Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain
Abstract
:1. Introduction
2. Main Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robertson, M.S. Quasi-subordination and coefficient conjectures. Bull. Am. Math. Soc. 1970, 76, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Haji Mohd, M.; Darus, M. Fekete-Szegö problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2012, 192956. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Altinkaya, Ş. Functions of bounded variation related to domains bounded by conic sections. Math. Slovaca 2019, 69, 833–842. [Google Scholar] [CrossRef]
- Lee, S.Y. Quasi-subordinate functions and coefficient conjectures. J. Kor. Math. Soc. 1975, 12, 43–50. [Google Scholar]
- Magesh, N.; Balaji, V.K.; Yamini, J. Certain subclasses of bistarlike and biconvex functions based on quasi-subordination. Abstr. Appl. Anal. 2016, 2016, 3102960. [Google Scholar] [CrossRef] [Green Version]
- Magesh, N.; Balaji, V.K. Fekete-Szego problem for a class of lambda-convex and mu-starlike functions associated with k-th root transformation using quasi-subordination. Afrika Mat. 2018, 29, 775–782. [Google Scholar] [CrossRef]
- Kılıç, Ö.Ö.; Altintaş, O. Majorization by starlike functions. JNSA 2017, 10, 215–1220. [Google Scholar]
- Magesh, N.; Yamini, J. Fekete–Szegö inequalities associated with kth root transformation based on quasi-subordination. Ann. Univ. Paedagog. Crac. Stud. Math. 2017, 16, 7–15. [Google Scholar]
- Ren, F.Y.; Owa, S.; Fukui, S. Some inequalities on Quasi-subordinate functions. Bull. Aust. Math. Soc. 1991, 43, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Altintaş, O.; Owa, S. Majorizations and quasi-subordinations for certain analytic functions. Proc. Jpn. Acad. Ser. A Math. Sci. 1992, 68, 181–185. [Google Scholar] [CrossRef]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Fekete, M.; Szego, G. Eine Bemerkung uber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 26, 85–89. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete–Szegö problem for a subclass of close-toconvex functions. Complex Var. Theory Appl. 2001, 44, 145–163. [Google Scholar]
- Kowalczyk, B.; Lecko, A.; Srivastava, H.M. A note on the Fekete–Szegö problem for close-to-convex functions with respect to convex functions. Publ. Inst. Math. Nouv. Ser. 2017, 101, 143–149. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions. J. Math. Inequal. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Abdel-Gawad, H.R. On the Fekete–Szegö problem for alpha-quasi-convex functions. Tamkang J. Math. 2000, 31, 251–255. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Jahangiri, M. Fekete–Szegö problem for a unified class of analytic functions. Panamer. Math. J. 1997, 7, 67–78. [Google Scholar]
- Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Darus, M.; Tuneski, N. On the Fekete-Szegö problem for generalized close-to-convex functions. Int. Math. J. 2003, 4, 561–568. [Google Scholar]
- Kumar, S.S.; Kumar, V. Fekete-Szegö problem for a class of analytic functions. Stud. Univ. Babes-Bolyai Math. 2013, 58, 181–188. [Google Scholar]
- Zaprawa, P. On the Fekete–Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1992, 56, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity, II, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1998, 22, 65–78. [Google Scholar]
- Ali, R.M.; Ravichandran, V.; Seerivasaga, N. Coefficient bounds for p-valent functions. Appl. Math. Comput. 2007, 187, 35–46. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Kanas, S. Coefficient estimates in subclasses of the Caratheodory class related to conical domains. Acta Math. Univ. Comenian 2005, 74, 149–161. [Google Scholar]
- Ahiezer, N.I. Elements of Theory of Elliptic Functions; American Mathematical Society: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Anderson, G.D.; Vamanamurthy, M.K.; Vourinen, M.K. Conformal Invariants, Inequalities and Quasiconformal Maps, Wiley-Interscience Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1997, 1, 85–89. [Google Scholar]
- Dziok, J.; Srivastava, M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
- Çağlar, M.; Gurusamy, P.; Orhan, H. The coefficient estimates for a class defined by Hohlov operator using conic domains. TWMS J. Pure Appl. Math. 2020, 11, 157–172. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akgül, A.; Cotîrlă, L.-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry 2022, 14, 582. https://doi.org/10.3390/sym14030582
Akgül A, Cotîrlă L-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry. 2022; 14(3):582. https://doi.org/10.3390/sym14030582
Chicago/Turabian StyleAkgül, Arzu, and Luminita-Ioana Cotîrlă. 2022. "Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain" Symmetry 14, no. 3: 582. https://doi.org/10.3390/sym14030582
APA StyleAkgül, A., & Cotîrlă, L.-I. (2022). Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry, 14(3), 582. https://doi.org/10.3390/sym14030582