lambda _1^*)+2t(\lambda _1^2-\lambda _1^{*2}-4\lambda _1^4\nu +4\lambda _1^{*4}\nu ))}\nonumber \\&+\,4B_{21}e^{-i(x(-\lambda _1+\lambda _1^*)+2t(-\lambda _1^2+\lambda _1^{*2}+4\lambda _1^4\nu -4\lambda _1^{*4}\nu ))}+4B_{22}e^{-i(x(\lambda _1-\lambda _1^*)+2t(\lambda _1^2-\lambda _1^{*2}-4\lambda _1^4\nu +4\lambda _1^{*4}\nu ))},\nonumber \\ \end{aligned}$$
(26)
$$\begin{aligned} B_{21}= & {} (3+4x^4(\lambda _1-\lambda _1^*)^4+1024t^4\lambda _1^2(\lambda _1-\lambda _1^*)^4\lambda _1^{*2}(1-8\lambda _1^2\nu )^2(1-8\lambda _1^{*2}\nu )^2-8x^3(\lambda _1-\lambda _1^*)^3(-i+4t(\lambda _1^2-\lambda _1^{*2})(-1\nonumber \\&+\,8\lambda _1^2\nu -8\lambda _1\lambda _1^*\nu +8\lambda _1^{*2}\nu ))+16t^2(\lambda _1-\lambda _1^*)^2(3\lambda _1^{*2}-40\lambda _1^{*4}\nu +16\lambda _1^3\lambda _1^*\nu (13-168\lambda _1^{*2}\nu )+40\lambda _1^4\nu (-1+24\lambda _1^{*2}\nu )\nonumber \\&+\,2\lambda _1\lambda _1^*(-9+104\lambda _1{^*2}\nu )+3\lambda _1^2(1-48\lambda _1^{*2}\nu +320\lambda _1^{*4}\nu ^2))+128it^3(\lambda _1-\lambda _1^*)^3(\lambda _1+\lambda _1^*)(4\lambda _1\lambda _1^*(1-8\lambda _1^{*2}\nu )^2\nonumber \\&-\,\lambda _1^{*2}(1-8\lambda _1^{*2}\nu )^2-256\lambda _1^5\lambda _1^*\nu ^2(-1+16\lambda _1^{*2}\nu )+64\lambda _1^6\nu ^2(-1+24\lambda _1^{*2}\nu )-64\lambda _1^3\lambda _1^*\nu (1-20\lambda _1^{*2}\nu +64\lambda _1^{*4}\nu ^2)\nonumber \\&+\,16\lambda _1^4\nu (1-40\lambda _1^{*2}\nu +256\lambda _1^{*4}\nu ^2)+\lambda _1^2(-1+48\lambda _1^{*2}\nu -640\lambda _1^{*4}\nu ^2+1536\lambda _1^{*6}\nu ^3))+4x^2(\lambda _1-\lambda _1^*)^2(-3\nonumber \\&-\,12it(\lambda _1^2-\lambda _1^{*2})(-1+12\lambda _1^2\nu -16\lambda _1\lambda _1^*\nu +12\lambda _1^{*2}\nu )+16t^2(\lambda _1-\lambda _1^*)^2(\lambda _1^2-16\lambda _1^4\nu +64\lambda _1^6\nu ^2+\lambda _1^{*2}(1-8\lambda _1^{*2}\nu )^2\nonumber \\&+\,32\lambda _1^3\lambda _1^*\nu (-1+8\lambda _1^{*2}\nu )+\lambda _1(4\lambda _1^*-32\lambda _1^{*3}\nu )))-16tx(\lambda _1-\lambda _1^*)^2(2048t^2\lambda _1^8\lambda _1^*\nu ^2(-1+8\lambda _1^{*2}\nu )+\lambda _1^*(3-36\lambda _1^{*2}\nu \nonumber \\&-\,32it\lambda _1^{*4}\nu +256it\lambda _1^{*6}\nu ^2)-256t\lambda _1^7\nu ^2(i+16t\lambda _1^{*2}(-1+8\lambda _1^{*2}\nu ))+\lambda _1(3+12\lambda _1^{*2}\nu -32t^2\lambda _1^{*4}(1-8\lambda _1^{*2}\nu )^2\nonumber \\&-\,8it\lambda _1^{*2}(-3+28\lambda _1^{*2}\nu +32\lambda _1^{*4}\nu ^2))+256t\lambda _1^6\lambda _1^*\nu (i\nu +t(2-24\lambda _1^{*2}\nu +64\lambda _1^{*4}\nu ^2))+32t\lambda _1^5\nu (i(1+24\lambda _1^{*2}\nu )\nonumber \\&+\,8t\lambda _1^{*2}(-3+16\lambda _1^{*2}\nu +64\lambda _1{^*4}\nu ^2))+4\lambda _1^2\lambda _1^*(3\nu -2it(3-56\lambda _1^{*2}\nu +96\lambda _1^{*4}\nu ^2)+8t^2(\lambda _1^{*2}-24\lambda _1^{*4}\nu +128\lambda _1^{*6}\nu ^2))\nonumber \\&-\,32t\lambda _1^4\lambda _1^*(i\nu (-7+104\lambda _1^{*2}\nu )+t(1-8\lambda _1^{*2}\nu -128\lambda _1^{*4}\nu ^2+1024\lambda _1^{*6}\nu ^3))+4\lambda _1^3(-9\nu +16it\lambda _1^{*2}\nu (-7+52\lambda _1^{*2}\nu )\nonumber \\&+\,8t^2(\lambda _1^{*2}+8\lambda _1^{*4}\nu -192\lambda _1^{*6}\nu ^2+512\lambda _1^{*8}\nu ^3)))),\nonumber \\ B_{22}= & {} (3+4x^4(\lambda _1-\lambda _1^*)^4+1024t^4\lambda _1^2(\lambda _1-\lambda _1^*)^4\lambda _1^{*2}(1-8\lambda _1^2\nu )^2(1-8\lambda _1^{*2}\nu )^2-8x^3(\lambda _1-\lambda _1^*)^3(i+4t(\lambda _1^2-\lambda _1^{*2})(-1\nonumber \\&+\,8\lambda _1^2\nu -8\lambda _1\lambda _1^*\nu +8\lambda _1^{*2}\nu ))+16t^2(\lambda _1-\lambda _1^*)^2(3\lambda _1^{*2}-40\lambda _1^{*4}\nu +16\lambda _1^3\lambda _1^*\nu (13-168\lambda _1^{*2}\nu )+40\lambda _1^4\nu (-1+24\lambda _1^{*2}\nu )\nonumber \\&+\,2\lambda _1\lambda _1^*(-9+104\lambda _1{^*2}\nu )+3\lambda _1^2(1-48\lambda _1^{*2}\nu +320\lambda _1^{*4}\nu ^2))-128it^3(\lambda _1-\lambda _1^*)^3(\lambda _1+\lambda _1^*)(4\lambda _1\lambda _1^*(1-8\lambda _1^{*2}\nu )^2\nonumber \\&-\,\lambda _1^{*2}(1-8\lambda _1^{*2}\nu )^2-256\lambda _1^5\lambda _1^*\nu ^2(-1+16\lambda _1^{*2}\nu )+64\lambda _1^6\nu ^2(-1+24\lambda _1^{*2}\nu )-64\lambda _1^3\lambda _1^*\nu (1-20\lambda _1^{*2}\nu +64\lambda _1^{*4}\nu ^2)\nonumber \\&+\,16\lambda _1^4\nu (1-40\lambda _1^{*2}\nu +256\lambda _1^{*4}\nu ^2)+\lambda _1^2(-1+48\lambda _1^{*2}\nu -640\lambda _1^{*4}\nu ^2+1536\lambda _1^{*6}\nu ^3))+4x^2(\lambda _1-\lambda _1^*)^2(-3\nonumber \\&12it(\lambda _1^2-\lambda _1^{*2})(-1+12\lambda _1^2\nu -16\lambda _1\lambda _1^*\nu +12\lambda _1^{*2}\nu )+16t^2(\lambda _1-\lambda _1^*)^2(\lambda _1^2-16\lambda _1^4\nu +64\lambda _1^6\nu ^2+\lambda _1^{*2}(1-8\lambda _1^{*2}\nu )^2\nonumber \\&+\,32\lambda _1^3\lambda _1^*\nu (-1+8\lambda _1^{*2}\nu )+\lambda _1(4\lambda _1^*-32\lambda _1^{*3}\nu )))-16tx(\lambda _1-\lambda _1^*)^2(2048t^2\lambda _1^8\lambda _1^*\nu ^2(-1+8\lambda _1^{*2}\nu )+\lambda _1^*(3-36\lambda _1^{*2}\nu \nonumber \\&32it\lambda _1^{*4}\nu -256it\lambda _1^{*6}\nu ^2)-256t\lambda _1^7\nu ^2(-i+16t\lambda _1^{*2}(-1+8\lambda _1^{*2}\nu ))+\lambda _1(3+12\lambda _1^{*2}\nu -32t^2\lambda _1^{*4}(1-8\lambda _1^{*2}\nu )^2\nonumber \\&8it\lambda _1^{*2}(-3+28\lambda _1^{*2}\nu +32\lambda _1^{*4}\nu ^2))+256t\lambda _1^6\lambda _1^*\nu (-i\nu +t(2-24\lambda _1^{*2}\nu +64\lambda _1^{*4}\nu ^2))+32t\lambda _1^5\nu (-i(1+24\lambda _1^{*2}\nu )\nonumber \\&+\,8t\lambda _1^{*2}(-3+16\lambda _1^{*2}\nu +64\lambda _1{^*4}\nu ^2))+4\lambda _1^2\lambda _1^*(3\nu +2it(3-56\lambda _1^{*2}\nu +96\lambda _1^{*4}\nu ^2)+8t^2(\lambda _1^{*2}-24\lambda _1^{*4}\nu +128\lambda _1^{*6}\nu ^2))\nonumber \\&-\,32t\lambda _1^4\lambda _1^*(-i\nu (-7+104\lambda _1^{*2}\nu )+t(1-8\lambda _1^{*2}\nu -128\lambda _1^{*4}\nu ^2+1024\lambda _1^{*6}\nu ^3))+4\lambda _1^3(-9\nu -16it\lambda _1^{*2}\nu (-7+52\lambda _1^{*2}\nu )\nonumber \\&+\,8t^2(\lambda _1^{*2}+8\lambda _1^{*4}\nu -192\lambda _1^{*6}\nu ^2+512\lambda _1^{*8}\nu ^3)))). \end{aligned}$$
(27)

Appendix B: Second-order B-P solution of GNLS equation

The second-order B-P solution of (1) is given by

$$\begin{aligned} q[2]_{b-p}=ae^{ict}-2i\frac{A_{bp2}}{B_{bp2}}, \end{aligned}$$
(28)

where

$$\begin{aligned} A_{bp2}= & {} \frac{8a}{\delta ^5}\eta (5a+4\eta )^2(a^2-2\eta ^2-2i\eta \delta )e^{2it(a^2+3a^4\nu )-8t\delta (\eta +2a^2\eta \nu +4\eta ^3\nu )}-\frac{8a}{\delta ^5}\eta (5a+4\eta )^2(a^2+2i\eta (i\eta +\delta ))\nonumber \\&e^{2t(3ia^4\nu +4\eta \delta (1+4\eta ^2\nu )+a^2(i+8\eta \delta \nu ))}+\frac{1}{\delta ^5}1280ia^8\eta ^2\nu te^{2ix\delta +2it(a^2+3a^4\nu )-4t\delta (\eta +2a^2\eta \nu +4\eta ^3\nu )}-\frac{1}{\delta ^2}1280ia^8\nonumber \\&\eta ^2\nu te^{2ix\delta +2it(a^2+3a^4\nu )+4t\delta (\eta +2a^2\eta \nu +4\eta ^3\nu )}-\frac{32a}{\delta ^4}\eta ^2(5a+4\eta )^2(i+8a^4\nu t+4a^2(t+8t\eta ^2\nu )-8t(\eta ^2+8\eta ^4\nu ))\nonumber \\&+\,\frac{8\eta }{\delta ^5}G_1e^{-2ix\delta +2it(a^2+3a^4\nu )-4t\delta (\eta +2a^2\eta \nu +4\eta ^3\nu )}-\frac{8\eta }{\delta ^5}G_2e^{6ia^4t\nu +2\delta (ix+2t\eta +8t\eta ^3\nu )+2a^2t(i+4\eta \delta \nu )}\nonumber \\&+\,\frac{8\eta }{\delta ^5}G_3e^{-2ix\delta +2it(a^2+3a^4\nu )+4t\delta (\eta +2a^2\eta \nu +4\eta ^3\nu )}+\frac{8\eta }{\delta ^5}G_4e^{6ia^4t\nu -2\delta (-ix+2t\eta +8t\eta ^3\nu )+a^2t(2i-8\eta \delta \nu )},\nonumber \\ G_1= & {} 160ia^8t\eta \nu -8a^7t\eta (-56i\eta +15\delta )\nu +16a^6t\eta (5i+46i\eta ^2\nu +4\eta \delta \nu )+4a^2\eta ^2(-56it\eta ^3+7i\delta +\eta ^2(-6x+16t\delta )\nonumber \\&+\,\eta (2+4ix\delta )-448it\eta ^5\nu +128t\eta ^4\delta \nu )+2a^3\eta (-336it\eta ^3+25i\delta +\eta ^2(-56x+172t\delta )+3\eta (4-5ix\delta )-2688it\eta ^5\nu \nonumber \\&+\,1376t\eta ^4\delta \nu )-32\eta ^4(-i\eta +\delta )(-i-2ix\eta +8t(\eta ^2+8\eta ^4))-16a\eta ^3(-i\eta +\delta )(-2i-7ix\eta +2t(\eta ^2+8\eta ^4\nu ))\nonumber \\&+\,a^5(-15+4it\eta (56\eta +15i\delta +336\eta ^3\nu +8i\eta ^2\delta \nu ))+4a^4(-10x\eta ^2+5i\delta +4t\eta ^2(-7i\eta +2\delta -72i\eta ^3\nu +32\eta ^2\delta \nu )),\nonumber \\ G_2= & {} 8a^7t\eta (56i\eta +15\delta )\nu +16ia^6t\eta (5+46\eta ^2\nu +4i\eta \delta \nu )-4a^2\eta ^2(56it\eta ^3+7i\delta +2\eta ^2(3x+8\delta t)+\eta (-2+4ix\delta )\nonumber \\&+\,448it\eta ^5\nu +128t\eta ^4\delta \nu )-2a^3\eta (336it\eta ^3+25i\delta +4\eta ^2(14x+43t\delta )+\eta (-12-15ix\delta )+2688it\eta ^5\nu +1376t\eta ^4\delta \nu )\nonumber \\&+\,32\eta ^4(i\eta +\delta )(-i-2ix\eta +8t(\eta ^2+8\eta ^4\nu ))+16a\eta ^3(i\eta +\delta )(-2i-7ix\eta +28t(\eta ^2+8\eta ^4\nu ))+a^5(-15\nonumber \\&+\,4t\eta (56i\eta +15\delta +336i\eta ^3\nu +8\eta ^2\delta \nu ))-4a^4(10x\eta ^2+5i\delta +4t\eta ^2(7i\eta +2\delta +72i\eta ^3\nu +32\eta ^2\delta \nu )),\nonumber \\ G_3= & {} -160ia^8t\eta \nu +8a^7t\eta (-26i\eta +15\delta )\nu +16a^6t\eta (-5i-34i\eta ^2\nu +16\eta \delta \nu )+2a^3\eta (156it\eta ^3+25i\delta -2\eta ^2(13x+4t\delta )\nonumber \\&+\,3\eta (1-5ix\delta )+1248it\eta ^5\nu -64t\eta ^4\delta \nu )-4a^2\eta ^2(16it\eta ^3-13i\delta +\eta ^2(-6x+56t\delta )+8\eta (1+2ix\delta )+128it\eta ^5\nu \nonumber \\&+\,448t\eta ^4\delta \nu )-8\eta ^4(i\eta +\delta )(-i+2ix\eta +8t(\eta ^2+8\eta ^4\nu ))-4a\eta ^3(i\eta +\delta )(-8i+13ix\eta +52t(\eta ^2+8\eta ^4\nu ))\nonumber \\&+\,4a^4(-10x\eta ^2+5i\delta +4t\eta ^2(13i\eta +8\delta +108i\eta ^3\nu +68\eta ^2\delta \nu ))+a^5(-15+4t\eta (-26i\eta +15\delta -156i\eta ^3\nu +172\eta ^2\delta \nu )),\nonumber \end{aligned}$$
$$\begin{aligned} G_4= & {} 8a^7t\eta (26i\eta +15\delta )\nu +16a^6t\eta (5i+34i\eta ^2\nu +16\eta \delta \nu )+4a^2\eta ^2(16it\eta ^3+13i\delta -2\eta ^2(3x+28t\delta )+8\eta (1-2ix\delta )\nonumber \\&+\,128it\eta ^5\nu -448t\eta ^4\delta \nu )-2a^3\eta (156it\eta ^3-25i\delta +\eta ^2(-26x+8t\delta )+3\eta (1+5ix\delta )+1248it\eta ^5\nu +64t\eta ^4\delta \nu )\nonumber \\&-\,8\eta ^4(-i\eta +\delta )(-i+2ix\eta +8t(\eta ^2+8\eta ^4\nu ))-4a\eta ^3(-i\eta +\delta )(-i+2ix\eta +8t(\eta ^2+8\eta ^4\nu ))-4a\eta ^3(-i\eta +\delta )(-8i\nonumber \\&+\,13ix\eta +52t(\eta ^2+8\eta ^4\nu ))+4a^4(10x\eta ^2+5i\delta +4t\eta ^2(-13i\eta +8\delta -108i\eta ^3\nu +68\eta ^2\delta \nu ))+a^5(15\nonumber \\&+\,4t\eta (26i\eta +15\delta +156i\eta ^3\nu +172\eta ^2\delta \nu )),\nonumber \\ B_{bp2}= & {} \frac{4a^4(5a+4\eta )^2}{\delta ^6}e^{-8t\eta \delta (1+2a^2\nu +4\eta ^2\nu )}+\frac{4a^4(5a+4\eta )^2}{\delta ^6}e^{8t\eta \delta (1+2a^2\nu +4\eta ^2\nu )}+\frac{4i\eta ^4}{\delta ^7}(-24a^3+8a\eta (3\eta +5i\delta )+a^2(-30\eta \nonumber \\&+\,7i\delta )+2\eta ^2(15\eta +17i\delta ))e^{-4ix\delta }+\frac{4a\eta ^4}{\delta ^7}(-24ia^2+7a\delta +8\eta (3i\eta +5\delta ))e^{4ix\delta }-\frac{8\eta ^5}{\delta ^7}(-15ia^2+\eta (15i\eta +17\delta ))e^{4ix\delta }\nonumber \\&+\,\frac{8a\eta }{\delta ^5}H_1e^{2\delta (ix+2t\eta (1+2a^2\nu +4\eta ^2\nu ))}-\frac{8a\eta }{\delta ^5}H_2e^{-2\delta (ix+2t\eta (1+2a^2\nu +4\eta ^2\nu ))}+\frac{8a\eta }{\delta ^5}H_3e^{2\delta (-ix+2t\eta (1+2a^2\nu +4\eta ^2\nu ))}+\frac{8a\eta }{\delta ^5}H_4\nonumber \\&e^{-2\delta (-ix+2t\eta (1+2a^2\nu +4\eta ^2\nu ))}+\frac{8a}{\delta ^6}H_5,\nonumber \\ H_1= & {} 160a^6t\eta \nu +8a^5t\eta (41\eta -15i\delta )\nu +16a^4t\eta (5+50\eta ^2\nu -6i\eta \delta \nu )+4\eta ^2(-40t\eta ^3-5\delta +2i\eta ^2(5x+12t\delta )+\eta (-3i\nonumber \\&+6x\delta )-320t\eta ^5\nu +192it\eta ^4\delta \nu )+2a\eta (-164t\eta ^3-25\delta +i\eta ^2(41x+60t\delta )+15\eta (-i+x\delta )-1312t\eta ^5\nu +480it\eta ^4\delta \nu )\nonumber \\&+\,a^3(15i+4t\eta (41\eta -15i\delta )(1+8\eta ^2\nu ))+a^2(40ix\eta ^2-20\delta -16it\eta ^2(-5i\eta +3\delta )(1+8\eta ^2\nu )),\nonumber \\ H_2= & {} 160a^6t\eta \nu +8a^5t\eta \nu (41\eta +15i\delta )\nu +16a^4t\eta (5+50\eta ^2\nu +6i\eta \delta \nu )-4\eta ^2(40t\eta ^3-5\delta -2i\eta ^2(5x-12t\delta )+\eta (3i+6x\delta )\nonumber \\&+\,320t\eta ^5\nu +192it\eta ^4\delta \nu )-2a\eta (164t\eta ^3-25\delta -i\eta ^2(41x-60t\delta )+15\eta (i+x\delta )+1312t\eta ^5\nu +480it\eta ^4\delta \nu )+a^3(15i\nonumber \\&+\,4t\eta (41\eta +15i\delta )(1+8\eta ^2\nu ))+4a^2(10ix\eta ^2+5\delta +4it\eta ^2(5i\eta +3\delta )(1+8\eta ^2\nu )),\nonumber \\ H_3= & {} 160a^6t\eta \nu +8a^5t\eta (41\eta +15i\delta )\nu +16a^4t\eta (5+50\eta ^2\nu +6i\eta \delta \nu )-4\eta ^2(40t\eta ^3+5\delta +2i\eta ^2(5x+12t\delta )-3\eta (i+2x\delta )\nonumber \\&+\,320t\eta ^5\nu +192it\eta ^4\delta \nu )-2a\eta (164t\eta ^3+25\delta +i\eta ^2(41x+60t\delta )-15\eta (i+x\delta )(1+8\eta ^2\nu ))+4ia^2(-10x\eta ^2+5i\delta \nonumber \\&+\,4t\eta ^2(5i\eta +3\delta )(1+8\eta ^2\nu )),\nonumber \\ H_4= & {} -160a^6t\eta \nu +8ia^5t\eta (41i\eta +15\delta )\nu +6a^4t\eta (5+50\eta ^2\nu -6i\eta \delta \nu )+4\eta ^2(40t\eta ^3-5\delta +2i\eta ^2(5x-12t\delta )+\eta (-3i+6x\delta )\nonumber \\&+\,320t\eta ^5\nu -192it\eta ^4\delta \nu )+2a\eta (164t\eta ^3-25\delta +i\eta ^2(41x-60t\delta )+15\eta (-i+x\delta )+1312t\eta ^5\nu -480it\eta ^4\delta \nu )+4a^2\nonumber \\&(10ix\eta ^2-5\delta +4t\eta ^2(5\eta +3i\delta )(1+8\eta ^2\nu ))+ia^3(15+4t\eta (41i\eta +15\delta )(1+8\eta ^2\nu )),\nonumber \\ H_5= & {} \frac{-128\eta ^6}{(-a^2+\eta ^2)^3}(1+8x^2\eta ^2+128\eta ^4(t+8t\eta ^2\nu )^2)+3200a^{11}t^2\eta ^2\nu ^2+5120a^{10}t^2\eta ^3\nu ^2+5120a^8t^2\eta ^3\nu (1+7\eta ^2\nu )\nonumber \\&+\,128a^9t^2\eta ^2\nu (25+191\eta ^2\nu )-1280a^6t^2\eta ^3(-1-4\eta ^2\nu +32\eta ^4\nu ^2)-32a^7t^2\eta ^2(-25-164\eta ^2\nu +352\eta ^4\nu ^2)+32a^2\eta ^4\nonumber \\&(-3x+10x^2\eta +320\eta ^3(t+8t\eta ^2\nu )^2)+a\eta ^4(-43+120x\eta -72x^2\eta ^2+896\eta ^4(t+8t\eta ^2\nu )^2)-40a^4\eta (-1+32t^2\eta ^4\nonumber \\&(5+72\eta ^2\nu +256\eta ^4\nu ^2))+2a^3\eta ^2(17-60x\eta +100x^2\eta ^2+128t^2\eta ^4(15+256\eta ^2\nu +1088\eta ^4\nu ^2))-a^5(-25+32t^2\eta ^4\nonumber \\&(109+1736\eta ^2\nu +6912\eta ^4\nu ^2))-8\eta ^5(-12x\eta +40x^2\eta ^2+5(1+128\eta ^4(t+8t\eta ^2\nu )^2)).\end{aligned}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnu Priya, N., Monisha, S., Senthilvelan, M. et al. Nth-order smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger equation. Eur. Phys. J. Plus 137, 646 (2022). https://doi.org/10.1140/epjp/s13360-022-02861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02861-x

Navigation