Computer Science > Data Structures and Algorithms
[Submitted on 1 Apr 2022]
Title:Balanced Clique Computation in Signed Networks: Concepts and Algorithms
View PDFAbstract:Clique is one of the most fundamental models for cohesive subgraph mining in network analysis. Existing clique model mainly focuses on unsigned networks. However, in real world, many applications are modeled as signed networks with positive and negative edges. As the signed networks hold their own properties different from the unsigned networks, the existing clique model is inapplicable for the signed networks. Motivated by this, we propose the balanced clique model that considers the most fundamental and dominant theory, structural balance theory, for signed networks. Following the balanced clique model, we study the maximal balanced clique enumeration problem (MBCE) which computes all the maximal balanced cliques in a given signed network and the maximum balanced clique search problem (MBCS) which computes the balanced clique with maximum size. We show that MBCE problem and MBCS problem are both NP-Hard. For the MBCE problem, a straightforward solution is to treat the signed network as two unsigned networks and leverage the off-the-shelf techniques for unsigned networks. However, such a solution is inefficient for large signed networks. To address this problem, in this paper, we first propose a new maximal balanced clique enumeration algorithm by exploiting the unique properties of signed networks. Based on the new proposed algorithm, we devise two optimization strategies to further improve the efficiency of the enumeration. For the MBCS problem, we propose a new search framework based on search space partition. To further improve the efficiency of the new framework, we propose multiple optimization strategies regarding to redundant search branches and invalid candidates. We conduct extensive experiments on large real datasets. The experimental results demonstrate the efficiency, effectiveness and scalability of our proposed algorithms for MBCE problem and MBCS problem.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.