Computer Science > Computation and Language
[Submitted on 8 Oct 2022 (v1), last revised 17 Oct 2022 (this version, v2)]
Title:Sparse Teachers Can Be Dense with Knowledge
View PDFAbstract:Recent advances in distilling pretrained language models have discovered that, besides the expressiveness of knowledge, the student-friendliness should be taken into consideration to realize a truly knowledgable teacher. Based on a pilot study, we find that over-parameterized teachers can produce expressive yet student-unfriendly knowledge and are thus limited in overall knowledgableness. To remove the parameters that result in student-unfriendliness, we propose a sparse teacher trick under the guidance of an overall knowledgable score for each teacher parameter. The knowledgable score is essentially an interpolation of the expressiveness and student-friendliness scores. The aim is to ensure that the expressive parameters are retained while the student-unfriendly ones are removed. Extensive experiments on the GLUE benchmark show that the proposed sparse teachers can be dense with knowledge and lead to students with compelling performance in comparison with a series of competitive baselines.
Submission history
From: Chen Zhang [view email][v1] Sat, 8 Oct 2022 05:25:34 UTC (224 KB)
[v2] Mon, 17 Oct 2022 06:56:48 UTC (466 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.