Abstract
In this paper, we investigate smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger (GNLS) equation which contains higher-order nonlinear effects. With the help of generalized Darboux transformation (GDT) method, we construct Nth-order smooth positon solutions of GNLS equation. We study the effect of higher-order nonlinear terms on these solutions. Our investigations show that the positon solutions are highly compressed by higher-order nonlinear effects. The direction of positons also get changed. We also derive Nth-order breather-positon (B-P) solution with the help of GDT. We show that these B-Ps are well compressed by the effect of higher-order nonlinear terms, but the period of B-P solution is not affected as in the breather solution case.








Similar content being viewed by others
Data Availability Statement
The data that support the findings of this study are available within the article.
References
M. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge University Press, New York, 2011)
P.G. Drazin, R.S. Johnson, It Solitons: An Introduction (Cambridge University Press, New York, 1989)
V.B. Matveev, Phys. Lett. A 166, 205–208 (1992)
V.B. Matveev, Phys. Lett. A 166, 209–212 (1992)
M. Jaworski, J. Zagrodzifiski, Chaos Solitons Fractals 5, 2229–2233 (1995)
V.B. Matveev, Theor. Math. Phys. 131, 483–497 (2002)
P. Dubard, P. Gaillard, C. Kleina, V.B. Matveev, Eur. Phys. J. Special Top. 185, 247–258 (2010)
H. Maisch, A.A. Stahlhofen, Phys. Scr. 52, 228–236 (1995)
M. Onorato, S. Resitori, F. Baronio, Rogue and Shock Waves in Nonlinear Dispersive Media (Springer, Cham, 2016)
C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean: Observation, Theories and Modeling (Springer, New York, 2009)
D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)
N. Akhmediev, J.M. Dudely, D.R. Solli, S.K. Turitsyn, Recent progress in investigating optical rouge waves. J. Opt. 15, 060201 (2013)
Y.V. Bludov, V.V. Konotop, N. Akhmediev, Eur. Phys. J. Spec. Top. 185, 169–180 (2010)
V.B. Efimov, A.N. Ganshin, G.N. Kolmakov, P.V.E. McClintock, L.P. Mezhov-Deglin, Eur. Phys. J. Spec. Top. 185, 181–193 (2010)
W.M. Moslem, P.K. Shukla, B. Eliasson, Europhys. Lett. 96, 25002 (2011)
A.A. Stahlhofen, Ann. Phys. 1, 554–569 (1992)
A.A. Stahlhofen, V.B. Matveev, J. Phys. A Math. Gen. 28, 1957 (1995)
R. Beutler, J. Math. Phys. 34, 3098 (1993)
C. Rasinariu, U. Sukhatme, A. Khare, J. Phys. A Math. Gen. 29, 1803–1823 (1996)
Y. Zhang, D.Y. Chen, Chaos Solitons Fractals 23, 1055–1061 (2005)
W.H. Xia, Z.Y. Bo, F.T. You, Commun. Theor. Phys. 49, 529–534 (2008)
Y. Zeng, Y. Shao, W. Xue, J. Phys. A Math. Gen. 36, 5035–5043 (2003)
L. Wang, J.S. He, H. Xu, J. Wang, K. Porsezian, Phys. Rev. E 95, 042217 (2017)
H.C. Hu, Phys. Lett. A 373, 1750–1753 (2009)
H.C. Hu, B. Tong, S.Y. Lou, Phys. Lett. A 351, 403–412 (2006)
H. Hu, L. Liu, L. Zhang, Appl. Math. Comput. 219, 5743–5749 (2013)
W. Song, S. Xu, M. Li, J. He, Nonlinear Dyn. 97, 2135–2145 (2019)
X. Shi, J. Li, C. Wu, Chaos 29, 023120 (2019)
Z. Zhang, X. Yang, B. Li, Appl. Math. Lett. 103, 106168 (2020)
D.J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 85, 066601 (2012)
Y. Zhang, J. Rao, Y. Cheng, J. He, Physica D 399, 173–185 (2019)
A. Hu, M. Li, J. He, Nonlinear Dyn. 104, 4329–4338 (2021)
A. Chowdury, W. Krolikowski, Phys. Rev. E 96, 042209 (2017)
Z. Zhang, X. Yang, B. Li, Nonlinear Dyn. 100, 1551–1557 (2020)
D. Qiu, W. Cheng, Appl. Math. Lett. 98, 13–21 (2019)
L. Guo, Y. Cheng, D. Mihalache, J. He, Rom. J. Phys. 64, 104 (2019)
F. Yuan, Nonlinear Dyn. 102, 1761–1771 (2020)
V.E. Zakharov, A.B. Shabat, Funct. Anal. Appl. 8, 226–235 (1974)
L.H. Wang, K. Porsezian, J.S. He, Phys. Rev. E 87, 053202 (2013)
M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A 133, 483 (1988)
J.W. Yang, Y.T. Gao, C.Q. Su, Q.M. Wang, Z.Z. Lan, Commun. Nonlinear Sci. Numer. Simul. 48, 340 (2017)
V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)
J. Cen, A. Fring, Physica D 397, 17–24 (2019)
Acknowledgements
NVP wishes to thank IISc, Bangalore, for providing a fellowship in the form of Research Associateship. SM thanks RUSA 2.0 project for providing a fellowship to carry out this work. The work of MS forms part of a research project sponsored by NBHM, Government of India, under the Grant No. 02011/20/2018 NBHM (R.P)/R &D II/15064. The work of GR was supported by Centre for Advanced Study, UGC grant.
Author information
Authors and Affiliations
Contributions
All the authors contributed equally to the preparation of this manuscript.
Corresponding author
Appendices
Appendix A: Third-order smooth positon solution of GNLS equation
Third-order smooth positon solution of GNLS equation is given by
Appendix B: Second-order B-P solution of GNLS equation
The second-order B-P solution of (1) is given by
where
Rights and permissions
About this article
Cite this article
Vishnu Priya, N., Monisha, S., Senthilvelan, M. et al. Nth-order smooth positon and breather-positon solutions of a generalized nonlinear Schrödinger equation. Eur. Phys. J. Plus 137, 646 (2022). https://doi.org/10.1140/epjp/s13360-022-02861-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-022-02861-x