@inproceedings{knaebel-stede-2023-discourse,
title = "Discourse Sense Flows: Modelling the Rhetorical Style of Documents across Various Domains",
author = "Knaebel, Rene and
Stede, Manfred",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.964/",
doi = "10.18653/v1/2023.findings-emnlp.964",
pages = "14462--14482",
abstract = "Recent research on shallow discourse parsing has given renewed attention to the role of discourse relation signals, in particular explicit connectives and so-called alternative lexicalizations. In our work, we first develop new models for extracting signals and classifying their senses, both for explicit connectives and alternative lexicalizations, based on the Penn Discourse Treebank v3 corpus. Thereafter, we apply these models to various raw corpora, and we introduce {\textquoteleft}discourse sense flows', a new way of modeling the rhetorical style of a document by the linear order of coherence relations, as captured by the PDTB senses. The corpora span several genres and domains, and we undertake comparative analyses of the sense flows, as well as experiments on automatic genre/domain discrimination using discourse sense flow patterns as features. We find that n-gram patterns are indeed stronger predictors than simple sense (unigram) distributions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="knaebel-stede-2023-discourse">
<titleInfo>
<title>Discourse Sense Flows: Modelling the Rhetorical Style of Documents across Various Domains</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rene</namePart>
<namePart type="family">Knaebel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent research on shallow discourse parsing has given renewed attention to the role of discourse relation signals, in particular explicit connectives and so-called alternative lexicalizations. In our work, we first develop new models for extracting signals and classifying their senses, both for explicit connectives and alternative lexicalizations, based on the Penn Discourse Treebank v3 corpus. Thereafter, we apply these models to various raw corpora, and we introduce ‘discourse sense flows’, a new way of modeling the rhetorical style of a document by the linear order of coherence relations, as captured by the PDTB senses. The corpora span several genres and domains, and we undertake comparative analyses of the sense flows, as well as experiments on automatic genre/domain discrimination using discourse sense flow patterns as features. We find that n-gram patterns are indeed stronger predictors than simple sense (unigram) distributions.</abstract>
<identifier type="citekey">knaebel-stede-2023-discourse</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.964</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.964/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>14462</start>
<end>14482</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discourse Sense Flows: Modelling the Rhetorical Style of Documents across Various Domains
%A Knaebel, Rene
%A Stede, Manfred
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F knaebel-stede-2023-discourse
%X Recent research on shallow discourse parsing has given renewed attention to the role of discourse relation signals, in particular explicit connectives and so-called alternative lexicalizations. In our work, we first develop new models for extracting signals and classifying their senses, both for explicit connectives and alternative lexicalizations, based on the Penn Discourse Treebank v3 corpus. Thereafter, we apply these models to various raw corpora, and we introduce ‘discourse sense flows’, a new way of modeling the rhetorical style of a document by the linear order of coherence relations, as captured by the PDTB senses. The corpora span several genres and domains, and we undertake comparative analyses of the sense flows, as well as experiments on automatic genre/domain discrimination using discourse sense flow patterns as features. We find that n-gram patterns are indeed stronger predictors than simple sense (unigram) distributions.
%R 10.18653/v1/2023.findings-emnlp.964
%U https://aclanthology.org/2023.findings-emnlp.964/
%U https://doi.org/10.18653/v1/2023.findings-emnlp.964
%P 14462-14482
Markdown (Informal)
[Discourse Sense Flows: Modelling the Rhetorical Style of Documents across Various Domains](https://aclanthology.org/2023.findings-emnlp.964/) (Knaebel & Stede, Findings 2023)
ACL