@inproceedings{hu-etal-2020-identifying,
title = "Identifying Principals and Accessories in a Complex Case based on the Comprehension of Fact Description",
author = "Hu, Yakun and
Luo, Zhunchen and
Chao, Wenhan",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.393/",
doi = "10.18653/v1/2020.acl-main.393",
pages = "4265--4269",
abstract = "In this paper, we study the problem of identifying the principals and accessories from the fact description with multiple defendants in a criminal case. We treat the fact descriptions as narrative texts and the defendants as roles over the narrative story. We propose to model the defendants with \textit{behavioral semantic information} and \textit{statistical characteristics}, then learning the importances of defendants within a learning-to-rank framework. Experimental results on a real-world dataset demonstrate the behavior analysis can effectively model the defendants' impacts in a complex case."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2020-identifying">
<titleInfo>
<title>Identifying Principals and Accessories in a Complex Case based on the Comprehension of Fact Description</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yakun</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhunchen</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenhan</namePart>
<namePart type="family">Chao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we study the problem of identifying the principals and accessories from the fact description with multiple defendants in a criminal case. We treat the fact descriptions as narrative texts and the defendants as roles over the narrative story. We propose to model the defendants with behavioral semantic information and statistical characteristics, then learning the importances of defendants within a learning-to-rank framework. Experimental results on a real-world dataset demonstrate the behavior analysis can effectively model the defendants’ impacts in a complex case.</abstract>
<identifier type="citekey">hu-etal-2020-identifying</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.393</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.393/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>4265</start>
<end>4269</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Principals and Accessories in a Complex Case based on the Comprehension of Fact Description
%A Hu, Yakun
%A Luo, Zhunchen
%A Chao, Wenhan
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F hu-etal-2020-identifying
%X In this paper, we study the problem of identifying the principals and accessories from the fact description with multiple defendants in a criminal case. We treat the fact descriptions as narrative texts and the defendants as roles over the narrative story. We propose to model the defendants with behavioral semantic information and statistical characteristics, then learning the importances of defendants within a learning-to-rank framework. Experimental results on a real-world dataset demonstrate the behavior analysis can effectively model the defendants’ impacts in a complex case.
%R 10.18653/v1/2020.acl-main.393
%U https://aclanthology.org/2020.acl-main.393/
%U https://doi.org/10.18653/v1/2020.acl-main.393
%P 4265-4269
Markdown (Informal)
[Identifying Principals and Accessories in a Complex Case based on the Comprehension of Fact Description](https://aclanthology.org/2020.acl-main.393/) (Hu et al., ACL 2020)
ACL