A Quadruple Integral Containing the Gegenbauer Polynomial Cn(λ)(x): Derivation and Evaluation
Abstract
:1. Significance Statement
2. Introduction
3. Definite Integral of the Contour Integral
4. The Hurwitz–Lerch Zeta Function and Infinite Sum of the Contour Integral
4.1. The Hurwitz–Lerch Zeta Function
4.2. Infinite Sum of the Contour Integral
5. Definite Integral in Terms of the Hurwitz–Lerch Zeta Function
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Askey, R.; Koornwinder, T.H.; Rahman, M. An integral of products of Ultraspherical functions and a q-extension. J. Lond. Math. Soc. 1986, 33, 133–148. [Google Scholar] [CrossRef]
- Srivastava, K.N. A Class of Integral Equations Involving Ultraspherical Polynomials as Kernel. Proc. Am. Math. Soc. 1963, 14, 932–940. [Google Scholar] [CrossRef]
- Bingham, N.H. Integral Representations for Ultraspherical Polynomials. J. Lond. Math. Soc. 1972, s2-6, 1–11. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Digital Library of Mathematical Functions; U.S. Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA; Cambridge University Press: Cambridge, UK, 2010.
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. Quadruple Integral Involving the Logarithm and Product of Bessel Functions Expressed in Terms of the Lerch Function. Axioms 2021, 10, 324. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Harrison, M.; Waldron, P. Mathematics for Economics and Finance; Taylor & Francis: New York, NY, USA, 2011. [Google Scholar]
- Laurincikas, A.; Garunkstis, R. The Lerch Zeta-Function; Springer Science & Business Media: New York, NY, USA, 2013; 189p. [Google Scholar]
- Oldham, K.B.; Myland, J.C.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. A Quadruple Integral Containing the Gegenbauer Polynomial Cn(λ)(x): Derivation and Evaluation. Symmetry 2022, 14, 205. https://doi.org/10.3390/sym14020205
Reynolds R, Stauffer A. A Quadruple Integral Containing the Gegenbauer Polynomial Cn(λ)(x): Derivation and Evaluation. Symmetry. 2022; 14(2):205. https://doi.org/10.3390/sym14020205
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2022. "A Quadruple Integral Containing the Gegenbauer Polynomial Cn(λ)(x): Derivation and Evaluation" Symmetry 14, no. 2: 205. https://doi.org/10.3390/sym14020205
APA StyleReynolds, R., & Stauffer, A. (2022). A Quadruple Integral Containing the Gegenbauer Polynomial Cn(λ)(x): Derivation and Evaluation. Symmetry, 14(2), 205. https://doi.org/10.3390/sym14020205