@inproceedings{chen-etal-2023-cheer,
title = "{CHEER}: Centrality-aware High-order Event Reasoning Network for Document-level Event Causality Identification",
author = "Chen, Meiqi and
Cao, Yixin and
Zhang, Yan and
Liu, Zhiwei",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.604/",
doi = "10.18653/v1/2023.acl-long.604",
pages = "10804--10816",
abstract = "Document-level Event Causality Identification (DECI) aims to recognize causal relations between events within a document. Recent studies focus on building a document-level graph for cross-sentence reasoning, but ignore important causal structures {---} there are one or two {\textquotedblleft}central{\textquotedblright} events that prevail throughout the document, with most other events serving as either their cause or consequence. In this paper, we manually annotate central events for a systematical investigation and propose a novel DECI model, CHEER, which performs high-order reasoning while considering event centrality. First, we summarize a general GNN-based DECI model and provide a unified view for better understanding. Second, we design an Event Interaction Graph (EIG) involving the interactions among events (e.g., coreference) and event pairs, e.g., causal transitivity, cause(A, B) AND cause(B, C) {\textrightarrow} cause(A, C). Finally, we incorporate event centrality information into the EIG reasoning network via well-designed features and multi-task learning. We have conducted extensive experiments on two benchmark datasets. The results present great improvements (5.9{\%} F1 gains on average) and demonstrate the effectiveness of each main component."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2023-cheer">
<titleInfo>
<title>CHEER: Centrality-aware High-order Event Reasoning Network for Document-level Event Causality Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meiqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixin</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiwei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Document-level Event Causality Identification (DECI) aims to recognize causal relations between events within a document. Recent studies focus on building a document-level graph for cross-sentence reasoning, but ignore important causal structures — there are one or two “central” events that prevail throughout the document, with most other events serving as either their cause or consequence. In this paper, we manually annotate central events for a systematical investigation and propose a novel DECI model, CHEER, which performs high-order reasoning while considering event centrality. First, we summarize a general GNN-based DECI model and provide a unified view for better understanding. Second, we design an Event Interaction Graph (EIG) involving the interactions among events (e.g., coreference) and event pairs, e.g., causal transitivity, cause(A, B) AND cause(B, C) → cause(A, C). Finally, we incorporate event centrality information into the EIG reasoning network via well-designed features and multi-task learning. We have conducted extensive experiments on two benchmark datasets. The results present great improvements (5.9% F1 gains on average) and demonstrate the effectiveness of each main component.</abstract>
<identifier type="citekey">chen-etal-2023-cheer</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.604</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.604/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>10804</start>
<end>10816</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CHEER: Centrality-aware High-order Event Reasoning Network for Document-level Event Causality Identification
%A Chen, Meiqi
%A Cao, Yixin
%A Zhang, Yan
%A Liu, Zhiwei
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F chen-etal-2023-cheer
%X Document-level Event Causality Identification (DECI) aims to recognize causal relations between events within a document. Recent studies focus on building a document-level graph for cross-sentence reasoning, but ignore important causal structures — there are one or two “central” events that prevail throughout the document, with most other events serving as either their cause or consequence. In this paper, we manually annotate central events for a systematical investigation and propose a novel DECI model, CHEER, which performs high-order reasoning while considering event centrality. First, we summarize a general GNN-based DECI model and provide a unified view for better understanding. Second, we design an Event Interaction Graph (EIG) involving the interactions among events (e.g., coreference) and event pairs, e.g., causal transitivity, cause(A, B) AND cause(B, C) → cause(A, C). Finally, we incorporate event centrality information into the EIG reasoning network via well-designed features and multi-task learning. We have conducted extensive experiments on two benchmark datasets. The results present great improvements (5.9% F1 gains on average) and demonstrate the effectiveness of each main component.
%R 10.18653/v1/2023.acl-long.604
%U https://aclanthology.org/2023.acl-long.604/
%U https://doi.org/10.18653/v1/2023.acl-long.604
%P 10804-10816
Markdown (Informal)
[CHEER: Centrality-aware High-order Event Reasoning Network for Document-level Event Causality Identification](https://aclanthology.org/2023.acl-long.604/) (Chen et al., ACL 2023)
ACL