IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Deep Learning Technologies: Architecture, Optimization, Techniques, and Applications
Learning Pixel Perception for Identity and Illumination Consistency Face Frontalization in the Wild
Yongtang BAOPengfei ZHOUYue QIZhihui WANGQing FAN
Author information
JOURNAL FREE ACCESS

2023 Volume E106.D Issue 5 Pages 794-803

Details
Abstract

A frontal and realistic face image was synthesized from a single profile face image. It has a wide range of applications in face recognition. Although the frontal face method based on deep learning has made substantial progress in recent years, there is still no guarantee that the generated face has identity consistency and illumination consistency in a significant posture. This paper proposes a novel pixel-based feature regression generative adversarial network (PFR-GAN), which can learn to recover local high-frequency details and preserve identity and illumination frontal face images in an uncontrolled environment. We first propose a Reslu block to obtain richer feature representation and improve the convergence speed of training. We then introduce a feature conversion module to reduce the artifacts caused by face rotation discrepancy, enhance image generation quality, and preserve more high-frequency details of the profile image. We also construct a 30,000 face pose dataset to learn about various uncontrolled field environments. Our dataset includes ages of different races and wild backgrounds, allowing us to handle other datasets and obtain better results. Finally, we introduce a discriminator used for recovering the facial structure of the frontal face images. Quantitative and qualitative experimental results show our PFR-GAN can generate high-quality and high-fidelity frontal face images, and our results are better than the state-of-art results.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top