Abstract
Atomic electron tomography (AET) has become a powerful tool for atomic-scale structural characterization in three and four dimensions. It provides the ability to correlate structures and properties of materials at the single-atom level. With recent advances in data acquisition methods, iterative three-dimensional (3D) reconstruction algorithms, and post-processing methods, AET can now determine 3D atomic coordinates and chemical species with sub-Angstrom precision, and reveal their atomic-scale time evolution during dynamical processes. Here, we review the recent experimental and algorithmic developments of AET and highlight several groundbreaking experiments, which include pinpointing the 3D atom positions and chemical order/disorder in technologically relevant materials and capturing how atoms rearrange during early nucleation at four-dimensional atomic resolution.




Similar content being viewed by others
References
V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Science 315, 493 (2007).
Y. Ding, M. Chen, MRS Bull. 34, 569 (2009).
B. Lim, M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Science 324, 1302 (2009).
X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y.M. Wang, X. Duan, T. Mueller, Y. Huang, Science 348, 1230 (2015).
L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 544, 80 (2017).
M. Law, J. Goldberger, P. Yang, Annu. Rev. Mater. Res. 34, 83 (2004).
B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007).
L. Dou, A.B. Wong, Y. Yu, M. Lai, N. Kornienko, S.W. Eaton, A. Fu, C.G. Bischak, J. Ma, T. Ding, N.S. Ginsberg, L.-W. Wang, A.P. Alivisatos, P. Yang, Science 349, 1518 (2015).
A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 4, 366 (2005).
B. Kang, G. Ceder, Nature 458, 190 (2009).
H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Nat. Rev. Mater. 4, 45 (2019).
X. Qian, J. Liu, L. Fu, J. Li, Science 346, 1344 (2014).
P. Liu, J.R. Williams, J.J. Cha, Nat. Rev. Mater. 4, 479 (2019).
X. Liu, M.C. Hersam, Nat. Rev. Mater. 4, 669 (2019).
Y. Wang, M. Chen, F. Zhou, E. Ma, Nature 419, 912 (2002).
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014).
E. Lilleodden, P. Voorhees, MRS Bull. 43, 20 (2018).
N.L. Rosi, C.A. Mirkin, Chem. Rev. 105, 1547 (2005).
P.D. Howes, R. Chandrawati, M.M. Stevens, Science 346, 1247390 (2014).
Y. Ding, Z. Jiang, K. Saha, C.S. Kim, S.T. Kim, R.F. Landis, V.M. Rotello, Mol. Ther. 22, 1075 (2014).
M. Ladd, R. Palmer, Structure Determination by X-Ray Crystallography (Plenum Press, New York, 1994).
J. Drenth, Principles of Protein X-Ray Crystallography (Springer, New York, 1994).
J. Miao, P. Charalambous, J. Kirz, D. Sayre, Nature 400, 342 (1999).
I. Robinson, R. Harder, Nat. Mater. 8, 291 (2009).
J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Science 348, 530 (2015).
Y. Cheng, Cell 161, 450 (2015).
E. Nogales, Nat. Methods 13, 24 (2016).
P. Zhang, Curr. Opin. Struct. Biol. 58, 249 (2019).
T.F. Kelly, M.K. Miller, Rev. Sci. Instrum. 78, 031101 (2007).
D. Seidman, K. Stiller, MRS Bull. 34, 717 (2009).
D.J. de Rosier, A. Klug, Nature 217, 130 (1968).
R.G. Hart, Science 159, 1464 (1968).
J. Frank, Electron Tomography: Methods for Three-DimensionalVisualization of Structures in the Cell (Springer, New York, 2010).
Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan, Nature 451, 46 (2008).
S. Van Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G. Van Tendeloo, Nature 470, 374 (2011).
B. Goris, S. Bals, W. Van den Broek, E. Carbó-Argibay, S. Gómez-Graña, L.M. Liz-Marzán, G. Van Tendeloo, Nat. Mater. 11, 930 (2012).
D. Van Dyck, J.R. Jinschek, F.-R. Chen, Nature 486, 243 (2012).
J. Hwang, J.Y. Zhang, A.J. D’Alfonso, L.J. Allen, S. Stemmer, Phys. Rev. Lett. 111, 266101 (2013).
M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen, R.D. Kornberg, Science 345, 909 (2014).
C.L. Jia, S.B. Mi, J. Barthel, D.W. Wang, R.E. Dunin-Borkowski, K.W. Urban, A. Thust, Nat. Mater. 13, 1044 (2014).
M.C. Scott, C.-C. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius, U. Dahmen, B.C. Regan, J. Miao, Nature 483, 444 (2012).
R. Xu, C.-C. Chen, L. Wu, M.C. Scott, W. Theis, C. Ophus, M. Bartels, Y. Yang, H. Ramezani-Dakhel, M.R. Sawaya, H. Heinz, L.D. Marks, P. Ercius, J. Miao, Nat. Mater. 14, 1099 (2015).
P.A. Midgley, M. Weyland, Ultramicroscopy 96, 413 (2003).
P.A. Midgley, J.M. Thomas, L. Laffont, M. Weyland, R. Raja, B.F.G. Johnson, T. Khimyak, J. Phys. Chem. B 108, 4590 (2004).
I. Arslan, T.J.V. Yates, N.D. Browning, P.A. Midgley, Science 309, 2195 (2005).
P. Ercius, M. Weyland, D.A. Muller, L.M. Gignac, Appl. Phys. Lett. 88, 243116 (2006).
S. Bals, K.J. Batenburg, J. Verbeeck, J. Sijbers, G. Van Tendeloo, Nano Lett. 7, 3669 (2007).
E.P.W. Ward, T.J.V. Yates, J.-J. Fernández, D.E.W. Vaughan, P.A. Midgley, J. Phys. Chem. C 111, 11501 (2007).
T. Yaguchi, M. Konno, T. Kamino, M. Watanabe, Ultramicroscopy 108, 1603 (2008).
H.L. Xin, P. Ercius, K.J. Hughes, J.R. Engstrom, D.A. Muller, Appl. Phys. Lett. 96, 223108 (2010).
A. Genc, L. Kovarik, M. Gu, H. Cheng, P. Plachinda, L. Pullan, B. Freitag, C. Wang, Ultramicroscopy 131, 24 (2013).
J. Zhou, M. Taylor, G.A. Melinte, A.J. Shahani, C.C. Dharmawardhana, H. Heinz, P.W. Voorhees, J.H. Perepezko, K. Bustillo, P. Ercius, J. Miao, Sci. Rep. 8, 10239 (2018).
J. Miao, P. Ercius, S.J.L. Billinge, Science 353, aaf2157 (2016).
C.-C. Chen, C. Zhu, E.R. White, C.-Y. Chiu, M.C. Scott, B.C. Regan, L.D. Marks, Y. Huang, J. Miao, Nature 496, 74 (2013).
Y. Yang, C.-C. Chen, M.C. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis, J. Zhou, M. Eisenbach, P.R.C. Kent, R.F. Sabirianov, H. Zeng, P. Ercius, J. Miao, Nature 542, 75 (2017).
J. Zhou, Y. Yang, Y. Yang, D.S. Kim, A. Yuan, X. Tian, C. Ophus, F. Sun, A.K. Schmid, M. Nathanson, H. Heinz, Q. An, H. Zeng, P. Ercius, J. Miao, Nature 570, 500 (2019).
P.A. Midgley, E.P.W. Ward, A.B. Hungría, J.M. Thomas, Chem. Soc. Rev. 36, 1477 (2007).
P.A. Midgley, R.E. Dunin-Borkowski, Nat. Mater. 8, 271 (2009).
Z. Saghi, P.A. Midgley, Annu. Rev. Mater. Res. 42, 59 (2012).
P. Ercius, O. Alaidi, M.J. Rames, G. Ren, Adv. Mater. 27, 5638 (2015).
M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392, 768 (1998).
P.E. Batson, N. Dellby, O.L. Krivanek, Nature 418, 617 (2002).
S.J. Pennycook, Ultramicroscopy 180, 22 (2017).
R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Phys. Rev. Lett. 102, 096101 (2009).
C. Ophus, J. Ciston, C.T. Nelson, Ultramicroscopy 162, 1 (2016).
K.G. Larkin, M.A. Oldfield, H. Klemm, Opt. Commun. 139, 99 (1997).
K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).
R.A. Crowther, L.A. Amos, J.T. Finch, D.J. De Rosier, A. Klug, Nature 226, 421 (1970).
Y. Liu, P.A. Penczek, B.F. McEwen, J. Frank, Ultramicroscopy 58, 393 (1995).
R.F. Egerton, P. Li, M. Malac, Micron. 35, 399 (2004).
J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Oxford University Press, New York, 2006).
R. Gordon, R. Bender, G.T. Herman, J. Theor. Biol. 29, 471 (1970).
A.H. Andersen, A.C. Kak, Ultrason. Imaging 6, 81 (1984).
J. Miao, F. Förster, O. Levi, Phys. Rev. B 72, 052103 (2005).
A. Pryor, Y. Yang, A. Rana, M. Gallagher-Jones, J. Zhou, Y.H. Lo, G. Melinte, W. Chiu, J.A. Rodriguez, J. Miao, Sci. Rep. 7, 10409 (2017).
Y.H. Lo, C.-T. Liao, J. Zhou, A. Rana, C.S. Bevis, G. Gui, B. Enders, K.M. Cannon, Y.-S. Yu, R. Celestre, K. Nowrouzi, D. Shapiro, H. Kapteyn, R. Falcone, C. Bennett, M. Murnane, J. Miao, Sci. Adv. 5, eaax3009 (2019).
G. Haberfehlner, P. Thaler, D. Knez, A. Volk, F. Hofer, W.E. Ernst, G. Kothleitner, Nat. Commun. 6, 8779 (2015).
J. Park, H. Elmlund, P. Ercius, J.M. Yuk, D.T. Limmer, Q. Chen, K. Kim, S.H. Han, D.A. Weitz, A. Zettl, A.P. Alivisatos, Science 349, 290 (2015).
H. Yang, R.N. Rutte, L. Jones, M. Simson, R. Sagawa, H. Ryll, M. Huth, T.J. Pennycook, M.L.H. Green, H. Soltau, Y. Kondo, B.G. Davis, P.D. Nellist, Nat. Commun. 7, 12532 (2016).
S. Gao, P. Wang, F. Zhang, G.T. Martinez, P.D. Nellist, X. Pan, A.I. Kirkland, Nat. Commun. 8, 163 (2017).
Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M.W. Tate, J. Park, S.M. Gruner, V. Elser, D.A. Muller, Nature 559, 343 (2018).
D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Science 319, 1073 (2008).
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574, 223 (2019).
H. Yang, L. Jones, H. Ryll, M. Simson, H. Soltau, Y. Kondo, R. Sagawa, H. Banba, I. MacLaren, P.D. Nellist, J. Phys. Conf. Ser. 644, 012032 (2015).
W. Gao, C. Addiego, H. Wang, X. Yan, Y. Hou, D. Ji, C. Heikes, Y. Zhang, L. Li, H. Huyan, T. Blum, T. Aoki, Y. Nie, D. Schlom, R. Wu, X. Pan, Nature 575, 480 (2019).
C. Ophus, J. Ciston, J. Pierce, T.R. Harvey, J. Chess, B.J. McMorran, C. Czarnik, H.H. Rose, P. Ercius, Nat. Commun. 7, 10719 (2016).
D. Zhang, Y. Zhu, L. Liu, X. Ying, C.-E. Hsiung, R. Sougrat, K. Li, Y. Han, Science 359, 675 (2018).
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A.L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 358, 506 (2017).
M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Nature 560, 345 (2018).
H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Shimada, M. Haruta, S. Takeda, Science 335, 317 (2012).
H.-G. Liao, L. Cui, S. Whitelam, H. Zheng, Science 336, 1011 (2012).
X. Tian, D.S. Kim, S. Yang, C.J. Ciccarino, Y. Gong, Yo. Yang, Ya. Yang, B. Duschatko, Y. Yuan, P.M. Ajayan, J.C. Idrobo, P. Narang, J. Miao, Nat. Mater., https://doi.org/10.1038/s41563-020-0636-5 (2020)/10.1038/s41563-020-0636-5 (2020).
D. Ren, C. Ophus, M. Chen, L. Waller, Ultramicroscopy 208, 112860 (2020).
Acknowledgments
This work was supported by STROBE, A National Science Foundation Science & Technology Center (DMR-1548924), the Office of Basic Energy Sciences of the US DOE (DE-SC0010378), an Army Research Office MURI Grant on Ab Initio Solid-State Quantum Materials: Design, Production and Characterization at the Atomic Scale (18057522), and the Division of Materials Research of the US NSF (DMR-1437263). P.E. is supported by the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract No. DE-AC02–05CH11231. Y.Y. acknowledges support by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST) (No. 2019R1F1A1058236).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, J., Yang, Y., Ercius, P. et al. Atomic electron tomography in three and four dimensions. MRS Bulletin 45, 290–297 (2020). https://doi.org/10.1557/mrs.2020.88
Published:
Issue Date:
DOI: https://doi.org/10.1557/mrs.2020.88