
MySQL NDB Cluster API Developer Guide

MySQL NDB Cluster API Developer Guide

This is the MySQL NDB Cluster API Developer Guide, which provides information about developing applications
using MySQL NDB Cluster as a data store. Application interfaces covered in this Guide include the low-level C
++-language NDB API (see Chapter 2, The NDB API), the C-language MGM API for communicating with and
controlling NDB Cluster management servers (see Chapter 3, The MGM API), and the MySQL NDB Cluster
Connector for Java, which is a collection of Java APIs for writing applications against NDB Cluster, including
JDBC, JPA, and ClusterJ (see Chapter 4, MySQL NDB Cluster Connector for Java).

MySQL NDB Cluster 8.0, 8.4, and 9.0 also provide support for applications written using Node.js. Node.js
support is deprecated in NDB 9.0, and is removed altogether as of NDB 9.1. See Chapter 5, MySQL NoSQL
Connector for JavaScript, for more information.

This Guide includes concepts, terminology, class and function references, practical examples, common problems,
and tips for using these APIs in applications.

For information about NDB internals that may be of interest to developers working with NDB, see MySQL NDB
Cluster Internals Manual.

The information presented in this guide is current for recent releases of MySQL NDB Cluster 8.0 up to and
including NDB Cluster 8.0.41, as well as the NDB Cluster 8.4 LTS series, up to and including NDB Cluster 8.4.0.
This guide can also be used with NDB Cluster 9.1. Due to significant functional and other changes in NDB Cluster
and its underlying APIs, you should not expect this information to apply to versions of the NDB Cluster software
prior to NDB Cluster 7.5. Users of older NDB Cluster releases should upgrade to the latest available release of
NDB Cluster 8.0, which is the most recent GA release series, or to the NDB Cluster 8.4 LTS series.

For more information about NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0. For information about
NDB Cluster 8.4, see What is New in MySQL NDB Cluster 8.4. For information about NDB Cluster 9.1, see What
is New in MySQL NDB Cluster 9.1.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information—NDB APIs. If you are using the NDB APIs with a Commercial release of MySQL NDB
Cluster, see the MySQL NDB Cluster 8.0 Commercial Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using the NDB APIs with a Community release of MySQL NDB Cluster, see the MySQL NDB
Cluster 8.0 Community Release License Information User Manual for licensing information, including licensing
information relating to third-party software that may be included in this Community release.

Document generated on: 2024-12-24 (revision: 80591)

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/9.1/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/9.1/en/mysql-cluster-what-is-new.html
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf

Table of Contents
Preface and Legal Notices ... vii
1 NDB Cluster APIs: Overview and Concepts .. 1

1.1 NDB Cluster API Overview: Introduction .. 1
1.1.1 NDB Cluster API Overview: The NDB API ... 1
1.1.2 NDB Cluster API Overview: The MGM API .. 2

1.2 NDB Cluster API Overview: Version Compatibility .. 2
1.3 NDB Cluster API Overview: Terminology ... 3
1.4 The NDB Transaction and Scanning API ... 4

1.4.1 Core NDB API Classes .. 5
1.4.2 Application Program Basics .. 5
1.4.3 Review of NDB Cluster Concepts ... 12
1.4.4 The Adaptive Send Algorithm ... 14

1.5 Application-level partitioning ... 15
1.6 Using NdbInterpretedCode .. 15

2 The NDB API .. 23
2.1 Getting Started with the NDB API .. 24

2.1.1 Compiling and Linking NDB API Programs .. 24
2.1.2 Connecting to the Cluster ... 27
2.1.3 Mapping MySQL Database Object Names and Types to NDB 28

2.2 The NDB API Class Hierarachy ... 33
2.3 NDB API Classes, Interfaces, and Structures ... 34

2.3.1 The Column Class ... 34
2.3.2 The Datafile Class .. 51
2.3.3 The Dictionary Class .. 56
2.3.4 The Element Structure .. 74
2.3.5 The Event Class .. 74
2.3.6 The ForeignKey Class .. 85
2.3.7 The HashMap Class ... 92
2.3.8 The Index Class ... 95
2.3.9 The LogfileGroup Class .. 102
2.3.10 The List Class .. 105
2.3.11 The Ndb Class ... 106
2.3.12 The Ndb_cluster_connection Class .. 129
2.3.13 The NdbBlob Class .. 140
2.3.14 The NdbDictionary Class .. 151
2.3.15 The NdbError Structure ... 157
2.3.16 The NdbEventOperation Class .. 160
2.3.17 The NdbIndexOperation Class ... 170
2.3.18 The NdbIndexScanOperation Class ... 172
2.3.19 The NdbInterpretedCode Class ... 178
2.3.20 The NdbOperation Class ... 204
2.3.21 The NdbRecAttr Class .. 242
2.3.22 The NdbRecord Interface .. 249
2.3.23 The NdbScanFilter Class .. 250
2.3.24 The NdbScanOperation Class ... 260
2.3.25 The NdbTransaction Class .. 272
2.3.26 The Object Class .. 291
2.3.27 The Table Class ... 295
2.3.28 The Tablespace Class .. 321
2.3.29 The Undofile Class ... 326

2.4 NDB API Errors and Error Handling ... 330
2.4.1 Handling NDB API Errors ... 331
2.4.2 NDB Error Codes: by Type ... 334
2.4.3 NDB Error Codes: Single Listing ... 400
2.4.4 NDB Error Classifications .. 473

iii

MySQL NDB Cluster API Developer Guide

2.5 NDB API Examples ... 474
2.5.1 Basic NDB API Examples ... 475
2.5.2 NDB API Example Using Synchronous Transactions .. 481
2.5.3 NDB API Example Using Synchronous Transactions and Multiple Clusters 486
2.5.4 NDB API Example: Handling Errors and Retrying Transactions 491
2.5.5 NDB API Basic Scanning Example .. 495
2.5.6 NDB API Example: Using Secondary Indexes in Scans 508
2.5.7 NDB API Example: Using NdbRecord with Hash Indexes 511
2.5.8 NDB API Example Comparing RecAttr and NdbRecord 517
2.5.9 NDB API Event Handling Example .. 562
2.5.10 NDB API Example: Basic BLOB Handling .. 566
2.5.11 NDB API Example: Handling BLOB Columns and Values Using NdbRecord 573
2.5.12 NDB API Simple Array Example .. 582
2.5.13 NDB API Simple Array Example Using Adapter .. 587
2.5.14 Timestamp2 Example ... 592
2.5.15 Common Files for NDB API Array Examples .. 596

3 The MGM API ... 605
3.1 MGM API Concepts .. 605
3.2 MGM API Function Listings ... 607

3.2.1 Log Event Functions ... 607
3.2.2 MGM API Error Handling Functions ... 610
3.2.3 Management Server Handle Functions .. 612
3.2.4 Management Server Connection Functions .. 613
3.2.5 Cluster Status Functions ... 619
3.2.6 Functions for Starting & Stopping Nodes ... 621
3.2.7 Cluster Log Functions ... 627
3.2.8 Backup Functions ... 629
3.2.9 Single-User Mode Functions ... 632
3.2.10 TLS Functions .. 633

3.3 MGM API Data Types ... 637
3.4 MGM API Data Structures ... 646
3.5 MGM API Errors ... 653
3.6 MGM API Examples .. 655

3.6.1 Basic MGM API Event Logging Example ... 655
3.6.2 MGM API Event Handling with Multiple Clusters .. 657

4 MySQL NDB Cluster Connector for Java .. 661
4.1 MySQL NDB Cluster Connector for Java: Overview .. 661

4.1.1 MySQL NDB Cluster Connector for Java Architecture ... 661
4.1.2 Java and NDB Cluster .. 661
4.1.3 The ClusterJ API and Data Object Model .. 662

4.2 Using MySQL NDB Cluster Connector for Java .. 664
4.2.1 Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java 664
4.2.2 Using ClusterJ .. 667
4.2.3 Using Connector/J with NDB Cluster ... 675

4.3 ClusterJ API Reference ... 675
4.3.1 com.mysql.clusterj .. 675
4.3.2 com.mysql.clusterj.annotation .. 721
4.3.3 com.mysql.clusterj.query ... 728
4.3.4 Constant field values .. 734

4.4 MySQL NDB Cluster Connector for Java: Limitations and Known Issues 735
5 MySQL NoSQL Connector for JavaScript .. 737

5.1 MySQL NoSQL Connector for JavaScript Overview .. 737
5.2 Installing the JavaScript Connector .. 737
5.3 Connector for JavaScript API Documentation ... 739

5.3.1 Batch ... 739
5.3.2 Context .. 739
5.3.3 Converter ... 741
5.3.4 Errors ... 742

iv

MySQL NDB Cluster API Developer Guide

5.3.5 Mynode .. 742
5.3.6 Session .. 745
5.3.7 SessionFactory ... 746
5.3.8 TableMapping and FieldMapping ... 746
5.3.9 TableMetadata ... 747
5.3.10 Transaction .. 748

5.4 Using the MySQL JavaScript Connector: Examples .. 749
5.4.1 Requirements for the Examples .. 749
5.4.2 Example: Finding Rows .. 753
5.4.3 Inserting Rows ... 754
5.4.4 Deleting Rows .. 756

Index .. 759

v

vi

Preface and Legal Notices

This is the MySQL NDB Cluster API Developer Guide, which provides information about developing
applications using MySQL NDB Cluster as a data store. Application interfaces covered in this Guide
include the low-level C++-language NDB API (see Chapter 2, The NDB API), the C-language MGM API
for communicating with and controlling NDB Cluster management servers (see Chapter 3, The MGM
API), and the MySQL NDB Cluster Connector for Java, which is a collection of Java APIs for writing
applications against NDB Cluster, including JDBC, JPA, and ClusterJ (see Chapter 4, MySQL NDB
Cluster Connector for Java).

MySQL NDB Cluster 8.0, 8.4, and 9.0 also provide support for applications written using Node.js.
Node.js support is deprecated in NDB 9.0, and is removed altogether as of NDB 9.1. See Chapter 5,
MySQL NoSQL Connector for JavaScript, for more information.

This Guide includes concepts, terminology, class and function references, practical examples, common
problems, and tips for using these APIs in applications.

For information about NDB internals that may be of interest to developers working with NDB, see
MySQL NDB Cluster Internals Manual.

The information presented in this guide is current for recent releases of MySQL NDB Cluster 8.0 up
to and including NDB Cluster 8.0.41, as well as the NDB Cluster 8.4 LTS series, up to and including
NDB Cluster 8.4.0. This guide can also be used with NDB Cluster 9.1. Due to significant functional and
other changes in NDB Cluster and its underlying APIs, you should not expect this information to apply
to versions of the NDB Cluster software prior to NDB Cluster 7.5. Users of older NDB Cluster releases
should upgrade to the latest available release of NDB Cluster 8.0, which is the most recent GA release
series, or to the NDB Cluster 8.4 LTS series.

For more information about NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0. For
information about NDB Cluster 8.4, see What is New in MySQL NDB Cluster 8.4. For information about
NDB Cluster 9.1, see What is New in MySQL NDB Cluster 9.1.

For legal information, see the Legal Notices.

Licensing information—MySQL NDB Cluster 8.0. This product may include third-party software,
used under license. If you are using a Commercial release of MySQL NDB Cluster 8.0, see the MySQL
NDB Cluster 8.0 Commercial Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL NDB Cluster 8.0, see the MySQL NDB
Cluster 8.0 Community Release License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 8.4. This product may include third-party software,
used under license. If you are using a Commercial release of MySQL NDB Cluster 8.4, see the MySQL
NDB Cluster 8.4 Commercial Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL NDB Cluster 8.4, see the MySQL NDB
Cluster 8.4 Community Release License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 9.1. This product may include third-party software,
used under license. If you are using a Commercial release of MySQL NDB Cluster 9.1, see the MySQL
NDB Cluster 9.1 Commercial Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL NDB Cluster 9.1, see the MySQL NDB
Cluster 9.1 Community Release License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this Community release.

vii

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/9.1/en/mysql-cluster-what-is-new.html
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.4-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.4-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-9.1-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-9.1-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-9.1-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-9.1-gpl-en.pdf

Legal Notices

Legal Notices
Copyright © 1997, 2025, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

viii

Documentation Accessibility

for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

x

Chapter 1 NDB Cluster APIs: Overview and Concepts

Table of Contents
1.1 NDB Cluster API Overview: Introduction .. 1

1.1.1 NDB Cluster API Overview: The NDB API ... 1
1.1.2 NDB Cluster API Overview: The MGM API .. 2

1.2 NDB Cluster API Overview: Version Compatibility .. 2
1.3 NDB Cluster API Overview: Terminology ... 3
1.4 The NDB Transaction and Scanning API ... 4

1.4.1 Core NDB API Classes .. 5
1.4.2 Application Program Basics .. 5
1.4.3 Review of NDB Cluster Concepts ... 12
1.4.4 The Adaptive Send Algorithm ... 14

1.5 Application-level partitioning ... 15
1.6 Using NdbInterpretedCode .. 15

This chapter provides a general overview of essential NDB Cluster, NDB API, and MGM API concepts,
terminology, and programming constructs.

For an overview of Java APIs that can be used with NDB Cluster, see Section 4.1, “MySQL NDB Cluster
Connector for Java: Overview”.

For information about writing JavaScript applications for NDB Cluster using Node.js (deprecated in NDB 9.0), see
Chapter 5, MySQL NoSQL Connector for JavaScript.

1.1 NDB Cluster API Overview: Introduction

This section introduces the NDB Transaction and Scanning APIs as well as the NDB Management (MGM) API for
use in building applications to run on NDB Cluster. It also discusses the general theory and principles involved in
developing such applications.

1.1.1 NDB Cluster API Overview: The NDB API

The NDB API is an object-oriented application programming interface for NDB Cluster that implements
indexes, scans, transactions, and event handling. NDB transactions are ACID-compliant in that
they provide a means to group operations in such a way that they succeed (commit) or fail as a unit
(rollback). It is also possible to perform operations in a “no-commit” or deferred mode, to be committed
at a later time.

NDB scans are conceptually rather similar to the SQL cursors implemented in MySQL and other
common enterprise-level database management systems. These provide high-speed row processing
for record retrieval purposes. (NDB Cluster naturally supports set processing just as does MySQL in
its non-Cluster distributions. This can be accomplished through the usual MySQL APIs discussed in
the MySQL Manual and elsewhere.) The NDB API supports both table scans and row scans; the latter
can be performed using either unique or ordered indexes. Event detection and handling is discussed
in Section 2.3.16, “The NdbEventOperation Class”, as well as Section 2.5.9, “NDB API Event Handling
Example”.

In addition, the NDB API provides object-oriented error-handling facilities in order to provide a means
of recovering gracefully from failed operations and other problems. (See Section 2.5.4, “NDB API
Example: Handling Errors and Retrying Transactions”, for a detailed example.)

The NDB API provides a number of classes implementing the functionality described above. The
most important of these include the Ndb, Ndb_cluster_connection, NdbTransaction, and
NdbOperation classes. These model (respectively) database connections, cluster connections,

1

NDB Cluster API Overview: The MGM API

transactions, and operations. These classes and their subclasses are listed in Section 2.3, “NDB API
Classes, Interfaces, and Structures”. Error conditions in the NDB API are handled using NdbError.

Note

NDB API applications access the NDB Cluster's data store directly, without
requiring a MySQL Server as an intermediary. This means that such
applications are not bound by the MySQL privilege system; any NDB API
application has read and write access to any NDB table stored in the same NDB
Cluster at any time without restriction.

1.1.2 NDB Cluster API Overview: The MGM API

The NDB Cluster Management API, also known as the MGM API, is a C-language programming
interface intended to provide administrative services for the cluster. These include starting and stopping
NDB Cluster nodes, handling NDB Cluster logging, backups, and restoration from backups, as well as
various other management tasks. A conceptual overview of the MGM API and its uses can be found in
Chapter 3, The MGM API.

The MGM API's principal structures model the states of individual modes (ndb_mgm_node_state),
the state of the NDB Cluster as a whole (ndb_mgm_cluster_state), and management server
response messages (ndb_mgm_reply). See Section 3.4, “MGM API Data Structures”, for detailed
descriptions of these.

1.2 NDB Cluster API Overview: Version Compatibility

The NDB API is now fairly mature, and has undergone few major changes in recent releases. Where
they have occurred, such changes are indicated in the documentation of the affected objects and
methods.

The API version of an NDB API application is determined by the version of libndbclient the
application uses to provide NDB API functionality. Because it is necessary to support rolling upgrades,
we perform basic testing across a number of versions (7.5 through 8.2) with regard to both older API
versions connecting to data nodes of newer versions, and newer API versions connecting to data
nodes of older versions. We no longer perform such testing with releases prior to NDB 7.5, since these
are no longer maintained or supported in production.

In addition, in NDB 8.0, some compatibility has been dropped with API versions prior to 7.5, but is
retained with versions 7.5 and 7.6.

When new a new feature is added to NDB, this is generally done in such a way that the new
functionality includes checking that the data nodes which are currently connected are running versions
which support the feature. This is done to guard against accidental use of the new feature during a
rolling upgrade before the cluster is fully upgraded to the version adding support for it.

In the event that an application employing a newer version of the NDB API is run against an older
cluster which does not support a newer feature used by the application, the application raises error
code 4003 Function not implemented yet when trying to make use of the feature. Other errors
are possible depending on the new functionality involved (see Section 2.4.2, “NDB Error Codes: by
Type”).

When an application using an older version of libndbclient connects to a cluster running a newer
version of NDB, the data nodes should support older API calls, but there other considerations as well.
In particular, if the schema on the cluster makes use of newer features not supported by the older API
version does not support, it is possible that operations may be less than optimal or give rise to errors.
Some examples are listed here:

• There are tables in the cluster using the JSON data type, which is unknown to NDB prior to version
7.5

2

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/json.html

NDB Cluster API Overview: Terminology

• The cluster uses one or more fully replicated tables, which are not supported in NDB prior to version
7.5

• The cluster includes tables using generated columns, which are unsupported in NDB prior to version
7.5

When upgrading a cluster online (that is, by using a rolling restart), existing table schemas are
preserved, thus avoiding activation of new schema features too early. This is not the case when the
upgrad recreates the schema and restores all data, when the new version may by default use new
schema features. For this reason, it is best practice to test with specific schemas, operations, and
versions prior upgrading a production system to catch any problems that may arise when connecting
an older application or SQL node to a cluster running a newer version of NDB.

For information about general requirements for compiling NDB API and MGM API applications, see
Section 2.1.1.1, “General Requirements”.

1.3 NDB Cluster API Overview: Terminology

This section provides a glossary of terms which are unique to the NDB and MGM APIs, or that have a specialized
meaning when applied in the context of either or both of these APIs.

The terms in the following list are useful to an understanding of NDB Cluster, the NDB API, or have a
specialized meaning when used in one of these:

Backup. A complete copy of all NDB Cluster data, transactions and logs, saved to disk.

Restore. Return the cluster to a previous state, as stored in a backup.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. When working with the NDB storage engine, there are two sorts of checkpoints which work
together in order to ensure that a consistent view of the cluster's data is maintained. These two types,
local checkpoints and global checkpoints, are described in the next few paragraphs:

Local checkpoint (LCP). This is a checkpoint that is specific to a single node; however, LCPs take
place for all nodes in the cluster more or less concurrently. An LCP involves saving all of a node's data
to disk, and so usually occurs every few minutes, depending upon the amount of data stored by the
node.

More detailed information about LCPs and their behavior can be found in the MySQL Manual; see in
particular Defining NDB Cluster Data Nodes.

Global checkpoint (GCP). A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the REDO log is flushed to disk.

A related term is GCI, which stands for “Global Checkpoint ID”. This marks the point in the REDO log
where a GCP took place.

Node. A component of NDB Cluster. 3 node types are supported:

• A management (MGM) node is an instance of ndb_mgmd, the NDB Cluster management server
daemon.

• A data node an instance of ndbd, the NDB Cluster data storage daemon, and stores NDB Cluster
data. This may also be an instance of ndbmtd, a multithreaded version of ndbd.

• An API nodeis an application that accesses NDB Cluster data. SQL node refers to a mysqld
(MySQL Server) process that is connected to the NDB Cluster as an API node.

For more information about these node types, please refer to Section 1.4.3, “Review of NDB Cluster
Concepts”, or to NDB Cluster Programs, in the MySQL Manual.

3

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbd-definition.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-mgmd.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbmtd.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/8.4/en/mysqld.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs.html

The NDB Transaction and Scanning API

Node failure. An NDB Cluster is not solely dependent upon the functioning of any single node
making up the cluster, which can continue to run even when one node fails.

Node restart. The process of restarting an NDB Cluster node which has stopped on its own or
been stopped deliberately. This can be done for several different reasons, listed here:

• Restarting a node which has shut down on its own. (This is known as forced shutdown or node
failure; the other cases discussed here involve manually shutting down the node and restarting it).

• To update the node's configuration.

• As part of a software or hardware upgrade.

• In order to defragment the node's DataMemory.

Initial node restart. The process of starting an NDB Cluster node with its file system having
been removed. This is sometimes used in the course of software upgrades and in other special
circumstances.

System crash (system failure). This can occur when so many data nodes have failed that the
NDB Cluster's state can no longer be guaranteed.

System restart. The process of restarting an NDB Cluster and reinitializing its state from disk logs
and checkpoints. This is required after any shutdown of the cluster, planned or unplanned.

Fragment. Contains a portion of a database table. In the NDB storage engine, a table is broken up
into and stored as a number of subsets, usually referred to as fragments. A fragment is sometimes also
called a partition.

Fragment replica. Under the NDB storage engine, each table fragment has number of fragment
replicas in order to provide redundancy.

Transporter. A protocol providing data transfer across a network. The NDB API supports three
different types of transporter connections: TCP/IP (local), TCP/IP (remote), and SHM. TCP/IP is, of
course, the familiar network protocol that underlies HTTP, FTP, and so forth, on the Internet. SHM
stands for Unix-style shared memory segments.

NDB. This originally stood for “Network DataBase”. It now refers to the MySQL storage engine
(named NDB or NDBCLUSTER) used to enable the NDB Cluster distributed database system.

ACC (Access Manager). An NDB kernel block that handles hash indexes of primary keys
providing speedy access to the records. For more information, see The DBACC Block.

TUP (Tuple Manager). This NDB kernel block handles storage of tuples (records) and contains
the filtering engine used to filter out records and attributes when performing reads or updates. See The
DBTUP Block, for more information.

TC (Transaction Coordinator). Handles coordination of transactions and timeouts in the NDB
kernel (see The DBTC Block). Provides interfaces to the NDB API for performing indexes and scan
operations.

For more information, see NDB Kernel Blocks, elsewhere in this Guide..

See also NDB Cluster Overview, in the MySQL Manual.

1.4 The NDB Transaction and Scanning API

This section discusses the high-level architecture of the NDB API, and introduces the NDB classes which are of
greatest use and interest to the developer. It also covers most important NDB API concepts, including a review of
NDB Cluster Concepts.

4

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbacc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-overview.html

Core NDB API Classes

1.4.1 Core NDB API Classes

The NDB API is an NDB Cluster application interface that implements transactions. It consists of the
following fundamental classes:

• Ndb_cluster_connection represents a connection to a cluster.

• Ndb is the main class, and represents a connection to a database.

• NdbDictionary provides meta-information about tables and attributes.

• NdbTransaction represents a transaction.

• NdbOperation represents an operation using a primary key.

• NdbScanOperation represents an operation performing a full table scan.

• NdbIndexOperation represents an operation using a unique hash index.

• NdbIndexScanOperation represents an operation performing a scan using an ordered index.

• NdbRecAttr represents an attribute value.

In addition, the NDB API defines an NdbError structure, which contains the specification for an error.

It is also possible to receive events triggered when data in the database is changed. This is
accomplished through the NdbEventOperation class.

The NDB event notification API is not supported prior to MySQL 5.1.

For more information about these classes as well as some additional auxiliary classes not listed here,
see Section 2.3, “NDB API Classes, Interfaces, and Structures”.

1.4.2 Application Program Basics

The main structure of an application program is as follows:

1. Connect to a cluster using the Ndb_cluster_connection object.

2. Initiate a database connection by constructing and initialising one or more Ndb objects.

3. Identify the tables, columns, and indexes on which you wish to operate, using NdbDictionary
and one or more of its subclasses.

4. Define and execute transactions using the NdbTransaction class.

5. Delete Ndb objects.

6. Terminate the connection to the cluster (terminate an instance of Ndb_cluster_connection).

1.4.2.1 Using Transactions

The procedure for using transactions is as follows:

1. Start a transaction (instantiate an NdbTransaction object).

2. Add and define operations associated with the transaction using instances of one or more of the
NdbOperation, NdbScanOperation, NdbIndexOperation, and NdbIndexScanOperation
classes.

3. Execute the transaction (call NdbTransaction::execute()).

5

Application Program Basics

4. The operation can be of two different types—Commit or NoCommit:

• If the operation is of type NoCommit, then the application program requests that the operation
portion of a transaction be executed, but without actually committing the transaction. Following
the execution of a NoCommit operation, the program can continue to define additional
transaction operations for later execution.

NoCommit operations can also be rolled back by the application.

• If the operation is of type Commit, then the transaction is immediately committed. The transaction
must be closed after it has been committed (even if the commit fails), and no further operations
can be added to or defined for this transaction.

See NdbTransaction::ExecType.

1.4.2.2 Synchronous Transactions

Synchronous transactions are defined and executed as follows:

1. Begin (create) the transaction, which is referenced by an NdbTransaction object typically created
using Ndb::startTransaction(). At this point, the transaction is merely being defined; it is not
yet sent to the NDB kernel.

2. Define operations and add them to the transaction, using one or more of the following, along with
the appropriate methods of the respectiveNdbOperation class (or possibly one or more of its
subclasses):

• NdbTransaction::getNdbOperation()

• NdbTransaction::getNdbScanOperation()

• NdbTransaction::getNdbIndexOperation()

• NdbTransaction::getNdbIndexScanOperation()

At this point, the transaction has still not yet been sent to the NDB kernel.

3. Execute the transaction, using the NdbTransaction::execute() method.

4. Close the transaction by calling Ndb::closeTransaction().

For an example of this process, see Section 2.5.2, “NDB API Example Using Synchronous
Transactions”.

To execute several synchronous transactions in parallel, you can either use multiple Ndb objects in
several threads, or start multiple application programs.

1.4.2.3 Operations

An NdbTransaction consists of a list of operations, each of which is represented by an instance of
NdbOperation, NdbScanOperation, NdbIndexOperation, or NdbIndexScanOperation (that
is, of NdbOperation or one of its child classes).

See NDB Access Types, for general information about NDB Cluster access operation types.

NDB Access Types

The data node process has a number of simple constructs which are used to access the data in an
NDB Cluster. We have created a very simple benchmark to check the performance of each of these.

There are four access methods:

6

Application Program Basics

• Primary key access. This is access of a record through its primary key. In the simplest case, only
one record is accessed at a time, which means that the full cost of setting up a number of TCP/IP
messages and a number of costs for context switching are borne by this single request. In the case
where multiple primary key accesses are sent in one batch, those accesses share the cost of setting
up the necessary TCP/IP messages and context switches. If the TCP/IP messages are for different
destinations, additional TCP/IP messages need to be set up.

• Unique key access. Unique key accesses are similar to primary key accesses, except that a
unique key access is executed as a read on an index table followed by a primary key access on the
table. However, only one request is sent from the MySQL Server, and the read of the index table is
handled by the data node. Such requests also benefit from batching.

• Full table scan. When no indexes exist for a lookup on a table, a full table scan is performed.
This is sent as a single request to the ndbd process, which then divides the table scan into a set of
parallel scans on all NDB data node processes.

• Range scan using ordered index. When an ordered index is used, it performs a scan in the
same manner as the full table scan, except that it scans only those records which are in the range
used by the query transmitted by the MySQL server (SQL node). All partitions are scanned in parallel
when all bound index attributes include all attributes in the partitioning key.

Single-row operations

After the operation is created using NdbTransaction::getNdbOperation() or
NdbTransaction::getNdbIndexOperation(), it is defined in the following three steps:

1. Specify the standard operation type using NdbOperation::readTuple().

2. Specify search conditions using NdbOperation::equal().

3. Specify attribute actions using NdbOperation::getValue().

Here are two brief examples illustrating this process. For the sake of brevity, we omit error handling.

This first example uses an NdbOperation:

// 1. Retrieve table object
myTable= myDict->getTable("MYTABLENAME");

// 2. Create an NdbOperation on this table
myOperation= myTransaction->getNdbOperation(myTable);

// 3. Define the operation's type and lock mode
myOperation->readTuple(NdbOperation::LM_Read);

// 4. Specify search conditions
myOperation->equal("ATTR1", i);

// 5. Perform attribute retrieval
myRecAttr= myOperation->getValue("ATTR2", NULL);

For additional examples of this sort, see Section 2.5.2, “NDB API Example Using Synchronous
Transactions”.

The second example uses an NdbIndexOperation:

// 1. Retrieve index object
myIndex= myDict->getIndex("MYINDEX", "MYTABLENAME");

// 2. Create
myOperation= myTransaction->getNdbIndexOperation(myIndex);

// 3. Define type of operation and lock mode
myOperation->readTuple(NdbOperation::LM_Read);

7

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html

Application Program Basics

// 4. Specify Search Conditions
myOperation->equal("ATTR1", i);

// 5. Attribute Actions
myRecAttr = myOperation->getValue("ATTR2", NULL);

Another example of this second type can be found in Section 2.5.6, “NDB API Example: Using
Secondary Indexes in Scans”.

We now discuss in somewhat greater detail each step involved in the creation and use of synchronous
transactions.

1. Define single row operation type. The following operation types are supported:

• NdbOperation::insertTuple(): Inserts a nonexisting tuple.

• NdbOperation::writeTuple(): Updates a tuple if one exists, otherwise inserts a new tuple.

• NdbOperation::updateTuple(): Updates an existing tuple.

• NdbOperation::deleteTuple(): Deletes an existing tuple.

• NdbOperation::readTuple(): Reads an existing tuple using the specified lock mode.

All of these operations operate on the unique tuple key. When NdbIndexOperation is used, then
each of these operations operates on a defined unique hash index.

Note

If you want to define multiple operations within the same transaction,
then you need to call NdbTransaction::getNdbOperation() or
NdbTransaction::getNdbIndexOperation() for each operation.

2. Specify Search Conditions. The search condition is used to select tuples. Search conditions
are set using NdbOperation::equal().

3. Specify Attribute Actions. Next, it is necessary to determine which attributes should be read or
updated. It is important to remember that:

• Deletes can neither read nor set values, but only delete them.

• Reads can only read values.

• Updates can only set values. Normally the attribute is identified by name, but it is also possible to
use the attribute's identity to determine the attribute.

NdbOperation::getValue() returns an NdbRecAttr object containing the value as read. To
obtain the actual value, one of two methods can be used; the application can either

• Use its own memory (passed through a pointer aValue) to NdbOperation::getValue(), or

• receive the attribute value in an NdbRecAttr object allocated by the NDB API.

The NdbRecAttr object is released when Ndb::closeTransaction() is called. For
this reason, the application cannot reference this object following any subsequent call to
Ndb::closeTransaction(). Attempting to read data from an NdbRecAttr object before calling
NdbTransaction::execute() yields an undefined result.

Scan Operations

Scans are roughly the equivalent of SQL cursors, providing a means to perform high-speed row
processing. A scan can be performed on either a table (using an NdbScanOperation) or an ordered
index (by means of an NdbIndexScanOperation).

8

Application Program Basics

Scan operations have the following characteristics:

• They can perform read operations which may be shared, exclusive, or dirty.

• They can potentially work with multiple rows.

• They can be used to update or delete multiple rows.

• They can operate on several nodes in parallel.

After the operation is created using NdbTransaction::getNdbScanOperation() or
NdbTransaction::getNdbIndexScanOperation(), it is carried out as follows:

1. Define the standard operation type, using NdbScanOperation::readTuples().

Note

See NdbScanOperation::readTuples(), for additional information about
deadlocks which may occur when performing simultaneous, identical scans
with exclusive locks.

2. Specify search conditions, using NdbScanFilter, NdbIndexScanOperation::setBound(),
or both.

3. Specify attribute actions using NdbOperation::getValue().

4. Execute the transaction using NdbTransaction::execute().

5. Traverse the result set by means of successive calls to NdbScanOperation::nextResult().

Here are two brief examples illustrating this process. Once again, in order to keep things relatively
short and simple, we forego any error handling.

This first example performs a table scan using an NdbScanOperation:

// 1. Retrieve a table object
myTable= myDict->getTable("MYTABLENAME");

// 2. Create a scan operation (NdbScanOperation) on this table
myOperation= myTransaction->getNdbScanOperation(myTable);

// 3. Define the operation's type and lock mode
myOperation->readTuples(NdbOperation::LM_Read);

// 4. Specify search conditions
NdbScanFilter sf(myOperation);
sf.begin(NdbScanFilter::OR);
sf.eq(0, i); // Return rows with column 0 equal to i or
sf.eq(1, i+1); // column 1 equal to (i+1)
sf.end();

// 5. Retrieve attributes
myRecAttr= myOperation->getValue("ATTR2", NULL);

The second example uses an NdbIndexScanOperation to perform an index scan:

// 1. Retrieve index object
myIndex= myDict->getIndex("MYORDEREDINDEX", "MYTABLENAME");

// 2. Create an operation (NdbIndexScanOperation object)
myOperation= myTransaction->getNdbIndexScanOperation(myIndex);

// 3. Define type of operation and lock mode
myOperation->readTuples(NdbOperation::LM_Read);

// 4. Specify search conditions

9

Application Program Basics

// All rows with ATTR1 between i and (i+1)
myOperation->setBound("ATTR1", NdbIndexScanOperation::BoundGE, i);
myOperation->setBound("ATTR1", NdbIndexScanOperation::BoundLE, i+1);

// 5. Retrieve attributes
myRecAttr = MyOperation->getValue("ATTR2", NULL);

Some additional discussion of each step required to perform a scan follows:

1. Define Scan Operation Type. It is important to remember that only a single operation
is supported for each scan operation (NdbScanOperation::readTuples() or
NdbIndexScanOperation::readTuples()).

Note

If you want to define multiple scan operations within the same transaction,
then you need to call NdbTransaction::getNdbScanOperation()
or NdbTransaction::getNdbIndexScanOperation() separately for
each operation.

2. Specify Search Conditions. The search condition is used to select tuples. If no search
condition is specified, the scan will return all rows in the table. The search condition
can be an NdbScanFilter (which can be used on both NdbScanOperation and
NdbIndexScanOperation) or bounds (which can be used only on index scans - see
NdbIndexScanOperation::setBound()). An index scan can use both NdbScanFilter and
bounds.

Note

When NdbScanFilter is used, each row is examined, whether or not it is
actually returned. However, when using bounds, only rows within the bounds
will be examined.

3. Specify Attribute Actions. Next, it is necessary to define which attributes should be read.
As with transaction attributes, scan attributes are defined by name, but it is also possible
to use the attributes' identities to define attributes as well. As discussed elsewhere in this
document (see Section 1.4.2.2, “Synchronous Transactions”), the value read is returned by the
NdbOperation::getValue() method as an NdbRecAttr object.

Using Scans to Update or Delete Rows

Scanning can also be used to update or delete rows. This is performed as follows:

1. Scanning with exclusive locks using NdbOperation::LM_Exclusive.

2. (When iterating through the result set:) For each row, optionally
calling either NdbScanOperation::updateCurrentTuple() or
NdbScanOperation::deleteCurrentTuple().

3. (If performing NdbScanOperation::updateCurrentTuple():) Setting new values for records
simply by using NdbOperation::setValue(). NdbOperation::equal() should not be called
in such cases, as the primary key is retrieved from the scan.

Important

The update or delete is not actually performed until the next call to
NdbTransaction::execute() is made, just as with single row operations.
NdbTransaction::execute() also must be called before any locks are
released; for more information, see Lock Handling with Scans.

Features Specific to Index Scans. When performing an index scan, it is possible to scan only a
subset of a table using NdbIndexScanOperation::setBound(). In addition, result sets can be

10

Application Program Basics

sorted in either ascending or descending order, using NdbIndexScanOperation::readTuples().
Note that rows are returned unordered by default unless sorted is set to true.

It is also important to note that, when using NdbIndexScanOperation::BoundEQ (see
NdbIndexScanOperation::BoundType) with a partition key, only fragments containing rows
will actually be scanned. Finally, when performing a sorted scan, any value passed as the
NdbIndexScanOperation::readTuples() method's parallel argument will be ignored and
maximum parallelism will be used instead. In other words, all fragments which it is possible to scan are
scanned simultaneously and in parallel in such cases.

Lock Handling with Scans

Performing scans on either a table or an index has the potential to return a great many
records; however, Ndb locks only a predetermined number of rows per fragment at a time.
The number of rows locked per fragment is controlled by the batch parameter passed to
NdbScanOperation::readTuples().

In order to enable the application to handle how locks are released,
NdbScanOperation::nextResult() has a Boolean parameter fetchAllowed. If
NdbScanOperation::nextResult() is called with fetchAllowed equal to false, then no
locks may be released as result of the function call. Otherwise the locks for the current batch may be
released.

This next example shows a scan delete that handles locks in an efficient manner. For the sake of
brevity, we omit error-handling.

int check;

// Outer loop for each batch of rows
while((check = MyScanOperation->nextResult(true)) == 0)
{
 do
 {
 // Inner loop for each row within the batch
 MyScanOperation->deleteCurrentTuple();
 }
 while((check = MyScanOperation->nextResult(false)) == 0);

 // When there are no more rows in the batch, execute all defined deletes
 MyTransaction->execute(NoCommit);
}

For a more complete example of a scan, see Section 2.5.5, “NDB API Basic Scanning Example”.

Error Handling

Errors can occur either when operations making up a transaction are being defined, or when the
transaction is actually being executed. Catching and handling either sort of error requires testing the
value returned by NdbTransaction::execute(), and then, if an error is indicated (that is, if this
value is equal to -1), using the following two methods in order to identify the error's type and location:

• NdbTransaction::getNdbErrorOperation() returns a reference to the operation causing the
most recent error.

• NdbTransaction::getNdbErrorLine() yields the method number of the erroneous method in
the operation, starting with 1.

This short example illustrates how to detect an error and to use these two methods to identify it:

theTransaction = theNdb->startTransaction();
theOperation = theTransaction->getNdbOperation("TEST_TABLE");
if(theOperation == NULL)
 goto error;

11

Review of NDB Cluster Concepts

theOperation->readTuple(NdbOperation::LM_Read);
theOperation->setValue("ATTR_1", at1);
theOperation->setValue("ATTR_2", at1); // Error occurs here
theOperation->setValue("ATTR_3", at1);
theOperation->setValue("ATTR_4", at1);

if(theTransaction->execute(Commit) == -1)
{
 errorLine = theTransaction->getNdbErrorLine();
 errorOperation = theTransaction->getNdbErrorOperation();
}

Here, errorLine is 3, as the error occurred in the third method called on the NdbOperation object
(in this case, theOperation). If the result of NdbTransaction::getNdbErrorLine() is 0,
then the error occurred when the operations were executed. In this example, errorOperation is a
pointer to the object theOperation. The NdbTransaction::getNdbError() method returns an
NdbError object providing information about the error.

Note

Transactions are not automatically closed when an error occurs. You must call
Ndb::closeTransaction() or NdbTransaction::close() to close the
transaction.

See Ndb::closeTransaction(), and NdbTransaction::close().

One recommended way to handle a transaction failure (that is, when an error is reported) is as shown
here:

1. Roll back the transaction by calling NdbTransaction::execute() with a special ExecType
value for the type parameter.

See NdbTransaction::execute() and NdbTransaction::ExecType, for more information about how
this is done.

2. Close the transaction by calling NdbTransaction::close().

3. If the error was temporary, attempt to restart the transaction.

Several errors can occur when a transaction contains multiple operations which are simultaneously
executed. In this case the application must go through all operations and query each of their NdbError
objects to find out what really happened.

Important

Errors can occur even when a commit is reported as successful. In
order to handle such situations, the NDB API provides an additional
NdbTransaction::commitStatus() method to check the transaction's
commit status.

See NdbTransaction::commitStatus().

1.4.3 Review of NDB Cluster Concepts

This section covers the NDB Kernel, and discusses NDB Cluster transaction handling and transaction
coordinators. It also describes NDB record structures and concurrency issues.

The NDB Kernel is the collection of data nodes belonging to an NDB Cluster. The application
programmer can for most purposes view the set of all storage nodes as a single entity. Each data node
is made up of three main components:

• TC: The transaction coordinator.

12

Review of NDB Cluster Concepts

• ACC: The index storage component.

• TUP: The data storage component.

When an application executes a transaction, it connects to one transaction coordinator on one data
node. Usually, the programmer does not need to specify which TC should be used, but in some cases
where performance is important, the programmer can provide “hints” to use a certain TC. (If the node
with the desired transaction coordinator is down, then another TC will automatically take its place.)

Each data node has an ACC and a TUP which store the indexes and data portions of the database
table fragment. Even though a single TC is responsible for the transaction, several ACCs and TUPs on
other data nodes might be involved in that transaction's execution.

1.4.3.1 Selecting a Transaction Coordinator

The default method is to select the transaction coordinator (TC) determined to be the "nearest" data
node, using a heuristic for proximity based on the type of transporter connection. In order of nearest to
most distant, these are:

1. SHM

2. TCP/IP (localhost)

3. TCP/IP (remote host)

If there are several connections available with the same proximity, one is selected for each transaction
in a round-robin fashion. Optionally, you may set the method for TC selection to round-robin mode,
where each new set of transactions is placed on the next data node. The pool of connections from
which this selection is made consists of all available connections.

As noted in Section 1.4.3, “Review of NDB Cluster Concepts”, the application programmer can provide
hints to the NDB API as to which transaction coordinator should be uses. This is done by providing
a table and a partition key (usually the primary key). If the primary key is the partition key, then the
transaction is placed on the node where the primary fragment replica of that record resides. Note that
this is only a hint; the system can be reconfigured at any time, in which case the NDB API chooses a
transaction coordinator without using the hint. For more information, see Column::getPartitionKey(),
and Ndb::startTransaction().

The application programmer can specify the partition key from SQL by using the following construct:

CREATE TABLE ... ENGINE=NDB PARTITION BY KEY (attribute_list);

For additional information, see Partitioning, and in particular KEY Partitioning, in the MySQL Manual.

1.4.3.2 NDB Record Structure

The NDB storage engine used by NDB Cluster is a relational database engine storing records in tables
as with other relational database systems. Table rows represent records as tuples of relational data.
When a new table is created, its attribute schema is specified for the table as a whole, and thus each
table row has the same structure. Again, this is typical of relational databases, and NDB is no different
in this regard.

Primary Keys. Each record has from 1 up to 32 attributes which belong to the primary key of the
table.

Transactions. Transactions are committed first to main memory, and then to disk, after a global
checkpoint (GCP) is issued. Since all data are (in most NDB Cluster configurations) synchronously
replicated and stored on multiple data nodes, the system can handle processor failures without loss of
data. However, in the case of a system-wide failure, all transactions (committed or not) occurring since
the most recent GCP are lost.

13

https://dev.mysql.com/doc/refman/8.4/en/partitioning.html
https://dev.mysql.com/doc/refman/8.4/en/partitioning-key.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

The Adaptive Send Algorithm

Concurrency Control.
NDB uses pessimistic concurrency control based on locking. If a requested lock (implicit and depending
on database operation) cannot be attained within a specified time, then a timeout error results.

Concurrent transactions as requested by parallel application programs and thread-based applications
can sometimes deadlock when they try to access the same information simultaneously. Thus,
applications need to be written in a manner such that timeout errors occurring due to such deadlocks
are handled gracefully. This generally means that the transaction encountering a timeout should be
rolled back and restarted.

Hints and Performance.
Placing the transaction coordinator in close proximity to the actual data used in the transaction can
in many cases improve performance significantly. This is particularly true for systems using TCP/
IP. For example, a Solaris system using a single 500 MHz processor has a cost model for TCP/IP
communication which can be represented by the formula

[30 microseconds] + ([100 nanoseconds] * [number of bytes])

This means that if we can ensure that we use “popular” links we increase buffering and thus drastically
reduce the costs of communication.

A simple example would be an application that uses many simple updates where a transaction needs
to update one record. This record has a 32-bit primary key which also serves as the partitioning key.
Then the keyData is used as the address of the integer of the primary key and keyLen is 4.

1.4.4 The Adaptive Send Algorithm

Discusses the mechanics of transaction handling and transmission in NDB Cluster and the NDB API, and the
objects used to implement these.

When transactions are sent using NdbTransaction::execute(), they are not immediately
transferred to the NDB Kernel. Instead, transactions are kept in a special send list (buffer) in the Ndb
object to which they belong. The adaptive send algorithm decides when transactions should actually be
transferred to the NDB kernel.

The NDB API is designed as a multithreaded interface, and so it is often desirable to transfer database
operations from more than one thread at a time. The NDB API keeps track of which Ndb objects are
active in transferring information to the NDB kernel and the expected number of threads to interact
with the NDB kernel. Note that a given instance of Ndb should be used in at most one thread; different
threads should not share the same Ndb object.

There are four conditions leading to the transfer of database operations from Ndb object buffers to the
NDB kernel:

1. The NDB Transporter (TCP/IP or shared memory) decides that a buffer is full and sends it off. The
buffer size is implementation-dependent and may change between NDB Cluster releases. When
TCP/IP is the transporter, the buffer size is usually around 64 KB. Since each Ndb object provides a
single buffer per data node, the notion of a “full” buffer is local to each data node.

2. The accumulation of statistical data on transferred information may force sending of buffers to all
storage nodes (that is, when all the buffers become full).

3. Every 10 milliseconds, a special transmission thread checks whether or not any send activity has
occurred. If not, then the thread will force transmission to all nodes. This means that 20 ms is the
maximum amount of time that database operations are kept waiting before being dispatched. A 10-
millisecond limit is likely in future releases of NDB Cluster; checks more frequent than this require
additional support from the operating system.

4. For methods that are affected by the adaptive send algorithm (such as
NdbTransaction::execute()), there is a force parameter that overrides its default behavior

14

Application-level partitioning

in this regard and forces immediate transmission to all nodes. See the individual NDB API class
listings for more information.

The conditions listed above are subject to change in future releases of NDB Cluster.

1.5 Application-level partitioning
There is no restriction against instantiating multiple Ndb_cluster_connection objects representing
connections to different management servers in a single application, nor against using these for
creating multiple instances of the Ndb class. Such Ndb_cluster_connection objects (and the Ndb
instances based on them) are not required even to connect to the same cluster.

For example, it is entirely possible to perform application-level partitioning of data in such a manner
that data meeting one set of criteria are “handed off” to one cluster using an Ndb object that makes
use of an Ndb_cluster_connection object representing a connection to that cluster, while data not
meeting those criteria (or perhaps a different set of criteria) can be sent to a different cluster through a
different instance of Ndb that makes use of an Ndb_cluster_connection “pointing” to the second
cluster.

It is possible to extend this scenario to develop a single application that accesses an arbitrary number
of clusters. However, in doing so, the following conditions and requirements must be kept in mind:

• A cluster management server (ndb_mgmd) can connect to one and only one cluster without being
restarted and reconfigured, as it must read the data telling it which data nodes make up the cluster
from a configuration file (config.ini).

• An Ndb_cluster_connection object “belongs” to a single management server whose host name
or IP address is used in instantiating this object (passed as the connection_string argument to
its constructor); once the object is created, it cannot be used to initiate a connection to a different
management server.

(See Ndb_cluster_connection Class Constructor.)

• An Ndb object making use of this connection (Ndb_cluster_connection) cannot be re-used to
connect to a different cluster management server (and thus to a different collection of data nodes
making up a cluster). Any given instance of Ndb is bound to a specific Ndb_cluster_connection
when created, and that Ndb_cluster_connection is in turn bound to a single and unique
management server when it is instantiated.

(See Ndb Class Constructor.)

• The bindings previously described persist for the lifetimes of the Ndb and
Ndb_cluster_connection objects in question.

Therefore, it is imperative in designing and implementing any application that accesses multiple
clusters in a single session, that a separate set of Ndb_cluster_connection and Ndb objects be
instantiated for connecting to each cluster management server, and that no confusion arises as to
which of these is used to access which NDB Cluster.

It is also important to keep in mind that no direct “sharing” of data or data nodes between different
clusters is possible. A data node can belong to one and only one cluster, and any movement of data
between clusters must be accomplished on the application level.

For examples demonstrating how connections to two different clusters can be made and used in a
single application, see Section 2.5.3, “NDB API Example Using Synchronous Transactions and Multiple
Clusters”, and Section 3.6.2, “MGM API Event Handling with Multiple Clusters”.

1.6 Using NdbInterpretedCode
The next few sections provide information about performing different types of operations with
NdbInterpretedCode methods, including resource usage.

15

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-mgmd.html

NdbInterpretedCode Methods for Loading Values into Registers

• NdbInterpretedCode Methods for Loading Values into Registers

• NdbInterpretedCode Methods for Copying Values Between Registers and Table Columns

• NdbInterpretedCode Register Arithmetic Methods

• NdbInterpretedCode: Labels and Branching

• Register-Based NdbInterpretedCode Branch Operations

• Column-Based NdbInterpretedCode Branch Operations

• Pattern-Based NdbInterpretedCode Branch Operations

• NdbInterpretedCode Bitwise Comparison Operations

• NdbInterpretedCode Result Handling Methods

• NdbInterpretedCode Convenience Methods

• Using Subroutines with NdbInterpretedCode

• NdbInterpretedCode Utility Methods

NdbInterpretedCode Methods for Loading Values into Registers

The methods described in this section are used to load constant values into NdbInterpretedCode
program registers. The space required by each of these methods is shown in the following table:

Table 1.1 NdbInterpretedCode methods used to load constant values into NdbInterpretedCode
program registers, with required buffer and request message space.

Method Buffer (words) Request message
(words)

load_const_null() 1 1

load_const_u16() 1 1

load_const_u32() 2 2

load_const_u64() 3 3

NdbInterpretedCode Methods for Copying Values Between Registers and
Table Columns

NdbInterpretedCode provides two methods for copying values between a column in the current
table row and a program register. The read_attr() method is used to copy a table column value
into a program register; write_attr() is used to copy a value from a program register into a table
column. Both of these methods require that the table being operated on was specified when creating
the NdbInterpretedCode object for which they are called.

The space required by each of these methods is shown in the following table:

Table 1.2 NdbInterpretedCode methods used to copy values between registers and table
columns, with required buffer and request message space.

Method Buffer (words) Request message
(words)

read_attr() 1 1

write_attr() 1 1

16

NdbInterpretedCode Register Arithmetic Methods

For more information, see NdbInterpretedCode::read_attr(), and NdbInterpretedCode::write_attr().

NdbInterpretedCode Register Arithmetic Methods

NdbInterpretedCode provides two methods for performing arithmetic operations on registers. Using
add_reg(), you can load the sum of two registers into another register; sub_reg() lets you load the
difference of two registers into another register.

The space required by each of these methods is shown in the following table:

Table 1.3 NdbInterpretedCode methods used to perform arithmetic operations on registers, with
required buffer and request message space.

Method Buffer (words) Request message
(words)

add_reg() 1 1

sub_reg() 1 1

For mroe information, see NdbInterpretedCode::add_reg(), and NdbInterpretedCode::sub_reg().

NdbInterpretedCode: Labels and Branching

The NdbInterpretedCode class lets you define labels within interpreted programs and provides
a number of methods for performing jumps to these labels based on any of the following types of
conditions:

• Comparison between two register values

• Comparison between a column value and a given constant

• Whether or not a column value matches a given pattern

To define a label, use the def_label() method.

To perform an unconditional jump to a label, use the branch_label() method.

To perform a jump to a given label based on a comparison of register values, use one of the
branch_*() methods (branch_ge(), branch_gt(), branch_le(), branch_lt(),
branch_eq(), branch_ne(), branch_ne_null(), or branch_eq_null()). See Register-Based
NdbInterpretedCode Branch Operations.

To perform a jump to a given label based on a comparison of table column values, use one of the
branch_col_*() methods (branch_col_ge(), branch_col_gt(), branch_col_le(),
branch_col_lt(), branch_col_eq(), branch_col_ne(), branch_col_ne_null(), or
branch_col_eq_null()). See Column-Based NdbInterpretedCode Branch Operations.

To perform a jump based on pattern-matching of a table column value, use one of the methods
branch_col_like() or branch_col_notlike(). See Pattern-Based NdbInterpretedCode Branch
Operations.

Register-Based NdbInterpretedCode Branch Operations

Most of these are used to branch based on the results of register-to-register comparisons. There
are also two methods used to compare a register value with NULL. All of these methods require as a
parameter a label defined using the def_label() method.

These methods can be thought of as performing the following logic:

if(register_value1 condition register_value2)

17

Column-Based NdbInterpretedCode Branch Operations

 goto Label

The space required by each of these methods is shown in the following table:

Table 1.4 Register-based NdbInterpretedCode branch methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)

branch_ge() 1 1

branch_gt() 1 1

branch_le() 1 1

branch_lt() 1 1

branch_eq() 1 1

branch_ne() 1 1

branch_ne_null() 1 1

branch_eq_null() 1 1

Column-Based NdbInterpretedCode Branch Operations

The methods described in this section are used to perform branching based on a comparison between
a table column value and a given constant value. Each of these methods expects the attribute ID of the
column whose value is to be tested rather than a reference to a Column object.

These methods, with the exception of branch_col_eq_null() and branch_col_ne_null(), can
be thought of as performing the following logic:

if(constant_value condition column_value)
 goto Label

In each case (once again excepting branch_col_eq_null() and branch_col_ne_null()), the
arbitrary constant is the first parameter passed to the method.

The space requirements for each of these methods is shown in the following table, where L represents
the length of the constant value:

Table 1.5 Column-based NdbInterpretedCode branch methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)

branch_col_eq_null() 2 2

branch_col_ne_null() 2 2

branch_col_eq() 2 2 + CEIL(L / 8)

branch_col_ne() 2 2 + CEIL(L / 8)

branch_col_lt() 2 2 + CEIL(L / 8)

branch_col_le() 2 2 + CEIL(L / 8)

branch_col_gt() 2 2 + CEIL(L / 8)

branch_col_ge() 2 2 + CEIL(L / 8)

Note

The expression CEIL(L / 8) is the number of whole 8-byte words required to
hold the constant value to be compared.

18

Pattern-Based NdbInterpretedCode Branch Operations

Pattern-Based NdbInterpretedCode Branch Operations

The NdbInterpretedCode class provides two methods which can be used to branch based on
a comparison between a column containing character data (that is, a CHAR, VARCHAR, BINARY, or
VARBINARY column) and a regular expression pattern.

The pattern syntax supported by the regular expression is the same as that supported by the MySQL
Server's LIKE and NOT LIKE operators, including the _ and % metacharacters. For more information
about these, see String Comparison Functions and Operators.

Note

This is the same regular expression pattern syntax that is supported by
NdbScanFilter; see NdbScanFilter::cmp(), for more information.

The table being operated upon must be supplied when the NdbInterpretedCode object is
instantiated. The regular expression pattern should be in plain CHAR format, even if the column is
actually a VARCHAR (in other words, there should be no leading length bytes).

These functions behave as shown here:

if (column_value [NOT] LIKE pattern)
 goto Label;

The space requirements for these methods are shown in the following table, where L represents the
length of the constant value:

Table 1.6 Pattern-based NdbInterpretedCode branch methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)

branch_col_like() 2 2 + CEIL(L / 8)

branch_col_notlike() 2 2 + CEIL(L / 8)

Note

The expression CEIL(L / 8) is the number of whole 8-byte words required to
hold the constant value to be compared.

NdbInterpretedCode Bitwise Comparison Operations

These instructions are used to branch based on the result of a logical AND comparison between a BIT
column value and a bitmask pattern.

Use of these methods requires that the table being operated upon was supplied when the
NdbInterpretedCode object was constructed. The mask value should be the same size as the bit
column being compared. BIT values are passed into and out of the NDB API as 32-bit words with bits
set in order from the least significant bit to the most significant bit. The endianness of the platform on
which the instructions are executed controls which byte contains the least significant bits. On x86, this
is the first byte (byte 0); on SPARC and PPC, it is the last byte.

The buffer length and the request length for each of the methods listed here each requires an amount
of space equal to 2 words plus the column width rounded (up) to the nearest whole word:

• branch_col_and_mask_eq_mask()

• branch_col_and_mask_ne_mask()

• branch_col_and_mask_eq_zero()

19

https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/string-comparison-functions.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/mathematical-functions.html#function_ceil
https://dev.mysql.com/doc/refman/8.4/en/mathematical-functions.html#function_ceil

NdbInterpretedCode Result Handling Methods

• branch_col_and_mask_ne_zero()

NdbInterpretedCode Result Handling Methods

The methods described in this section are used to tell the interpreter that processing of the current row
is complete, and—in the case of scans—whether or not to include this row in the results of the scan.

The space requirements for these methods are shown in the following table, where L represents the
length of the constant value:

Table 1.7 NdbInterpretedCode result handling methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)

interpret_exit_ok() 1 1

interpret_exit_nok() 1 1

interpret_exit_last_row() 1 1

NdbInterpretedCode Convenience Methods

The methods described in this section can be used to insert multiple instructions (using specific
registers) into an interpreted program.

Important

In addition to updating the table column, these methods use interpreter
registers 6 and 7, replacing any existing contents of register 6 with the original
column value and any existing contents of register 7 with the modified column
value. The table itself must be previously defined when instantiating the
NdbInterpretedCode object for which the method is invoked.

The space requirements for these methods are shown in the following table, where L represents the
length of the constant value:

Table 1.8 NdbInterpretedCode convenience methods, with required buffer and request message
space.

Method Buffer (words) Request message
(words)

add_val() 4 1; if the supplied value
>= 216: 2; if >= 232: 3

sub_val() 4 1; if the supplied value
>= 216: 2; if >= 232: 3

Using Subroutines with NdbInterpretedCode

NdbInterpretedCode supports subroutines which can be invoked from within interpreted programs,
with each subroutine being identified by a unique number. Subroutines can be defined only following all
main program instructions.

Important

Numbers used to identify subroutines must be contiguous; however, they do not
have to be in any particular order.

• The beginning of a subroutine is indicated by invoking the def_sub() method;

20

NdbInterpretedCode Utility Methods

• ret_sub() terminates the subroutine; all instructions following the call to def_sub() belong to the
subroutine until it is terminated using this method.

• A subroutine is called using the call_sub() method.

Once the subroutine has completed, the program resumes execution with the instruction immediately
following the one which invoked the subroutine. Subroutines can also be invoked from other
subroutines; currently, the maximum subroutine stack depth is 32.

NdbInterpretedCode Utility Methods

Some additional utility methods supplied by NdbInterpretedCode are listed here:

• copy(): Copies an existing interpreted program by performing a deep copy on the associated
NdbInterpretedCode object.

• finalise(): Prepares an interpreted program by resolving all branching instructions and
subroutine calls.

• getTable(): Get a reference to the table for which the NdbInterpretedCode object was defined.

• getNdbError(): Get the most recent error associated with this NdbInterpretedCode object.

• getWordsUsed(): Obtain the number of words used from the buffer.

21

22

Chapter 2 The NDB API

Table of Contents
2.1 Getting Started with the NDB API .. 24

2.1.1 Compiling and Linking NDB API Programs .. 24
2.1.2 Connecting to the Cluster ... 27
2.1.3 Mapping MySQL Database Object Names and Types to NDB 28

2.2 The NDB API Class Hierarachy ... 33
2.3 NDB API Classes, Interfaces, and Structures ... 34

2.3.1 The Column Class ... 34
2.3.2 The Datafile Class .. 51
2.3.3 The Dictionary Class .. 56
2.3.4 The Element Structure .. 74
2.3.5 The Event Class .. 74
2.3.6 The ForeignKey Class .. 85
2.3.7 The HashMap Class ... 92
2.3.8 The Index Class ... 95
2.3.9 The LogfileGroup Class .. 102
2.3.10 The List Class .. 105
2.3.11 The Ndb Class ... 106
2.3.12 The Ndb_cluster_connection Class .. 129
2.3.13 The NdbBlob Class .. 140
2.3.14 The NdbDictionary Class .. 151
2.3.15 The NdbError Structure ... 157
2.3.16 The NdbEventOperation Class .. 160
2.3.17 The NdbIndexOperation Class ... 170
2.3.18 The NdbIndexScanOperation Class ... 172
2.3.19 The NdbInterpretedCode Class ... 178
2.3.20 The NdbOperation Class ... 204
2.3.21 The NdbRecAttr Class .. 242
2.3.22 The NdbRecord Interface .. 249
2.3.23 The NdbScanFilter Class .. 250
2.3.24 The NdbScanOperation Class ... 260
2.3.25 The NdbTransaction Class .. 272
2.3.26 The Object Class .. 291
2.3.27 The Table Class ... 295
2.3.28 The Tablespace Class .. 321
2.3.29 The Undofile Class ... 326

2.4 NDB API Errors and Error Handling ... 330
2.4.1 Handling NDB API Errors ... 331
2.4.2 NDB Error Codes: by Type ... 334
2.4.3 NDB Error Codes: Single Listing ... 400
2.4.4 NDB Error Classifications .. 473

2.5 NDB API Examples ... 474
2.5.1 Basic NDB API Examples ... 475
2.5.2 NDB API Example Using Synchronous Transactions .. 481
2.5.3 NDB API Example Using Synchronous Transactions and Multiple Clusters 486
2.5.4 NDB API Example: Handling Errors and Retrying Transactions 491
2.5.5 NDB API Basic Scanning Example .. 495
2.5.6 NDB API Example: Using Secondary Indexes in Scans .. 508
2.5.7 NDB API Example: Using NdbRecord with Hash Indexes ... 511
2.5.8 NDB API Example Comparing RecAttr and NdbRecord .. 517
2.5.9 NDB API Event Handling Example .. 562
2.5.10 NDB API Example: Basic BLOB Handling .. 566
2.5.11 NDB API Example: Handling BLOB Columns and Values Using NdbRecord 573

23

Getting Started with the NDB API

2.5.12 NDB API Simple Array Example .. 582
2.5.13 NDB API Simple Array Example Using Adapter .. 587
2.5.14 Timestamp2 Example ... 592
2.5.15 Common Files for NDB API Array Examples .. 596

This chapter contains information about the NDB API, which is used to write applications that access data in the
NDB storage engine.

2.1 Getting Started with the NDB API

This section discusses preparations necessary for writing and compiling an NDB API application.

2.1.1 Compiling and Linking NDB API Programs

This section provides information on compiling and linking NDB API applications, including
requirements and compiler and linker options.

2.1.1.1 General Requirements

To use the NDB API with MySQL, you must have the libndbclient client library and its associated
header files installed alongside the regular MySQL client libraries and headers under install_dir/
lib. These are automatically installed when you build MySQL using -DWITH_NDBCLUSTER=ON or use
a MySQL binary package that supports the NDB storage engine.

This Guide is targeted for use with MySQL NDB Cluster 7.5 and later.

C and C++ language support. The following table provides information about minimum C and
C++ language requirements for compiling MGM API applications, NDB API applications, and the
libndbclient library against supported versions of NDB Cluster.

Table 2.1 Language support requirements

NDB Cluster
Version

MGM API NDB API header files libndbclient

7.5, 7.6 C99 a C++98 b C99 or C++98 C++03 c

8.0, 8.1 d , 8.2 C++11 e C++11 C++11 C++03 f

8.3 and later C99 C++11 C99 or C++11 C++17 f g

a GCC 4.5; Clang (any version)
b GCC 4.8.1; Clang 3.3
c GCC 4.3; Clang (any version)
d NDB Cluster 8.1 was a MySQL NDB Cluster Innovation release which is no longer available; it was superseded by the NDB
Cluster 8.2 Innovation release.
e GCC 4.8.1; Clang 3.3
f In these versions, this is the same as the level of C++ language support required to compile the MySQL server.
g GCC 8; Clang 5

For information about building MySQL and NDB Cluster from source, see Installing MySQL from
Source. For information about building MySQL applications against the MySQL C API, see Building C
API Client Programs.

2.1.1.2 Compiler Options

Header Files. In order to compile source files that use the NDB API, you must ensure that the
necessary header files can be found. Header files specific to the NDB and MGM APIs are installed in
the following subdirectories of the MySQL include directory, respectively:

• include/mysql/storage/ndb/ndbapi

• include/mysql/storage/ndb/mgmapi

24

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.4/en/source-installation.html
https://dev.mysql.com/doc/refman/8.4/en/source-installation.html
https://dev.mysql.com/doc/c-api/8.4/en/c-api-building-clients.html
https://dev.mysql.com/doc/c-api/8.4/en/c-api-building-clients.html

Compiling and Linking NDB API Programs

Compiler Flags. The MySQL-specific compiler flags needed can be determined using the
mysql_config utility that is part of the MySQL installation:

$> mysql_config --cflags
-I/usr/local/mysql/include/mysql -Wreturn-type -Wtrigraphs -W -Wformat
-Wsign-compare -Wunused -mcpu=pentium4 -march=pentium4

This sets the include path for the MySQL header files but not for those specific to the NDB API. The --
include option to mysql_config returns the generic include path switch:

$> mysql_config --include
-I/usr/local/mysql/include/mysql

It is necessary to add the subdirectory paths explicitly, so that adding all the needed compile flags to
the CXXFLAGS shell variable should look something like this:

CFLAGS="$CFLAGS "`mysql_config --cflags`
CFLAGS="$CFLAGS "`mysql_config --include`/storage/ndb
CFLAGS="$CFLAGS "`mysql_config --include`/storage/ndb/ndbapi
CFLAGS="$CFLAGS "`mysql_config --include`/storage/ndb/mgmapi

Tip

If you do not intend to use the NDB Cluster management functions, the last line
in the previous example can be omitted. However, if you are interested in the
management functions only, and do not want or need to access NDB Cluster
data except from MySQL, then you can omit the line referencing the ndbapi
directory.

2.1.1.3 Linker Options

NDB API applications must be linked against both the MySQL and NDB client libraries. The NDB client
library also requires some functions from the mystrings library, so this must be linked in as well.

The necessary linker flags for the MySQL client library are returned by mysql_config --libs. For
multithreaded applications you should use the --libs_r instead:

$> mysql_config --libs_r
-L/usr/local/mysql/lib/mysql -lmysqlclient_r -lz -lpthread -lcrypt
-lnsl -lm -lpthread -L/usr/lib -lssl -lcrypto

It is now necessary only to add -lndbclient to LD_FLAGS, as shown here:

LDFLAGS="$LDFLAGS "`mysql_config --libs_r`
LDFLAGS="$LDFLAGS -lndbclient"

2.1.1.4 Using Autotools

It is often faster and simpler to use GNU autotools than to write your own makefiles. In this section,
we provide an autoconf macro WITH_MYSQL that can be used to add a --with-mysql option to
a configure file, and that automatically sets the correct compiler and linker flags for given MySQL
installation.

All of the examples in this chapter include a common mysql.m4 file defining WITH_MYSQL. A typical
complete example consists of the actual source file and the following helper files:

• acinclude

• configure.in

• Makefile.m4

automake also requires that you provide README, NEWS, AUTHORS, and ChangeLog files; however,
these can be left empty.

25

https://dev.mysql.com/doc/refman/8.4/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-config.html#option_mysql_config_include
https://dev.mysql.com/doc/refman/8.4/en/mysql-config.html#option_mysql_config_include
https://dev.mysql.com/doc/refman/8.4/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-config.html

Compiling and Linking NDB API Programs

To create all necessary build files, run the following:

aclocal
autoconf
automake -a -c
configure --with-mysql=/mysql/prefix/path

Normally, this needs to be done only once, after which make will accommodate any file changes.

Example 1-1: acinclude.m4.

m4_include([../mysql.m4])

Example 1-2: configure.in.

AC_INIT(example, 1.0)
AM_INIT_AUTOMAKE(example, 1.0)
WITH_MYSQL()
AC_OUTPUT(Makefile)

Example 1-3: Makefile.am.

bin_PROGRAMS = example
example_SOURCES = example.cc

Example 1-4: WITH_MYSQL source for inclusion in acinclude.m4.

dnl
dnl configure.in helper macros
dnl

AC_DEFUN([WITH_MYSQL], [
 AC_MSG_CHECKING(for mysql_config executable)

 AC_ARG_WITH(mysql, [--with-mysql=PATH path to mysql_config binary or mysql prefix dir], [
 if test -x $withval -a -f $withval
 then
 MYSQL_CONFIG=$withval
 elif test -x $withval/bin/mysql_config -a -f $withval/bin/mysql_config
 then
 MYSQL_CONFIG=$withval/bin/mysql_config
 fi
], [
 if test -x /usr/local/mysql/bin/mysql_config -a -f /usr/local/mysql/bin/mysql_config
 then
 MYSQL_CONFIG=/usr/local/mysql/bin/mysql_config
 elif test -x /usr/bin/mysql_config -a -f /usr/bin/mysql_config
 then
 MYSQL_CONFIG=/usr/bin/mysql_config
 fi
])

 if test "x$MYSQL_CONFIG" = "x"
 then
 AC_MSG_RESULT(not found)
 exit 3
 else
 AC_PROG_CC
 AC_PROG_CXX

 # add regular MySQL C flags
 ADDFLAGS=`$MYSQL_CONFIG --cflags`

 # add NDB API specific C flags
 IBASE=`$MYSQL_CONFIG --include`
 ADDFLAGS="$ADDFLAGS $IBASE/storage/ndb"
 ADDFLAGS="$ADDFLAGS $IBASE/storage/ndb/ndbapi"
 ADDFLAGS="$ADDFLAGS $IBASE/storage/ndb/mgmapi"

 CFLAGS="$CFLAGS $ADDFLAGS"
 CXXFLAGS="$CXXFLAGS $ADDFLAGS"

26

Connecting to the Cluster

 LDFLAGS="$LDFLAGS "`$MYSQL_CONFIG --libs_r`" -lndbclient"
 LDFLAGS="$LDFLAGS "`$MYSQL_CONFIG --libs_r`" -lndbclient"

 AC_MSG_RESULT($MYSQL_CONFIG)
 fi
])

2.1.2 Connecting to the Cluster

This section covers connecting an NDB API application to an NDB Cluster.

2.1.2.1 Include Files

NDB API applications require one or more of the following include files:

• Applications accessing NDB Cluster data using the NDB API must include the file NdbApi.hpp.

• Applications making use of the regular MySQL client API as well as the NDB API must also include
mysql.h (in addition to NdbApi.hpp).

• Applications that use NDB Cluster management functions from the MGM API need the include file
mgmapi.h.

2.1.2.2 API Initialization and Cleanup

Before using the NDB API, it must first be initialized by calling the ndb_init() function.

Once an NDB API application is complete, you can call ndb_end(0) to perform any necessary
cleanup. Keep in mind that, before you invoke this function, all Ndb_cluster_connection
objects created in your NDB API application must be cleaned up or destroyed; otherwise, threads
created when an Ndb_cluster_connection object's connect() method is invoked do not exit
properly, which causes errors on application termination. When an Ndb_cluster_connection is
created statically, you must not call ndb_end() in the same scope as the connection object. When
the connection object is created dynamically, you can destroy it using delete() before calling
ndb_end().

Each of the functions ndb_init() and ndb_end() is defined in the file storage/ndb/include/
ndb_init.h.

Note

It should be possible to use fork() in NDB API applications, but you must do
so prior to calling ndb_init() or my_init() to avoid sharing of resources
such as files and connections between processes.

2.1.2.3 Establishing the Connection

To establish a connection to the server, you must create an instance of Ndb_cluster_connection,
whose constructor takes as its argument a cluster connection string. If no connection string is given,
localhost is assumed.

The cluster connection is not actually initiated until the Ndb_cluster_connection::connect()
method is called. When invoked without any arguments, the connection attempt is retried indefinitely,
once per second, until successful. No reporting is done until the connection has been made.

By default an API node connects to the “nearest” data node. This is usually a data node running on the
same machine as the nearest, due to the fact that shared memory transport can be used instead of
the slower TCP/IP. This may lead to poor load distribution in some cases, so it is possible to enforce a
round-robin node connection scheme by calling the set_optimized_node_selection() method
with 0 as its argument prior to calling connect().

27

Mapping MySQL Database Object Names and Types to NDB

connect() initiates a connection to an NDB Cluster management node only. To enable connections
with data nodes, use wait_until_ready() after calling connect(); wait_until_ready() waits
up to a given number of seconds for a connection to a data node to be established.

In the following example, initialization and connection are handled in the two functions
example_init() and example_end(), which are included in subsequent examples by means of
including the file example_connection.h.

Example 2-1: Connection example.

#include <stdio.h>
#include <stdlib.h>
#include <NdbApi.hpp>
#include <mysql.h>
#include <mgmapi.h>

Ndb_cluster_connection* connect_to_cluster();
void disconnect_from_cluster(Ndb_cluster_connection *c);

Ndb_cluster_connection* connect_to_cluster()
{
 Ndb_cluster_connection* c;

 if(ndb_init())
 exit(EXIT_FAILURE);

 c= new Ndb_cluster_connection();

 if(c->connect(4, 5, 1))
 {
 fprintf(stderr, "Unable to connect to cluster within 30 seconds.\n\n");
 exit(EXIT_FAILURE);
 }

 if(c->wait_until_ready(30, 0) < 0)
 {
 fprintf(stderr, "Cluster was not ready within 30 seconds.\n\n");
 exit(EXIT_FAILURE);
 }

 return c;
}

void disconnect_from_cluster(Ndb_cluster_connection *c)
{
 delete c;

 ndb_end(2);
}

int main(int argc, char* argv[])
{
 Ndb_cluster_connection *ndb_connection= connect_to_cluster();

 printf("Connection Established.\n\n");

 disconnect_from_cluster(ndb_connection);

 return EXIT_SUCCESS;
}

2.1.3 Mapping MySQL Database Object Names and Types to NDB

The next two sections discuss naming and other conventions followed by the NDB API with regard to
MySQL database objects, as well as handling of MySQL data types in NDB API applications.

2.1.3.1 MySQL Database Object Names in the NDB API

This section discusses mapping of MySQL database objects to the NDB API.

28

Mapping MySQL Database Object Names and Types to NDB

Databases and Schemas. Databases and schemas are not represented by objects as such in
the NDB API. Instead, they are modelled as attributes of Table and Index objects. The value of the
database attribute of one of these objects is always the same as the name of the MySQL database
to which the table or index belongs. The value of the schema attribute of a Table or Index object is
always 'def' (for “default”).

Tables. MySQL table names are directly mapped to NDB table names without modification.
Table names starting with 'NDB$' are reserved for internal use, as is the SYSTAB_0 table in the sys
database.

Indexes. There are two different type of NDB indexes:

• Hash indexes are unique, but not ordered.

• B-tree indexes are ordered, but permit duplicate values.

Names of unique indexes and primary keys are handled as follows:

• For a MySQL UNIQUE index, both a B-tree and a hash index are created. The B-tree index uses the
MySQL name for the index; the name for the hash index is generated by appending '$unique' to the
index name.

• For a MySQL primary key only a B-tree index is created. This index is given the name PRIMARY.
There is no extra hash; however, the uniqueness of the primary key is guaranteed by making the
MySQL key the internal primary key of the NDB table.

Column Names and Values. NDB column names are the same as their MySQL names.

2.1.3.2 NDB API Handling of MySQL Data Types

This section provides information about the way in which MySQL data types are represented in
NDBCLUSTER table columns and how these values can be accessed in NDB API applications.

Numeric data types. The MySQL TINYINT, SMALLINT, INT, and BIGINT data types map to NDB
types having the same names and storage requirements as their MySQL counterparts.

The MySQL FLOAT and DOUBLE data types are mapped to NDB types having the same names and
storage requirements.

Data types used for character data. The storage space required for a MySQL CHAR column is
determined by the maximum number of characters and the column's character set. For most (but
not all) character sets, each character takes one byte of storage. When using utf8, each character
requires three bytes; utfmb4 uses up to four bytes per character. You can find the maximum number
of bytes needed per character in a given character set by checking the Maxlen column in the output of
SHOW CHARACTER SET.

An NDB VARCHAR column value maps to a MySQL VARCHAR, except that the first two bytes of the NDB
VARCHAR are reserved for the length of the string. A utility function like that shown here can make a
VARCHAR value ready for use in an NDB API application:

void make_ndb_varchar(char *buffer, char *str)
{
 int len = strlen(str);
 int hlen = (len > 255) ? 2 : 1;
 buffer[0] = len & 0xff;
 if(len > 255)
 buffer[1] = (len / 256);
 strcpy(buffer+hlen, str);
}

You can use this function as shown here:

char myVal[128+1]; // Size of myVal (+1 for length)

29

https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.4/en/char.html

Mapping MySQL Database Object Names and Types to NDB

...
make_ndb_varchar(myVal, "NDB is way cool!!");
myOperation->setValue("myVal", myVal);

See Section 2.5.12, “NDB API Simple Array Example”, for a complete example program that writes and
reads VARCHAR and VARBINARY values to and from a table using the NDB API.

MySQL storage requirements for a VARCHAR or VARBINARY column depend on whether the column is
stored in memory or on disk:

• For in-memory columns, the NDB storage engine supports variable-width columns with 4-byte
alignment. This means that (for example) a the string 'abcde' stored in a VARCHAR(50) column
using the latin1 character set requires 12 bytes—in this case, 2 bytes times 5 characters is 10,
rounded up to the next even multiple of 4 yields 12.

• For Disk Data columns, VARCHAR and VARBINARY are stored as fixed-width columns. This means
that each of these types requires the same amount of storage as a CHAR of the same size.

Note

We refer throughout this Guide to a column of any of MySQL's TEXT or BLOB
types as a “blob column”, and its type as “blob”. NDB 7.5 and later also treats
MySQL JSON columns as blob columns.

Each row in an NDB Cluster BLOB or TEXT column is made up of two separate parts. One of these is
of fixed size (256 bytes), and is actually stored in the original table. The other consists of any data in
excess of 256 bytes, which is stored in a hidden blobs table whose rows are always 2000 bytes long.
This means that a record of size bytes in a TEXT or BLOB column requires

• 256 bytes, if size <= 256

• 256 + 2000 * ((size – 256) \ 2000) + 1) bytes otherwise

Temporal data types. Storage of temporal types in the NDB API depends on whether MySQL's
“old” types without fractional seconds or “new” types with fractional second support are used. Support
for fractional seconds was introduced in MySQL 5.6 as well as the NDB Cluster versions based on it—
that is, NDB 7.3 and NDB 7.4. These and later versions of the MySQL Server and NDB Cluster use the
new temporal types by default, can read and write data using the old temporal types, but cannot create
tables that use the old types. See Fractional Seconds in Time Values, for more information.

Because support for the old temporal types is expected be removed in a future release, you are
encouraged to migrate any tables using the old temporal types to the new versions of these types. You
can do this by executing a copying ALTER TABLE operation on any table that uses the old temporals,
or by backing up and restoring any such tables.

You can see whether a given table uses the old or new temporal types by checking the output of the
ndb_desc utility supplied with the NDB Cluster distribution. Consider a table created in a database
named test, using the following statement, on a mysqld started without the --create-old-
temporals option:

CREATE TABLE t1 (
 c1 DATETIME,
 c2 DATE,
 c3 TIME,
 c4 TIMESTAMP,
 c5 YEAR) ENGINE=NDB;

The relevant portion (the Attributes block) of the output of ndb_desc looks like this:

$> ndb_desc -dtest t1
...
-- Attributes --
c1 Datetime2(0) NULL AT=FIXED ST=MEMORY

30

https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/json.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/fractional-seconds.html
https://dev.mysql.com/doc/refman/8.4/en/alter-table.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-desc.html
https://dev.mysql.com/doc/refman/8.4/en/mysqld.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-desc.html

Mapping MySQL Database Object Names and Types to NDB

c2 Date NULL AT=FIXED ST=MEMORY
c3 Time2(0) NULL AT=FIXED ST=MEMORY
c4 Timestamp2(0) NOT NULL AT=FIXED ST=MEMORY DEFAULT 0
c5 Year NULL AT=FIXED ST=MEMORY

The names of the new MySQL temporal types are suffixed with 2 (for example, Datetime2) to set
them apart from the old versions of these types. Assume that we restart mysqld with --create-old-
temporals=ON and then create a table t2, also in the test database, using this statement:

CREATE TABLE t2 (
 c1 DATETIME,
 c2 DATE,
 c3 TIME,
 c4 TIMESTAMP,
 c5 YEAR) ENGINE=NDB;

The output from executing ndb_desc on this table as shown includes the Attributes block shown
here:

$> ndb_desc -dtest t2
...
-- Attributes --
c1 Datetime NULL AT=FIXED ST=MEMORY
c2 Date NULL AT=FIXED ST=MEMORY
c3 Time NULL AT=FIXED ST=MEMORY
c4 Timestamp NOT NULL AT=FIXED ST=MEMORY DEFAULT 0
c5 Year NULL AT=FIXED ST=MEMORY

The affected MySQL types are TIME, DATETIME, and TIMESTAMP. The “new” versions of these types
are reflected in the NDB API as Time2, Datetime2, and Timestamp2, respectively, each supporting
fractional seconds with up to 6 digits of precision. The new variants use big-endian encoding of integer
values which are then processed to determine the components of each temporal type.

For the fractional second part of each of these types, the precision affects the number of bytes needed,
as shown in the following table:

Table 2.2 Precision of NDB API new temporal types

Precision Bytes required Range

0 0 —

1 1 0-9

2 1 0-99

3 2 0-999

4 2 0-9999

5 3 0-99999

6 3 0-999999

The fractional part for each of the new temporal types is stored in big-endian format—that is, with the
highest order byte at the lowest address—using the necessary number of bytes.

The binary layouts of both the old and new versions of these types are described in the next few
paragraphs.

Time: The “old” version of this type is stored as a 24-bit signed int value stored in little-endian format
(lowest order byte in lowest order address). Byte 0 (bits 0-7) corresponds to hours, byte 2 (bits 8-15) to
minutes, and byte 2 (bits 16-23) to seconds according to this formula:

value = 10000 * hour
 + 100 * minute
 + second

Bit 23 serves as the sign bit; if this bit is set, the time value is considered negative.

31

https://dev.mysql.com/doc/refman/8.4/en/mysqld.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-desc.html
https://dev.mysql.com/doc/refman/8.4/en/time.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html

Mapping MySQL Database Object Names and Types to NDB

Time2: This is the “new” TIME type, and is stored as a 3-byte big-endian encoded value plus 0 to 3
bytes for the fractional part. The integer part is encoded as shown in the following table:

Table 2.3 Time2 encoding

Bits Meaning Range

23 Sign bit 0-1

22 Interval 0-1

22-13 Hour 1-1023

12-7 Minute 0-63

6-0 Second 0-63

Any fractional bytes in addition to this are handled as described previously.

Date: The representation for the MySQL DATE type is unchanged across NDB versions, and uses a 3-
byte unsigned integer stored in little-endian order. The encoding is as shown here:

Table 2.4 Date encoding

Bits Meaning Range

23-9 Year 0-32767

8-5 Month 0-15

4-0 Day 0-31

Datetime: The “old” MySQL DATETIME type is represented by a 64-bit unsigned value stored in host
byte order, encoded using the following formula:

value = second
 + minute * 102

 + hour * 104

 + day * 106

 + month * 108

 + year * 1010

DateTime2: The “new” DATETIME is encoded as a 5-byte big-endian with an optional fractional part
of 0 to 3 bytes, the fractional portion being handled as described previously. The high 5 bytes are
encoded as shown here:

Table 2.5 DateTime2 encoding

Bits Meaning Range

23 Sign bit 0-1

22 Interval 0-1

22-13 Hour 1-1023

12-7 Minute 0-63

6-0 Second 0-63

The YearMonth bits are encoded as Year = YearMonth / 13 and Month = YearMonth % 13.

Timestamp: The “old” version of this type uses a 32-bit unsigned value representing seconds elapsed
since the Unix epoch, stored in host byte order.

Timestamp2: This is the “new” version of TIMESTAMP, and uses 4 bytes with big-endian eoncoding for
the integer potion (unsigned). The optional 3-byte fractional portion is encoded as exaplined earlier in
this section.

Additional information. More information about and examples uding data types as expressed
in the NDB API can be found in ndb/src/common/util/NdbSqlUtil.cpp. In addition, see

32

The NDB API Class Hierarachy

Section 2.5.14, “Timestamp2 Example”, which provides an example of a simple NDB API application
that makes use of the Timestamp2 data type.

2.2 The NDB API Class Hierarachy
This section provides a hierarchical listing of all classes, interfaces, and structures exposed by the NDB
API.

• Ndb

• Key_part_ptr

• PartitionSpec

• NdbBlob

• Ndb_cluster_connection

• NdbDictionary

• AutoGrowSpecification

• Dictionary

• List

• Element

• Column

• Object

• Datafile

• Event

• ForeignKey

• HashMap

• Index

• LogfileGroup

• Table

• Tablespace

• Undofile

• RecordSpecification

• NdbError

• NdbEventOperation

• NdbInterpretedCode

• NdbOperation

• NdbIndexOperation

• NdbScanOperation

33

NDB API Classes, Interfaces, and Structures

• NdbIndexScanOperation

• IndexBound

• ScanOptions

• GetValueSpec

• SetValueSpec

• OperationOptions

• NdbRecAttr

• NdbRecord

• NdbScanFilter

• NdbTransaction

2.3 NDB API Classes, Interfaces, and Structures
This section provides a detailed listing of all classes, interfaces, and stuctures defined in the NDB API.

Each listing includes the following information:

• Description and purpose of the class, interface, or structure.

• Pointers, where applicable, to parent and child classes.

• Detailed listings of all public members, including descriptions of all method parameters and type
values.

Class, interface, and structure descriptions are provided in alphabetical order. For a hierarchical listing,
see Section 2.2, “The NDB API Class Hierarachy”.

2.3.1 The Column Class

This section provides information about the Column class, which models a column in an NDBCLUSTER
table.

• Column Class Overview

• Column::ArrayType

• Column Constructor

• Column::equal()

• Column::getArrayType()

• Column::getAutoIncrement()

• Column::getCharset()

• Column::getColumnNo()

• Column::getDefaultValue()

• Column::getInlineSize()

• Column::getLength()

34

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

The Column Class

• Column::getName()

• Column::getNullable()

• Column::getPartitionKey()

• Column::getPartSize()

• Column::getPrecision()

• Column::getPrimaryKey()

• Column::getScale()

• Column::getSize()

• Column::getSizeInBytesForRecord()

• Column::getStorageType()

• Column::getStripeSize()

• Column::getType()

• Column::setArrayType()

• Column::setAutoIncrement()

• Column::setAutoIncrementInitialValue()

• Column::setCharset()

• Column::setDefaultValue()

• Column::setInlineSize

• Column::setLength()

• Column::setName()

• Column::setNullable()

• Column::setPartitionKey()

• Column::setPartSize()

• Column::setPrecision()

• Column::setPrimaryKey()

• Column::setScale()

• Column::setStripeSize()

• Column::setStorageType()

• Column::setType()

• Column::StorageType

• Column::Type

Column Class Overview

Parent class NdbDictionary

Child classes None

35

The Column Class

Description Each instance of Column is characterized by its type, which is
determined by a number of type specifiers:

• Built-in type

• Array length or maximum length

• Precision and scale (currently not in use)

• Character set (applicable only to columns using string data types)

• Inline and part sizes (applicable only to blob columns)

These types in general correspond to MySQL data types and their
variants. The data formats are same as in MySQL. The NDB API
provides no support for constructing such formats; however, they
are checked by the NDB kernel.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.6 Column class methods and descriptions

Method Description

Column() Class constructor; there is also a copy
constructor

~Column() Class destructor

equal() Compares Column objects

getArrayType() Gets the column's array type

getAutoIncrement()Shows whether the column is auto-
incrementing

getCharset() Get the character set used by a string (text)
column (not applicable to columns not
storing character data)

getColumnNo() Gets the column number

getDefaultValue() Returns the column's default value

getInlineSize() Gets the inline size of a blob column (not
applicable to other column types)

getLength() Gets the column's length

getName() Gets the name of the column

getNullable() Checks whether the column can be set to
NULL

getPartitionKey() Checks whether the column is part of the
table's partitioning key

getPartSize() Gets the part size of a blob column (not
applicable to other column types)

getPrecision() Gets the column's precision (used for
decimal types only)

getPrimaryKey() Check whether the column is part of the
table's primary key

getScale() Gets the column's scale (used for decimal
types only)

getSize() Gets the size of an element

36

The Column Class

Method Description

getSizeInBytesForRecord()Gets the space required for a column by
NdbRecord, according to the column's
type (added in NDB 7.4.7)

getStripeSize() Gets a BLOB column's stripe size (not
applicable to other column types)

getStorageType() Gets the storage type used by this column

getType() Gets the column's type (Type value)

setArrayType() Sets the column's ArrayType

setAutoIncrement()Sets the column's auto-increment flag

setAutoIncrementInitialValue()Sets an auto-incrementing column's
starting value

setCharset() Sets the character set used by a column
containing character data (not applicable to
nontextual columns)

setDefaultValue() Sets the column's default value

setInlineSize() Sets the inline size for a blob column (not
applicable to columns not of blob types)

setLength() Sets the column's length

setName() Sets the column's name

setNullable() Toggles the column's nullability

setPartitionKey() Determines whether the column is part of
the table's partitioning key

setPartSize() Sets the part size for a blob column (not
applicable to columns not of blob types)

setPrecision() Sets the column's precision (used for
decimal types only)

setPrimaryKey() Determines whether the column is part of
the primary key

setScale() Sets the column's scale (used for decimal
types only)

setStorageType() Sets the storage type to be used by this
column

setStripeSize() Sets the stripe size for a blob column (not
applicable to columns not of blob types)

setType() Sets the column's Type

Types These are the public types of the Column class:

Table 2.7 Column class types and descriptionse.

Type Description

ArrayType Specifies the column's internal storage
format

StorageType Determines whether the column is stored in
memory or on disk

Type The column's data type. NDB columns have
the same data types as found in MySQL

37

The Column Class

The assignment (=) operator is overloaded for this class, so that it always performs a deep copy.

Important

Columns created using this class cannot be seen by the MySQL Server. This
means that they cannot be accessed by MySQL clients, and that they cannot be
replicated. For these reasons, it is often preferable to avoid working with them.

In the NDB API, column names are handled in case-sensitive fashion. (This differs from the MySQL
C API.) To reduce the possibility for error, it is recommended that you name all columns consistently
using uppercase or lowercase.

As with other database objects, Column object creation and attribute changes to existing columns
done using the NDB API are not visible from MySQL. For example, if you change a column's data type
using Column::setType(), MySQL will regard the type of column as being unchanged. The only
exception to this rule with regard to columns is that you can change the name of an existing column
using Column::setName().

Column::ArrayType

This section provides information about the ArrayType data type, which represents a column's internal attribute
format.

Description The attribute storage format can be either fixed or variable.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.8 Column object ArrayType data type values and
descriptions

Name Description

ArrayTypeFixed stored as a fixed number of bytes

ArrayTypeShortVar stored as a variable number of bytes; uses
1 byte overhead

ArrayTypeMediumVarstored as a variable number of bytes; uses
2 bytes overhead

The fixed storage format is faster but also generally requires more space than the variable format.
The default is ArrayTypeShortVar for Var* types and ArrayTypeFixed for others. The default is
usually sufficient.

Column Constructor

Description You can create a new Column or copy an existing one using the
class constructor.

A Column created using the NDB API is not visible to a MySQL
server.

The NDB API handles column names in case-sensitive fashion. For
example, if you create a column named “myColumn”, you will not
be able to access it later using “Mycolumn” for the name. You can
reduce the possibility for error, by naming all columns consistently
using only uppercase or only lowercase.

Signature You can create either a new instance of the Column class, or by
copying an existing Column object. Both of these are shown here:

• Constructor for a new Column:

38

The Column Class

Column
 (
 const char* name = ""
)

• Copy constructor:

Column
 (
 const Column& column
)

Parameters When creating a new instance of Column, the constructor takes
a single argument, which is the name of the new column to be
created. The copy constructor also takes one parameter—in this
case, a reference to the Column instance to be copied.

Return value A Column object.

Destructor The Column class destructor takes no arguments and returns
nothing (void).

Column::equal()

Description This method is used to compare one Column with another to
determine whether the two Column objects are the same.

Signature bool equal
 (
 const Column& column
) const

Parameters equal() takes a single parameter, a reference to an instance of
Column.

Return value true if the columns being compared are equal, otherwise false.

Column::getArrayType()

Description This method gets the column's array type.

Signature ArrayType getArrayType
 (
 void
) const

Parameters None.

Return value An ArrayType; see Column::ArrayType for possible values.

Column::getAutoIncrement()

Description This method shows whether the column is an auto-increment
column.

Signature bool getAutoIncrement
 (
 void
) const

Parameters None.

Return value TRUE if the column is an auto-increment column, FALSE if it is not.

Column::getCharset()

Description This gets the character set used by a text column.

39

The Column Class

This method is applicable only to columns whose Type value is
Char, Varchar, or Text.

The NDB API handles column names in case-sensitive fashion;
“myColumn” and “Mycolumn” are not considered to refer to the
same column. It is recommended that you minimize the possibility of
errors from using the wrong lettercase for column names by naming
all columns consistently using only uppercase or only lowercase.

Signature CHARSET_INFO* getCharset
 (
 void
) const

Parameters None.

Return value A pointer to a CHARSET_INFO structure specifying both
character set and collation. This is the same as a MySQL
MY_CHARSET_INFO data structure; for more information, see
mysql_get_character_set_info(),in the MySQL Manual.

Column::getColumnNo()

Description This method gets the sequence number of a column within its
containing table or index. If the column is part of an index (such as
when returned by getColumn()), it is mapped to its position within
that index, and not within the table containing the index.

Signature int getColumnNo
 (
 void
) const

Parameters None.

Return value The column number as an integer.

Column::getDefaultValue()

Description Gets a column's default value data.

To determine whether a table has any columns with default values,
use Table::hasDefaultValues().

Signature const void* getDefaultValue
 (
 unsigned int* len = 0
) const

Parameters len holds either the length of the default value data, or 0 in the
event that the column is nullable or has no default value.

Return value The default value data.

Column::getInlineSize()

Description This method retrieves the inline size of a blob column—that is, the
number of initial bytes to store in the table's blob attribute. This part
is normally in main memory and can be indexed.

This method is applicable only to blob columns.

Beginning with NDB 8.0.29, you can also obtain this information in
the mysql client, by querying the ndbinfo.blobs table.

40

https://dev.mysql.com/doc/c-api/8.4/en/mysql-get-character-set-info.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-blobs.html

The Column Class

Signature int getInlineSize
 (
 void
) const

Parameters None.

Return value The blob column's inline size, as an integer.

Column::getLength()

Description This method gets the length of a column. This is either the array
length for the column or—for a variable length array—the maximum
length.

Signature int getLength
 (
 void
) const

Parameters None.

Return value The (maximum) array length of the column, as an integer.

Column::getName()

Description This method returns the name of the column for which it is called.

The NDB API handles column names in case-sensitive fashion.
For example, if you retrieve the name “myColumn” for a given
column, attempting to access this column using “Mycolumn” for
the name fails with an error such as Column is NULL or Table
definition has undefined column. You can reduce the
possibility for error, by naming all columns consistently using only
uppercase or only lowercase.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The name of the column.

Column::getNullable()

Description This method is used to determine whether the column can be set to
NULL.

Signature bool getNullable
 (
 void
) const

Parameters None.

Return value A Boolean value: true if the column can be set to NULL, otherwise
false.

Column::getPartitionKey()

Description This method is used to check whether the column is part of the
table's partitioning key.

41

The Column Class

A partitioning key is a set of attributes used to distribute the tuples
onto the data nodes. This key a hashing function specific to the NDB
storage engine.

An example where this would be useful is an inventory tracking
application involving multiple warehouses and regions, where
it might be good to use the warehouse ID and district id as the
partition key. This would place all data for a specific district and
warehouse in the same storage node. Locally to each fragment the
full primary key will still be used with the hashing algorithm in such a
case.

For more information about partitioning, partitioning schemes, and
partitioning keys in MySQL, see Partitioning, in the MySQL Manual.

The only type of user-defined partitioning that is supported for use
with the NDB storage engine is key partitioning, including linear key
partitioning.

Signature bool getPartitionKey
 (
 void
) const

Parameters None.

Return value true if the column is part of the partitioning key for the table,
otherwise false.

Column::getPartSize()

Description This method is used to get the blob part size of a BLOB column—
that is, the number of bytes that are stored in each tuple of the blob
table.

This method is applicable to BLOB columns only.

In NDB 8.0.29 and later, you can also obtain this information
in the mysql client or other MySQL client, by querying the
ndbinfo.blobs table.

Signature int getPartSize
 (
 void
) const

Parameters None.

Return value The column's part size, as an integer. In the case of a Tinyblob
column, this value is 0 (that is, only inline bytes are stored).

Column::getPrecision()

Description This method gets the precision of a column.

This method is applicable to decimal columns only.

Signature int getPrecision
 (
 void
) const

Parameters None.

42

https://dev.mysql.com/doc/refman/8.4/en/partitioning.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-blobs.html

The Column Class

Return value The column's precision, as an integer. The precision is defined
as the number of significant digits; for more information, see the
discussion of the DECIMAL data type in Numeric Data Types, in the
MySQL Manual.

Column::getPrimaryKey()

Description This method is used to determine whether the column is part of the
table's primary key.

Signature bool getPrimaryKey
 (
 void
) const

Parameters None.

Return value A Boolean value: true if the column is part of the primary key of the
table to which this column belongs, otherwise false.

Column::getScale()

Description This method gets the scale used for a decimal column value.

This method is applicable to decimal columns only.

Signature int getScale
 (
 void
) const

Parameters None.

Return value The decimal column's scale, as an integer. The scale of a decimal
column represents the number of digits that can be stored following
the decimal point. It is possible for this value to be 0. For more
information, see the discussion of the DECIMAL data type in
Numeric Data Types, in the MySQL Manual.

Column::getSize()

Description This function is used to obtain the size of a column.

Signature int getSize
 (
 void
) const

Parameters None.

Return value The column's size in bytes (an integer value).

Column::getSizeInBytesForRecord()

Description Gets the space required for a given column by an NdbRecord,
depending on the column's type, as follows:

• For a BLOB column, this value is the same as
sizeof(NdbRecord*), which is 4 or 8 bytes (the size of a
pointer; platform-dependent).

• For columns of all other types, it is the same as the value returned
by getSize().

This method was added in NDB NDB 7.4.7.

43

https://dev.mysql.com/doc/refman/8.4/en/numeric-types.html
https://dev.mysql.com/doc/refman/8.4/en/numeric-types.html

The Column Class

Signature int getSizeInBytesForRecord
 (
 void
) const

Parameters None.

Return value An integer (see Description).

Column::getStorageType()

Description This method obtains a column's storage type.

Signature StorageType getStorageType
 (
 void
) const

Parameters None.

Return value A StorageType value; for more information about this type, see
Column::StorageType.

Column::getStripeSize()

Description This method gets the stripe size of a blob column—that is, the
number of consecutive parts to store in each node group.

Signature int getStripeSize
 (
 void
) const

Parameters None.

Return value The column's stripe size, as an integer.

Column::getType()

Description This method gets the column's data type.

Signature Type getType
 (
 void
) const

Parameters None.

Return value The Type (data type) of the column. For a list of possible values,
see Column::Type.

Column::setArrayType()

Description Sets the array type for the column.

Signature void setArrayType
 (
 ArrayType type
)

Parameters A Column::ArrayType value. See Column::ArrayType, for more
information.

Return value None.

Column::setAutoIncrement()

44

The Column Class

Description Make the column auto-incrementing (or not).

Signature void setAutoIncrement
 (
 bool flag
)

Parameters A boolean value: TRUE to make the column auto-incrementing;
FALSE to remove this property of the column.

Return value None.

Column::setAutoIncrementInitialValue()

Description Set the initial value for an auto-incrementing column.

Signature void setAutoIncrementInitialValue
 (
 Uint64 value
)

Parameters The initial value for the column (a 64-bit integer).

Return value None.

Column::setCharset()

Description This method can be used to set the character set and collation of a
Char, Varchar, or Text column.

This method is applicable to Char, Varchar, and Text columns
only.

Changes made to columns using this method are not visible to
MySQL.

Signature void setCharset
 (
 CHARSET_INFO* cs
)

Parameters This method takes one parameter. cs is a pointer to a
CHARSET_INFO structure. For additional information, see
Column::getCharset().

Return value None.

Column::setDefaultValue()

Description This method sets a column value to its default, if it has one;
otherwise it sets the column to NULL.

To determine whether a table has any columns with default values,
use Table::hasDefaultValues().

Signature int setDefaultValue
 (
 const void* buf,
 unsigned int len
)

Parameters This method takes 2 arguments: a value pointer buf; and the length
len of the data, as the number of significant bytes. For fixed size
types, this is the type size. For variable length types, the leading 1
or 2 bytes pointed to by buffer also contain size information as
normal for the type.

45

The Column Class

Return value 0 on success, 1 on failure..

Column::setInlineSize

Description This method gets the inline size of a blob column—that is, the
number of initial bytes to store in the table's blob attribute. This
part is normally kept in main memory, and can be indexed and
interpreted.

This method is applicable to blob columns only.

Changes made to columns using this method are not visible
to MySQL. Beginning with NDB 8.0.30, you can change the
inline size of a blob column in the mysql client by setting
BLOB_INLINE_SIZE in a column comment as part of CREATE
TABLE or ALTER TABLE. See NDB_COLUMN Options, for more
information.

Signature void setInlineSize
 (
 int size
)

Parameters The integer size is the new inline size for the blob column.

Return value None.

Column::setLength()

Description This method sets the length of a column. For a variable-length array,
this is the maximum length; otherwise it is the array length.

Changes made to columns using this method are not visible to
MySQL.

Signature void setLength
 (
 int length
)

Parameters This method takes a single argument—the integer value length is
the new length for the column.

Return value None.

Column::setName()

Description This method is used to set the name of a column.

setName() is the only Column method whose result is visible from
a MySQL Server. MySQL cannot see any other changes made to
existing columns using the NDB API.

Signature void setName
 (
 const char* name
)

Parameters This method takes a single argument—the new name for the
column.

Return value This method None.

Column::setNullable()

46

https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/create-table.html
https://dev.mysql.com/doc/refman/8.4/en/create-table.html
https://dev.mysql.com/doc/refman/8.4/en/alter-table.html
https://dev.mysql.com/doc/refman/8.4/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options

The Column Class

Description This method toggles the nullability of a column.

Changes made to columns using this method are not visible to
MySQL.

Signature void setNullable
 (
 bool nullable
)

Parameters A Boolean value. Using true makes it possible to insert NULLs into
the column; if nullable is false, then this method performs the
equivalent of changing the column to NOT NULL in MySQL.

Return value None.

Column::setPartitionKey()

Description This method makes it possible to add a column to the partitioning
key of the table to which it belongs, or to remove the column from
the table's partitioning key.

Changes made to columns using this method are not visible to
MySQL.

For additional information, see Column::getPartitionKey().

Signature void setPartitionKey
 (
 bool enable
)

Parameters The single parameter enable is a Boolean value. Passing true to
this method makes the column part of the table's partitioning key; if
enable is false, then the column is removed from the partitioning
key.

Return value None.

Column::setPartSize()

Description This method sets the blob part size of a blob column—that is, the
number of bytes to store in each tuple of the blob table.

This method is applicable to blob columns only.

Changes made to columns using this method are not visible to
MySQL. You can increase the blob part size of a blob column to the
maximum supported by NDB (13948) in mysql or another MySQL
client by setting the MAX_BLOB_PART_SIZE option in a column
comment as part of a CREATE TABLE or ALTER TABLE statement.
See NDB_COLUMN Options.

Signature void setPartSize
 (
 int size
)

Parameters The integer size is the number of bytes to store in the blob table.
Using zero for this value means only inline bytes can be stored, in
effect making the column's type TINYBLOB.

Return value None.

47

https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/create-table.html
https://dev.mysql.com/doc/refman/8.4/en/alter-table.html
https://dev.mysql.com/doc/refman/8.4/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options

The Column Class

Column::setPrecision()

Description This method can be used to set the precision of a decimal column.

This method is applicable to decimal columns only.

Changes made to columns using this method are not visible to
MySQL.

Signature void setPrecision
 (
 int precision
)

Parameters This method takes a single parameter—precision is an integer,
the value of the column's new precision. For additional information
about decimal precision and scale, see Column::getPrecision(), and
Column::getScale().

Return value None.

Column::setPrimaryKey()

Description This method is used to make a column part of the table's primary
key, or to remove it from the primary key.

Changes made to columns using this method are not visible to
MySQL.

Signature void setPrimaryKey
 (
 bool primary
)

Parameters This method takes a single Boolean value. If it is true, then the
column becomes part of the table's primary key; if false, then the
column is removed from the primary key.

Return value None.

Column::setScale()

Description This method can be used to set the scale of a decimal column.

This method is applicable to decimal columns only.

Changes made to columns using this method are not visible to
MySQL.

Signature void setScale
 (
 int scale
)

Parameters This method takes a single parameter—the integer scale is the
new scale for the decimal column. For additional information about
decimal precision and scale, see Column::getPrecision(), and
Column::getScale().

Return value None.

Column::setStripeSize()

Description This method sets the stripe size of a blob column—that is, the
number of consecutive parts to store in each node group.

48

The Column Class

This method is applicable to blob columns only.

Changes made to columns using this method are not visible to
MySQL.

Signature void setStripeSize
 (
 int size
)

Parameters This method takes a single argument. The integer size is the new
stripe size for the column.

Return value None.

Column::setStorageType()

Description Sets the storage type for the column.

Signature void setStorageType
 (
 StorageType type
)

Parameters A Column::StorageType value. See Column::StorageType, for
more information.

Return value None.

Column::setType()

Description This method sets the Type (data type) of a column.

setType() resets all column attributes to their (type dependent)
default values; it should be the first method that you call when
changing the attributes of a given column.

Changes made to columns using this method are not visible to
MySQL.

Signature void setType
 (
 Type type
)

Parameters This method takes a single parameter—the new Column::Type for
the column. The default is Unsigned. For a listing of all permitted
values, see Column::Type.

Return value None.

Column::StorageType

This section provides information about the StorageType data type, which describes the storage type
used by a Column object.

Description The storage type used for a given column can be either in memory
or on disk. Columns stored on disk mean that less RAM is required
overall but such columns cannot be indexed, and are potentially
much slower to access. The default is StorageTypeMemory.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

49

The Column Class

Table 2.9 Column object StorageType data type values and
descriptions

Name Description

StorageTypeMemory Store the column in memory

StorageTypeDisk Store the column on disk

Column::Type

This section provides information about the Type data type, which is used to describe a column's data
type.

Description Data types for Column objects are analogous to the data types
used by MySQL. The types Tinyint, Tinyintunsigned,
Smallint, Smallunsigned, Mediumint, Mediumunsigned,
Int, Unsigned, Bigint, Bigunsigned, Float, and Double
(that is, types Tinyint through Double in the order listed in the
Enumeration Values table) can be used in arrays.

Do not confuse Column::Type with Object::Type.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.10 Column object Type data type values and
descriptions

Name Description

Undefined Undefined

Tinyint 1-byte signed integer

Tinyunsigned 1-byte unsigned integer

Smallint 2-byte signed integer

Smallunsigned 2-byte unsigned integer

Mediumint 3-byte signed integer

Mediumunsigned 3-byte unsigned integer

Int 4-byte signed integer

Unsigned 4-byte unsigned integer

Bigint 8-byte signed integer

Bigunsigned 8-byte signed integer

Float 4-byte float

Double 8-byte float

Olddecimal Signed decimal as used prior to MySQL
5.0 (OBSOLETE)

OlddecimalunsignedUnsigned decimal as used prior to MySQL
5.0 (OBSOLETE)

Decimal Signed decimal as used by MySQL 5.0 and
later

Decimalunsigned Unsigned decimal as used by MySQL 5.0
and later

Char A fixed-length array of 1-byte characters;
maximum length is 255 characters

50

The Datafile Class

Name Description

Varchar A variable-length array of 1-byte
characters; maximum length is 255
characters

Binary A fixed-length array of 1-byte binary
characters; maximum length is 255
characters

Varbinary A variable-length array of 1-byte binary
characters; maximum length is 255
characters

Datetime An 8-byte date and time value, with a
precision of 1 second (DEPRECATED)

Datetime2 An 8-byte date and time value, with
fractional seconds.

Date A 4-byte date value, with a precision of 1
day

Blob A binary large object; see Section 2.3.13,
“The NdbBlob Class”

Text A text blob

Bit A bit value; the length specifies the number
of bits

Longvarchar A 2-byte Varchar

Longvarbinary A 2-byte Varbinary

Time Time without date (DEPRECATED)

Time2 Time without date, with fractional seconds.

Year 1-byte year value in the range 1901-2155
(same as MySQL)

Timestamp Unix time (DEPRECATED)

Timestamp2 Unix time, with fractional seconds.

The NDB API provides access to time types with microseconds (TIME, DATETIME, and TIMESTAMP)
as Time2, Datetime2, and Timestamp2. (Time, Datetime, and Timestamp are deprecated as of
the same version.) Use setPrecision() to set up to 6 fractional digits (default 0). Data formats are
as in MySQL and must use the correct byte length.

Since NDB can compare any of these values as binary strings, it does not perform any checks on the
actual data.

2.3.2 The Datafile Class

This section provides information about the Datafile class, which models an NDB Cluster data file.

• Datafile Class Overview

• Datafile Class Constructor

• Datafile::getFileNo()

• Datafile::getFree()

• Datafile::getNode()

• Datafile::getObjectId()

• Datafile::getObjectStatus()

51

https://dev.mysql.com/doc/refman/8.4/en/time.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html

The Datafile Class

• Datafile::getObjectVersion()

• Datafile::getPath()

• Datafile::getSize()

• Datafile::getTablespace()

• Datafile::getTablespaceId()

• Datafile::setNode()

• Datafile::setPath()

• Datafile::setSize()

• Datafile::setTablespace()

Datafile Class Overview

Parent class Object

Child classes None

Description The Datafile class models an NDB Cluster data file, which is
used to store Disk Data table and column data.

Only unindexed column data can be stored on disk. Indexes and
indexed columns are stored in memory.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.11 Datafile class methods and descriptions

Name Description

Datafile() Class constructor

~Datafile() Destructor

getFileNo() Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

getFree() Gets the amount of free space in the data
file

getNode() Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

getObjectId() Gets the data file's object ID

getObjectStatus() Gets the data file's object status

getObjectVersion()Gets the data file's object version

getPath() Gets the file system path to the data file

getSize() Gets the size of the data file

getTablespace() Gets the name of the tablespace to which
the data file belongs

getTablespaceId() Gets the ID of the tablespace to which the
data file belongs

setNode() Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

setPath() Sets the name and location of the data file
on the file system

52

The Datafile Class

Name Description

setSize() Sets the data file's size

setTablespace() Sets the tablespace to which the data file
belongs

Types The Datafile class defines no public types.

Datafile Class Constructor

Description This method creates a new instance of Datafile, or a copy of an
existing one.

Signature To create a new instance:

Datafile
 (
 void
)

To create a copy of an existing Datafile instance:

Datafile
 (
 const Datafile& datafile
)

Parameters New instance: None. Copy constructor: a reference to the
Datafile instance to be copied.

Return value A Datafile object.

Datafile::getFileNo()

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature Uint32 getFileNo
 (
 void
) const

Parameters None.

Return value The file number, as an unsigned 32-bit integer.

Datafile::getFree()

Description This method gets the free space available in the data file.

Signature Uint64 getFree
 (
 void
) const

Parameters None.

Return value The number of bytes free in the data file, as an unsigned 64-bit
integer.

Datafile::getNode()

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature Uint32 getNode
 (

53

The Datafile Class

 void
) const

Parameters None.

Return value The node ID as an unsigned 32-bit integer.

Datafile::getObjectId()

Description This method is used to obtain the object ID of the data file.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The datafile's object ID, as an integer.

Datafile::getObjectStatus()

Description This method is used to obtain the data file's object status.

Signature virtual Object::Status getObjectStatus
 (
 void
) const

Parameters None.

Return value The data file's Status. See Object::Status.

Datafile::getObjectVersion()

Description This method retrieves the data file's object version (see NDB
Schema Object Versions).

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The data file's object version, as an integer.

Datafile::getPath()

Description This method returns the file system path to the data file.

Signature const char* getPath
 (
 void
) const

Parameters None.

Return value The path to the data file on the data node's file system, a string
(character pointer).

Datafile::getSize()

Description This method gets the size of the data file in bytes.

Signature Uint64 getSize
 (
 void

54

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Datafile Class

) const

Parameters None.

Return value The size of the data file, in bytes, as an unsigned 64-bit integer.

Datafile::getTablespace()

Description This method can be used to obtain the name of the tablespace to
which the data file belongs.

You can also access the associated tablespace's ID directly. See
Datafile::getTablespaceId().

Signature const char* getTablespace
 (
 void
) const

Parameters None.

Return value The name of the associated tablespace (as a character pointer).

Datafile::getTablespaceId()

Description This method gets the ID of the tablespace to which the data file
belongs.

You can also access the name of the associated tablespace directly.
See Datafile::getTablespace().

Signature Uint32 getTablespaceId
 (
 void
) const

Parameters None.

Return value This method returns the tablespace ID as an unsigned 32-bit
integer.

Datafile::setNode()

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature void setNode
 (
 Uint32 nodeId
)

Parameters The nodeId of the node on which the data file is to be located (an
unsigned 32-bit integer value).

Return value None.

Datafile::setPath()

Description This method sets the path to the data file on the data node's file
system.

Signature const char* setPath
 (
 void
) const

Parameters The path to the file, a string (as a character pointer).

55

The Dictionary Class

Return value None.

Datafile::setSize()

Description This method sets the size of the data file.

Signature void setSize
 (
 Uint64 size
)

Parameters This method takes a single parameter—the desired size in bytes
for the data file, as an unsigned 64-bit integer.

Return value None.

Datafile::setTablespace()

Description This method is used to associate the data file with a tablespace.

Signatures setTablespace() can be invoked in either of the two ways listed
here:

1. Using the name of the tablespace, as shown here:

void setTablespace
 (
 const char* name
)

2. Using a reference to a Tablespace object.

void setTablespace
 (
 const class Tablespace& tablespace
)

Parameters This method takes a single parameter, which can be either one of
the following:

• The name of the tablespace (as a character pointer).

• A reference tablespace to the corresponding Tablespace
object.

Return value None.

2.3.3 The Dictionary Class

This section provides information about the Dictionary class.

• Dictionary Class Overview

• Dictionary Class Constructor

• Dictionary::beginSchemaTrans()

• Dictionary::createDatafile()

• Dictionary::createEvent()

• Dictionary::createForeignKey()

• Dictionary::createHashMap()

• Dictionary::createIndex()

56

The Dictionary Class

• Dictionary::createLogfileGroup()

• Dictionary::createRecord()

• Dictionary::createTable()

• Dictionary::createTablespace()

• Dictionary::createUndofile()

• Dictionary::dropDatafile()

• Dictionary::dropEvent()

• Dictionary::dropForeignKey()

• Dictionary::dropIndex()

• Dictionary::dropLogfileGroup()

• Dictionary::dropTable()

• Dictionary::dropTablespace()

• Dictionary::dropUndofile()

• Dictionary::endSchemaTrans()

• Dictionary::getDatafile()

• Dictionary::getDefaultHashMap()

• Dictionary::getEvent()

• Dictionary::getForeignKey()

• Dictionary::getHashMap()

• Dictionary::getIndex()

• Dictionary::getLogfileGroup()

• Dictionary::getNdbError()

• Dictionary::getTable()

• Dictionary::getTablespace()

• Dictionary::getUndofile()

• Dictionary::hasSchemaTrans()

• Dictionary::initDefaultHashMap()

• Dictionary::invalidateIndex()

• DIctionary::invalidateTable()

• Dictionary::listEvents()

• Dictionary::listIndexes()

• Dictionary::listObjects()

• Dictionary::prepareHashMap()

• Dictionary::releaseEvent()

• Dictionary::releaseRecord()

57

The Dictionary Class

• Dictionary::removeCachedTable()

• Dictionary::removeCachedIndex()

Dictionary Class Overview

Parent class NdbDictionary

Child classes List

Description This is used for defining and retrieving data object metadata. It also
includes methods for creating and dropping database objects.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.12 Dictionary class methods and descriptions

Name Description

Dictionary() Class constructor method

~Dictionary() Destructor method

beginSchemaTrans()Begins a schema transaction

createDatafile() Creates a data file

createEvent() Creates an event

createForeignKey()Creates a foreign key

createHashMap() Creates a hash map

createIndex() Creates an index

createLogfileGroup()Creates a log file group

createRecord() Creates an Ndbrecord object

createTable() Creates a table

createTablespace()Creates a tablespace

createUndofile() Creates an undo file

dropDatafile() Drops a data file

dropEvent() Drops an event

dropForeignKey() Drops a foreign key

dropIndex() Drops an index

dropLogfileGroup()Drops a log file group

dropTable() Drops a table

dropTablespace() Drops a tablespace

dropUndofile() Drops an undo file

endSchemaTrans() Ends (commits and closes) a schema
transaction

getDatafile() Gets the data file having the given name

getDefaultHashMap()Gets a table's default hash map

getEvent() Gets the event having the given name

getForeignKey() Gets the foreign key having the given
name or reference

getHashMap() Gets the hash map given its name or
associated table

58

The Dictionary Class

Name Description

getIndex() Gets the index having the given name

getLogfileGroup() Gets the log file group having the given
name

getNdbError() Retrieves the latest error

getTable() Gets the table having the given name

getTablespace() Gets the tablespace having the given name

getUndofile() Gets the undo file having the given name

hasSchemaTrans() Tells whether a schema transaction
currently exists

initDefaultHashMap()Initializes a atble' default hash map

invalidateTable() Invalidates a table object

listObjects() Fetches a list of the objects in the
dictionary

listIndexes() Fetches a list of the indexes defined on a
given table

listEvents() Fetches a list of the events defined in the
dictionary

prepareHashMap() Creates or retrieves a hash map that can
be updated

releaseEvent() Deletes an event returned earlier by
getEvent()

removeCachedTable()Removes a table from the local cache

removeCachedIndex()Removes an index from the local cache

Database objects such as tables and indexes created using the
Dictionary::create*() methods cannot be seen by the
MySQL Server. This means that they cannot be accessed by
MySQL clients, and that they cannot be replicated. For these
reasons, it is often preferable to avoid working with them.

The Dictionary class does not have any methods for working
directly with columns. You must use Column class methods for this
purpose—see Section 2.3.1, “The Column Class”, for details.

Types See Section 2.3.10, “The List Class”, and Section 2.3.4, “The
Element Structure”.

Dictionary Class Constructor

Description This method creates a new instance of the Dictionary class.

Both the constructor and destructor for this class are protected
methods, rather than public.

Signature protected Dictionary
 (
 Ndb& ndb
)

Parameters An Ndb object.

Return value A Dictionary object.

59

The Dictionary Class

Destructor The destructor takes no parameters and returns nothing:

protected ~Dictionary
 (
 void
)

Dictionary::beginSchemaTrans()

Description Starts a schema transaction. An error occurs if a transaction
is already active, or if the kernel metadata is locked. You can
determine whether a schema transaction already exists using the
hasSchemaTrans() method.

A metadata operation occurs whenever data objects are created,
altered, or dropped; such an operation can create additional
suboperations in the NDB kernel.

The Ndb object and its associated Dictionary support one
schema transaction at a time. By default, each metadata operation
is executed separately; that is, for each operation, a schema
transaction is started implicitly, the operation (including any
suboperations) is executed, and the transaction is closed.

It is also possible to begin and end a schema transaction explicitly,
and execute a set of user-defined operations atomically within
its boundaries. In this case, all operations within the schema
transaction either succeed, or are aborted and rolled back, as a unit.
This is done by following the steps listed here:

1. To begin the schema transaction, call beginSchemaTrans().

2. Execute the desired operations (such as createTable()).

3. End the schema transaction by calling endSchemaTrans.

Each operation is sent to the NDB kernel, which parses and saves
it. A parse failure results in a rollback to the previous user operation
before returning, at which point the user can either continue with or
abort the entire transaction.

After all operations have been submitted, endSchemaTrans()
processes and commits them. In the event of an error, the
transaction is immediately aborted.

If the user exits before calling endSchemaTrans(), the NDB
kernel aborts the transaction. If the user exits before the call to
endSchemaTrans() returns, the kernel continues with the request,
and its completion status is reported in the cluster log.

Signature int beginSchemaTrans
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on error.

Dictionary::createDatafile()

Description This method creates a new data file, given a Datafile object.

60

The Dictionary Class

Signature int createDatafile
 (
 const Datafile& dFile
)

Parameters A single argument—a reference to an instance of Datafile—is
required.

Return value 0 on success, -1 on failure.

Dictionary::createEvent()

Description Creates an event, given a reference to an Event object.

You should keep in mind that the NDB API does not track allocated
event objects, which means that the user must delete the Event
that was obtained using createEvent(), after this object is no
longer required.

Signature int createEvent
 (
 const Event& event
)

Parameters A reference event to an Event object.

Return value 0 on success, -1 on failure.

Dictionary::createForeignKey()

Description Creates a ForeignKey object, given a reference to this object and
an Object ID.

Signature int createForeignKey
 (
 const ForeignKey&,
 ObjectId* = 0,
 int flags = 0
)

Parameters A reference to the ForeignKey object, and an Object ID. An
optional value flags, if used, allows the creation of the foreign key
without performing any foreign key checks. If set, its value must be
CreateFK_NoVerify (1).

Return value 0 on success.

Dictionary::createHashMap()

Description Creates a HashMap.

Signature int createHashMap
 (
 const HashMap& hashmap,
 ObjectId* id = 0
)

Parameters A reference to the hash map, and, optionally, an ID to be assigned
to it.

Return value Returns 0 on success; on failure, returns -1 and sets an error.

Dictionary::createIndex()

Description This method creates an index given an instance of Index and
possibly an optional instance of Table.

61

The Dictionary Class

Signature This method can be invoked with or without a reference to a table
object:

int createIndex
 (
 const Index& index
)

int createIndex
 (
 const Index& index,
 const Table& table
)

Parameters Required: A reference to an Index object. Optional: A reference to
a Table object.

Return value 0 on success, -1 on failure.

Dictionary::createLogfileGroup()

Description This method creates a new log file group, given an instance of
LogfileGroup.

Signature int createLogfileGroup
 (
 const LogfileGroup& lGroup
)

Parameters A single argument, a reference to a LogfileGroup object, is
required.

Return value 0 on success, -1 on failure.

Dictionary::createRecord()

Description This method is used to create an NdbRecord object for use in table
or index scanning operations.

Signature The signature of this method depends on whether the resulting
NdbRecord is to be used in table or index operations:

To create an NdbRecord for use in table operations, use the
following:

NdbRecord* createRecord
 (
 const Table* table,
 const RecordSpecification* recSpec,
 Uint32 length,
 Uint32 elSize
)

To create an NdbRecord for use in index operations, you can use
either of the following:

NdbRecord* createRecord
 (
 const Index* index,
 const Table* table,
 const RecordSpecification* recSpec,
 Uint32 length,
 Uint32 elSize
)

or

NdbRecord* createRecord

62

The Dictionary Class

 (
 const Index* index,
 const RecordSpecification* recSpec,
 Uint32 length,
 Uint32 elSize
)

Parameters Dictionary::createRecord() takes the following parameters:

• If this NdbRecord is to be used with an index, a pointer to the
corresponding Index object. If the NdbRecord is to be used with
a table, this parameter is omitted. (See Section 2.3.8, “The Index
Class”.)

• A pointer to a Table object representing the table to be scanned.
If the Ndbrecord produced is to be used with an index, then
this optionally specifies the table containing that index. (See
Section 2.3.27, “The Table Class”.)

• A RecordSpecification used to describe a column.

• The length of the record.

• The size of the elements making up this record.

Return value An NdbRecord for use in operations involving the given table or
index.

Example See Section 2.3.22, “The NdbRecord Interface”.

Dictionary::createTable()

Description Creates a table given an instance of Table.

Tables created using this method cannot be seen by the MySQL
Server, cannot be updated by MySQL clients, and cannot be
replicated.

Signature int createTable
 (
 const Table& table
)

Parameters An instance of Table. See Section 2.3.27, “The Table Class”, for
more information.

Return value 0 on success, -1 on failure.

Dictionary::createTablespace()

Description This method creates a new tablespace, given a Tablespace
object.

Signature int createTablespace
 (
 const Tablespace& tSpace
)

Parameters This method requires a single argument—a reference to an instance
of Tablespace.

Return value 0 on success, -1 on failure.

Dictionary::createUndofile()

63

The Dictionary Class

Description This method creates a new undo file, given an Undofile object.

Signature int createUndofile
 (
 const Undofile& uFile
)

Parameters This method requires one argument: a reference to an instance of
Undofile.

Return value 0 on success, -1 on failure.

Dictionary::dropDatafile()

Description This method drops a data file, given a Datafile object.

Signature int dropDatafile
 (
 const Datafile& dFile
)

Parameters A single argument—a reference to an instance of Datafile—is
required.

Return value 0 on success, -1 on failure.

Dictionary::dropEvent()

Description This method drops an event, given a reference to an Event object.

Signature int dropEvent
 (
 const char* name,
 int force = 0
)

Parameters This method takes two parameters:

• The name of the event to be dropped, as a string.

• By default, dropEvent() fails if the event specified does not
exist. You can override this behavior by passing any nonzero
value for the (optional) force argument; in this case no check is
made as to whether there actually is such an event, and an error
is returned only if the event exists but it was for whatever reason
not possible to drop it.

Return value 0 on success, -1 on failure.

Dictionary::dropForeignKey()

Description This method drops a foreign key, given a reference to an
ForeignKey object to be dropped.

Signature int dropForeignKey
 (
 const ForeignKey&
)

Parameters A reference to the ForeignKey to be dropped.

Return value 0 on success.

Dictionary::dropIndex()

Description This method drops an index given an instance of Index, and
possibly an optional instance of Table.

64

The Dictionary Class

Signature int dropIndex
 (
 const Index& index
)

int dropIndex
 (
 const Index& index,
 const Table& table
)

Parameters This method takes two parameters, one of which is optional:

• Required: A reference to an Index object.

• : A reference to a Table object.

Return value 0 on success, -1 on failure.

Dictionary::dropLogfileGroup()

Description Given an instance of LogfileGroup, this method drops the
corresponding log file group.

Signature int dropLogfileGroup
 (
 const LogfileGroup& lGroup
)

Parameters A single argument, a reference to a LogfileGroup object, is
required.

Return value 0 on success, -1 on failure.

Dictionary::dropTable()

Description Drops a table given an instance of Table.

This method drops all foreign key constraints on the table that is
being dropped, whether the dropped table acts as a parent table,
child table, or both.

Prior to NDB 8.0, an NDB table dropped using this method persisted
in the MySQL data dictionary but could not be dropped using DROP
TABLE in the mysql client. In NDB 8.0, such “orphan” tables can be
dropped using DROP TABLE. (Bug #29125206, Bug #93672)

Signature int dropTable
 (
 const Table& table
)

Parameters An instance of Table. See Section 2.3.27, “The Table Class”, for
more information.

Return value 0 on success, -1 on failure.

Dictionary::dropTablespace()

Description This method drops a tablespace, given a Tablespace object.

Signature int dropTablespace
 (
 const Tablespace& tSpace
)

65

https://dev.mysql.com/doc/refman/8.4/en/drop-table.html
https://dev.mysql.com/doc/refman/8.4/en/drop-table.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html

The Dictionary Class

Parameters This method requires a single argument—a reference to an instance
of Tablespace.

Return value 0 on success, -1 on failure.

Dictionary::dropUndofile()

Description This method drops an undo file, given an Undofile object.

Signature int dropUndofile
 (
 const Undofile& uFile
)

Parameters This method requires one argument: a reference to an instance of
Undofile.

Return value 0 on success, -1 on failure.

Dictionary::endSchemaTrans()

Description Ends a schema transaction begun with beginSchemaTrans();
causes operations to be processed and either committed, or aborted
and rolled back. This method combines transaction execution and
closing; separate methods for these tasks are not required (or
implemented). This method may be called successfully even if no
schema transaction is currently active.

As with many other NDB API methods, it is entirely possible for
endSchemaTrans() to overwrite any current error code. For this
reason, you should first check for and save any error code that may
have resulted from a previous, failed operation.

Signature int endSchemaTrans
 (
 Uint32 flags = 0
)

Parameters The flags determines how the completed transaction is handled. The
default is 0, which causes the transaction to be committed.

Dictionary::SchemaTransFlag. You can also use with
endSchemaTrans() either of the SchemaTransFlag values
shown here:

• SchemaTransAbort (= 1): Causes the transaction to be aborted

• SchemaTransBackground (= 2): Causes the transaction to
execute in the background; the result is written to the cluster log,
while the application continues without waiting for a response.

Return value Returns 0 on success; in the event of an error, returns -1 and sets
an NdbError error code.

Dictionary::getDatafile()

Description This method is used to retrieve a Datafile object, given the node
ID of the data node where a data file is located and the path to the
data file on that node's file system.

Signature Datafile getDatafile
 (
 Uint32 nodeId,

66

The Dictionary Class

 const char* path
)

Parameters This method must be invoked using two arguments, as shown here:

• The 32-bit unsigned integer nodeId of the data node where the
data file is located

• The path to the data file on the node's file system (string as
character pointer)

Return value A Datafile object—see Section 2.3.2, “The Datafile Class”, for
details.

Dictionary::getDefaultHashMap()

Description Get a table's default hash map.

Signature int getDefaultHashMap
 (
 HashMap& dst,
 Uint32 fragments
)

or

int getDefaultHashMap
 (
 HashMap& dst,
 Uint32 buckets,
 Uint32 fragments
)

Return value Returns 0 on success; on failure, returns -1 and sets an error.

Dictionary::getEvent()

Description This method is used to obtain a new Event object representing an
event, given the event's name.

getEvent() allocates memory each time it is successfully called.
You should keep in mind that successive invocations of this method
using the same event name return multiple, distinct objects.

The NDB API does not track allocated event objects, which
means that the user must clean up each Event created using
getEvent() with delete, after the object is no longer required.
Beginning with NDB 8.0.30, you can do this with releaseEvent()
instead.

Signature const Event* getEvent
 (
 const char* eventName
)

Parameters The eventName, a string (character pointer).

Return value A pointer to an Event object. See Section 2.3.5, “The Event Class”,
for more information.

Dictionary::getForeignKey()

Description This method is used to obtain a new ForeignKey object
representing an event, given a reference to the foreign key and its
name.

67

The Dictionary Class

Signature int getForeignKey
 (
 ForeignKey& dst,
 const char* name
)

Parameters A reference to the foreign key and its name, a string (character
pointer).

Return value A pointer to a ForeignKey object.

Dictionary::getHashMap()

Description Gets a hash map by name or by table.

Signatures int getHashMap
 (
 HashMap& dst,
 const char* name
)

or

int getHashMap
 (
 HashMap& dst,
 const Table* table
)

Parameters A reference to the hash map and either a name or a Table.

Return value Returns 0 on success; on failure, returns -1 and sets an error.

Dictionary::getIndex()

Description This method retrieves a pointer to an index, given the name of the
index and the name of the table to which the table belongs.

Signature const Index* getIndex
 (
 const char* iName,
 const char* tName
) const

Parameters Two parameters are required:

• The name of the index (iName)

• The name of the table to which the index belongs (tName)

Both of these are string values, represented by character pointers.

Return value A pointer to an Index. See Section 2.3.8, “The Index Class”, for
information about this object.

Dictionary::getLogfileGroup()

Description This method gets a LogfileGroup object, given the name of the
log file group.

Signature LogfileGroup getLogfileGroup
 (
 const char* name
)

Parameters The name of the log file group.

68

The Dictionary Class

Return value An instance of LogfileGroup; see Section 2.3.9, “The
LogfileGroup Class”, for more information.

Dictionary::getNdbError()

Description This method retrieves the most recent NDB API error.

Signature const struct NdbError& getNdbError
 (
 void
) const

Parameters None.

Return value A reference to an NdbError object.

Dictionary::getTable()

Description This method can be used to access a Table whose name is
already known.

Signature const Table* getTable
 (
 const char* name
) const

Parameters The name of the table.

Return value A pointer to the table, or NULL if there is no table with the name
supplied.

Dictionary::getTablespace()

Description Given either the name or ID of a tablespace, this method returns the
corresponding Tablespace object.

Signatures This method can be invoked in either of the following two ways:

• Using the tablespace name:

Tablespace getTablespace
 (
 const char* name
)

• Using the tablespace ID:

Tablespace getTablespace
 (
 Uint32 id
)

Parameters Either one of the following:

• The name of the tablespace, a string (as a character pointer)

• The unsigned 32-bit integer id of the tablespace

Return value A Tablespace object, as discussed in Section 2.3.28, “The
Tablespace Class”.

Dictionary::getUndofile()

Description This method gets an Undofile object, given the ID of the node
where an undo file is located and the file system path to the file.

Signature Undofile getUndofile

69

The Dictionary Class

 (
 Uint32 nodeId,
 const char* path
)

Parameters This method requires the following two arguments:

• The nodeId of the data node where the undo file is located; this
value is passed as a 32-bit unsigned integer

• The path to the undo file on the node's file system (string as
character pointer)

Return value An instance of Undofile. For more information, see
Section 2.3.29, “The Undofile Class”.

Dictionary::hasSchemaTrans()

Description Tells whether an NDB API schema transaction is ongoing.

Signature bool hasSchemaTrans
 (
 void
) const

Parameters None.

Return value Returns boolean TRUE if a schema transaction is in progress,
otherwise FALSE.

Dictionary::initDefaultHashMap()

Description Initialize a default hash map for a table.

Signature int initDefaultHashMap
 (
 HashMap& dst,
 Uint32 fragments
)

or

int initDefaultHashMap
 (
 HashMap& dst,
 Uint32 buckets,
 Uint32 fragments
)

Parameters A reference to the hash map and the number of fragments.
Optionally the number of buckets.

Return value Returns 0 on success; on failure, returns -1 and sets an error.

Dictionary::invalidateIndex()

Description This method is used to invalidate a cached index object.

Signature The index invalidated by this method can be referenced either as an
Index object (using a pointer), or by index name and table name,
as shown here:

void invalidateIndex
 (
 const char* indexName,
 const char* tableName
)

70

The Dictionary Class

void invalidateIndex
 (
 const Index* index
)

Parameters The names of the index to be removed from the cache and the table
to which it belongs (indexName and tableName, respectively), or a
pointer to the corresponding Index object.

Return value None.

DIctionary::invalidateTable()

Description This method is used to invalidate a cached table object.

Signature void invalidateTable
 (
 const char* name
)

It is also possibloe to use a Table object rather than the name of
the table, as shown here:

void invalidateTable
 (
 const Table* table
)

Parameters The name of the table to be removed from the table cache, or a
pointer to the corresponding Table object.

Return value None.

Dictionary::listEvents()

Description This method returns a list of all events defined within the dictionary.

Signature int listEvents
 (
 List& list
)

Parameters A reference to an empty List. In NDB 8.0.29 and later, use
clear() to empty a previously used List for reuse.

Return value 0 on success; -1 on failure.

Dictionary::listIndexes()

Description This method is used to obtain a List of all the indexes on a table,
given the table's name.

Signature int listIndexes
 (
 List& list,
 const char* table
) const

Parameters listIndexes() takes two arguments, both of which are required:

• A reference to an empty List that, following the call to this
method, contains the indexes. In NDB 8.0.29 and later, use
clear() to empty a previously used List for reuse.

• The name of the table whose indexes are to be listed

Return value 0 on success, -1 on failure.

71

The Dictionary Class

Dictionary::listObjects()

Description This method is used to obtain a list of objects in the dictionary. It is
possible to get all of the objects in the dictionary, or to restrict the list
to objects of a single type.

Signature This method has two signatures:

int listObjects
 (
 List& list,
 Object::Type type = Object::TypeUndefined
) const

and

int listObjects
 (
 List& list,
 Object::Type type,
 bool fullyQualified
) const

Parameters A reference to an empty List object is required—this is the list that
contains the dictionary's objects after listObjects() is called.
(See Section 2.3.10, “The List Class”.) An optional second argument
type may be used to restrict the list to only those objects of the
given type—that is, of the specified Object::Type. If type is not
given, then the list contains all of the dictionary's objects.

You can also specify whether or not the object names in the list
are fully qualified (that is, whether the object name includes the
database, schema, and possibly the table name). If you specify
fullyQualified, then you must also specify the type.

In NDB 8.0.29 and later, you can call clear() to empty a
previously used List for reuse.

Note

Setting fullyQualified to false causes
listObjects() to return objects that use
fully qualified names.

Return value 0 on success, -1 on failure.

Dictionary::prepareHashMap()

Description Creates or retrieves a hash map suitable for alteration.
Requires a schema transaction to be in progress; see
Dictionary::beginSchemaTrans(), for more information.

Signatures Either of the following:

• int prepareHashMap
 (
 const Table& oldTable,
 Table& newTable
)

• int prepareHashMap
 (
 const Table& oldTable,
 Table& newTable,
 Uint32 buckets

72

The Dictionary Class

)

Parameters References to the old and new tables. Optionally, a number of
buckets.

Return value Returns 0 on success; on failure, returns -1 and sets an error.

Dictionary::releaseEvent()

Description This method is used to free an Event after it is no longer needed.
Typically this is an event returned by getEvent().

Signature void releaseEvent
 (
 const Event* event
)

Parameters The Event to be cleaned up.

Return value None.

This method was added in NDB 8.0.30.

Dictionary::releaseRecord()

Description This method is used to free an NdbRecord after it is no longer
needed.

Signature void releaseRecord
 (
 NdbRecord* record
)

Parameters The NdbRecord to be cleaned up.

Return value None.

Example See Section 2.3.22, “The NdbRecord Interface”.

Dictionary::removeCachedTable()

Description This method removes the table, specified by name, from the local
cache.

Signature void removeCachedTable
 (
 const char* table
)

Parameters The name of the table to be removed from the cache.

Return value None.

Dictionary::removeCachedIndex()

Description This method removes the specified index from the local cache,
given the name of the index and that of the table in which it is
contained.

Signature void removeCachedIndex
 (
 const char* index,
 const char* table
)

Parameters The removeCachedIndex() method requires two arguments:

• The name of the index to be removed from the cache

73

The Element Structure

• The name of the table in which the index is found

Return value None.

2.3.4 The Element Structure

This section provides information about the Element structure.

Parent class List

Description The Element structure models an element of a list; it is used to
store an object in a List populated by the Dictionary methods
listObjects(), listIndexes(), and listEvents().

Attributes An Element has the attributes shown in the following table:

Table 2.13 Name, type, initial value, and description of Element
structure attributes

AttributeType Initial Value Description

id unsigned
int

0 The object's ID

type Object::TypeObject::TypeUndefinedThe object's type—
see Object::Type for
possible values

state Object::StateObject::StateUndefinedThe object's state—
see Object::State for
possible values

store Object::StoreObject::StoreUndefinedHow the object
is stored—see
Object::Store for
possible values

databasechar* 0 The database in which
the object is found

schema char* 0 The schema in which
the object is found

name char* 0 The object's name

2.3.5 The Event Class

This section provides information about the Event class.

• Event Class Overview

• Event::addEventColumn()

• Event::addEventColumns()

• Event::addTableEvent()

• Event Constructor

• Event::EventDurability

• Event::EventReport

• Event::getDurability()

• Event::getEventColumn()

74

The Event Class

• Event::getName()

• Event::getNoOfEventColumns()

• Event::getObjectStatus()

• Event::getObjectVersion()

• Event::getObjectId()

• Event::getReport()

• Event::getTable()

• Event::getTableEvent()

• Event::getTableName()

• Event::mergeEvents()

• Event::setDurability()

• Event::setReport()

• Event::setName()

• Event::setTable()

• Event::TableEvent

Event Class Overview

Parent class NdbDictionary

Child classes None

Description This class represents a database event in an NDB Cluster.

Methods The following table lists the public methods of the Event class and
the purpose or use of each method:

Table 2.14 Event class methods and descriptions

Name Description

Event() Class constructor

~Event() Destructor

addEventColumn() Adds a column on which events should be
detected

addEventColumns() Adds multiple columns on which events
should be detected

addTableEvent() Adds the type of event that should be
detected

getDurability() Gets the event's durability

getEventColumn() Gets a column for which an event is
defined

getName() Gets the event's name

getNoOfEventColumns()Gets the number of columns for which an
event is defined

getObjectId() Gets the event's object ID

getObjectStatus() Gets the event's object status

75

The Event Class

Name Description

getObjectVersion()Gets the event's object version

getReport() Gets the event's reporting options

getTable() Gets the Table object on which the event
is defined

getTableEvent() Checks whether an event is to be detected

getTableName() Gets the name of the table on which the
event is defined

mergeEvents() Sets the event's merge flag

setDurability() Sets the event's durability

setName() Sets the event's name

setReport() The the event's reporting options

setTable() Sets the Table object on which the event
is defined

Improved Event API (NDB 7.4 and later). NDB 7.4 introduces
an epoch-driven Event API that supercedes the earlier GCI-
based model. The new version of the API also simplifies error
detection and handling. These changes are realized in the NDB
API by implementing a number of new methods for Ndb and
NdbEventOperation, deprecating several other methods of both
classes, and adding new type values to TableEvent.

Some of the new methods directly replace or stand in for deprecated
methods, but not all of the deprecated methods map to new ones,
some of which are entirely new. Old (deprecated) methods are
shown in the first column of the following table, and new methods in
the second column; old methods corresponding to new methods are
shown in the same row.

Table 2.15 Deprecated and new Event API methods in the NDB
API, NDB 7.4

Old Method New Method

NdbEventOperation::getEventType()NdbEventOperation::getEventType2()

NdbEventOperation::getGCI()NdbEventOperation::getEpoch

NdbEventOperation::getLatestGCI()Ndb::getHighestQueuedEpoch()

NdbEventOperation::isOverrun()None; use
NdbEventOperation::getEventType2()

NdbEventOperation::hasError()None; use
NdbEventOperation::getEventType2()

NdbEventOperation::clearError()None

None NdbEventOperation::isEmptyEpoch()

None NdbEventOperation::isErrorEpoch()

Ndb::pollEvents() Ndb::pollEvents2()

Ndb::nextEvent() Ndb::nextEvent2()

Ndb::getLatestGCI()Ndb::getHighestQueuedEpoch()

Ndb::getGCIEventOperations()Ndb::getNextEventOpInEpoch2()

Ndb::isConsistent()None

76

The Event Class

Old Method New Method

Ndb::isConsistentGCI()None

Error handling using the new API is accomplished by checking
the value returned from getEventType2(), and is no longer
handled using the methods hasError() and clearError(),
which are now deprecated and subject to removal in a future release
of NDB Cluster. In support of this change, the range of possible
TableEvent types has been expanded by those listed here:

• TE_EMPTY: Empty epoch

• TE_INCONSISTENT: Inconsistent epoch; missing data or overflow

• TE_OUT_OF_MEMORY: Inconsistent data; event buffer out of
memory or overflow

The result of these changes is that, in NDB 7.4 and later, you can
check for errors while checking a table event's type, as shown here:

NdbDictionary::Event::TableEvent* error_type = 0;
NdbEventOperation* pOp = nextEvent2();

if (pOp->isErrorEpoch(error_type)
{
 switch (error_type)
 {
 case TE_INCONSISTENT :
 // Handle error/inconsistent epoch...
 break;

 case TE_OUT_OF_MEMORY :
 // Handle error/inconsistent data...
 break;

 // ...
 }
}

For more information, see the detailed descriptions for the Ndb and
NdbEventOperation methods shown in the table previously, as
well as Event::TableEvent.

Types These are the public types of the Event class:

Table 2.16 Event class types and descriptions

Name Description

TableEvent() Represents the type of a table event

EventDurability() Specifies an event's scope, accessibility,
and lifetime

EventReport() Specifies the reporting option for a table
event

Event::addEventColumn()

Description This method is used to add a column on which events should be
detected. The column may be indicated either by its ID or its name.

You must invoke Dictionary::createEvent() before any
errors will be detected. See Dictionary::createEvent().

77

The Event Class

If you know several columns by name, you can enable event
detection on all of them at one time by using addEventColumns().
See Event::addEventColumns().

Signatures This method can be invoked in either of the following ways:

• Identifying the event using its column ID:

void addEventColumn
 (
 unsigned attrId
)

• Identifying the column by name:

void addEventColumn
 (
 const char* columnName
)

Parameters This method takes a single argument, which may be either one of
the following:

• The column ID (attrId), which should be an integer greater
than or equal to 0, and less than the value returned by
getNoOfEventColumns().

• The column's name (as a constant character pointer).

Return value None.

Event::addEventColumns()

Description This method is used to enable event detection on several columns
at the same time. You must use the names of the columns.

As with addEventColumn(), you must invoke
Dictionary::createEvent() before any errors will be
detected. See Dictionary::createEvent().

Signature void addEventColumns
 (
 int n,
 const char** columnNames
)

Parameters This method requires the two arguments listed here:

• The number of columns n (an integer).

• The names of the columns columnNames—this must be passed
as a pointer to a character pointer.

Return value None.

Event::addTableEvent()

Description This method is used to add types of events that should be detected.

Signature void addTableEvent
 (
 const TableEvent te
)

78

The Event Class

Parameters This method requires a TableEvent value.

Return value None.

Event Constructor

Description The Event constructor creates a new instance with a given name,
and optionally associated with a table.

You should keep in mind that the NDB API does not track allocated
event objects, which means that the user must explicitly delete the
Event thus created after it is no longer in use.

Signatures It is possible to invoke this method in either of two ways, the first of
these being by name only, as shown here:

Event
 (
 const char* name
)

Alternatively, you can use the event name and an associated table,
like this:

Event
 (
 const char* name,
 const NdbDictionary::Table& table
)

Parameters At a minimum, a name (as a constant character pointer) for the
event is required. Optionally, an event may also be associated with
a table; this argument, when present, is a reference to a Table
object (see Section 2.3.27, “The Table Class”).

Return value A new instance of Event.

Destructor. A destructor for this class is supplied as a virtual method which takes no arguments and
whose return type is void.

Event::EventDurability

This section provides information about EventDurability, a type defined by the Event class.

Description The values of this type are used to describe an event's lifetime or
persistence as well as its scope.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.17 Event::EventDurability data type values and
descriptions

Name Description

ED_UNDEFINED The event is undefined or of an
unsupported type.

ED_SESSION This event persists only for the duration of
the current session, and is available only
to the current application. It is deleted after
the application disconnects or following a
cluster restart.

79

The Event Class

Name Description
Important

The value
ED_SESSION is
reserved for future
use and is not
yet supported in
any NDB Cluster
release.

ED_TEMPORARY Any application may use the event, but it is
deleted following a cluster restart.

Important

The value
ED_TEMPORARY
is reserved for
future use and is
not yet supported
in any NDB Cluster
release.

ED_PERMANENT Any application may use the event, and it
persists until deleted by an application—
even following a cluster. restart

Important

The value
ED_PERMANENT
is reserved for
future use and is
not yet supported
in any NDB Cluster
release.

Event::EventReport

This section provides information about EventReport, a type defined by the Event class.

Description The values of this type are used to specify reporting options for table
events.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.18 Event::EventReport type values and descriptions

Name Description

ER_UPDATED Reporting of update events

ER_ALL Reporting of all events, except for those
not resulting in any updates to the inline
parts of blob columns

ER_SUBSCRIBE Reporting of subscription events

ER_DDL Reporting of DDL events (see
Event::setReport(), for more information)

80

The Event Class

Event::getDurability()

Description This method gets the event's lifetime and scope (that is, its
EventDurability).

Signature EventDurability getDurability
 (
 void
) const

Parameters None.

Return value An EventDurability value.

Event::getEventColumn()

Description This method is used to obtain a specific column from among those
on which an event is defined.

Signature const Column* getEventColumn
 (
 unsigned no
) const

Parameters The number (no) of the column, as obtained using
getNoOfColumns() (see Event::getNoOfEventColumns()).

Return value A pointer to the Column corresponding to no.

Event::getName()

Description This method obtains the name of the event.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The name of the event, as a character pointer.

Event::getNoOfEventColumns()

Description This method obtains the number of columns on which an event is
defined.

Signature int getNoOfEventColumns
 (
 void
) const

Parameters None.

Return value The number of columns (as an integer), or -1 in the case of an
error.

Event::getObjectStatus()

Description This method gets the object status of the event.

Signature virtual Object::Status getObjectStatus
 (
 void

81

The Event Class

) const

Parameters None.

Return value The object status of the event. For possible values, see
Object::Status.

Event::getObjectVersion()

Description This method gets the event's object version (see NDB Schema
Object Versions).

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The object version of the event, as an integer.

Event::getObjectId()

Description This method retrieves an event's object ID.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The object ID of the event, as an integer.

Event::getReport()

Description This method is used to obtain the reporting option in force for this
event.

Signature EventReport getReport
 (
 void
) const

Parameters None.

Return value One of the reporting options specified in Event::EventReport.

Event::getTable()

Description This method is used to find the table with which an event is
associated. It returns a reference to the corresponding Table
object. You may also obtain the name of the table directly using
getTableName().

Signature const NdbDictionary::Table* getTable
 (
 void
) const

Parameters None.

Return value The table with which the event is associated—if there is one—as
a pointer to a Table object; otherwise, this method returns NULL.
(See Section 2.3.27, “The Table Class”.)

82

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Event Class

Event::getTableEvent()

Description This method is used to check whether a given table event will be
detected.

Signature bool getTableEvent
 (
 const TableEvent te
) const

Parameters This method takes a single parameter, the table event's type—that
is, a TableEvent value.

Return value This method returns true if events of TableEvent type te will be
detected. Otherwise, the return value is false.

Event::getTableName()

Description This method obtains the name of the table with which an event
is associated, and can serve as a convenient alternative to
getTable(). (See Event::getTable().)

Signature const char* getTableName
 (
 void
) const

Parameters None.

Return value The name of the table associated with this event, as a character
pointer.

Event::mergeEvents()

Description This method is used to set the merge events flag, which is false by
default. Setting it to true implies that events are merged as follows:

• For a given NdbEventOperation associated with this
event, events on the same primary key within the same global
checkpoint index (GCI) are merged into a single event.

• A blob table event is created for each blob attribute, and blob
events are handled as part of main table events.

• Blob post/pre data from blob part events can be read via
NdbBlob methods as a single value.

This flag is not inherited by NdbEventOperation, and must be
set on NdbEventOperation explicitly.

Signature void mergeEvents
 (
 bool flag
)

Parameters A Boolean flag value.

Return value None.

Event::setDurability()

Description This method sets an event's durability—that is, its lifetime and
scope.

83

The Event Class

Signature void setDurability(EventDurability ed)

Parameters This method requires a single EventDurability value as a
parameter.

Return value None.

Event::setReport()

Description This method is used to set a reporting option for an event. Possible
option values may be found in Event::EventReport.

Reporting of DDL events You must call setReport() using the EventReport value
ER_DDL (added in the same NDB Cluster versions).

For example, to enable DDL event reporting on an Event object
named myEvent, you must invoke this method as shown here:

myEvent.setReport(NdbDictionary::Event::ER_DDL);

Signature void setReport
 (
 EventReport er
)

Parameters An EventReport option value.

Return value None.

Event::setName()

Description This method is used to set the name of an event. The name must
be unique among all events visible from the current application (see
Event::getDurability()).

You can also set the event's name when first creating it. See Event
Constructor.

Signature void setName
 (
 const char* name
)

Parameters The name to be given to the event (as a constant character pointer).

Return value None.

Event::setTable()

Description This method defines a table on which events are to be detected.

By default, event detection takes place on all columns in the table.
Use addEventColumn() to override this behavior. For details, see
Event::addEventColumn().

Signature void setTable
 (
 const NdbDictionary::Table& table
)

You can also use a pointer with this method, as shown here:

void setTable
 (
 const NdbDictionary::Table*; table

84

The ForeignKey Class

)

When so used, this version of setTable() returns -1 if the table
pointer is NULL.

Parameters This method requires a single parameter, a reference or a pointer to
the table (see Section 2.3.27, “The Table Class”) on which events
are to be detected.

Return value -1 if a null table pointer is used, otherwise null.

Event::TableEvent

This section describes TableEvent, a type defined by the Event class.

Description TableEvent is used to classify the types of events that may be
associated with tables in the NDB API.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.19 Event::TableEvent type values and descriptions

Name Description

TE_INSERT Insert event on a table

TE_DELETE Delete event on a table

TE_UPDATE Update event on a table

TE_DROP Occurs when a table is dropped

TE_ALTER Occurs when a table definition is changed

TE_CREATE Occurs when a table is created

TE_GCP_COMPLETE Occurs on the completion of a global
checkpoint

TE_CLUSTER_FAILUREOccurs on Cluster failures

TE_STOP Occurs when an event operation is stopped

TE_NODE_FAILURE Occurs when a Cluster node fails

TE_SUBSCRIBE Occurs when a cluster node subscribes to
an event

TE_UNSUBSCRIBE Occurs when a cluster node unsubscribes
from an event

TE_EMPTY Empty epoch received from data nodes

TE_INCONSISTENT Missing data or buffer overflow at data
node

TE_OUT_OF_MEMORY Overflow in event buffer

TE_ALL Occurs when any event occurs on a table
(not relevant when a specific event is
received)

TE_EMPTY, TE_INCONSISTENT, and TE_OUT_OF_MEMORY were
added in NDB 7.4.

2.3.6 The ForeignKey Class

This section provides information about the ForeignKey class, which models a foreign key on an NDB
table.

85

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

The ForeignKey Class

• ForeignKey Class Overview

• ForeignKey()

• ForeignKey::FkAction

• ForeignKey::getName()

• ForeignKey::getParentTable()

• ForeignKey::getChildTable()

• ForeignKey::getParentColumnCount()

• ForeignKey::getChildColumnCount()

• ForeignKey::getParentIndex()

• ForeignKey::getChildIndex()

• ForeignKey::getParentColumnNo()

• ForeignKey::getChildColumnNo()

• ForeignKey::getOnUpdateAction()

• ForeignKey::getOnDeleteAction()

• ForeignKey::setName()

• ForeignKey::setParent()

• ForeignKey::setChild()

• ForeignKey::setOnUpdateAction()

• ForeignKey::setOnDeleteAction()

• ForeignKey::getObjectStatus()

• ForeignKey::getObjectId()

• ForeignKey::getObjectVersion()

ForeignKey Class Overview

Parent class Object

Child classes None.

Methods The following table lists the public methods of the ForeignKey
class and the purpose or use of each method:

Table 2.20 ForeignKey class methods and descriptions

Name Description

ForeignKey() Class constructor

~ForeignKey() Class destructor

getName() Get the foreign key's name

getParentTable() Get the foreign key's parent table

getChildTable() Get the foreign key's child table

getParentColumnCount()Get the number of columns in the parent
table

86

The ForeignKey Class

Name Description

getChildColumnCount()Get the number of columns in the child
table

getParentColumnNo()Get the column number in the parent table

getChildColumnNo()Get the column number in the child table

getParentIndex() Returns 0 if key points to parent table's
primary key

getChildIndex() Returns 0 if child references resolved using
child table's primary key

getOnUpdateAction()Get the foreign's key update action
(FkAction)

getOnDeleteAction()Get the foreign key's delete action
(FkAction)

setName() Set the foreign key's name

setParent() Set the foreign key's parent table

setChild() Set a foreign key's child table

setOnUpdateAction()Set the foreign's key update action
(FkAction)

setOnDeleteAction()Set the foreign key's delete action
(FkAction)

getObjectStatus() Get the object status

getObjectId() Get the object ID

getObjectVersion()Get the object version

Types The ForeignKey class has one public type, the FkAction type.

ForeignKey()

Description Create either an entirely new foreign key reference, or a copy of an
existing one.

Signature New instance:

ForeignKey
 (
 void
)

Copy constructor:

ForeignKey
 (
 const ForeignKey&
)

Parameters For a new instance: None.

For the copy constructor: A reference to an existing instance of
ForeignKey.

Return value A new instance of ForeignKey.

ForeignKey::FkAction

This section provides information about FkAction, which is an enumeration modelling a reference
action for a foreign key when an update or delete operation is performed on the parent table.

87

The ForeignKey Class

Enumeration values Possible values are shown, along with the corresponding reference
action, in the following table:

Table 2.21 ForeignKey::FkAction data type values and
descriptions

Name Description

NoAction NO ACTION: Deferred check.

Restrict RESTRICT: Reject operation on parent
table.

Cascade CASCADE: Perform operation on row from
parent table; perform same operation on
matching rows in child table.

SetNull SET NULL: Perform operation on row from
parent table; set any matching foreign key
columns in child table to NULL.

SetDefault SET DEFAULT: Currently not supported in
NDB Cluster.

See also FOREIGN KEY Constraints, in the MySQL Manual.

ForeignKey::getName()

Description Retrieve the name of the ForeignKey instance for which the
method is invoked.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The name of the ForeignKey.

ForeignKey::getParentTable()

Description Retrieve the parent table of the ForeignKey instance for which the
method is invoked.

Signature const char* getParentTable
 (
 void
) const

Parameters None.

Return value A pointer to the parent table of the ForeignKey.

ForeignKey::getChildTable()

Description Retrieve the child table of the ForeignKey instance for which the
method is invoked.

Signature const char* getChildTable
 (
 void
) const

Parameters None.

Return value A pointer to the child table of this ForeignKey.

88

https://dev.mysql.com/doc/refman/8.4/en/create-table-foreign-keys.html

The ForeignKey Class

ForeignKey::getParentColumnCount()

Description Retrieve the number of columns in the parent table of this
ForeignKey.

Signature unsigned getParentColumnCount
 (
 void
) const

Parameters None.

Return value The number of columns in the parent table.

ForeignKey::getChildColumnCount()

Description Retrieve the number of columns in the child table of this
ForeignKey.

Signature unsigned getChildColumnCount
 (
 void
) const

Parameters None.

Return value The number of columns in the child table.

ForeignKey::getParentIndex()

Description Returns 0 if the child table refers to the parent table's primary key.

Signature const char* getParentIndex
 (
 void
) const

Parameters None.

Return value See description.

ForeignKey::getChildIndex()

Description Return 0 if child references are resolved using the child table's
primary key.

Signature const char* getChildIndex
 (
 void
) const

Parameters None.

Return value See description.

ForeignKey::getParentColumnNo()

Description This method gets the sequence number of a foreign key column
in the parent table for a given index. See the documentation
for Column::getColumnNo(), for information about handling
columns in the NDB API.

Signature int getParentColumnNo
 (

89

The ForeignKey Class

 unsigned no
) const

Parameters None.

Return value The sequence number of the column.

ForeignKey::getChildColumnNo()

Description This method gets the sequence number of a foreign key column
in the child table for a given index. See the documentation for
Column::getColumnNo() for information about handling columns
in the NDB API.

Signature int getChildColumnNo
 (
 unsigned no
) const

Parameters None.

Return value The sequence number of the column.

ForeignKey::getOnUpdateAction()

Description Get the foreign key's ON UPDATE action. This is a
ForeignKey::FkAction and has one of the values NoAction,
Restrict, Cascade, or SetNull.

Signature FkAction getOnUpdateAction
 (
 void
) const

Parameters None.

Return value The sequence number of the column.

ForeignKey::getOnDeleteAction()

Description Get the foreign key's ON DELETE action. This is a
ForeignKey::FkAction and has one of the values NoAction,
Restrict, Cascade, or SetNull.

Signature FkAction getOnDeleteAction
 (
 void
) const

Parameters None.

Return value The sequence number of the column.

ForeignKey::setName()

Description Set the name of the ForeignKey instance for which the method is
invoked.

Signature void setName
 (
 const char*
)

Parameters The name of the ForeignKey.

90

The ForeignKey Class

Return value None.

ForeignKey::setParent()

Description Set the parent table of a ForeignKey, given a reference to the
table, and optionally, an index to use as the foreign key.

Signature void setParent
 (
 const Table&,
 const Index* index = 0,
 const Column* cols[] = 0
)

Parameters A reference to a Table (required). Optionally, an index using the
indicated column or columns.

Return value None.

ForeignKey::setChild()

Description Set the child table of a ForeignKey, given a reference to the table,
and optionally, an index to use as the foreign key.

Signature void setChild
 (
 const Table&,
 const Index* index = 0,
 const Column* cols[] = 0
)

Parameters A reference to a Table (required). Optionally, an index using the
indicated column or columns.

Return value None.

ForeignKey::setOnUpdateAction()

Description Set the foreign key's ON UPDATE action.

Signature void setOnUpdateAction
 (
 FkAction
)

Parameters The ON UPDATE action to be performed. This must be a
ForeignKey::FkAction having one of the values NoAction,
Restrict, Cascade, or SetNull.

Return value None

ForeignKey::setOnDeleteAction()

Description Set the foreign key's ON DELETE action.

Signature void setOnUpdateAction
 (
 FkAction
)

Parameters The ON UPDATE action to be performed, of type
ForeignKey::FkAction. Must be one of the values NoAction,
Restrict, Cascade, or SetNull.

Return value None

91

The HashMap Class

ForeignKey::getObjectStatus()

Description Get the object status (see Object::Status) for this ForeignKey
object.

Signature virtual Object::Status getObjectStatus
 (
 void
) const

Parameters None.

Return value The ForeignKey object's status, as a value of type
Object::Status. See this type's documentation for possible
values and their interpretation.

ForeignKey::getObjectId()

Description Get the object ID (see Object::getObjectId()) for this ForeignKey
object.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The ForeignKey object's ID, as returned by
Object::getObjectId().

ForeignKey::getObjectVersion()

Description Get the object version (see Object::getObjectVersion()) for this
ForeignKey object.

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The ForeignKey object's version number (an integer), as returned
by Object::getObjectVersion().

2.3.7 The HashMap Class

This section provides information about the HashMap class, which models a hash map in an NDB
Cluster.

• HashMap Class Overview

• HashMap Constructor

• HashMap::setName()

• HashMap::getName()

• HashMap::setMap()

• HashMap::getMapLen()

• HashMap::getMapValues()

92

The HashMap Class

• HashMap::equal()

• HashMap::getObjectStatus()

• HashMap::getObjectVersion()

• HashMap::getObjectId()

HashMap Class Overview

Parent class Object

Child classes None.

Methods The following table lists the public methods of the HashMap class
and the purpose or use of each method:

Table 2.22 HashMap class methods and descriptions

Name Description

HashMap() Class constructor

~HashMap() Class destructor

setName() Set a name for the hashmap

getName() Gets a hashmap's name

setMap() Sets a hashmap's length and values

getMapLen() Gets a hashmap's length

getMapValues() Gets the values contained in the hashmap

equal() Compares this hashmap's values with
those of another hashmap

getObjectStatus() Gets the hashmap's object status

getObjectVersion()Gets the hashmap's schema object version

getObjectId() Gets the hashmap's ID

Types The HashMap class defines no public types.

HashMap Constructor

Description The HashMap class constructor normally requires no arguments. A
copy constructor is also available.

See also Dictionary::createHashMap(), for more information.

Signature Base constructor:

HashMap HashMap
 (
 void
)

Copy constructor:

HashMap HashMap
 (
 const HashMap& hashmap
)

Destructor:

virtual ~HashMap

93

The HashMap Class

 (
 void
)

Parameters None, or the address of an existing HashMap object to be copied.

Return value A new instance of HashMap, possibly a copy of an existing one.

HashMap::setName()

Description Sets the name of the hash map.

Signature void setName
 (
 const char* name
)

Parameters The name to be assigned to the hashmap.

Return value None.

HashMap::getName()

Description Gets the name of the hash map.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The name of the hash map.

HashMap::setMap()

Description Assigns a set of values to a has map.

Signature void setMap
 (
 const Uint32* values,
 Uint32 len
)

Parameters A pointer to a set of values of length len.

Return value None.

HashMap::getMapLen()

Description Gets the hash map's length; that is, the number of values which it
contains. You can obtain the values using getMapValues().

Signature Uint32 getMapLen
 (
 void
) const

Parameters None.

Return value The length of the hash map.

HashMap::getMapValues()

Description Gets the values listed in the hash map.

94

The Index Class

Signature int getMapValues
 (
 Uint32* dst,
 Uint32 len
) const

Parameters A pointer to a set of values (dst) and the number of values (len).

Return value Returns 0 on success; on failure, returns -1 and sets error.

HashMap::equal()

Description Compares (only) the values of this HashMap with those of another
one.

Signature bool equal
 (
 const HashMap& hashmap
) const

Parameters A reference to the hash map to be compared with this one.

Return value None.

HashMap::getObjectStatus()

Description This method retrieves the status of the HashMap for which it is
invoked. The return value is of type Object::Status.

Signature virtual Status getObjectStatus
 (
 void
) const

Parameters None.

Return value Returns the current Status of the HashMap.

HashMap::getObjectVersion()

Description The method gets the hash map's schema object version.

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The object's version number, an integer.

HashMap::getObjectId()

Description This method retrieves the hash map's ID.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The object ID, an integer.

2.3.8 The Index Class

95

The Index Class

This section provides information about the Index class.

• Index Class Overview

• Index Class Constructor

• Index::addColumn()

• Index::addColumnName()

• Index::addColumnNames()

• Index::getColumn()

• Index::getLogging()

• Index::getName()

• Index::getNoOfColumns()

• Index::getObjectStatus()

• Index::getObjectVersion()

• Index::getObjectId()

• Index::getTable()

• Index::getType()

• Index::setLogging

• Index::setName()

• Index::setTable()

• Index::setType()

• Index::Type

Index Class Overview

Parent class NdbDictionary

Child classes None

Description This class represents an index on an NDB Cluster table column.
It is a descendant of the NdbDictionary class, using the Object
class.

If you create or change indexes using the NDB API, these
modifications cannot be seen by MySQL. The only exception to this
is using Index::setName() to rename the index.

Methods The following table lists the public methods of Index and the
purpose or use of each method:

Table 2.23 Index class methods and descriptions

Name Description

Index() Class constructor

~Index() Destructor

addColumn() Adds a Column object to the index

96

The Index Class

Name Description

addColumnName() Adds a column by name to the index

addColumnNames() Adds multiple columns by name to the
index

getColumn() Gets a column making up (part of) the
index

getLogging() Checks whether the index is logged to disk

getName() Gets the name of the index

getNoOfColumns() Gets the number of columns belonging to
the index

getObjectStatus() Gets the index object status

getObjectVersion()Gets the index object status

getObjectId() Gets the index object ID

getTable() Gets the name of the table being indexed

getType() Gets the index type

setLogging() Enable/disable logging of the index to disk

setName() Sets the name of the index

setTable() Sets the name of the table to be indexed

setType() Set the index type

Types Index defines one public type, the Type type.

Index Class Constructor

Description This is used to create an new instance of Index.

Indexes created using the NDB API cannot be seen by the MySQL
Server.

Signature Index
 (
 const char* name = ""
)

Parameters The name of the new index. It is possible to create an index without
a name, and then assign a name to it later using setName(). See
Index::setName().

Return value A new instance of Index.

Destructor The destructor (~Index()) is supplied as a virtual method.

Index::addColumn()

Description This method may be used to add a column to an index.

The order of the columns matches the order in which they are added
to the index. However, this matters only with ordered indexes.

Signature void addColumn
 (
 const Column& c
)

Parameters A reference c to the column which is to be added to the index.

97

The Index Class

Return value None.

Index::addColumnName()

Description This method works in the same way as addColumn(), except
that it takes the name of the column as a parameter. See
Index::getColumn().

Signature void addColumnName
 (
 const char* name
)

Parameters The name of the column to be added to the index, as a constant
character pointer.

Return value None.

Index::addColumnNames()

Description This method is used to add several column names to an index
definition at one time.

As with the addColumn() and addColumnName() methods, the
indexes are numbered in the order in which they were added. This
normally matters only for ordered indexes.

Signature void addColumnNames
 (
 unsigned noOfNames,
 const char** names
)

Parameters This method takes two parameters, listed here:

• The number of columns and names noOfNames to be added to
the index.

• The names to be added (as a pointer to a pointer).

Return value None.

Index::getColumn()

Description This method retrieves the column at the specified position within the
index.

Signature const Column* getColumn
 (
 unsigned no
) const

Parameters The ordinal position number no of the column, as an unsigned
integer. Use the getNoOfColumns() method to determine how
many columns make up the index—see Index::getNoOfColumns(),
for details.

Return value The column having position no in the index, as a pointer to an
instance of Column. See Section 2.3.1, “The Column Class”.

Index::getLogging()

Description Use this method to determine whether logging to disk has been
enabled for the index.

98

The Index Class

Indexes which are not logged are rebuilt when the cluster is started
or restarted.

Ordered indexes currently do not support logging to disk; they are
rebuilt each time the cluster is started. (This includes restarts.)

Signature bool getLogging
 (
 void
) const

Parameters None.

Return value A Boolean value:

• true: The index is being logged to disk.

• false: The index is not being logged.

Index::getName()

Description This method is used to obtain the name of an index.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The name of the index, as a constant character pointer.

Index::getNoOfColumns()

Description This method is used to obtain the number of columns making up the
index.

Signature unsigned getNoOfColumns
 (
 void
) const

Parameters None.

Return value An unsigned integer representing the number of columns in the
index.

Index::getObjectStatus()

Description This method gets the object status of the index.

Signature virtual Object::Status getObjectStatus
 (
 void
) const

Parameters None.

Return value A Status value; see Object::Status, for more information.

Index::getObjectVersion()

Description This method gets the object version of the index (see NDB Schema
Object Versions).

99

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Index Class

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The object version for the index, as an integer.

Index::getObjectId()

Description This method is used to obtain the object ID of the index.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The object ID, as an integer.

Index::getTable()

Description This method can be used to obtain the name of the table to which
the index belongs.

Signature const char* getTable
 (
 void
) const

Parameters None.

Return value The name of the table, as a constant character pointer.

Index::getType()

Description This method can be used to find the type of index.

Signature Type getType
 (
 void
) const

Parameters None.

Return value An index type. See Index::Type, for possible values.

Index::setLogging

Description This method is used to enable or disable logging of the index to
disk.

Signature void setLogging
 (
 bool enable
)

Parameters setLogging() takes a single Boolean parameter enable. If
enable is true, then logging is enabled for the index; if false, then
logging of this index is disabled.

Return value None.

100

The Index Class

Index::setName()

Description This method sets the name of the index.

This is the only Index::set*() method whose result is visible to a
MySQL Server.

Signature void setName
 (
 const char* name
)

Parameters The desired name for the index, as a constant character pointer.

Return value None.

Index::setTable()

Description This method sets the table that is to be indexed. The table is
referenced by name.

Signature void setTable
 (
 const char* name
)

Parameters The name of the table to be indexed, as a constant character
pointer.

Return value None.

Index::setType()

Description This method is used to set the index type.

Signature void setType
 (
 Type type
)

Parameters The type of index. For possible values, see Index::Type.

Return value None.

Index::Type

This section provides information about the Index type.

Description This is an enumerated type which describes the sort of column
index represented by a given instance of Index.

Do not confuse this enumerated type with Object::Type, or with
Column::Type.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.24 Index::Type data type values and descriptions

Name Description

Undefined Undefined object type (initial/default value)

UniqueHashIndex Unique unordered hash index (only index
type currently supported)

101

The LogfileGroup Class

Name Description

OrderedIndex Nonunique, ordered index

2.3.9 The LogfileGroup Class

This section provides information about the LogfileGroup class, which models an NDB Cluster Disk
Data log file group.

• LogFileGroup Class Overview

• LogfileGroup Constructor

• LogfileGroup::getAutoGrowSpecification()

• LogfileGroup::getName()

• LogfileGroup::getObjectId()

• LogfileGroup::getObjectStatus()

• LogfileGroup::getObjectVersion()

• LogfileGroup::getUndoBufferSize()

• LogfileGroup::getUndoFreeWords()

• LogfileGroup::setAutoGrowSpecification()

• LogfileGroup::setName()

• LogfileGroup::setUndoBufferSize()

LogFileGroup Class Overview

Parent class NdbDictionary

Child classes None

Description This class represents an NDB Cluster Disk Data log file group,
which is used for storing Disk Data undo files. For general
information about log file groups and undo files, see NDB Cluster
Disk Data Tables, in the MySQL Manual.

Only unindexed column data can be stored on disk. Indexes and
indexes columns are always stored in memory.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.25 LogfileGroup class methods and descriptions

Name Description

LogfileGroup() Class constructor

~LogfileGroup() Virtual destructor

getAutoGrowSpecification()Gets the log file group's
AutoGrowSpecification values

getName() Retrieves the log file group's name

getObjectId() Get the object ID of the log file group

getObjectStatus() Gets the log file group's object status value

102

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-disk-data.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-disk-data.html

The LogfileGroup Class

Name Description

getObjectVersion()Retrieves the log file group's object version

getUndoBufferSize()Gets the size of the log file group's undo
buffer

getUndoFreeWords()Retrieves the amount of free space in the
undo buffer

setAutoGrowSpecification()Sets AutoGrowSpecification values
for the log file group

setName() Sets the name of the log file group

setUndoBufferSize()Sets the size of the log file group's undo
buffer.

Types While the LogfileGroup class does not itself define
any public types, two of its methods make use of the
AutoGrowSpecification data structure as a parameter or return
value.

LogfileGroup Constructor

Description The LogfileGroup class has two public constructors, one of which
takes no arguments and creates a completely new instance. The
other is a copy constructor.

The Dictionary class also supplies methods for creating and
destroying LogfileGroup objects. See Section 2.3.3, “The
Dictionary Class”.

Signatures New instance:

LogfileGroup
 (
 void
)

Copy constructor:

LogfileGroup
 (
 const LogfileGroup& logfileGroup
)

Parameters When creating a new instance, the constructor takes no parameters.
When copying an existing instance, the constructor is passed a
reference to the LogfileGroup instance to be copied.

Return value A LogfileGroup object.

Destructor virtual ~LogfileGroup
 (
 void
)

LogfileGroup::getAutoGrowSpecification()

Description This method retrieves the AutoGrowSpecification associated
with the log file group.

Signature const AutoGrowSpecification& getAutoGrowSpecification
 (
 void
) const

103

The LogfileGroup Class

Parameters None.

Return value An AutoGrowSpecification data structure.

LogfileGroup::getName()

Description This method gets the name of the log file group.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The logfile group's name, a string (as a character pointer).

LogfileGroup::getObjectId()

Description This method is used to retrieve the object ID of the log file group.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The log file group's object ID (an integer value).

LogfileGroup::getObjectStatus()

Description This method is used to obtain the object status of the
LogfileGroup.

Signature virtual Object::Status getObjectStatus
 (
 void
) const

Parameters None.

Return value The logfile group's Status—see Object::Status for possible values.

LogfileGroup::getObjectVersion()

Description This method gets the log file group's object version (see NDB
Schema Object Versions).

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The object version of the log file group, as an integer.

LogfileGroup::getUndoBufferSize()

Description This method retrieves the size of the log file group's undo buffer.

Signature Uint32 getUndoBufferSize
 (
 void

104

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The List Class

) const

Parameters None.

Return value The size of the undo buffer, in bytes.

LogfileGroup::getUndoFreeWords()

Description This method retrieves the number of bytes unused in the log file
group's undo buffer.

Signature Uint64 getUndoFreeWords
 (
 void
) const

Parameters None.

Return value The number of bytes free, as a 64-bit integer.

LogfileGroup::setAutoGrowSpecification()

Description This method sets the AutoGrowSpecification data for the log
file group.

Signature void setAutoGrowSpecification
 (
 const AutoGrowSpecification& autoGrowSpec
)

Parameters The data is passed as a single parameter, an
AutoGrowSpecification data structure.

Return value None.

LogfileGroup::setName()

Description This method is used to set a name for the log file group.

Signature void setName
 (
 const char* name
)

Parameters The name to be given to the logfile group (character pointer).

Return value None.

LogfileGroup::setUndoBufferSize()

Description This method can be used to set the size of the log file group's undo
buffer.

Signature void setUndoBufferSize
 (
 Uint32 size
)

Parameters The size in bytes for the undo buffer (using a 32-bit unsigned
integer value).

Return value None.

2.3.10 The List Class

105

The Ndb Class

This section provides information about the List class.

Parent class Dictionary

Child classes Element (structure)

Description The List class is a Dictionary subclass that
is used for representing lists populated by the
methods Dictionary::listObjects(),
Dictionary::listIndexes(), and
Dictionary::listEvents().

Methods Beginning with NDB 8.0.29, this class has three methods, listed
here:

• a constructor (List())

• a destructor (~List())

• a clear() method

None of the methods just listed take any arguments.

Calling the constructor creates a new List whose count and
elements attributes are both set equal to 0.

The clear() method, introduced in NDB 8.0.29, removes all data
from the list. You can use this to prepare an existing List for reuse
with listEvents(), listIndexes(), or listObjects().

The destructor (~List()) removes all elements and their
properties. Beginning with NDB 8.0.29, it first invokes clear()
before doing so.

The definition of this class can be found in /storage/ndb/
include/ndbapi/NdbDictionary.hpp.

Attributes A List has the following two attributes:

• count, an unsigned integer, which stores the number of elements
in the list.

• elements, a pointer to an array of Element data structures
contained in the list. See Section 2.3.4, “The Element Structure”.

Types The List class also defines the Element structure.

2.3.11 The Ndb Class

This section provides information about the Ndb class, which models the NDB kernel; it is the primary
class of the NDB API.

• Ndb Class Overview

• Ndb Class Constructor

• Ndb::closeTransaction()

• Ndb::computeHash()

• Ndb::createEventOperation()

106

The Ndb Class

• Ndb::dropEventOperation()

• Ndb::EventBufferMemoryUsage

• Ndb::getDictionary()

• Ndb::getDatabaseName()

• Ndb::getDatabaseSchemaName()

• Ndb::getGCIEventOperations() (DEPRECATED)

• Ndb::get_eventbuf_max_alloc()

• Ndb::get_eventbuffer_free_percent()

• Ndb::get_event_buffer_memory_usage()

• Ndb::getHighestQueuedEpoch()

• Ndb::getLatestGCI() (DEPRECATED)

• Ndb::getNdbError()

• Ndb::getNdbErrorDetail()

• Ndb::getNdbObjectName()

• Ndb::getNextEventOpInEpoch2()

• Ndb::getNextEventOpInEpoch3()

• Ndb::getReference()

• Ndb::init()

• Ndb::isConsistent() (DEPRECATED)

• Ndb::isConsistentGCI() (DEPRECATED)

• Ndb::isExpectingHigherQueuedEpochs()

• Ndb::Key_part_ptr

• Ndb::nextEvent() (DEPRECATED)

• Ndb::nextEvent2()

• Ndb::PartitionSpec

• Ndb::pollEvents()

• Ndb::pollEvents2()

• Ndb::setDatabaseName()

• Ndb::setDatabaseSchemaName()

• Ndb::setEventBufferQueueEmptyEpoch()

• Ndb::set_eventbuf_max_alloc()

• Ndb::set_eventbuffer_free_percent()

• Ndb::setNdbObjectName()

107

The Ndb Class

• Ndb::startTransaction()

Ndb Class Overview

Parent class None

Child classes None

Description Any nontrivial NDB API program makes use of at least one instance
of Ndb. By using several Ndb objects, it is possible to implement
a multithreaded application. You should remember that one Ndb
object cannot be shared between threads; however, it is possible
for a single thread to use multiple Ndb objects. A single application
process can support a maximum of 4711 Ndb objects.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.26 Ndb class methods and descriptions

Name Description

Ndb() Class constructor; represents a connection
to an NDB Cluster.

~Ndb() Class destructor; terminates a Cluster
connection when it is no longer to be used

closeTransaction()Closes a transaction.

computeHash() Computes a distribution hash value.

createEventOperation()Creates a subscription to a database
event. (See Section 2.3.16, “The
NdbEventOperation Class”.)

dropEventOperation()Drops a subscription to a database event.

getDictionary() Gets a dictionary, which is used for working
with database schema information.

getDatabaseName() Gets the name of the current database.

getDatabaseSchemaName()Gets the name of the current database
schema.

get_eventbuf_max_alloc()Gets the current allocated maximum size of
the event buffer.

get_eventbuffer_free_percent()Gets the percentage of event buffer
memory that should be available before
buffering resumes, once the limit has been
reached. Added in NDB 7.4.

get_event_buffer_memory_usage()Provides event buffer memory usage
information. Added in NDB 7.4.

getGCIEventOperations()Gets the next event operation from a GCI.
Deprecated in NDB 7.4.

getHighestQueuedEpoch()Gets the latest epoch in the event queue.
Added in NDB 7.4.

getLatestGCI() Gets the most recent GCI. Deprecated in
NDB 7.4.

getNdbError() Retrieves an error. (See Section 2.3.15,
“The NdbError Structure”.)

getNdbErrorDetail()Retrieves extra error details.

108

The Ndb Class

Name Description

getNdbObjectName()Retrieves the Ndb object name if one was
set.

getNextEventOpInEpoch2()Gets the next event operation in this global
checkpoint.

getNextEventOpInEpoch3()Gets the next event operation in this
global checkpoint, showing any received
anyvalues. Added in NDB 7.4.18 and 7.5.9.

getReference() Retrieves a reference or identifier for the
Ndb object instance.

init() Initializes an Ndb object and makes it ready
for use.

isConsistent() Whether all received events are consistent.
Deprecated in NDB 7.4.

isConsistentGCI() Whether all received events for a
given global checkpoint are consistent.
Deprecated in NDB 7.4.

isExpectingHigherQueuedEpochs()Check whether there are new queued
epochs, or there was a cluster failure
event. Added in NDB 7.4.7.

nextEvent() Gets the next event from the queue.
Deprecated in NDB 7.4.

nextEvent2() Gets the next event from the queue. Added
in NDB 7.4.

pollEvents() Waits for an event to occur. Deprecated in
NDB 7.4.

pollEvents2() Waits for an event to occur. Added in NDB
7.4.

setDatabaseName() Sets the name of the current database.

setDatabaseSchemaName()Sets the name of the current database
schema.

setEventBufferQueueEmptyEpoch()Enables queuing of empty events. Added
in NDB 7.4.11.

set_eventbuf_max_alloc()Sets the current allocated maximum size of
the event buffer.

set_eventbuffer_free_percent()Sets the percentage of event buffer
memory that should be available before
buffering resumes, once the limit has been
reached. Added in NDB 7.4.

setNdbObjectName()For debugging purposes: sets an arbitrary
name for this Ndb object.

startTransaction()Begins a transaction. (See Section 2.3.25,
“The NdbTransaction Class”.)

109

The Ndb Class

Types The Ndb class does not define any public typesbut does define three
data structures, which are listed here:

• EventBuffermemoryUsage

• Key_part_ptr

• PartitionSpec.

Resource consumption by Ndb objects. An Ndb object consumes memory in proportion to the
size of the largest operation performed over the lifetime of the object. This is particularly noticeable in
cases of large transactions, use of blob columns, or both. This memory is held for the lifetime of the
object, and once used in this way by the Ndb object, the only way to free this memory is to destroy the
object (and then to create a new instance if desired).

Note

The Ndb object is multithread safe in that each Ndb object can be handled by
one thread at a time. If an Ndb object is handed over to another thread, then the
application must ensure that a memory barrier is used to ensure that the new
thread sees all updates performed by the previous thread.

Semaphores and mutexes are examples of easy ways to provide memory
barriers without having to bother about the memory barrier concept.

It is also possible to use multiple Ndb objects to perform operations on different clusters in a single
application. See Section 1.5, “Application-level partitioning”, for conditions and restrictions applying to
such usage.

Ndb Class Constructor

Description This creates an instance of Ndb, which represents a connection to
the NDB Cluster. All NDB API applications should begin with the
creation of at least one Ndb object. This requires the creation of at
least one instance of Ndb_cluster_connection, which serves as
a container for a cluster connection string.

Signature Ndb
 (
 Ndb_cluster_connection* ndb_cluster_connection,
 const char* catalogName = "",
 const char* schemaName = "def"
)

Parameters The Ndb class constructor can take up to 3 parameters, of which
only the first is required:

• ndb_cluster_connection is an instance of
Ndb_cluster_connection, which represents a
cluster connection string. (See Section 2.3.12, “The
Ndb_cluster_connection Class”.)

• catalogName is an optional parameter providing a namespace
for the tables and indexes created in any connection from the Ndb
object.

This is equivalent to what mysqld considers “the database”.

The default value for this parameter is an empty string.

• The optional schemaName provides an additional namespace for
the tables and indexes created in a given catalog.

110

https://dev.mysql.com/doc/refman/8.4/en/mysqld.html

The Ndb Class

The default value for this parameter is the string “def”.

Return value An Ndb object.

Destructor The destructor for the Ndb class should be called in order to
terminate an instance of Ndb. It requires no arguments, nor any
special handling.

Ndb::closeTransaction()

Description This is one of two NDB API methods provided for closing a
transaction (the other being NdbTransaction::close()). You
must call one of these two methods to close the transaction once it
has been completed, whether or not the transaction succeeded.

If the transaction has not yet been committed, it is aborted when this
method is called. See Ndb::startTransaction().

Signature void closeTransaction
 (
 NdbTransaction *transaction
)

Parameters This method takes a single argument, a pointer to the
NdbTransaction to be closed.

Return value None (void).

Ndb::computeHash()

Description This method can be used to compute a distribution hash value,
given a table and its keys.

computeHash() can be used only for tables that use native NDB
partitioning.

Signature static int computeHash
 (
 Uint32* hashvalueptr,
 const NdbDictionary::Table* table,
 const struct Key_part_ptr* keyData,
 void* xfrmbuf = 0,
 Uint32 xfrmbuflen = 0
)

Parameters This method takes the following parameters:

• If the method call is successful, hashvalueptr is set to the
computed hash value.

• A pointer to a table (see Section 2.3.27, “The Table Class”).

• keyData is a null-terminated array of pointers to the key parts
that are part of the table's distribution key. The length of each key
part is read from metadata and checked against the passed value
(see Ndb::Key_part_ptr).

• xfrmbuf is a pointer to temporary buffer used to calculate the
hash value.

• xfrmbuflen is the length of this buffer.

111

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

The Ndb Class

If xfrmbuf is NULL (the default), then a call to malloc() or
free() is made automatically, as appropriate.

Prior to NDB 7.5.30, 7.6.26, 8.0.33: computeHash() fails if
xfrmbuf is not NULL and xfrmbuflen is too small.

NDB 7.5.30 and later, 7.6.26 and later, 8.0.33 and later: If the
buffer passed is not of sufficient size, a temporary buffer is
allocated automatically. (Bug #103814, Bug #32959894)

Note

When malloc() provides a buffer to this
method, the buffer is explicitly aligned
after it is allocated, and before it is actually
used. (Bug #16484617)

Return value 0 on success, an error code on failure. If the method call
succeeds, the computed hash value is made available through
hashvalueptr.

Ndb::createEventOperation()

Description This method creates a subscription to a database event.

 NDB API event subscriptions do not persist after an NDB Cluster
has been restored using ndb_restore; in such cases, all of the
subscriptions must be recreated explicitly.

Signature NdbEventOperation* createEventOperation
 (
 const char *eventName
)

Parameters This method takes a single argument, the unique eventName
identifying the event to which you wish to subscribe.

Return value A pointer to an NdbEventOperation object (or NULL, in the event
of failure). See Section 2.3.16, “The NdbEventOperation Class”.

Ndb::dropEventOperation()

Description This method drops a subscription to a database event represented
by an NdbEventOperation object.

Memory used by an event operation which has been dropped is not
freed until the event buffer has been completely read. This means
you must continue to call pollEvents() and nextEvent() in
such cases until these methods return 0 and NULL, respectively in
order for this memory to be freed.

Signature int dropEventOperation
 (
 NdbEventOperation *eventOp
)

Parameters This method requires a single input parameter, a pointer to an
instance of NdbEventOperation.

Return value 0 on success; any other result indicates failure.

Ndb::EventBufferMemoryUsage

112

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-restore.html

The Ndb Class

This section describes the EventBufferMemoryUsage structure.

Parent class Ndb

Description This structure was added in NDB 7.4 for working with event
buffer memory usage statistics. It is used as an argument to
Ndb::get_event_buffer_memory_usage().

Attributes EventBufferMemoryUsage has the attributes shown in the
following table:

Table 2.27 EventBufferMemoryUsage structure attributes, with
types, initial values, and descriptions

Name Type Initial Value Description

allocated_bytesunsigned none The total event buffer
memory allocated, in
bytes

used_bytesunsigned none The total memory used, in
bytes

usage_percentunsigned none Event buffer memory
usage, as a percent
(100 * used_bytes /
allocated_bytes)

Ndb::getDictionary()

Description This method is used to obtain an object for retrieving or
manipulating database schema information. This Dictionary
object contains meta-information about all tables in the cluster.

The dictionary returned by this method operates independently of
any transaction. See Section 2.3.3, “The Dictionary Class”, for more
information.

Signature NdbDictionary::Dictionary* getDictionary
 (
 void
) const

Parameters None.

Return value An instance of the Dictionary class.

Ndb::getDatabaseName()

Description This method can be used to obtain the name of the current
database.

Signature const char* getDatabaseName
 (
 void
)

Parameters None.

Return value The name of the current database.

Ndb::getDatabaseSchemaName()

Description This method can be used to obtain the current database schema
name.

113

The Ndb Class

Signature const char* getDatabaseSchemaName
 (
 void
)

Parameters None.

Return value The name of the current database schema.

Ndb::getGCIEventOperations() (DEPRECATED)

Description Iterates over distinct event operations which are part of the current
GCI, becoming valid after calling nextEvent(). You can use this
method to obtain summary information for the epoch (such as a list
of all tables) before processing the event data.

This method is deprecated, and subject to removal in a future
release. Where possible, use getNextEventOpInEpoch2()
instead.

Signature
const NdbEventOperation* getGCIEventOperations
 (
 Uint32* iter,
 Uint32* event_types
)

Parameters An iterator and a mask of event types. Set *iter=0 to start.

Return value The next event operation; returns NULL when there are no more
event operations. If event_types is not NULL, then after calling the
method it contains a bitmask of the event types received. .

Ndb::get_eventbuf_max_alloc()

Description Gets the maximum memory, in bytes, that can be used for
the event buffer. This is the same as reading the value of the
ndb_eventbuffer_max_alloc system variable in the MySQL
Server.

Signature unsigned get_eventbuf_max_alloc
 (
 void
)

Parameters None.

Return value The mamximum memory available for the event buffer, in bytes.

Ndb::get_eventbuffer_free_percent()

Description Gets ndb_eventbuffer_free_percent—that is, the
percentage of event buffer memory that should be available
before buffering resumes, once ndb_eventbuffer_max_alloc
has been reached. This value is calculated as used * 100 /
ndb_eventbuffer_max_alloc, where used is the amount of
event buffer memory actually used, in bytes.

This method was added in NDB 7.4.

Signature unsigned get_eventbuffer_free_percent
 (
 void

114

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_free_percent
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

)

Parameters The percentage (pct) of event buffer memory that must be present.
Valid range is 1 to 99 inclusive.

Return value None.

Ndb::get_event_buffer_memory_usage()

Description Gets event buffer usage as a percentage of
ndb_eventbuffer_max_alloc. Unlike
get_eventbuffer_free_percent(), this method makes
complete usage information available in the form of an
EventBufferMemoryUsage data structure.

This method was added in NDB 7.4.

Signature void get_event_buffer_memory_usage
 (
 EventBufferMemoryUsage&
)

Parameters A reference to an EventBufferMemoryUsage structure, which
receives the usage data.

Return value None.

Ndb::getHighestQueuedEpoch()

Description Added in NDB 7.4, this method supersedes getLatestGCI(),
which is now deprecated and subject to removal in a future NDB
Cluster release.

Prior to NDB 7.4.7, this method returned the highest epoch
number in the event queue. In NDB 7.4.7 and later, it returns the
highest epoch number found after calling pollEvents2() (Bug
#20700220).

Signature Uint64 getHighestQueuedEpoch
 (
 void
)

Parameters None.

Return value The most recent epoch number, an integer.

Ndb::getLatestGCI() (DEPRECATED)

Description Gets the index for the most recent global checkpoint.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should use
getHighestQueuedEpoch() instead.

Signature Uint64 getLatestGCI
 (
 void
)

Parameters None.

Return value The most recent GCI, an integer.

115

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

Ndb::getNdbError()

Description This method provides you with two different ways to obtain an
NdbError object representing an error condition. For more detailed
information about error handling in the NDB API, see NDB Cluster
API Errors.

Signature The getNdbError() method actually has two variants.

The first of these simply gets the most recent error to have occurred:

const NdbError& getNdbError
 (
 void
)

The second variant returns the error corresponding to a given error
code:

const NdbError& getNdbError
 (
 int errorCode
)

Regardless of which version of the method is used, the NdbError
object returned persists until the next NDB API method is invoked.

Parameters To obtain the most recent error, simply call getNdbError()
without any parameters. To obtain the error matching a specific
errorCode, invoke the method passing the code (an int) to it as a
parameter. For a listing of NDB API error codes and corresponding
error messages, see Section 2.4, “NDB API Errors and Error
Handling”.

Return value An NdbError object containing information about the error,
including its type and, where applicable, contextual information as to
how the error arose. See Section 2.3.15, “The NdbError Structure”,
for details.

Ndb::getNdbErrorDetail()

Description This method provides an easy and safe way to access any extra
information about an error. Rather than reading these extra
details from the NdbError object's details property (now now
deprecated in favor of getNdbErrorDetail()‐see Bug #48851).
This method enables storage of such details in a user-supplied
buffer, returning a pointer to the beginning of this buffer. In the event
that the string containing the details exceeds the length of the buffer,
it is truncated to fit.

getErrorDetail() provides the source of an error in the form
of a string. In the case of a unique constraint violation (error 893),
this string supplies the fully qualified name of the index where
the problem originated, in the format database-name/schema-
name/table-name/index-name, (NdbError.details, on the
other hand, supplies only an index ID, and it is often not readily
apparent to which table this index belongs.) Regardless of the type
of error and details concerning this error, the string retrieved by
getErrorDetail() is always null-terminated.

Signature The getNdbErrorDetail() method has the following signature:

const char* getNdbErrorDetail

116

https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html

The Ndb Class

 (
 const NdbError& error,
 char* buffer,
 Uint32 bufferLength
) const

Parameters To obtain detailed information about an error, call
getNdbErrorDetail() with a reference to the corresponding
NdbError object, a buffer, and the length of this buffer
(expressed as an unsigned 32-bit integer).

Return value When extra details about the error are available, this method
returns a pointer to the beginning of the buffer supplied. As
stated previously, if the string containing the details is longer than
bufferLength, the string is truncated to fit. In the event that no
addition details are available, getNdbErrorDetail() returns
NULL.

Ndb::getNdbObjectName()

Description If a name was set for the Ndb object prior to its initialization, you can
retrieve it using this method. Used for debugging.

Signature const char* getNdbObjectName
 (
 void
) const

Parameters None.

Return value The Ndb object name, if one has been set using
setNdbObjectName(). Otherwise, this method returns 0.

Ndb::getNextEventOpInEpoch2()

Description Iterates over individual event operations making up the current
global checkpoint. Use following nextEvent2() to obtain summary
information for the epoch, such as a listing of all tables, before
processing event data.

Exceptional epochs do not have any event operations associated
with them.

Signature const NdbEventOperation* getNextEventOpInEpoch2
 (
 Uint32* iter,
 Uint32* event_types
)

Parameters Set iter to 0 initially; this is NULL when there are no more events
within this epoch. If event_types is not NULL, it holds a bitmask of
the event types received.

Return value A pointer to the next NdbEventOperation, if there is one.

Ndb::getNextEventOpInEpoch3()

Description Iterates over individual event operations making up the
current global checkpoint. Use following nextEvent2() to
obtain summary information for the epoch, such as a listing
of all tables, before processing event data. Is the same as
getNextEventOpInEpoch3() but with the addition of a third

117

The Ndb Class

argument which holds the merger of all AnyValues received,
showing which bits are set for all operations on a given table.

Exceptional epochs do not have any event operations associated
with them.

This method was added in NDB 7.4.18 and 7.5.9. (Bug #26333981)

Signature const NdbEventOperation* getNextEventOpInEpoch2
 (
 Uint32* iter,
 Uint32* event_types
 Uint32* cumulative_any_value
)

Parameters Set iter to 0 initially; this is NULL when there are no more events
within this epoch. If event_types is not NULL, it holds a bitmask of
the event types received. If cumulative_any_value is not NULL,
it holds the merger of all AnyValues received.

Return value A pointer to the next NdbEventOperation, if there is one.

Ndb::getReference()

Description This method can be used to obtain a reference to a given Ndb
object. This is the same value that is returned for a given operation
corresponding to this object in the output of DUMP 2350.

Signature Uint32 getReference
 (
 void
)

Parameters None.

Return value A 32-bit unsigned integer.

Ndb::init()

Description This method is used to initialize an Ndb object.

Signature int init
 (
 int maxNoOfTransactions = 4
)

Parameters The init() method takes a single parameter
maxNoOfTransactions of type integer. This parameter specifies
the maximum number of parallel NdbTransaction objects that can
be handled by this instance of Ndb. The maximum permitted value
for maxNoOfTransactions is 1024; if not specified, it defaults to
4.

Each scan or index operation uses an extra NdbTransaction
object.

Return value This method returns an int, which can be either of the following two
values:

• 0: indicates that the Ndb object was initialized successfully.

• -1: indicates failure.

Ndb::isConsistent() (DEPRECATED)

118

https://dev.mysql.com/doc/ndb-internals/en/dump-command-2350.html

The Ndb Class

Description Check if all events are consistent. If a node failure occurs when
resources are exhausted, events may be lost and the delivered
event data might thus be incomplete. This method makes it possible
to determine if this is the case.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should instead
use NdbEventOperation::getEventType2() to determine
the type of event—in this instance, whether the event is of type
TE_INCONSISTENT. See Event::TableEvent.

Signature bool isConsistent
 (
 Uint64& gci
)

Parameters A reference to a global checkpoint index. This is the first
inconsistent GCI found, if any.

Return value true if all events are consistent.

Ndb::isConsistentGCI() (DEPRECATED)

Description If a node failure occurs when resources are exhausted, events
may be lost and the delivered event data might thus be incomplete.
This method makes it possible to determine if this is the case by
checking whether all events in a given GCI are consistent.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should instead
use NdbEventOperation::getEventType2() to determine
the type of event—in this instance, whether the event is of type
TE_INCONSISTENT. See Event::TableEvent.

Signature bool isConsistentGCI
 (
 Uint64 gci
)

Parameters A global checkpoint index.

Return value true if this GCI is consistent; false indicates that the GCI may be
possibly inconsistent.

Ndb::isExpectingHigherQueuedEpochs()

Description Check whether higher queued epochs have been seen by
the last invocation of Ndb::pollEvents2(), or whether a
TE_CLUSTER_FAILURE event was found.

It is possible, after a cluster failure has been detected, for the
highest queued epoch returned by pollEvents2() not to be
increasing any longer. In this case, rather than poll for more events,
you should instead consume events with nextEvent() until it
detects a TE_CLUSTER_FAILURE is detected, then reconnect to the
cluster when it becomes available again.

Signature bool isExpectingHigherQueuedEpochs
 (
 void
)

Parameters None.

119

The Ndb Class

Return value True if queued epochs were seen by the last pollEvents2() call
or, in the event of cluster failure.

Ndb::Key_part_ptr

This section describes the Key_part_ptr structure.

Parent class Ndb

Description Key_part_ptr provides a convenient way to define key-part data
when starting transactions and computing hash values, by passing
in pointers to distribution key values. When the distribution key has
multiple parts, they should be passed as an array, with the last
part's pointer set equal to NULL. See Ndb::startTransaction(), and
Ndb::computeHash(), for more information about how this structure
is used.

Attributes A Key_part_ptr has the attributes shown in the following table:

Table 2.28 Key_part_ptr structure attributes, with types, initial
values, and descriptions

Attribute Type Initial Value Description

ptr const void* none Pointer to
one or more
distribution key
values

len unsigned none The length of
the pointer

Ndb::nextEvent() (DEPRECATED)

Description Returns the next event operation having data from a subscription
queue.

This method clears inconsistent data events from the event
queue when processing them. In order to able to clear all such
events, applications must call this method even in cases when
pollEvents() has already returned 0.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should use
nextEvent2() instead.

Signature NdbEventOperation* nextEvent
 (
 void
)

Parameters None.

Return value This method returns an NdbEventOperation object representing
the next event in a subscription queue, if there is such an event. If
there is no event in the queue, it returns NULL instead.

Ndb::nextEvent2()

Description Returns the event operation associated with the data dequeued
from the event queue. This should be called repeatedly after
pollEvents2() populates the queue, until the event queue is
empty.

120

The Ndb Class

Added in NDB 7.4, this method supersedes nextEvent(), which
is now deprecated and subject to removal in a future NDB Cluster
release.

After calling this method, use
NdbEventOperation::getEpoch() to determine the
epoch, then check the type of the returned event data using
NdbEventOperation::getEventType2(). Handling must
be provided for all exceptional TableEvent types, including
TE_EMPTY, TE_INCONSISTENT, and TE_OUT_OF_MEMORY (also
introduced in NDB 7.4). No other NdbEventOperation methods
than the two named here should be called for an exceptional epoch.
Returning empty epochs (TE_EMPTY) may flood applications when
data nodes are idle. If this is not desirable, applications should filter
out any empty epochs.

Signature NdbEventOperation* nextEvent2
 (
 void
)

Parameters None.

Return value This method returns an NdbEventOperation object representing
the next event in an event queue, if there is such an event. If there is
no event in the queue, it returns NULL instead.

Ndb::PartitionSpec

This section provides information about the PartitionSpec structure.

Parent class Ndb

Description A PartitionSpec is used for describing a table partition using any
one of the following criteria:

• A specific partition ID for a table with user-defined partitioning.

• An array made up of a table's distribution key values for a table
with native partitioning.

• A row in NdbRecord format containing a natively partitioned
table's distribution key values.

Attributes A PartitionSpec has two attributes, a SpecType and a Spec
which is a data structure corresponding to that SpecType, as shown
in the following table:

Table 2.29 PartitionSpec attributes with the SpecType values,
data structures, and descriptions for each attribute.

SpecType
Enumeration

SpecType
Value
(Uint32)

Data Structure Description

PS_NONE 0 none No partitioning
information is
provided.

PS_USER_DEFINED1 Ndb::PartitionSpec::UserDefinedFor a table having
user-defined
partitioning, a

121

The Ndb Class

SpecType
Enumeration

SpecType
Value
(Uint32)

Data Structure Description

specific partition
is identified by its
partition ID.

PS_DISTR_KEY_PART_PTR2 Ndb::PartitionSpec::KeyPartPtrFor a table having
native partitioning,
an array containing
the table's
distribution key
values is used
to identify the
partition.

PS_DISTR_KEY_RECORD3 Ndb::PartitionSpec::KeyRecordThe partition is
identified using a
natively partitioned
table's distribution
key values, as
contained in
a row given in
NdbRecord
format.

UserDefined structure. This structure is used when the SpecType is PS_USER_DEFINED.

Table 2.30 Attribute types of the partitionId attribute of the PS_USER_DEFINED SpecType

Attribute Type Description

partitionId Uint32 The partition ID for the desired
table.

KeyPartPtr structure. This structure is used when the SpecType is PS_DISTR_KEY_PART_PTR.

Table 2.31 Attributes of the PS_DISTR_KEY_PART_PTR SpecType, with attribute types and
descriptions

Attribute Type Description

tableKeyParts Key_part_ptr Pointer to the distribution key
values for a table having native
partitioning.

xfrmbuf void* Pointer to a temporary buffer
used for performing calculations.

xfrmbuflen Uint32 Length of the temporary buffer.

KeyRecord structure. This structure is used when the SpecType is PS_DISTR_KEY_RECORD.

Table 2.32 PS_DISTR_KEY_RECORD SpecType attributes, with attribute types and descriptions

Attribute Type Description

keyRecord NdbRecord A row in NdbRecord format,
containing a table's distribution
keys.

keyRow const char* The distribution key data.

122

The Ndb Class

Attribute Type Description

xfrmbuf void* Pointer to a temporary buffer
used for performing calculations.

xfrmbuflen Uint32 Length of the temporary buffer.

Definition from Ndb.hpp. Because this is a fairly complex structure, we here provide the original
source-code definition of PartitionSpec, as given in storage/ndb/include/ndbapi/Ndb.hpp:

struct PartitionSpec
{
 /*
 Size of the PartitionSpec structure.
 */
 static inline Uint32 size()
 {
 return sizeof(PartitionSpec);
 }

 enum SpecType
 {
 PS_NONE = 0,
 PS_USER_DEFINED = 1,
 PS_DISTR_KEY_PART_PTR = 2,
 PS_DISTR_KEY_RECORD = 3
 };

 Uint32 type;

 union
 {
 struct {
 Uint32 partitionId;
 } UserDefined;

 struct {
 const Key_part_ptr* tableKeyParts;
 void* xfrmbuf;
 Uint32 xfrmbuflen;
 } KeyPartPtr;

 struct {
 const NdbRecord* keyRecord;
 const char* keyRow;
 void* xfrmbuf;
 Uint32 xfrmbuflen;
 } KeyRecord;
 };
};

Ndb::pollEvents()

Description This method waits for a GCP to complete. It is used to determine
whether any events are available in the subscription queue.

This method waits for the next epoch, rather than the next GCP.
See Section 2.3.16, “The NdbEventOperation Class”, for more
information.

This method is deprecated and subject to removal in a future NDB
Cluster release; use pollEvents2() instead.

Signature int pollEvents
 (
 int maxTimeToWait,
 Uint64* latestGCI = 0
)

123

The Ndb Class

Parameters This method takes the two parameters listed here:

• The maximum time to wait, in milliseconds, before “giving up” and
reporting that no events were available (that is, before the method
automatically returns 0).

A negative value causes the wait to be indefinite and never
time out. This is not recommended (and is not supported by the
successor method pollEvents2()).

• The index of the most recent global checkpoint. Normally, this
may safely be permitted to assume its default value, which is 0.

Return value pollEvents() returns a value of type int, which may be
interpreted as follows:

• > 0: There are events available in the queue.

• 0: There are no events available.

• In NDB 7.6.28, 8.0.35, 8.2.0, and later releases, a negative
value indicates failure and NDB_FAILURE_GCI (~(Uint64)0)
indicates cluster failure (Bug #35671818); 1 is returned when
encountering an exceptional event, except when only TE_EMPTY
events are found, as described later in this section.

When pollEvents() finds an exceptional event at the head of
the event queue, the method returns 1 and otherwise behaves as
follows:

• Empty events (TE_EMPTY) are removed from the event queue
head until an event containing data is found. When this results
in the entire queue being processed without encountering any
data, the method returns 0 (no events available) rather than 1.
This behavior makes this event type transparent to an application
using pollEvents().

• After encountering an event containing inconsistent data
(TE_INCONSISTENT) due to data node buffer overflow, the next
call to nextEvent() call removes the inconsistent data event
data from the event queue, and returns NULL. You should check
the inconsistency by calling isConsistent() immediately
thereafter.

Important: Although the inconsistent event data is removed from
the event queue by calling nextEvent(), information about the
inconsistency is removed only by another nextEvent() call
following this, that actually finds an event containing data.

• When pollEvents() finds a data buffer overflow event
(TE_OUT_OF_MEMORY), the event data is added to the
event queue whenever event buffer usage exceeds
ndb_eventbuffer_max_alloc. In this case, the next call to
nextEvent() exits the process.

Ndb::pollEvents2()

Description Waits for an event to occur. Returns as soon as any event data is
available. This method also moves an epoch's complete event data
to the event queue.

124

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

This method supersedes pollEvents(), which is now deprecated
and subject to removal in a future NDB Cluster release.

Signature int pollEvents2
 (
 int aMillisecondNumber,
 Uint64* highestQueuedEpoch = 0
)

Parameters This method takes the two parameters listed here:

• The maximum time to wait, in milliseconds, before giving up and
reporting that no events were available (that is, before the method
automatically returns 0).

Specifying a negative value for this argument causes
pollEvents2() to return -1, indicating an error.

• The index of the highest queued epoch. Normally, this may safely
be permitted to assume its default value, which is 0. If this value is
not NULL and new event data is available in the event queue, it is
set to the highest epoch found in the available event data.

Return value pollEvents2() returns an integer whose value can be interpreted
as follows:

• > 0: There are events available in the queue.

• 0: There are no events available.

• < 0: Indicates failure (possible error).

Ndb::setDatabaseName()

Description This method is used to set the name of the current database.

Signature void setDatabaseName
 (
 const char *databaseName
)

Parameters setDatabaseName() takes a single, required parameter, the
name of the new database to be set as the current database.

Return value None.

Ndb::setDatabaseSchemaName()

Description This method sets the name of the current database schema.

Signature void setDatabaseSchemaName
 (
 const char *databaseSchemaName
)

Parameters The name of the database schema.

Return value None.

Ndb::setEventBufferQueueEmptyEpoch()

Description Queuing of empty epochs is disabled by default. This method can
be used to enable such queuing, in which case any new, empty

125

The Ndb Class

epochs entering the event buffer following the method call are
queued.

When queuing of empty epochs is enabled, nextEvent()
associates an empty epoch to one and only one of the subscriptions
(event operations) connected to the subscribing Ndb object. This
means that there can be no more than one empty epoch per
subscription, even though the user may have many subscriptions
associated with the same Ndb object.

setEventBufferQueueEmptyEpoch() has no associated getter
method. This is intentional, and is due to the fact this setter applies
to queuing new epochs, whereas the queue itself may still reflect the
state of affairs that existed prior to invoking the setter. Thus, during
a transition period, an empty epoch might be found in the queue
even if queuing is turned off.

setEventBufferQueueEmptyEpoch() was added in NDB
7.4.11.

Signature void setEventBufferQueueEmptyEpoch
 (
 bool queue_empty_epoch
)

Parameters This method takes a single input parameter, a boolean. Invoking the
method with true enables queuing of empty events; passing false
to the method disables such queuing.

Return value None.

Ndb::set_eventbuf_max_alloc()

Description Sets the maximum memory, in bytes, that can be used for the
event buffer. This has the same effect as setting the value of the
ndb_eventbuffer_max_alloc system variable in the MySQL
Server.

Signature void set_eventbuf_max_alloc
 (
 unsigned size
)

Parameters The desired maximum size for the event buffer, in bytes.

Return value None.

Ndb::set_eventbuffer_free_percent()

Description Sets ndb_eventbuffer_free_percent—that is, the percentage
of event buffer memory that should be available before buffering
resumes, once ndb_eventbuffer_max_alloc has been
reached.

This method was added in NDB 7.4.

Signature int set_eventbuffer_free_percent
 (
 unsigned pct
)

Parameters The percentage (pct) of event buffer memory that must be present.
Valid range is 1 to 99 inclusive.

126

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_free_percent
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

Return value The value that was set.

Ndb::setNdbObjectName()

Description You can also set an arbitrary, human-readable name to identify
an Ndb object for debugging purposes. This name can then be
retrieved using getNdbObjectName(). This must be done prior to
calling init() for this object; trying to set a name after initialization
fails with an error.

You can set a name only once for a given Ndb object; subsequent
attempts after the name has already been set fail with an error.

Signature int setNdbObjectName
 (
 const char* name
)

Parameters A name that is intended to be human-readable.

Return value 0 on success.

Ndb::startTransaction()

Description This method is used to begin a new transaction. There are three
variants, the simplest of these using a table and a partition key or
partition ID to specify the transaction coordinator (TC). The third
variant makes it possible for you to specify the TC by means of a
pointer to the data of the key.

When the transaction is completed it must be closed using
NdbTransaction::close() or Ndb::closeTransaction().
Failure to do so aborts the transaction. This must be done
regardless of the transaction's final outcome, even if it fails due to an
error.

See Ndb::closeTransaction(), and NdbTransaction::close(), for more
information.

Signature NdbTransaction* startTransaction
 (
 const NdbDictionary::Table* table = 0,
 const char* keyData = 0,
 Uint32* keyLen = 0
)

Parameters This method takes the following three parameters:

• table: A pointer to a Table object. This is used to determine on
which node the transaction coordinator should run.

• keyData: A pointer to a partition key corresponding to table.

• keyLen: The length of the partition key, expressed in bytes.

Distribution-aware forms of startTransaction(). It is also possible to employ distribution
awareness with this method; that is, to suggest which node should act as the transaction coordinator.

Signature NdbTransaction* startTransaction
 (
 const NdbDictionary::Table* table,
 const struct Key_part_ptr* keyData,
 void* xfrmbuf = 0,
 Uint32 xfrmbuflen = 0
)

127

The Ndb Class

Parameters When specifying the transaction coordinator, this method takes the
four parameters listed here:

• A pointer to a table (Table object) used for deciding which
node should act as the transaction coordinator.

• A null-terminated array of pointers to the values of the distribution
key columns. The length of the key part is read from metadata
and checked against the passed value.

An Ndb::Key_part_ptr is defined as shown in
Ndb::Key_part_ptr.

• A pointer to a temporary buffer, used to calculate the hash value.

If xfrmbuf is NULL (the default), then a call to malloc() or
free() is made automatically, as appropriate.

Prior to NDB 7.5.30, 7.6.26, 8.0.33: startTransaction() fails
if xfrmbuf is not NULL and xfrmbuflen is too small.

NDB 7.5.30 and later, 7.6.26 and later, 8.0.33 and later: If the
buffer passed is not of sufficient size, a temporary buffer is
allocated automatically. (Bug #103814, Bug #32959894, Bug
#34917498)

• The length of the buffer.

Return value On success, an NdbTransaction object. In the event of failure,
NULL is returned.

Example Suppose that the table's partition key is a single BIGINT column.
Then you would declare the distribution key array as shown here:

Key_part_ptr distkey[2];

The value of the distribution key would be defined as shown here:

unsigned long long distkeyValue= 23;

The pointer to the distribution key array would be set as follows:

distkey[0].ptr= (const void*) &distkeyValue;

The length of this pointer would be set accordingly:

distkey[0].len= sizeof(distkeyValue);

The distribution key array must terminate with a NULL element. This
is necessary to avoid to having an additional parameter providing
the number of columns in the distribution key:

distkey[1].ptr= NULL;
distkey[1].len= NULL;

Setting the buffer to NULL permits startTransaction() to
allocate and free memory automatically:

xfrmbuf= NULL;

128

The Ndb_cluster_connection Class

xfrmbuflen= 0;

Now, when you start the transaction, you can access the node that
contains the desired information directly.

Another distribution-aware version of this method makes it possible
for you to specify a table and partition (using the partition ID) as
a hint for selecting the transaction coordinator, and is defined as
shown here:

NdbTransaction* startTransaction
 (
 const NdbDictionary::Table* table,
 Uint32 partitionId
)

In the event that the cluster has the same number of data nodes as
it has fragment replicas, specifying the transaction coordinator gains
no improvement in performance, since each data node contains
the entire database. However, where the number of data nodes is
greater than the number of fragment replicas (for example, where
NoOfReplicas is set equal to 2 in a cluster with four data nodes),
you should see a marked improvement in performance by using the
distribution-aware version of this method.

It is still possible to use this method as before, without specifying the
transaction coordinator. In either case, you must still explicitly close
the transaction, whether or not the call to startTransaction()
was successful.

2.3.12 The Ndb_cluster_connection Class

This section provides information about the Ndb_cluster_connection class, which models a
connection by a management server (ndb_mgmd) to a set of data nodes.

• Ndb_cluster_connection Class Overview

• Ndb_cluster_connection Class Constructor

• Ndb_cluster_connection::configure_tls()

• Ndb_cluster_connection::connect()

• Ndb_cluster_connection::get_auto_reconnect()

• Ndb_cluster_connection::get_latest_error()

• Ndb_cluster_connection::get_latest_error_msg()

• Ndb_cluster_connection::get_max_adaptive_send_time()

• Ndb_cluster_connection::get_next_ndb_object()

• Ndb_cluster_connection::get_num_recv_threads()

• Ndb_cluster_connection::get_recv_thread_activation_threshold()

• Ndb_cluster_connection::get_system_name()

• Ndb_cluster_connection::get_tls_certificate_path()

• ndb_cluster_connection::lock_ndb_objects()

• Ndb_cluster_connection::set_auto_reconnect()

129

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-mgmd.html

The Ndb_cluster_connection Class

• Ndb_cluster_connection::set_data_node_neighbour()

• Ndb_cluster_connection::set_max_adaptive_send_time()

• Ndb_cluster_connection::set_name()

• Ndb_cluster_connection::set_num_recv_threads()

• Ndb_cluster_connection::set_optimized_node_selection()

• Ndb_cluster_connection::set_recv_thread_activation_threshold()

• Ndb_cluster_connection::set_service_uri()

• Ndb_cluster_connection::set_recv_thread_cpu()

• Ndb_cluster_connection::set_timeout()

• Ndb_cluster_connection::unlock_ndb_objects()

• Ndb_cluster_connection::unset_recv_thread_cpu()

• Ndb_cluster_connection::wait_until_ready()

Ndb_cluster_connection Class Overview

Parent class None

Child classes None

Description An NDB application program should begin with the creation of a
single Ndb_cluster_connection object, and typically makes use
of a single Ndb_cluster_connection. The application connects
to a cluster management server when this object's connect()
method is called. By using the wait_until_ready() method it is
possible to wait for the connection to reach one or more data nodes.

An instance of Ndb_cluster_connection is used to create an
Ndb object.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.33 Ndb_cluster_connection class methods and
descriptions

Name Description

Ndb_cluster_connection()Constructor; creates a connection to a
cluster of data nodes.

configure_tls() Provides TLS configuration data.

connect() Connects to a cluster management server.

get_auto_reconnect()Gets the auto-reconnection
setting for API nodes using this
Ndb_cluster_connection.

get_latest_error()Whether or not the most recent attempt to
connect succeeded.

get_latest_error_msg()If the most recent attempt to connect failed,
provides the reason.

get_max_adaptive_send_time()Get timeout before adaptive send forces
the sending of all pending signals.

130

The Ndb_cluster_connection Class

Name Description

get_num_recv_threads()Get number of receive threads.

get_next_ndb_object()Used to iterate through multiple Ndb
objects.

get_recv_thread_activation_threshold()Get activation level for bound receive
threads.

get_tls_certificate_path()Get the path to the active TLS certificate.

get_system_name() Get the cluster's system name.

lock_ndb_objects()Disables the creation of new Ndb objects.

set_auto_reconnect()Enables or disables auto-
reconnection of API nodes using this
Ndb_cluster_connection.

set_data_node_neighbour()Sets a neighbor node for for optimal
transaction coordinator placement

set_max_adaptive_send_time()Set timeout to elapse before adaptive send
forces the sending of all pending signals.

set_name() Provides a name for the connection

set_num_recv_threads()Set number of receive threads to be bound.

set_recv_thread_cpu()Set one or more CPUs to bind receive
threads to.

set_optimized_node_selection()Used to control node-selection behavior.

set_service_uri() Set a URI for publication in the
ndbinfo.processes table

set_timeout() Sets a connection timeout

unlock_ndb_objects()Enables the creation of new Ndb objects.

unset_recv_thread_cpu()Unset the binding of the receive thread to
one or more CPUs.

wait_until_ready()Waits until a connection with one or more
data nodes is successful.

Ndb_cluster_connection Class Constructor

Description This method creates a connection to an NDB Cluster, that is, to
a cluster of data nodes. The object returned by this method is
required in order to instantiate an Ndb object. Thus, every NDB API
application requires the use of an Ndb_cluster_connection.

Signatures Ndb_cluster_connection has two constructors. The first of
these is shown here:

Ndb_cluster_connection
 (
 const char* connection_string = 0
)

The second constructor takes a node ID in addition to the
connection string argument. Its signature and parameters are shown
here:

Ndb_cluster_connection
 (
 const char* connection_string,
 int force_api_nodeid
)

131

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-processes.html

The Ndb_cluster_connection Class

Parameters The first version of the constructor requires a single
connection_string parameter, pointing to the location of the
management server.

The second version of the constructor takes two arguments, a
connection_string and the node ID (force_api_nodeid) to
be used by this API node. This node ID overrides any node ID value
set in the connection_string argument.

Return value An instance of Ndb_cluster_connection.

Ndb_cluster_connection::configure_tls()

Description Provides configuration information needed for a TLS connection.

If the node finds active NDB TLS node keys and certificates
(created using ndb_sign_keys or another tool) in the search
path, it can connect securely to other nodes. If this mehtod is not
called for a connection, the search path is the compiled-in default
(WITH_NDB_TLS_SEARCH_PATH), and the TLS level is 0 (relaxed).

See also TLS Link Encryption for NDB Cluster.

Signature void configure_tls
 (
 const char *tls_search_path,
 int mgm_tls_level
)

Parameters tls_search_path A colon-delimited list of
directories that may contain
TLS private key files or signed
public key certificates. A directory
reference contained in the search
path may be absolute or relative.
Environment variables are
expanded.

mgm_tls_level This is 0 or 1 to specify the
TLS requirement for securing
the MGM protocol connection
between this node and the
NDB Management server. 0
means the requirement for TLS
is relaxed; the node attempts
to use TLS, but the connection
succeeds even if TLS does not
do so. 1 sets a strict requirement
for TLS; failure to establish
TLS is treated as an error
(and a connection cannot be
established).

Return value none

Ndb_cluster_connection::connect()

Description This method connects to a cluster management server.

Signature int connect
 (
 int retries = 30,

132

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-sign-keys.html
https://dev.mysql.com/doc/refman/8.4/en/source-configuration-options.html#option_cmake_with_ndb_tls_search_path
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-tls.html

The Ndb_cluster_connection Class

 int delay = 1,
 int verbose = 0
)

Parameters This method takes three parameters, all of which are optional:

• retries specifies the number of times to retry the connection in
the event of failure. The default value is 30.

0 means that no additional attempts to connect are made in the
event of failure; using a negative value for retries results in the
connection attempt being repeated indefinitely.

• The delay represents the number of seconds between reconnect
attempts; the default is 1 second.

• verbose indicates whether the method should output a report
of its progress, with 1 causing this reporting to be enabled; the
default is 0 (reporting disabled).

Return value This method returns an int, which can have one of the following 3
values:

• 0: The connection attempt was successful.

• 1: Indicates a recoverable error.

• -1: Indicates an unrecoverable error.

Ndb_cluster_connection::get_auto_reconnect()

Description This method retrieves the current AutoReconnect setting for a
given Ndb_cluster_connection. For more detailed information,
see Ndb_cluster_connection::set_auto_reconnect().

Signature int get_auto_reconnect
 (
 void
)

Parameters None.

Return value An integer value 0 or 1, corresponding to the current
AutoReconnect setting in effect for for this connection. 0 forces
API nodes to use new connections to the cluster, while 1 enables
API nodes to re-use existing connections.

Ndb_cluster_connection::get_latest_error()

Description This method can be used to determine whether or
not the most recent connect() attempt made by
this Ndb_cluster_connection succeeded . If the
connection succeeded, get_latest_error() returns 0;
otherwise, it returns 1. If the connection attempt failed, use
Ndb_cluster_connection::get_latest_error_msg() to
obtain an error message giving the reason for the failure.

Signature int get_latest_error
 (
 void
) const

Parameters None.

133

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect

The Ndb_cluster_connection Class

Return value 1 or 0. A return value of 1 indicates that the latest attempt to
connect failed; if the attempt succeeded, a 0 is returned.

Ndb_cluster_connection::get_latest_error_msg()

Description If the most recent connection attempt by this
Ndb_cluster_connection failed (as determined by calling
get_latest_error()), this method provides an error message
supplying information about the reason for the failure.

Signature const char* get_latest_error_msg
 (
 void
) const

Parameters None.

Return value A string containing an error message describing a failure by
Ndb_cluster_connection::connect(). If the most recent
connection attempt succeeded, an empty string is returned.

Ndb_cluster_connection::get_max_adaptive_send_time()

Description Get the minimum time in milliseconds that is permit to lapse before
the adaptive send mechanism forces all pending signals to be sent.

Signature Uint32 get_max_adaptive_send_time
 (

)

Parameters None.

Return value Wait time as a number of milliseconds. This should always be a
value between 0 and 10, inclusive.

Ndb_cluster_connection::get_next_ndb_object()

Description This method is used to iterate over a set of Ndb objects, retrieving
them one at a time.

Signature const Ndb* get_next_ndb_object
 (
 const Ndb* p
)

Parameters This method takes a single parameter, a pointer to the last Ndb
object to have been retrieved or NULL.

Return value Returns the next Ndb object, or NULL if no more Ndb objects are
available.

Iterating over Ndb objects. To retrieve all existing Ndb objects, perform the following three steps:

1. Invoke the lock_ndb_objects() method. This prevents the creation of any new instances of
Ndb until the unlock_ndb_objects() method is called.

2. Retrieve the first available Ndb object by passing NULL to get_next_ndb_object(). You
can retrieve the second Ndb object by passing the pointer retrieved by the first call to the next
get_next_ndb_object() call, and so on. When a pointer to the last available Ndb instance is
used, the method returns NULL.

3. After you have retrieved all desired Ndb objects, you should re-enable Ndb object creation by
calling the unlock_ndb_objects() method.

134

The Ndb_cluster_connection Class

Ndb_cluster_connection::get_num_recv_threads()

Description Get the number of receiver threads.

Signature int get_num_recv_threads
 (
 void
) const

Parameters None.

Return value The number of receiver threads.

Ndb_cluster_connection::get_recv_thread_activation_threshold()

Description Get the level set for activating the receiver thread bound by
set_recv_thread_cpu().

Signature int get_recv_thread_activation_threshold
 (
 void
) const

Parameters None.

Return value An integer threshold value. See
Ndb_cluster_connection::set_recv_thread_activation_threshold(), for
information about interpreting this value.

Ndb_cluster_connection::get_system_name()

Description Gets the system name from the cluster configuration. This is
the value of the Name system configuration parameter set in the
cluster's config.ini configuration file.

Signature const char* get_system_name
 (
 void
) const

Parameters None.

Return value The cluster system name. If not set in the cluster configuration file,
this is a generated value in the form MC_timestamp (for example,
MC_20170426182343), using the time that the management server
was started.

Ndb_cluster_connection::get_tls_certificate_path()

Description Retrieve the pathname for the active TLS certificate file. Call after
calling connect().

Returns null if connect() has not yet been called, or no valid
key and certificate can be found in the TLS search path (whether
supplied to configure_tls() or the default).

This method was added in NDB 8.3.0.

Signature const char *get_tls_certificate_path
 (
 void
)
 const

Parameters None.

135

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-system-definition.html#ndbparam-system-name

The Ndb_cluster_connection Class

Return value The absolute path to the TLS certificate file that is currently active.

ndb_cluster_connection::lock_ndb_objects()

Description Calling this method prevents the creation of new instances of the
Ndb class. This method must be called prior to iterating over multiple
Ndb objects using get_next_ndb_object().

Signature void lock_ndb_objects
 (
 void
) const

This method is const beginning with NDB 7.4.13 (Bug #23709232).

For more information, see
Ndb_cluster_connection::get_next_ndb_object().

Parameters None.

Return value None.

Ndb_cluster_connection::set_auto_reconnect()

Description An API node that is disconnected from the cluster is forced to
use a new connection object to reconnect, unless this behavior is
overridden by setting AutoReconnect = 1 in the config.ini
file or calling this method with 1 as the input value. Calling the
method with 0 for the value has the same effect as setting the
AutoReconnect configuration parameter (also introduced in those
NDB Cluster versions) to 0; that is, API nodes are forced to create
new connections.

Important

When called, this method overrides any setting for AutoReconnect made in
the config.ini file.

For more information, see Defining SQL and Other API Nodes in an NDB Cluster.

Signature void set_auto_reconnect
 (
 int value
)

Parameters A value of 0 or 1 which determines API node reconnection
behavior. 0 forces API nodes to use new connections
(Ndb_cluster_connection objects); 1 permits API nodes to re-
use existing connections to the cluster.

Return value None.

Ndb_cluster_connection::set_data_node_neighbour()

Description Set data node neighbor of the connection, used for optimal
placement of the transaction coordinator. This method be used after
creating the Ndb_cluster_connection, but prior to starting any
query threads. This is due to the fact that this method may change
the internal state of the Ndb_cluster_connection shared by the
threads using it. This state is not thread-safe; changing it can lead to
non-optimal node selection at the time of the change.

You can use the ndb_data_node_neighbour server system
variable to set a data node neighbor for an NDB Cluster SQL node.

136

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_data_node_neighbour

The Ndb_cluster_connection Class

This method was added in NDB 7.5.

Signature void set_data_node_neighbour
 (
 Uint32 neighbour_node
)

Parameters The ID of the node to be used as the neighbor.

Return value None.

Ndb_cluster_connection::set_max_adaptive_send_time()

Description Set the minimum time in milliseconds that is permit to lapse before
the adaptive send mechanism forces all pending signals to be sent.

Signature void set_max_adaptive_send_time
 (
 Uint32 milliseconds
)

Parameters Wait time in milliseconds. The range is 0-10, with 10 being the
default value.

Return value None.

Ndb_cluster_connection::set_name()

Description Sets a name for the connection. If the name is specified, it is
reported in the cluster log.

Signature void set_name
 (
 const char* name
)

Parameters The name to be used as an identifier for the connection.

Return value None.

Ndb_cluster_connection::set_num_recv_threads()

Description Set the number of receiver threads bound
to the CPU (or CPUs) determined using
set_recv_thread_cpu() and with the threshold set by
set_recv_thread_activation_threshold().

This method should be invoked before trying to connect to any other
nodes.

Signature int set_num_recv_threads
 (
 Uint32 num_recv_threads
)

Parameters The number of receive threads. The only supported value is 1.

Return value -1 indicates an error; any other value indicates success.

Ndb_cluster_connection::set_optimized_node_selection()

Description This method can be used to override the connect() method's
default behavior as regards which node should be connected to first.

137

The Ndb_cluster_connection Class

Signature void set_optimized_node_selection
 (
 int value
)

Parameters An integer value.

Return value None.

Ndb_cluster_connection::set_recv_thread_activation_threshold()

Description Set the level for activating the receiver thread bound by
set_recv_thread_cpu(). Below this level, normal user threads
are used to receive signals.

Signature int set_recv_thread_activation_threshold
 (
 Uint32 threshold
)

Parameters An integer threshold value. 16 or higher means that receive
threads are never used as receivers. 0 means that the receive
thread is always active, and that retains poll rights for its own
exclusive use, effectively blocking all user threads from becoming
receivers. In such cases care should be taken to ensure that the
receive thread does not compete with the user thread for CPU
resources; it is preferable for it to be locked to a CPU for its own
exclusive use. The default is 8.

Return value -1 indicates an error; any other value indicates success.

Ndb_cluster_connection::set_service_uri()

Description Beginning with NDB 7.5.7, this method can be used to create a URI
for publication in service_URI column of the application's row in
the ndbinfo.processes table.

Provided that this method is called prior to invoking connect(), the
service URI is published immediately upon connection; otherwise,
it is published after a delay of up to HeartbeatIntervalDbApi
milliseconds.

Signature int set_service_uri
 (
 const char* scheme,
 const char* host,
 int port,
 const char* path
)

Parameters This method takes the parameters listed here:

• scheme: The URI scheme. This is resticted to lowercase letters,
numbers, and the characters ., +, and - (period, plus sign, and
dash). The maximu length is 16 characters; any characters over
this limit are truncated.

• host: The URI network address or host name. The maximum
length is 48 characters (sufficient for an IPv6 network address);
any characters over this limit are truncated. If null, each data
node reports the network address from its own connection to
this node. An Ndb_cluster_connection that uses multiple
transporters or network addresses to connect to different data

138

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-processes.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-heartbeatintervaldbapi

The Ndb_cluster_connection Class

nodes is reflected in multiple rows in the ndbinfo.processes
table.

• port: The URI port. This is not published if it is equal to 0.

• path: The URI path, possibly followed by a query string beginning
with ?. The maximum combined length of the path and query may
not exceed 128 characters; if longer, it is truncated to this length.

The path may not begin with a double slash (//).

Return value 0 on success, 1 in the event of a syntax error.

Ndb_cluster_connection::set_recv_thread_cpu()

Description Set the CPU or CPUs to which the receiver thread should be bound.
Set the level for activating the receiver thread as a receiver by
invoking set_recv_thread_activation_threshold().
Unset the binding for this receiver thread by invoking
unset_recv_thread_cpu().

Signature int set_recv_thread_cpu
 (
 Uint16* cpuid_array,
 Uint32 array_len,
 Uint32 recv_thread_id = 0
)

Parameters This method takes three parameters, listed here:

• An array of one or more CPU IDs to which the receive thread
should be bound

• The length of this array

• The thread ID of the receive thread to bind. The default value is 0.

Return value -1 indicates an error; any other value indicates success.

Ndb_cluster_connection::set_timeout()

Description Used to set a timeout for the connection, to limit the amount of time
that we may block when connecting.

This method is actually a wrapper for the MGM API function
ndb_mgm_set_timeout().

Signature int set_timeout
 (
 int timeout_ms
)

Parameters The length of the timeout, in milliseconds (timeout_ms). Currently,
only multiples of 1000 are accepted.

Return value 0 on success; any other value indicates failure.

Ndb_cluster_connection::unlock_ndb_objects()

Description This method undoes the effects of the lock_ndb_objects()
method, making it possible to create new instances of Ndb.
unlock_ndb_objects() should be called after you have finished
retrieving Ndb objects using the get_next_ndb_object()
method.

139

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-processes.html

The NdbBlob Class

Signature void unlock_ndb_objects
 (
 void
) const

This method is const beginning with NDB 7.4.13 (Bug #23709232).

For more information, see
Ndb_cluster_connection::get_next_ndb_object().

Parameters None.

Return value None.

Ndb_cluster_connection::unset_recv_thread_cpu()

Description Unset the CPU or CPUs to which the receiver thread was bound
using set_recv_thread_cpu().

Signature int unset_recv_thread_cpu
 (
 Uint32 recv_thread_id
)

Parameters The thread ID of the receiver thread to be unbound.

Return value -1 indicates an error; any other value indicates success.

Ndb_cluster_connection::wait_until_ready()

Description This method is needed to establish connections with the data nodes.
It waits until the requested connection with one or more data nodes
is successful, or until a timeout condition is met.

Signature int wait_until_ready
 (
 int timeoutBefore,
 int timeoutAfter
)

Parameters This method takes two parameters:

• timeoutBefore determines the number of seconds to wait until
the first “live” node is detected. If this amount of time is exceeded
with no live nodes detected, then the method immediately returns
a negative value.

• timeoutAfter determines the number of seconds to wait after
the first “live” node is detected for all nodes to become active.
If this amount of time is exceeded without all nodes becoming
active, then the method immediately returns a value greater than
zero.

Return value wait_until_ready() returns an int, whose value is interpreted
as follows:

• = 0: All nodes are “live”.

• > 0: At least one node is “live” (however, it is not known whether
all nodes are “live”).

• < 0: An error occurred.

2.3.13 The NdbBlob Class

140

The NdbBlob Class

This section provides information about the NdbBlob class, which models a handle to a blob column
and provides read and write access to blob column values. This object has a number of different states
and provides several modes of access to blob data; these are also described in this section.

• NdbBlob Class Overview

• NdbBlob::ActiveHook

• NdbBlob::blobsFirstBlob()

• NdbBlob::blobsNextBlob()

• NdbBlob::close()

• NdbBlob::getBlobEventName()

• NdbBlob::getBlobTableName()

• NdbBlob::getColumn()

• NdbBlob::getLength()

• NdbBlob::getNull()

• NdbBlob::getNdbError()

• NdbBlob::getNdbOperation()

• NdbBlob::getPos()

• NdbBlob::getState()

• NdbBlob::getValue()

• NdbBlob::getVersion()

• NdbBlob::readData()

• NdbBlob::setActiveHook()

• NdbBlob::setNull()

• NdbBlob::setPos()

• NdbBlob::setValue()

• NdbBlob::State

• NdbBlob::truncate()

• NdbBlob::writeData()

NdbBlob Class Overview

Parent class None

Child classes None

Description This class has no public constructor. An instance of NdbBlob is
created using the NdbOperation::getBlobHandle() method
during the operation preparation phase. (See Section 2.3.20, “The
NdbOperation Class”.) This object acts as a handle on a blob
column.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

141

The NdbBlob Class

Table 2.34 NdbBlob class methods and descrptions

Name Description

blobsFirstBlob() Gets the first blob in a list.

blobsNextBlob() Gets the next blob in a list

close() Release internal resources prior to commit
or abort

getBlobEventName()Gets a blob event name

getBlobTableName()Gets a blob data segment's table name.

getColumn() Gets a blob column.

getLength() Gets the length of a blob, in bytes

getNdbError() Gets an error (an NdbError object)

getNdbOperation() Get a pointer to the operation
(NdbOperation object) to which this
NdbBlob object belonged when created.

getNull() Checks whether a blob value is NULL

getPos() Gets the current position for reading/writing

getState() Gets the state of an NdbBlob object

getValue() Prepares to read a blob value

getVersion() Checks whether a blob is statement-based
or event-based

readData() Reads data from a blob

setActiveHook() Defines a callback for blob handle
activation

setNull() Sets a blob to NULL

setPos() Sets the position at which to begin reading/
writing

setValue() Prepares to insert or update a blob value

truncate() Truncates a blob to a given length

writeData() Writes blob data

getBlobTableName() and getBlobEventName() are static
methods.

Most NdbBlob methods (nearly all of those whose return type is
int) return 0 on success and -1 in the event of failure.

Types The public types defined by NdbBlob are shown here:

Table 2.35 NdbBlob types and descriptions

Name Description

ActiveHook() Callback for
NdbBlob::setActiveHook()

State() Represents the states that may be
assumed by the NdbBlob.

Blob Data Storage. Blob data is stored in 2 locations:

• The header and inline bytes are stored in the blob column.

142

The NdbBlob Class

• The blob's data segments are stored in a separate table named NDB$BLOB_tid_cid, where tid is
the table ID, and cid is the blob column ID.

The inline and data segment sizes can be set using the appropriate Column methods when the table is
created. See Section 2.3.1, “The Column Class”, for more information about these methods.

Data Access Types. NdbBlob supports 3 types of data access: These data access types can be
applied in combination, provided that they are used in the order given above.

• In the preparation phase, the NdbBlob methods getValue() and setValue() are used to
prepare a read or write of a blob value of known size.

• Also in the preparation phase, setActiveHook() is used to define a routine which is invoked as
soon as the handle becomes active.

• In the active phase, readData() and writeData() are used to read and write blob values having
arbitrary sizes.

Blob operations. Blob operations take effect when the next transaction is executed. In some cases,
NdbBlob is forced to perform implicit execution. To avoid this, you should always operate on complete
blob data segments.

Use NdbTransaction::executePendingBlobOps() to flush reads and writes, which avoids any
execution penalty if no operations are pending. This is not necessary following execution of operations,
or after the next scan result.

NdbBlob also supports reading post- or pre-blob data from events. The handle can be read after
the next event on the main table has been retrieved. The data becomes available immediately. (See
Section 2.3.16, “The NdbEventOperation Class”, for more information.)

Blobs and NdbOperations. NdbOperation methods acting on NdbBlob objects have the
following characteristics:.

• NdbOperation::insertTuple() must use NdbBlob::setValue() if the blob attribute is
nonnullable.

• NdbOperation::readTuple() used with any lock mode can read but not write blob values.

When the LM_CommittedRead lock mode is used with readTuple(), the lock mode is
automatically upgraded to LM_Read whenever blob attributes are accessed.

• NdbOperation::updateTuple() can either overwrite an existing value using
NdbBlob::setValue(), or update it during the active phase.

• NdbOperation::writeTuple() always overwrites blob values, and must use
NdbBlob::setValue() if the blob attribute is nonnullable.

• NdbOperation::deleteTuple() creates implicit, nonaccessible blob handles.

• A scan with any lock mode can use its blob handles to read blob values but not write them.

A scan using the LM_Exclusive lock mode can update row and blob values using
updateCurrentTuple(); the operation returned must explicitly create its own blob handle.

A scan using the LM_Exclusive lock mode can delete row values (and therefore blob values) using
deleteCurrentTuple(); this create implicit nonaccessible blob handles.

• An operation which is returned by lockCurrentTuple() cannot update blob values.

Known Issues. The following are known issues or limitations encountered when working with
NdbBlob objects:

• Too many pending blob operations can overflow the I/O buffers.

143

The NdbBlob Class

• The table and its blob data segment tables are not created atomically.

NdbBlob::ActiveHook

ActiveHook is a data type defined for use as a callback for the setActiveHook() method. (See
NdbBlob::setActiveHook().)

Definition. ActiveHook is a custom data type defined as shown here:

typedef int ActiveHook
 (
 NdbBlob* me,
 void* arg
)

Description This is a callback for NdbBlob::setActiveHook(), and is
invoked immediately once the prepared operation has been
executed (but not committed). Any calls to getValue() or
setValue() are performed first. The blob handle is active so
readData() or writeData() can be used to manipulate the blob
value. A user-defined argument is passed along with the NdbBlob.
setActiveHook() returns a nonzero value in the event of an
error.

NdbBlob::blobsFirstBlob()

Description This method initialises a list of blobs belonging to the current
operation and returns the first blob in the list.

Signature NdbBlob* blobsFirstBlob
 (
 void
)

Parameters None.

Return value A pointer to the desired blob.

NdbBlob::blobsNextBlob()

Description Use the method to obtain the next in a list of blobs
that was initialised using blobsFirstBlob(). See
NdbBlob::blobsFirstBlob().

Signature NdbBlob* blobsNextBlob
 (
 void
)

Parameters None.

Return value A pointer to the desired blob.

NdbBlob::close()

Description Closes the blob handle, releasing internal resources as it does so,
prior to committing or aborting the transaction. In other words, this
signals that an application has finished with reading from a given
blob. This method can be called only when the blob's State is
Active.

Signature int close
 (
 bool execPendingBlobOps = true
)

144

The NdbBlob Class

Parameters This method has a single boolean parameter
execPendingBlobOps. If the value of this parameter true
(the default), any pending blob operations are flushed before the
blob handle is closed. If execPendingBlobOps is false, then
it is assumed that the blob handle has no pending read or write
operations to flush.

Return value 0 on success.

Read operations and locking. When a blob handle is created on a read operation using LM_Read
or LM_Exclusive as the LockMode, the read operation can be unlocked only once all Blob handles
created on this operation have been closed.

When a row containing blobs has been read with lock mode LM_CommittedRead, the mode is
automatically upgraded to LM_Read to ensure consistency. In this case, when all the blob handles for
the row have been closed, an unlock operation for the row is automatically performed by the call to the
close() method, which adds a pending write operation to the blob. The upgraded lock is released
following the call to execute().

NdbBlob::getBlobEventName()

Description This method gets a blob event name. The blob event is created if
the main event monitors the blob column. The name includes the
main event name.

Signature static int getBlobEventName
 (
 char* name,
 Ndb* ndb,
 const char* event,
 const char* column
)

Parameters This method takes the four parameters listed here:

• name: The name of the blob event.

• ndb: The relevant Ndb object.

• event: The name of the main event.

• column: The blob column.

Return value 0 on success, -1 on failure.

NdbBlob::getBlobTableName()

Description This method gets the blob data segment table name.

This method is generally of use only for testing and debugging
purposes.

Signature static int getBlobTableName
 (
 char* name,
 Ndb* ndb,
 const char* table,
 const char* column
)

Parameters This method takes the four parameters listed here:

• name: The name of the blob data segment table.

• ndb: The relevant Ndb object.

145

The NdbBlob Class

• table: The name of the main table.

• column: The blob column.

Return value Returns 0 on success, -1 on failure.

NdbBlob::getColumn()

Description Use this method to get the blob column to which the NdbBlob
belongs.

Signature const Column* getColumn
 (
 void
)

Parameters None.

Return value A Column object.

NdbBlob::getLength()

Description This method gets the blob's current length in bytes.

Signature int getLength
 (
 Uint64& length
)

Parameters A reference to the length.

Return value The blob's length in bytes. For a NULL blob, this method returns 0.
to distinguish between a blob whose length is 0 blob and one which
is NULL, use the getNull() method.

NdbBlob::getNull()

Description This method checks whether the blob's value is NULL.

Signature int getNull
 (
 int& isNull
)

Parameters A reference to an integer isNull. Following invocation, this
parameter has one of the following values, interpreted as shown
here:

• -1: The blob is undefined. If this is a nonevent blob, this result
causes a state error.

• 0: The blob has a nonnull value.

• 1: The blob's value is NULL.

Return value None.

NdbBlob::getNdbError()

Description Use this method to obtain an error object. The error may be blob-
specific or may be copied from a failed implicit operation. The error
code is copied back to the operation unless the operation already
has a nonzero error code.

146

The NdbBlob Class

Signature const NdbError& getNdbError
 (
 void
) const

Parameters None.

Return value An NdbError object.

NdbBlob::getNdbOperation()

Description This method can be used to find the operation with which the handle
for this NdbBlob is associated.

Signature const NdbOperation* getNdbOperation
 (
 void
) const

Parameters None.

Return value A pointer to an operation.

The operation referenced by the pointer returned by this
method may be represented by either an NdbOperation or
NdbScanOperation object.

See Section 2.3.20, “The NdbOperation Class”, and Section 2.3.24,
“The NdbScanOperation Class”, for more information.

NdbBlob::getPos()

Description This method gets the current read/write position in a blob.

Signature int getPos
 (
 Uint64& pos
)

Parameters One parameter, a reference to the position.

Return value Returns 0 on success, or -1 on failure. (Following a successful
invocation, pos will hold the current read/write position within the
blob, as a number of bytes from the beginning.)

NdbBlob::getState()

Description This method gets the current state of the NdbBlob object for which
it is invoked. Possible states are described in NdbBlob::State.

Signature State getState
 (
 void
)

Parameters None.

Return value A value of type State.

NdbBlob::getValue()

Description Use this method to prepare to read a blob value; the value is
available following invocation. Use getNull() to check for a NULL
value; use getLength() to get the actual length of the blob, and
to check for truncation. getValue() sets the current read/write
position to the point following the end of the data which was read.

147

The NdbBlob Class

Signature int getValue
 (
 void* data,
 Uint32 bytes
)

Parameters This method takes two parameters. The first of these is a pointer to
the data to be read; the second is the number of bytes to be read.

Return value 0 on success, -1 on failure.

NdbBlob::getVersion()

Description This method is used to distinguish whether a blob operation is
statement-based or event-based.

Signature void getVersion
 (
 int& version
)

Parameters This method takes a single parameter, an integer reference to the
blob version (operation type).

Return value One of the following three values:

• -1: This is a “normal” (statement-based) blob.

• 0: This is an event-operation based blob, following a change in its
data.

• 1: This is an event-operation based blob, prior to any change in its
data.

getVersion() is always successful, assuming that it is invoked as
a method of a valid instance of NdbBlob.

NdbBlob::readData()

Description This method is used to read data from a blob.

Signature int readData
 (
 void* data,
 Uint32& bytes
)

Parameters readData() accepts a pointer to the data to be read, and a
reference to the number of bytes read.

Return value Returns 0 on success, -1 on failure. Following a successful
invocation, data points to the data that was read, and bytes holds
the number of bytes read.

NdbBlob::setActiveHook()

Description This method defines a callback for blob handle activation. The
queue of prepared operations will be executed in no-commit
mode up to this point; then, the callback is invoked. For additional
information, see NdbBlob::ActiveHook.

Signature int setActiveHook
 (
 ActiveHook* activeHook,
 void* arg

148

The NdbBlob Class

)

Parameters This method requires the two parameters listed here:

• A pointer to an ActiveHook.

• A pointer to void, for any data to be passed to the callback.

Return value 0 on success, -1 on failure.

NdbBlob::setNull()

Description This method sets the value of a blob to NULL.

Signature int setNull
 (
 void
)

Parameters None.

Return value 0 on success; -1 on failure.

NdbBlob::setPos()

Description This method sets the position within the blob at which to read or
write data.

Signature int setPos
 (
 Uint64 pos
)

Parameters The setPos() method takes a single parameter pos (an unsigned
64-bit integer), which is the position for reading or writing data. The
value of pos must be between 0 and the blob's current length.

Important

“Sparse” blobs are not supported in the NDB API; in other words, there can be
no unused data positions within a blob.

Return value 0 on success, -1 on failure.

NdbBlob::setValue()

Description This method is used to prepare for inserting or updating a blob
value. Any existing blob data that is longer than the new data is
truncated. The data buffer must remain valid until the operation has
been executed. setValue() sets the current read/write position to
the point following the end of the data. You can set data to a null
pointer (0) in order to create a NULL value.

Signature int setValue
 (
 const void* data,
 Uint32 bytes
)

Parameters This method takes the two parameters listed here:

• The data that is to be inserted or used to overwrite the blob
value.

• The number of bytes—that is, the length—of the data.

149

The NdbBlob Class

Return value 0 on success, -1 on failure.

NdbBlob::State

This is an enumerated data type which represents the possible states of an NdbBlob instance.

Description An NdbBlob may assume any one of these states

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.36 NdbBlob::State type values and descriptions

Name Description

Idle The NdbBlob has not yet been prepared
for use with any operations.

Prepared This is the state of the NdbBlob prior to
operation execution.

Active This is the blob handle's state following
execution or the fetching of the next result,
but before the transaction is committed.

Closed This state occurs after the transaction has
been committed.

Invalid This follows a rollback or the close of a
transaction.

NdbBlob::truncate()

Description This method is used to truncate a blob to a given length.

Signature int truncate
 (
 Uint64 length = 0
)

Parameters truncate() takes a single parameter which specifies the new
length to which the blob is to be truncated. This method has no
effect if length is greater than the blob's current length (which you
can check using getLength()).

Return value 0 on success, -1 on failure.

NdbBlob::writeData()

Description This method is used to write data to an NdbBlob. After a successful
invocation, the read/write position will be at the first byte following
the data that was written to the blob.

A write past the current end of the blob data extends the blob
automatically.

Signature int writeData
 (
 const void* data,
 Uint32 bytes
)

Parameters This method takes two parameters, a pointer to the data to be
written, and the number of bytes to write.

Return value 0 on success, -1 on failure.

150

The NdbDictionary Class

2.3.14 The NdbDictionary Class

This section provides information about the NdbDictionary class, which stores meta-information
about NDB database objects, such as tables, columns, and indexes.

While the preferred method of database object creation and deletion is through the MySQL Server,
NdbDictionary also permits the developer to perform these tasks through the NDB API.

• NdbDictionary Class Overview

• NdbDictionary::AutoGrowSpecification

• NdbDictionary::getEmptyBitmask()

• NdbDictionary::getFirstAttrId()

• NdbDictionary::getNextAttrId()

• NdbDictionary::getNullBitOffset()

• NdbDictionary::getOffset()

• NdbDictionary::getRecordIndexName()

• NdbDictionary::getRecordRowLength()

• NdbDictionary::getRecordTableName()

• NdbDictionary::getRecordType()

• NdbDictionary::getValuePtr()

• NdbDictionary::isNull()

• NdbDictionary::RecordSpecification

• NdbDictionary::setNull()

NdbDictionary Class Overview

Parent class None

Child classes Dictionary, Column, Object

For the numeric equivalents to enumerations of NdbDictionary
subclasses, see the file /storage/ndb/include/ndbapi/
NdbDictionary.hpp in the NDB Cluster source tree.

Description This is a data dictionary class that supports enquiries about tables,
columns, and indexes. It also provides ways to define these
database objects and to remove them. Both sorts of functionality
are supplied using inner classes that model these objects. These
include the following inner classes:

• Table for working with tables

• Column for creating table columns

• Index for working with secondary indexes

• Dictionary for creating database objects and making schema
enquiries

151

The NdbDictionary Class

• Event for working with events in the cluster.

Additional Object subclasses model the tablespaces, log file
groups, data files, and undo files required for working with NDB
Cluster Disk Data table, as well as with foreign key constraints.

Tables and indexes created using NdbDictionary cannot be
viewed from the MySQL Server.

Dropping indexes through the NDB API that were created originally
from an NDB Cluster causes inconsistencies. It is possible that a
table from which one or more indexes have been dropped using
the NDB API will no longer be usable by MySQL following such
operations. In this event, the table must be dropped, and then re-
created using MySQL to make it accessible to MySQL once more.

Methods NdbDictionary itself has no public instance methods, only
static methods that are used for working with NdbRecord objects.
Operations not using NdbRecord are accomplished by means of
NdbDictionary subclass instance methods. The following table
lists the public methods of NdbDictionary and the purpose or use
of each method:

Table 2.37 NdbDictionary class methods and descriptions

Name Description

getEmptyBitmask() Returns an empty column presence
bitmask which can be used with
NdbRecord

getFirstAttrId() Get the first attribute ID specified by a
given NdbRecord object

getRecordIndexName()Gets the name of the index object referred
to by an NdbRecord

getRecordRowLength()Get the number of bytes needed to store
one row of data using a given NdbRecord

getRecordTableName()Gets the name of the table object referred
to by an NdbRecord

getRecordType() Gets the RecordType of an NdbRecord

getValuePtr() Returns a pointer to the beginning of
stored data specified by attribute ID, using
NdbRecord

isNull() Show whether the null bit for a column is
true or false

setNull() Set a column's null bit

Types NdbDictionary defines two data structures, listed here:

• AutoGrowSpecification

• RecordSpecification

NdbDictionary::AutoGrowSpecification

This section provides information about the AutoGrowSpecification data structure.

Parent class NdbDictionary

152

The NdbDictionary Class

Description The AutoGrowSpecification is a data structure defined in
the NdbDictionary class, and is used as a parameter to or
return value of some of the methods of the Tablespace and
LogfileGroup classes.

Members AutoGrowSpecification has the members shown in the
following table:

Table 2.38 NdbDictionary::AutoGrowSpecification data
structure member names and descriptions

Name Description

min_free ???

max_size ???

file_size ???

filename_pattern ???

NdbDictionary::getEmptyBitmask()

Description Returns an empty column presence bitmask which can be used with
any NdbRecord to specify that no NdbRecord columns are to be
included in the operation.

Signature static const unsigned char* getEmptyBitmask
 (
 void
)

Parameters None.

Return value An empty bitmask.

NdbDictionary::getFirstAttrId()

Description Get the first attribute ID specified by an NdbRecord object. Returns
false if no attribute ID is specified.

Signature static bool getFirstAttrId
 (
 const NdbRecord* record,
 Uint32& firstAttrId
)

Parameters A pointer to an NdbRecord and a reference to the attribute
(firstAttrID).

Return value Boolean false, when no attribute ID can be obtained.

NdbDictionary::getNextAttrId()

Description Get the next attribute ID specified by an NdbRecord object
following the attribute ID passed in. Returns false when there are
no more attribute IDs to be returned.

Signature static bool getNextAttrId
 (
 const NdbRecord* record,
 Uint32& attrId
)

Parameters A pointer to an NdbRecord and a reference to an attribute ID.

Return value Boolean false, when no attribute ID can be obtained.

153

The NdbDictionary Class

NdbDictionary::getNullBitOffset()

Description Get the offset of the given attribute ID's null bit from the start of the
NdbRecord row. Returns false if the attribute ID is not present.

Signature static bool getNullBitOffset
 (
 const NdbRecord* record,
 Uint32 attrId,
 Uint32& bytes,
 Uint32& bit
)

Parameters An NdbRecord record in which to get the null bit offset of the
given attribute ID (attrId). The offset is expressed as a number of
bytes (bytes) plus a number of bits within the last byte (bit).

Return value Boolean false, if the attribute with the given ID is not present.

NdbDictionary::getOffset()

Description Get the offset of the given attribute ID's storage from the start of the
NdbRecord row. Returns false if the attribute id is not present

Signature static bool getOffset
 (
 const NdbRecord* record,
 Uint32 attrId,
 Uint32& offset
)

Parameters The offset of the given attribute ID's storage from the start of the
NdbRecord row.

Return value Boolean false, if no attribute ID can be found.

NdbDictionary::getRecordIndexName()

Description Get the name of the Index object that the NdbRecord refers to.

Signature static const char* getRecordIndexName
 (
 const NdbRecord* record
)

Parameters A pointer to the NdbRecord for which to get the name.

Return value The name, if any. Otherwise, or if the NdbRecord object is not of
the IndexAccess type, this method returns null.

NdbDictionary::getRecordRowLength()

Description Get the number of bytes needed to store one row of data laid out as
described by the NdbRecord structure passed in to this method.

Signature
static Uint32 getRecordRowLength
 (
 const NdbRecord* record
)

Parameters An NdbRecord object.

Return value The number of bytes needed per row.

NdbDictionary::getRecordTableName()

154

The NdbDictionary Class

Description Return the name of the table object that the NdbRecord refers to.
This method returns null if the record is not a TableAccess.

Signature static const char* getRecordTableName
 (
 const NdbRecord* record
)

Parameters The record (NdbRecord object) for which to get the table name.

Return value The name of the table, or null if the NdbRecord object' type is not
TableAccess.

NdbDictionary::getRecordType()

Description Return the type of the NdbRecord object passed.

Signature static RecordType getRecordType
 (
 const NdbRecord* record
)

Parameters An NdbRecord object.

Return value The RecordType of the NdbRecord (IndexAccess or
TableAccess).

NdbDictionary::getValuePtr()

Description Returns a pointer to the beginning of stored data specified by
attribute ID, by looking up the offset of the column stored in the
NdbRecord object and returning the sum of the row position and the
offset.

Signature This method provides both row-const and non-row-const versions:

static const char* getValuePtr
 (
 const NdbRecord* record,
 const char* row,
 Uint32 attrId
)

static char* getValuePtr
 (
 const NdbRecord* record,
 char* row,
 Uint32 attrId
)

Parameters A pointer to an NdbRecord object describing the row format, a
pointer to the start of the row data (const in the const version of
this method), and the attribute ID of the column,

Return value A pointer to the start of the attribute in the row. This is null if the
attribute is not part of the NdbRecord definition.

NdbDictionary::isNull()

Description Indicate whether the null bit for the given column is set to true or
false. The location of the null bit in relation to the row pointer is
obtained from the passed NdbRecord object. If the column is not
nullable, or if the column is not part of the NdbRecord definition, the
method returns false.

Signature static bool isNull
 (

155

The NdbDictionary Class

 const NdbRecord* record,
 const char* row,
 Uint32 attrId
)

Parameters A pointer to an NdbRecord object describing the row format, a
pointer to the start of the row data, and the attribute ID of the column
to check.

Return value Boolean true if the attribute ID exists in this NdbRecord, is
nullable, and this row's null bit is set; otherwise, Boolean false.

NdbDictionary::RecordSpecification

This section provides information about the RecordSpecification structure.

Parent class NdbDictionary

Description This structure is used to specify columns and range offsets when
creating NdbRecord objects.

Members The elements making up this structure are shown in the following
table:

Table 2.39 NdbDictionary::RecordSpecification attributes, with
types and descriptions

Name Type Description

column Column The column
described by this
entry (the column's
maximum size
defines the field size
for the row). Even
when creating an
NdbRecord for an
index, this must point
to a column obtained
from the underlying
table, and not from
the index itself.

offset Uint32 The offset of data
from the beginning
of a row. For reading
blobs, the blob
handle (NdbBlob),
rather than the actual
blob data, is written
into the row. This
means that there
must be at least
sizeof(NdbBlob*)
must be available in
the row.

nullbit_byte_offsetUint32 The offset from the
beginning of the row
of the byte containing
the NULL bit.

nullbit_bit_in_byteUint32 NULL bit (0-7).

156

The NdbError Structure

nullbit_byte_offset and nullbit_bit_in_byte are not
used for non-nullable columns.

For more information, see Section 2.3.22, “The NdbRecord
Interface”.

NdbDictionary::setNull()

Description Set the null bit for the given column to the supplied value. The offset
for the null bit is obtained from the passed NdbRecord object. If the
attribute ID is not part of the NdbRecord, or if it is not nullable, this
method returns an error (-1).

Signature static int setNull
 (
 const NdbRecord* record,
 char* row,
 Uint32 attrId,
 bool value
)

Parameters A pointer to the record (NdbRecord object) describing the row
format; a pointer to the start of the row data; the attribute ID of the
column (attrId); and the value to set the null bit to (true or
false).

Return value Returns 0 on success; returns -1 if the attrId is not part of the
record, or is not nullable.

2.3.15 The NdbError Structure

This section provides information about the NdbError data structure, which contains status and other
information about errors, including error codes, classifications, and messages.

• NdbError Overview

• NdbError::Classification

• NdbError::Status

NdbError Overview

Description An NdbError consists of six parts, listed here, of which one is
deprecated:

1. Error status: This describes the impact of an error on the
application, and reflects what the application should do when the
error is encountered.

The error status is described by a value of the Status type.
See NdbError::Status, for possible Status values and how they
should be interpreted.

2. Error classification: This represents a logical error type or
grouping.

The error classification is described by a value of the
Classification type. See NdbError::Classification, for
possible classifications and their interpretation. Additional
information is provided in Section 2.4.4, “NDB Error
Classifications”.

157

The NdbError Structure

3. Error code: This is an NDB API internal error code which
uniquely identifies the error.

Important

It is not recommended to write application
programs which are dependent
on specific error codes. Instead,
applications should check error status
and classification. More information about
errors can also be obtained by checking
error messages and (when available)
error detail messages. However—like
error codes—these error messages and
error detail messages are subject to
change.

A listing of current error codes, broken down by classification,
is provided in Section 2.4.2, “NDB Error Codes: by Type”. This
listing is updated with new NDB Cluster releases. You can also
check the file storage/ndb/src/ndbapi/ndberror.c in the
NDB Cluster sources.

4. MySQL Error code: This is the corresponding MySQL Server
error code. MySQL error codes are not discussed in this
document; please see Server Error Message Reference, in the
MySQL Manual, for information about these.

5. Error message: This is a generic, context-independent
description of the error.

6. Error details: This can often provide additional information
(not found in the error message) about an error, specific to the
circumstances under which the error is encountered. However, it
is not available in all cases.

Where not specified, the error detail message is NULL.

Note

This property is deprecated and
scheduled for eventual removal. For
obtaining error details, you should use
the Ndb::getNdbErrorDetail()
method instead.

Specific NDB API error codes, messages, and detail messages are
subject to change without notice.

158

https://dev.mysql.com/doc/mysql-errors/8.4/en/server-error-reference.html

The NdbError Structure

Definition The NdbError structure contains the following members, whose
types are as shown here:

• Status status: The error status.

• Classification classification: The error type
(classification).

• int code: The NDB API error code.

• int mysql_code: The MySQL error code.

• const char* message: The error message.

• char* details: The error detail message.

details is deprecated and scheduled for eventual removal. You
should use the Ndb::getNdbErrorDetail() method instead.
(Bug #48851)

Types NdbError defines the two data types listed here:

• Classification: The type of error or the logical grouping to
which the error belongs.

• Status: The error status.

NdbError::Classification

This section provides information about the Classification data type.

Description This type describes the type of error, or the logical group to which it
belongs.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.40 NdbError Classification data type values and
descriptions

Name Description

NoError Indicates success (no error occurred)

ApplicationError An error occurred in an application
program

NoDataFound A read operation failed due to one or more
missing records.

ConstraintViolationA constraint violation occurred, such
as attempting to insert a tuple having a
primary key value already in use in the
target table.

SchemaError An error took place when trying to create or
use a table.

InsufficientSpace There was insufficient memory for data or
indexes.

TemporaryResourceErrorThis type of error is typically encountered
when there are too many active
transactions.

159

The NdbEventOperation Class

Name Description

NodeRecoveryError This is a temporary failure which was likely
caused by a node recovery in progress,
some examples being when information
sent between an application and NDB is
lost, or when there is a distribution change.

OverloadError This type of error is often caused when
there is insufficient log file space.

TimeoutExpired A timeout, often caused by a deadlock.

UnknownResultErrorIt is not known whether a transaction was
committed.

InternalError A serious error has occurred in NDB itself.

FunctionNotImplementedThe application attempted to use a function
which is not yet implemented.

UnknownErrorCode This is seen where the NDB error handler
cannot determine the correct error code to
report.

NodeShutdown This is caused by a node shutdown.

SchemaObjectExistsThe application attempted to create a
schema object that already exists.

InternalTemporary A request was sent to a node other than
the master.

Related information specific to certain error conditions can be found
in Section 2.4.2, “NDB Error Codes: by Type”, and in Section 2.4.4,
“NDB Error Classifications”.

NdbError::Status

This section provides information about the Status data type.

Description This type is used to describe an error's status.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.41 NdbError Status data type values and descriptions

Name Description

Success No error has occurred

TemporaryError A temporary and usually recoverable error;
the application should retry the operation
giving rise to the error

PermanentError Permanent error; not recoverable

UnknownResult The operation's result or status is unknown

Related information specific to certain error conditions can be found
in Section 2.4.4, “NDB Error Classifications”.

2.3.16 The NdbEventOperation Class

This section provides information about the NdbEventOperation class, which is used to monitor
changes (events) in a database. It provides the core functionality used to implement NDB Cluster
Replication.

160

The NdbEventOperation Class

• NdbEventOperation Class Overview

• NdbEventOperation::clearError() (DEPRECATED)

• NdbEventOperation::execute()

• NdbEventOperation::getBlobHandle()

• NdbEventOperation::getEpoch()

• NdbEventOperation::getEventType() (DEPRECATED)

• NdbEventOperation::getEventType2()

• NdbEventOperation::getGCI() (DEPRECATED)

• NdbEventOperation::getLatestGCI() (DEPRECATED)

• NdbEventOperation::getNdbError()

• NdbEventOperation::getPreBlobHandle()

• NdbEventOperation::getPreValue()

• NdbEventOperation::getState()

• NdbEventOperation::getValue()

• NdbEventOperation::hasError() (DEPRECATED)

• NdbEventOperation::isConsistent() (DEPRECATED)

• NdbEventOperation::isEmptyEpoch()

• NdbEventOperation::isErrorEpoch()

• NdbEventOperation::isOverrun()

• NdbEventOperation::mergeEvents()

• NdbEventOperation::State

• NdbEventOperation::tableFragmentationChanged()

• NdbEventOperation::tableFrmChanged()

• NdbEventOperation::tableNameChanged()

• NdbEventOperation::tableRangeListChanged()

NdbEventOperation Class Overview

Parent class None

Child classes None

Description NdbEventOperation represents a database event.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.42 NdbEventOperation class methods and descriptions

Name Description

clearError() Clears the most recent error. Deprecated in
NDB 7.4.

execute() Activates the NdbEventOperation

161

The NdbEventOperation Class

Name Description

getBlobHandle() Gets a handle for reading blob attributes

getEpoch() Retrieves the epoch for the event data
most recently retrieved. Added in NDB 7.4.

getEventType() Gets the event type. Deprecated in NDB
7.4.

getEventType2() Gets the event type. Added in NDB 7.4.

getGCI() Retrieves the GCI of the most recently
retrieved event. Deprecated in NDB 7.4.

getLatestGCI() Retrieves the most recent GCI (whether
or not the corresponding event has been
retrieved). Deprecated in NDB 7.4.

getNdbError() Gets the most recent error

getPreBlobHandle()Gets a handle for reading the previous blob
attribute

getPreValue() Retrieves an attribute's previous value

getState() Gets the current state of the event
operation

getValue() Retrieves an attribute value

hasError() Whether an error has occurred as part of
this operation. Deprecated in NDB 7.4.

isConsistent() Detects event loss caused by node failure.
Deprecated in NDB 7.4.

isEmptyEpoch() Detects an empty epoch. Added in NDB
7.4.

isErrorEpoch() Detects an error epoch, and retrieves the
error if there is one. Added in NDB 7.4.

isOverrun() Whether event loss has taken place due to
a buffer overrun. Deprecated in NDB 7.4.

mergeEvents() Makes it possible for events to be merged

tableFragmentationChanged()Checks to see whether the fragmentation
for a table has changed

tableFrmChanged() Checks to see whether a table .FRM file
has changed

tableNameChanged()Checks to see whether the name of a table
has changed

tableRangeListChanged()Checks to see whether a table range
partition list name has changed

Types NdbEventOperation defines one enumerated type, the State
type.

Creating an Instance of NdbEventOperation. This class has no public constructor or destructor.
Instead, instances of NdbEventOperation are created as the result of method calls on Ndb and
NdbDictionary objects, subject to the following conditions:

1. There must exist an event which was created using Dictionary::createEvent(). This method
returns an instance of the Event class.

2. An NdbEventOperation object is instantiated using Ndb::createEventOperation(), which
acts on an instance of Event.

162

The NdbEventOperation Class

An instance of this class is removed by invoking Ndb::dropEventOperation.

Tip

A detailed example demonstrating creation and removal of event operations is
provided in Section 2.5.9, “NDB API Event Handling Example”.

Known Issues. The following issues may be encountered when working with event operations in
the NDB API:

• The maximum number of active NdbEventOperation objects is currently fixed at compile time at 2
* MaxNoOfTables.

• Currently, all INSERT, DELETE, and UPDATE events—as well as all attribute changes—are sent to
the API, even if only some attributes have been specified. However, these are hidden from the user
and only relevant data is shown after calling Ndb::nextEvent().

Note that false exits from Ndb::pollEvents() may occur, and thus the following nextEvent()
call returns zero, since there was no available data. In such cases, simply call pollEvents()
again.

See Ndb::pollEvents(), and Ndb::nextEvent() (DEPRECATED).

• Event code does not check the table schema version. When a table is dropped, make sure that you
drop any associated events.

• If you have received a complete epoch, events from this epoch are not re-sent, even in the event of
a node failure. However, if a node failure has occurred, subsequent epochs may contain duplicate
events, which can be identified by duplicated primary keys.

In the NDB Cluster replication code, duplicate primary keys on INSERT operations are normally
handled by treating such inserts as REPLACE operations.

Tip

To view the contents of the system table containing created events, you can use
the ndb_select_all utility as shown here:

ndb_select_all -d sys 'NDB$EVENTS_0'

NdbEventOperation::clearError() (DEPRECATED)

Description Clears the error most recently associated with this event operation.

This method is deprecated, and is subject to removal in a future
release. Beginning with NDB 8.4.0, it does nothing.

Signature void clearError
 (
 void
)

Parameters None.

Return value None.

NdbEventOperation::execute()

Description Activates the NdbEventOperation, so that it can begin
receiving events. Changed attribute values may be retrieved after
Ndb::nextEvent() has returned a value other than NULL.

One of getValue(), getPreValue(), getBlobValue(), or
getPreBlobValue() must be called before invoking execute().

163

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftables
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-select-all.html

The NdbEventOperation Class

Before attempting to use this method, you should have read the
explanations provided in Ndb::nextEvent() (DEPRECATED), and
NdbEventOperation::getValue(). Also see Section 2.3.16, “The
NdbEventOperation Class”.

Signature int execute
 (
 void
)

Parameters None.

Return value This method returns 0 on success and -1 on failure.

NdbEventOperation::getBlobHandle()

Description This method is used in place of getValue() for blob attributes.
The blob handle (NdbBlob) returned by this method supports read
operations only.

To obtain the previous value for a blob attribute, use
getPreBlobHandle().

Signature NdbBlob* getBlobHandle
 (
 const char* name
)

Parameters The name of the blob attribute.

Return value A pointer to an NdbBlob object.

NdbEventOperation::getEpoch()

Description Gets the epoch for the latest event data retrieved.

Added in NDB 7.4, this method supersedes getGCI(), which is
now deprecated and subject to removal in a future NDB Cluster
release.

Signature Uint64 getEpoch
 (
 void
) const

Parameters None.

Return value An epoch number (an integer).

NdbEventOperation::getEventType() (DEPRECATED)

Description This method is used to obtain the event's type (TableEvent).

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, use getEventType2()
instead.

Signature NdbDictionary::Event::TableEvent getEventType
 (
 void
) const

Parameters None.

164

The NdbEventOperation Class

Return value A TableEvent value.

NdbEventOperation::getEventType2()

Description This method is used to obtain the event's type (TableEvent).

Added in NDB 7.4, this method supersedes getEventType(),
which is now deprecated and subject to removal in a future NDB
Cluster release.

Signature getEventType2
 (
 void
) const

Parameters None.

Return value A TableEvent value.

NdbEventOperation::getGCI() (DEPRECATED)

Description This method retrieves the GCI for the most recently retrieved event.

This method is deprecated in NDB 7.4, and is subject to removal in
a future release. In NDB 7.4 and later, use getEpoch() instead.

Signature Uint64 getGCI
 (
 void
) const

Parameters None.

Return value The global checkpoint index of the most recently retrieved event (an
integer).

NdbEventOperation::getLatestGCI() (DEPRECATED)

Description This method retrieves the most recent GCI.

This method returns the latest epoch number.

The GCI obtained using this method is not necessarily associated
with an event.

This method is deprecated in NDB 7.4, and is subject to
removal in a future release. In NDB 7.4 and later, use
Ndb::getHighestQueuedEpoch() instead.

Signature Uint64 getLatestGCI
 (
 void
) const

Parameters None.

Return value The index of the latest global checkpoint, an integer.

NdbEventOperation::getNdbError()

Description This method retrieves the most recent error.

Signature const struct NdbError& getNdbError
 (

165

The NdbEventOperation Class

 void
) const

Parameters None.

Return value A reference to an NdbError structure.

NdbEventOperation::getPreBlobHandle()

Description This function is the same as getBlobHandle(), except that it
is used to access the previous value of the blob attribute. See
NdbEventOperation::getBlobHandle().

Signature NdbBlob* getPreBlobHandle
 (
 const char* name
)

Parameters The name of the blob attribute.

Return value A pointer to an NdbBlob.

NdbEventOperation::getPreValue()

Description This method performs identically to getValue(), except that it is
used to define a retrieval operation of an attribute's previous value
rather than the current value.

Signature NdbRecAttr* getPreValue
 (
 const char* name,
 char* value = 0
)

Parameters This method takes the two parameters listed here:

• The name of the attribute (as a constant character pointer).

• A pointer to a value, such that:

• If the attribute value is not NULL, then the attribute value is
returned in this parameter.

• If the attribute value is NULL, then the attribute value is stored
only in the NdbRecAttr object returned by this method.

See value Buffer Memory Allocation, for more information
regarding this parameter.

Return value An NdbRecAttr object to hold the value of the attribute, or a NULL
pointer indicating that an error has occurred.

NdbEventOperation::getState()

Description This method gets the event operation's current state.

Signature State getState
 (
 void
)

Parameters None.

Return value A State value.

166

The NdbEventOperation Class

NdbEventOperation::getValue()

Description This method defines the retrieval of an attribute value. The NDB
API allocates memory for the NdbRecAttr object that is to hold the
returned attribute value.

This method does not fetch the attribute value from the database,
and the NdbRecAttr object returned by this method is not
readable or printable before calling the execute() method and
Ndb::nextEvent() has returned a non-NULL value.

If a specific attribute has not changed, the corresponding
NdbRecAttr will be in the state UNDEFINED. This can be checked
by using NdbRecAttr::isNULL() which in such cases returns -1.

getValue() retrieves the current value. Use getPreValue() for
retrieving the previous value.

Signature NdbRecAttr* getValue
 (
 const char* name,
 char* value = 0
)

Parameters This method takes the two parameters listed here:

• The name of the attribute (as a constant character pointer).

• A pointer to a value, such that:

• If the attribute value is not NULL, then the attribute value is
returned in this parameter.

• If the attribute value is NULL, then the attribute value is stored
only in the NdbRecAttr object returned by this method.

See value Buffer Memory Allocation, for more information
regarding this parameter.

Return value An NdbRecAttr object to hold the value of the attribute, or a NULL
pointer indicating that an error has occurred.

value Buffer Memory Allocation. It is the application's responsibility to allocate sufficient memory
for the value buffer (if not NULL), and this buffer must be aligned appropriately. The buffer is used
directly (thus avoiding a copy penalty) only if it is aligned on a 4-byte boundary and the attribute size in
bytes (calculated as NdbRecAttr::get_size_in_bytes()) is a multiple of 4.

NdbEventOperation::hasError() (DEPRECATED)

Description This method is used to determine whether there is an error
associated with this event operation.

This method is deprecated, and is subject to removal in a
future release. In NDB 8.4 and later, it returns a constant. Use
getEventType2() to determine the event type instead. See
Event::TableEvent.

Signature int hasError
 (
 void
) const

Parameters None.

167

The NdbEventOperation Class

Return value NDB 8.3 and earlier: If event loss has taken place, then this method
returns 0; otherwise, it returns 1.

NDB 8.4 and later: Always returns 0.

NdbEventOperation::isConsistent() (DEPRECATED)

Description This method is used to determine whether event loss has taken
place following the failure of a node.

This method is deprecated in NDB 7.4, and is subject to removal in
a future release. In NDB 7.4 and later, use getEventType2() to
determine whether the event is of type TE_INCONSISTENT. See
Event::TableEvent.

Signature bool isConsistent
 (
 void
) const

Parameters None.

Return value If event loss has taken place, then this method returns false;
otherwise, it returns true.

NdbEventOperation::isEmptyEpoch()

Description This method is used to determine whether consumed event data
marks an empty epoch.

This method was added in NDB 7.4.

Signature bool isEmptyEpoch
 (
 void
)

Parameters None.

Return value If this epoch is empty, the method returns true; otherwise, it returns
false.

NdbEventOperation::isErrorEpoch()

Description This method is used to determine whether consumed event data
marks an empty epoch.

This method was added in NDB 7.4.

Signature bool isErrorEpoch
 (
 NdbDictionary::Event::TableEvent* error_type = 0
)

Parameters If this is an error epoch, error_type contains the TableEvent
value corresponding to the error.

Return value If this epoch is in error, the method returns true; otherwise, it
returns false.

NdbEventOperation::isOverrun()

Description This method is used to determine whether event loss has taken
place due to a buffer overrun.

168

The NdbEventOperation Class

Signature bool isOverrun
 (
 void
) const

Parameters None.

Return value If the event buffer has been overrun, then this method returns true,
otherwise, it returns false.

NdbEventOperation::mergeEvents()

Description This method is used to set the merge events flag. For information
about event merging, see Event::mergeEvents().

The merge events flag is false by default.

Signature void mergeEvents
 (
 bool flag
)

Parameters A Boolean flag.

Return value None.

NdbEventOperation::State

This section provides information about the State data type.

Description This type describes the event operation's state.

A State value is returned by the getState() method.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.43 NdbEventOperation data type values and
descriptions

Name Description

EO_CREATED The event operation has been created, but
execute() has not yet been called.

EO_EXECUTING The execute() method has been invoked
for this event operation.

EO_DROPPED The event operation is waiting to be
deleted, and is no longer usable.

EO_ERROR An error has occurred, and the event
operation is unusable.

NdbEventOperation::tableFragmentationChanged()

Description This method is used to test whether a table's fragmentation
has changed in connection with a TE_ALTER event. (See
Event::TableEvent.)

Signature bool tableFragmentationChanged
 (
 void
) const

Parameters None.

169

The NdbIndexOperation Class

Return value Returns true if the table's fragmentation has changed; otherwise,
the method returns false.

NdbEventOperation::tableFrmChanged()

Description Use this method to determine whether a table .FRM file
has changed in connection with a TE_ALTER event. (See
Event::TableEvent.)

Signature bool tableFrmChanged
 (
 void
) const

Parameters None.

Return value Returns true if the table .FRM file has changed; otherwise, the
method returns false.

NdbEventOperation::tableNameChanged()

Description This method tests whether a table name has changed as the result
of a TE_ALTER table event. (See Event::TableEvent.)

Signature bool tableNameChanged
 (
 void
) const

Parameters None.

Return value Returns true if the name of the table has changed; otherwise, the
method returns false.

NdbEventOperation::tableRangeListChanged()

Description Use this method to check whether a table range partition list name
has changed in connection with a TE_ALTER event.

Signature bool tableRangeListChanged
 (
 void
) const

Parameters None.

Return value This method returns true if range or list partition name has
changed; otherwise it returns false.

2.3.17 The NdbIndexOperation Class

This section provides information about the NdbIndexOperation class.

• NdbIndexOperation Class Overview

• NdbIndexOperation::deleteTuple()

• NdbIndexOperation::getIndex()

• NdbIndexOperation::readTuple()

• NdbIndexOperation::updateTuple()

170

The NdbIndexOperation Class

NdbIndexOperation Class Overview

Parent class NdbOperation

Child classes None

Description NdbIndexOperation represents an index operation for use in
transactions. This class inherits from NdbOperation.

NdbIndexOperation can be used only with unique hash indexes;
to work with ordered indexes, use NdbIndexScanOperation.

This class has no public constructor. To create an instance
of NdbIndexOperation, it is necessary to use the
NdbTransaction::getNdbIndexOperation() method.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.44 NdbIndexOperation class methods and descriptions

Name Description

deleteTuple() Removes a tuple from a table

getIndex() Gets the index used by the operation

readTuple() Reads a tuple from a table

updateTuple() Updates an existing tuple in a table

Index operations are not permitted to insert tuples.

Types The NdbIndexOperation class defines no public types of its own.

For more information about the use of NdbIndexOperation, see Single-row operations.

NdbIndexOperation::deleteTuple()

Description This method defines the NdbIndexOperation as a DELETE
operation. When the NdbTransaction::execute() method is
invoked, the operation deletes a tuple from the table.

Signature int deleteTuple
 (
 void
)

Parameters None.

Return value 0 on success, -1 on failure.

NdbIndexOperation::getIndex()

Description Gets the index, given an index operation.

Signature const NdbDictionary::Index* getIndex
 (
 void
) const

Parameters None.

Return value A pointer to an Index object.

NdbIndexOperation::readTuple()

171

The NdbIndexScanOperation Class

Description This method defines the NdbIndexOperation as a READ
operation. When the NdbTransaction::execute() method is
invoked, the operation reads a tuple.

Signature int readTuple
 (
 LockMode mode
)

Parameters mode specifies the locking mode used by the read operation. See
NdbOperation::LockMode, for possible values.

Return value 0 on success, -1 on failure.

NdbIndexOperation::updateTuple()

Description This method defines the NdbIndexOperation as an UPDATE
operation. When the NdbTransaction::execute() method is
invoked, the operation updates a tuple found in the table.

Signature int updateTuple
 (
 void
)

Parameters None.

Return value 0 on success, -1 on failure.

2.3.18 The NdbIndexScanOperation Class

This section provides information about the NdbIndexScanOperation class.

• NdbIndexScanOperation Class Overview

• NdbIndexScanOperation::BoundType

• NdbIndexScanOperation::end_of_bound()

• NdbIndexScanOperation::getDescending()

• NdbIndexScanOperation::get_range_no()

• NdbIndexScanOperation::getSorted()

• NdbIndexScanOperation::IndexBound

• NdbIndexScanOperation::readTuples()

• NdbIndexScanOperation::reset_bounds()

• NdbIndexScanOperation::setBound()

NdbIndexScanOperation Class Overview

Parent class NdbScanOperation

Child classes None

Description The NdbIndexScanOperation class represents a scan
operation using an ordered index. This class inherits from
NdbScanOperation and NdbOperation.

NdbIndexScanOperation is for use with ordered indexes only; to
work with unique hash indexes, use NdbIndexOperation.

172

The NdbIndexScanOperation Class

For more information about the use of NdbIndexScanOperation,
see Scan Operations, and Using Scans to Update or Delete Rows.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.45 NdbIndexScanOperation class methods and
descriptions

Name Description

end_of_bound() Marks the end of a bound

get_range_no() Gets the range number for the current row

getDescending() Checks whether the current scan is sorted

getSorted() Checks whether the current scan is sorted

readTuples() Reads tuples using an ordered index

reset_bounds() Resets bounds, puts the operation in the
send queue

setBound() Defines a bound on the index key for a
range scan

Types The NdbIndexScanOperation class defines one public type
BoundType.

This class also defines an IndexBound data structure, for use with
operations employing NdbRecord.

NdbIndexScanOperation::BoundType

This section provides information abut the BoundType data type.

Description This type is used to describe an ordered key bound.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.46 NdbIndexScanOperation::BoundType values,
numeric equivalents, and descriptions

Value Numeric Value Description

BoundLE 0 Lower bound

BoundLT 1 Strict lower bound

BoundGE 2 Upper bound

BoundGT 3 Strict upper bound

BoundEQ 4 Equality

The numeric values just shown are “safe”;that is, they are fixed in
the API, and so can be calculated and used explicitly.

NdbIndexScanOperation::end_of_bound()

Description This method is used to mark the end of a bound; it is used when
batching index reads (that is, when employing multiple ranges).

Signature int end_of_bound
 (
 Uint32 range_no

173

The NdbIndexScanOperation Class

)

Parameters The number of the range on which the bound occurs.

Return value 0 indicates success; -1 indicates failure.

NdbIndexScanOperation::getDescending()

Description This method is used to check whether the scan is descending.

Signature bool getDescending
 (
 void
) const

Parameters None.

Return value This method returns true if the scan is sorted in descending order;
otherwise, it returns false.

NdbIndexScanOperation::get_range_no()

Description This method returns the range number for the current row.

Signature int get_range_no
 (
 void
)

Parameters None.

Return value The range number (an integer).

NdbIndexScanOperation::getSorted()

Description This method is used to check whether the scan is sorted.

Signature bool getSorted
 (
 void
) const

Parameters None.

Return value true if the scan is sorted, otherwise false.

NdbIndexScanOperation::IndexBound

This section provides information about the IndexBound data structure.

Parent class NdbIndexScanOperation

Description IndexBound is a structure used to describe index scan bounds for
NdbRecord scans.

Members Member names, types, and descriptions are shown in the following
table:

Table 2.47 IndexBound structure member names, types, and
descriptions

Name Type Description

low_key const char* Row containing lower
bound for scan (or NULL
for scan from the start).

174

The NdbIndexScanOperation Class

Name Type Description

low_key_count Uint32 Number of columns in
lower bound (for bounding
by partial prefix).

low_inclusive bool True for <= relation, false
for <.

high_key const char* Row containing upper
bound for scan (or NULL
for scan to the end).

high_key_count Uint32 Number of columns
in upper bound (for
bounding by partial
prefix).

high_inclusive bool True for >= relation, false
for >.

range_no Uint32 Value to identify this
bound; may be read using
the get_range_no()
method (see
NdbIndexScanOperation::get_range_no()).
This value must be less
than 8192 (set to zero
if it is not being used).
For ordered scans,
range_no must be
strictly increasing for each
range, or else the result
set will not be sorted
correctly.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbIndexScanOperation::readTuples()

Description This method is used to read tuples, using an ordered index.

Signature virtual int readTuples
 (
 LockMode mode = LM_Read,
 Uint32 flags = 0,
 Uint32 parallel = 0,
 Uint32 batch = 0

)

Parameters The readTuples() method takes the three parameters listed here:

• The lock mode used for the scan. This is a LockMode value;
see NdbOperation::LockMode for more information, including
permitted values.

• One or more scan flags; multiple flags are
OR'ed together as they are when used with
NdbScanOperation::readTuples(). See
NdbScanOperation::ScanFlag for possible values.

• The number of fragments to scan in parallel; use 0 to specify
the maximum automatically.

175

The NdbIndexScanOperation Class

• The batch parameter specifies how many records will
be returned to the client from the server by the next
NdbScanOperation::nextResult(true) method call. Use 0
to specify the maximum automatically.

Note

This parameter was ignored prior to
MySQL 5.1.12, and the maximum was
used.(Bug #20252)

Return value An integer: 0 indicates success; -1 indicates failure.

NdbIndexScanOperation::reset_bounds()

Description Resets the bounds, and puts the operation into the list sent on the
next call to NdbTransaction::execute().

Signature int reset_bounds
 (
 bool forceSend = false
)

Parameters Set forceSend to true in order to force the operation to be sent
immediately.

Return value Returns 0 on success, -1 on failure.

NdbIndexScanOperation::setBound()

Description This method defines a bound on an index key used in a range scan,
and sets bounds for index scans defined using NdbRecord.

As used with NdbRecord, this method is called to add a range
to an index scan operation which has been defined with a call
to NdbTransaction::scanIndex(). To add more than one
range, the index scan operation must have been defined with the
SF_MultiRange flag set. (See NdbScanOperation::ScanFlag.)

Where multiple numbered ranges are defined with multiple calls
to setBound(), and the scan is ordered, the range number for
each range must be larger than the range number for the previously
defined range.

Signature int setBound
 (
 const NdbRecord* keyRecord,
 const IndexBound& bound
)

Parameters As used with NdbRecord, this method takes 2 parameters, listed
here:

• keyRecord: This is an NdbRecord structure corresponding to
the key on which the index is defined.

• The bound to add (see NdbIndexScanOperation::IndexBound).

Return value Returns 0 on success, -1 on failure.

An additional version of this method can be used when the application knows that rows in-range
will be found only within a particular partition. This is the same as that shown previously, except for

176

The NdbIndexScanOperation Class

the addition of a PartitionSpec. Doing so limits the scan to a single partition, improving system
efficiency.

Signature (when specifying a
partition)

int setBound
 (
 const NdbRecord* keyRecord,
 const IndexBound& bound,
 const Ndb::PartitionSpec* partInfo,
 Uint32 sizeOfPartInfo = 0
)

Parameters (when specifying a
partition)

This method can also be invoked with the following four parameters:

• keyRecord: This is an NdbRecord structure corresponding to
the key on which the index is defined.

• The bound to be added to the scan (see
NdbIndexScanOperation::IndexBound).

• partInfo: This is a pointer to a PartitionSpec, which
provides extra information making it possible to scan a reduced
set of partitions.

• sizeOfPartInfo: The length of the partition specification.

keyRecord and bound are defined and used in the same way as
with the 2-parameter version of this method.

Return value Returns 0 on success, -1 on failure.

“Old” API usage (prior to
introduction of NdbRecord)

Each index key can have a lower bound, upper bound, or both.
Setting the key equal to a value defines both upper and lower
bounds. Bounds can be defined in any order. Conflicting definitions
gives rise to an error.

Bounds must be set on initial sequences of index keys, and all but
possibly the last bound must be nonstrict. This means, for example,
that “a >= 2 AND b > 3” is permissible, but “a > 2 AND b >= 3” is not.

The scan may currently return tuples for which the bounds are not
satisfied. For example, a <= 2 && b <= 3 not only scans the
index up to (a=2, b=3), but also returns any (a=1, b=4) as
well.

When setting bounds based on equality, it is better to use BoundEQ
instead of the equivalent pair BoundLE and BoundGE. This is
especially true when the table partition key is a prefix of the index
key.

NULL is considered less than any non-NULL value and equal to
another NULL value. To perform comparisons with NULL, use
setBound() with a null pointer (0).

An index also stores all-NULL keys as well, and performing an index
scan with an empty bound set returns all tuples from the table.

Signature (“Old” API) Using the “old” API, this method could be called in either of two
ways. Both of these use the bound type and value; the first also
uses the name of the bound, as shown here:

int setBound
 (
 const char* name,

177

The NdbInterpretedCode Class

 int type,
 const void* value
)

The second way to invoke this method under the “old” API uses the
bound's ID rather than the name, as shown here:

int setBound
 (
 Uint32 id,
 int type,
 const void* value
)

Parameters (“Old” API) This method takes 3 parameters:

• Either the name or the id of the attribute on which the bound is to
be set.

• The bound type—see NdbIndexScanOperation::BoundType.

• A pointer to the bound value (use 0 for NULL).

Return value Returns 0 on success, -1 on failure.

2.3.19 The NdbInterpretedCode Class

This section provides information about the NdbInterpretedCode class, which can be used to
prepare and execute an NDB API interpreted program.

• NdbInterpretedCode Class Overview

• NdbInterpretedCode Constructor

• NdbInterpretedCode::add_reg()

• NdbInterpretedCode::add_val()

• NdbInterpretedCode::branch_col_and_mask_eq_mask()

• NdbInterpretedCode::branch_col_and_mask_eq_zero()

• NdbInterpretedCode::branch_col_and_mask_ne_mask()

• NdbInterpretedCode::branch_col_and_mask_ne_zero()

• NdbInterpretedCode::branch_col_eq()

• NdbInterpretedCode::branch_col_eq_null()

• NdbInterpretedCode::branch_col_eq_param()

• NdbInterpretedCode::branch_col_ge()

• NdbInterpretedCode::branch_col_ge_param()

• NdbInterpretedCode::branch_col_gt()

• NdbInterpretedCode::branch_col_gt_param()

• NdbInterpretedCode::branch_col_le()

• NdbInterpretedCode::branch_col_le_param()

• NdbInterpretedCode::branch_col_like()

• NdbInterpretedCode::branch_col_lt()

178

The NdbInterpretedCode Class

• NdbInterpretedCode::branch_col_lt_param()

• NdbInterpretedCode::branch_col_ne()

• NdbInterpretedCode::branch_col_ne_null()

• NdbInterpretedCode::branch_col_ne_param()

• NdbInterpretedCode::branch_col_notlike()

• NdbInterpretedCode::branch_eq()

• NdbInterpretedCode::branch_eq_null()

• NdbInterpretedCode::branch_ge()

• NdbInterpretedCode::branch_gt()

• NdbInterpretedCode::branch_label()

• NdbInterpretedCode::branch_le()

• NdbInterpretedCode::branch_lt()

• NdbInterpretedCode::branch_ne()

• NdbInterpretedCode::branch_ne_null()

• NdbInterpretedCode::call_sub()

• NdbInterpretedCode::copy()

• NdbInterpretedCode::def_label()

• NdbInterpretedCode::def_sub()

• NdbInterpretedCode::finalise()

• NdbInterpretedCode::getNdbError()

• NdbInterpretedCode::getTable()

• NdbInterpretedCode::getWordsUsed()

• NdbInterpretedCode::interpret_exit_last_row()

• NdbInterpretedCode::interpret_exit_nok()

• NdbInterpretedCode::interpret_exit_ok()

• NdbInterpretedCode::load_const_null()

• NdbInterpretedCode::load_const_u16()

• NdbInterpretedCode::load_const_u32()

• NdbInterpretedCode::load_const_u64()

• NdbInterpretedCode::read_attr()

• NdbInterpretedCode::reset()

• NdbInterpretedCode::ret_sub()

• NdbInterpretedCode::sub_reg()

• NdbInterpretedCode::sub_val()

179

The NdbInterpretedCode Class

• NdbInterpretedCode::write_attr()

NdbInterpretedCode Class Overview

Parent class None.

Child classes None.

Description NdbInterpretedCode represents an interpreted program for
use in operations created using NdbRecord, or with scans created
using the old API. The NdbScanFilter class can also be used to
generate an NDB interpreted program using this class.

To create an NdbInterpretedCode object, invoke the constructor,
optionally supplying a table for the program to operate on, and a
buffer for program storage and finalization. If no table is supplied,
then only instructions which do not access table attributes can be
used. In NDB 8.0, an instance of Ndbrecord can be used for this
purpose, in place of the Table.

Each NDB API operation applies to one table, and so does any
NdbInterpretedCode program attached to that operation.

If no buffer is supplied, then an internal buffer is dynamically
allocated and extended as necessary. Once the
NdbInterpretedCode object is created, you can add instructions
and labels to it by calling the appropriate methods as described
later in this section. When the program has completed, finalize it
by calling the finalise() method, which resolves any remaining
internal branches and calls to label and subroutine offsets.

A single finalized NdbInterpretedCode program can be used by
more than one operation. It need not be re-prepared for successive
operations.

To use the program with NdbRecord operations and scans, pass
it at operation definition time using the OperationOptions or
ScanOptions parameter. When the program is no longer required,
the NdbInterpretedCode object can be deleted, along with any
user-supplied buffer.

For additional information and examples, see Section 1.6, “Using
NdbInterpretedCode”.

This interface is still under development, and so is subject to change
without notice. The NdbScanFilter API is a more stable API for
defining scanning and filtering programs.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.48 NdbInterpretedCode class methods and descriptions

Name Description

NdbInterpretedCode()Class constructor

add_reg() Add two register values and store the result
in a third register

add_val() Add a value to a table column value

180

The NdbInterpretedCode Class

Name Description

branch_col_and_mask_eq_mask()Jump if a column value ANDed with a
bitmask is equal to the bitmask

branch_col_and_mask_eq_zero()Jump if a column value ANDed with a
bitmask is equal to 0

branch_col_and_mask_ne_mask()Jump if a column value ANDed with a
bitmask is not equal to the bitmask

branch_col_and_mask_ne_zero()Jump if a column value ANDed with a
bitmask is not equal to 0

branch_col_eq() Jump if a column value is equal to another

branch_col_eq_param()Jump if a column value is equal to a
supplied parameter

branch_col_eq_null()Jump if a column value is NULL

branch_col_ge() Jump if a column value is greater than or
equal to another

branch_col_ge_param()Jump if a column value is greater than or
equal to a supplied parameter

branch_col_gt() Jump if a column value is greater than
another

branch_col_gt_param()Jump if a column value is greater than a
supplied parameter

branch_col_le() Jump if a column value is less than or
equal to another

branch_col_like() Jump if a column value matches a pattern

branch_col_lt() Jump if a column value is less than another

branch_col_ne() Jump if a column value is not equal to
another

branch_col_ne_null()Jump if a column value is not NULL

branch_col_ne_param()Jump if a column value is not equal to a
supplied parameter

branch_col_notlike()Jump if a column value does not match a
pattern

branch_eq() Jump if one register value is equal to
another

branch_eq_null() Jump if a register value is NULL

branch_ge() Jump if one register value is greater than
or equal to another

branch_gt() Jump if one register value is greater than
another

branch_label() Unconditional jump to a label

branch_le() Jump if one register value is less than or
equal to another

branch_col_le_param()Jump if a column value is greater than or
equal to a supplied parameter

branch_lt() Jump if one register value is less than
another

181

The NdbInterpretedCode Class

Name Description

branch_col_lt_param()Jump if a column value is less than a
supplied parameter

branch_ne() Jump if one register value is not equal to
another

branch_ne_null() Jump if a register value is not NULL

call_sub() Call a subroutine

copy() Make a deep copy of an
NdbInterpretedCode object

def_label() Create a label for use within the interpreted
program

def_sub() Define a subroutine

finalise() Completes interpreted program and
prepares it for use

getNdbError() Gets the most recent error associated with
this NdbInterpretedCode object

getTable() Gets the table on which the program is
defined

getWordsUsed() Gets the number of words used in the
buffer

interpret_exit_last_row()Return a row as part of the result, and do
not check any more rows in this fragment

interpret_exit_nok()Do not return a row as part of the result

interpret_exit_ok()Return a row as part of the result

load_const_null() Load a NULL value into a register

load_const_u16() Load a 16-bit numeric value into a register

load_const_u32() Load a 32-bit numeric value into a register

load_const_u64() Load a 64-bit numeric value into a register

read_attr() Read a table column value into a register

reset() Discard program

ret_sub() Return from a subroutine

sub_reg() Subtract two register values and store the
result in a third register

sub_val() Subtract a value from a table column value

write_attr() Write a register value into a table column

For reasons of efficiency, methods of this class provide minimal
error checking.

See also Section 1.6, “Using NdbInterpretedCode”.

Types This class defines no public types.

NdbInterpretedCode Constructor

Description This is the NdbInterpretedCode class constuctor.

Signature NdbInterpretedCode
 (
 const NdbDictionary::Table* table = 0,

182

The NdbInterpretedCode Class

 Uint32* buffer = 0,
 Uint32 buffer_word_size = 0
)

Alternative constructor (NDB
8.0)

NdbInterpretedCode
 (
 const NdbRecord&,
 Uint32* buffer = 0,
 Uint32 buffer_word_size = 0);

Parameters The NdbInterpretedCode constructor takes three parameters, as
described here:

• The table against which this program is to be run. Prior to NDB
8.0, this parameter must be supplied if the program is table-
specific—that is, if it reads from or writes to columns in a table. In
NDB 8.0, the constructor accepts an NdbRecord in place of the
Table

• A pointer to a buffer of 32-bit words used to store the program.

• buffer_word_size is the length of the buffer passed in. If the
program exceeds this length then adding new instructions will fail
with error 4518 Too many instructions in interpreted
program.

Alternatively, if no buffer is passed, a buffer will be dynamically
allocated internally and extended to cope as instructions are
added.

Return value An instance of NdbInterpretedCode.

NdbInterpretedCode::add_reg()

Description This method sums the values stored in any two given registers and
stores the result in a third register.

Signature int add_reg
 (
 Uint32 RegDest,
 Uint32 RegSource1,
 Uint32 RegSource2
)

Parameters This method takes three parameters. The first of these is the
register in which the result is to be stored (RegDest). The second
and third parameters (RegSource1 and RegSource2) are the
registers whose values are to be summed.

For storing the result, it is possible to re-use one of the registers
whose values are summed; that is, RegDest can be the same as
RegSource1 or RegSource2.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::add_val()

Description This method adds a specified value to the value of a given table
column, and places the original and modified column values
in registers 6 and 7. It is equivalent to the following series of
NdbInterpretedCode method calls, where attrId is the table
column' attribute ID and aValue is the value to be added:

read_attr(6, attrId);

183

The NdbInterpretedCode Class

load_const_u32(7, aValue);
add_reg(7,6,7);
write_attr(attrId, 7);

aValue can be a 32-bit or 64-bit integer.

Signature This method can be invoked in either of two ways, depending on
whether aValue is 32-bit or 64-bit.

32-bit aValue:

int add_val
 (
 Uint32 attrId,
 Uint32 aValue
)

64-bit aValue:

int add_val
 (
 Uint32 attrId,
 Uint64 aValue
)

Parameters A table column attribute ID and a 32-bit or 64-bit integer value to be
added to this column value.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_and_mask_eq_mask()

Description This method is used to compare a BIT column value with a bitmask;
if the column value ANDed together with the bitmask is equal to the
bitmask, then execution jumps to a specified label specified in the
method call.

Signature int branch_col_and_mask_eq_mask
 (
 const void* mask,
 Uint32 unused,
 Uint32 attrId,
 Uint32 label
)

Parameters This method can accept four parameters, of which three are actually
used. These are described in the following list:

• A pointer to a constant mask to compare the column value to

• A Uint32 value which is currently unused.

• The attrId of the column to be compared.

• A program label to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and -1 on failure.

NdbInterpretedCode::branch_col_and_mask_eq_zero()

Description This method is used to compare a BIT column value with a bitmask;
if the column value ANDed together with the bitmask is equal to 0,

184

The NdbInterpretedCode Class

then execution jumps to a specified label specified in the method
call.

Signature int branch_col_and_mask_eq_zero
 (
 const void* mask,
 Uint32 unused,
 Uint32 attrId,
 Uint32 label
)

Parameters This method can accept the following four parameters, of which
three are actually used:

• A pointer to a constant mask to compare the column value to.

• A Uint32 value which is currently unused.

• The attrId of the column to be compared.

• A program label to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and -1 on failure.

NdbInterpretedCode::branch_col_and_mask_ne_mask()

Description This method is used to compare a BIT column value with a bitmask;
if the column value ANDed together with the bitmask is not equal to
the bitmask, then execution jumps to a specified label specified in
the method call.

Signature int branch_col_and_mask_ne_mask
 (
 const void* mask,
 Uint32 unused,
 Uint32 attrId,
 Uint32 label
)

Parameters This method accepts four parameters, of which three are actually
used. These described in the following list:

• A pointer to a constant mask to compare the column value to.

• A Uint32 value which is currently unused.

• The attrId of the column to be compared.

• A program label to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and -1 on failure.

NdbInterpretedCode::branch_col_and_mask_ne_zero()

Description This method is used to compare a BIT column value with a bitmask;
if the column value ANDed together with the bitmask is not equal to
0, then execution jumps to a specified label specified in the method
call.

185

The NdbInterpretedCode Class

Signature int branch_col_and_mask_ne_zero
 (
 const void* mask,
 Uint32 unused,
 Uint32 attrId,
 Uint32 label
)

Parameters This method accepts the following four parameters, of which three
are actually used:

• A pointer to a constant mask to compare the column value to.

• A Uint32 value which is currently unused.

• The attrId of the column to be compared.

• A program label to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and -1 on failure.

NdbInterpretedCode::branch_col_eq()

Description This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the values are
equal. In NDB 8.0, it can also be used to compare two columns for
equality.

Signature Compare a column with a value:

int branch_col_eq
 (
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 Label
)

Compare two columns:

int branch_col_eq
 (
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)

Parameters When comparing a column and a value, this method takes the
following four parameters:

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be
compared with val

• A Label (previously defined using def_label()) to jump to if
the compared values are equal

When comparing two table column values, the parameters required
are shown here:

186

The NdbInterpretedCode Class

• AttrId1: The attribute ID of the first table column whose value is
to be compared

• AttrId2: The attribute ID of the second table column

• label: Location to jump to if the compared columns are the
same. Must already have been defined using def_label()

When using this method to compare two columns, the columns must
be of exactly the same type.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_eq_null()

Description This method tests the value of a table column and jumps to the
indicated program label if the column value is NULL.

Signature int branch_col_eq_null
 (
 Uint32 attrId,
 Uint32 Label
)

Parameters This method requires the following two parameters:

• The attribute ID of the table column

• The program label to jump to if the column value is NULL

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_eq_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if they are equal. Added in NDB
8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking setSqlCmpSemantics().

Signature int branch_col_eq_param
 (
 Uint32 attrId,
 Uint32 paramId,
 Uint32 label
)

Parameters attrId ID of a table attribute.

paramId Parameter ID.

label Label to jump to if arguments are
equal.

Return value 0 on success.

NdbInterpretedCode::branch_col_ge()

Description This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the constant

187

The NdbInterpretedCode Class

column value. In NDB 8.0, it can also be used to compare two
columns, and to perform the jump if the value of the first column is
greater than or equal to that of the second.

Signature Compare value with column:

int branch_col_ge
 (
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 label
)

Compare values of two columns:

int branch_col_ge
 (
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)

Parameters When used to compare a value with a column, this method takes the
four parameters listed here:

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be
compared with val

• A label (previously defined using def_label()) to jump to if
the constant value is greater than or equal to the column value

The method takes the parameters listed here when used to compare
two columns:

• AttrId1: The attribute ID of the first table column whose value is
to be compared

• AttrId2: The attribute ID of the second table column

• label: Jump to this if the first column value is greater than or
equal to the second

When comparing two columns, the types of the columns must be
exactly the same in all respects.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_ge_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is greater
than or equal to that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking setSqlCmpSemantics().

188

The NdbInterpretedCode Class

Signature int branch_col_ge_param
 (
 Uint32 attrId,
 Uint32 paramId,
 Uint32 label
)

Parameters attrId ID of a table attribute.

paramId Parameter ID.

label Label to jump to if column value
is not less than parameter value.

Return value 0 on success.

NdbInterpretedCode::branch_col_gt()

Description This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the constant
is greater than the column value. In NDB 8.0, this method is
overloaded such that it can be used to compare two column values,
and to make the jump if the first is greater than the second.

Signature Compare value with column:

int branch_col_ge
 (
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 label
)

Compare values of two columns:

int branch_col_ge
 (
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)

Parameters When used to compare a value with a table column, this method
takes the following four parameters:

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be
compared with val

• A Label (previously defined using def_label()) to jump to if
the constant value is greater than the column value

The method takes the three parameters listed here when used to
compare two columns:

• AttrId1: The attribute ID of the first table column whose value is
to be compared

• AttrId2: The attribute ID of the second table column

189

The NdbInterpretedCode Class

• label: Jump to this if the first column value is greater than or
equal to the second

When comparing two columns, the types of the columns must be
exactly the same in all respects.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_gt_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is greater
than that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking setSqlCmpSemantics().

Signature int branch_col_gt_param
 (
 Uint32 attrId,
 Uint32 paramId,
 Uint32 label
)

Parameters attrId ID of a table attribute.

paramId Parameter ID.

label Label to jump to if column value
is greater than parameter value.

Return value 0 on success.

NdbInterpretedCode::branch_col_le()

Description This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the constant is
less than or equal to the column value. In NDB 8.0, it can also be
used to compare two table column values in this fashion.

Signature Compare a table column value with a constant:

int branch_col_le
 (
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 Label
)

Compare values of two table columns:

int branch_col_ge
 (
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)

Parameters When comparing a table column value with a constant, this method
takes the four parameters listed here:

190

The NdbInterpretedCode Class

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be
compared with val

• A Label (previously defined using def_label()) to jump to if
the constant value is less than or equal to the column value

The method takes the three parameters listed here when used to
compare two table column values:

• AttrId1: The attribute ID of the first table column whose value is
to be compared

• AttrId2: The attribute ID of the second table column

• label: Jump to this if the first column value is less than or equal
to the second

When comparing two table column values, the types of the column
values must be exactly the same in all respects.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_le_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is less than
or equal to that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking setSqlCmpSemantics().

Signature int branch_col_le_param
 (
 Uint32 attrId,
 Uint32 paramId,
 Uint32 label
)

Parameters attrId ID of a table attribute.

paramId Parameter ID.

label Label to jump to if column value
is not greater than parameter
value.

Return value 0 on success.

NdbInterpretedCode::branch_col_like()

Description This method tests a table column value against a regular expression
pattern and jumps to the indicated program label if they match.

Signature int branch_col_like
 (
 const void* val,

191

The NdbInterpretedCode Class

 Uint32 len,
 Uint32 attrId,
 Uint32 Label
)

Parameters This method takes four parameters, which are listed here:

• A regular expression pattern (val); see Pattern-Based
NdbInterpretedCode Branch Operations, for the syntax supported

• Length of the pattern (in bytes)

• The attribute ID for the table column being tested

• The program label to jump to if the table column value matches
the pattern

Return value 0 on success, -1 on failure

NdbInterpretedCode::branch_col_lt()

Description This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the constant
is less than the column value. In NDB 8.0, two table column values
can be compared instead.

Signature Compare a table column value with a constant:

int branch_col_lt
 (
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 Label
)

Compare two table column values:

int branch_col_lt
 (
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)

Parameters When comparing a table column value with a constant, this method
takes the following four parameters:

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be
compared with val

• A Label (previously defined using def_label()) to jump to if
the constant value is less than the column value

When used to compare two table column values,
branch_col_lt() takes the folowwing three parameters:

• AttrId1: The attribute ID of the first table column whose value is
to be compared

• AttrId2: The attribute ID of the second table column

192

The NdbInterpretedCode Class

• label: Jump to this if the first column value is less than the
second

When comparing two table column values, the types of the table
column values must be exactly the same. This means that they must
have the same length, precision, and scale.

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_lt_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is less than
that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking setSqlCmpSemantics().

Signature int branch_col_lt_param
 (
 Uint32 attrId,
 Uint32 paramId,
 Uint32 label
)

Parameters attrId ID of a table attribute.

paramId Parameter ID.

label Label to jump to if column value
is less than parameter value.

Return value 0 on success.

NdbInterpretedCode::branch_col_ne()

Description This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the two values
are not equal. In NDB 8.0, it can also be used to compare a table
column value with another table column value instead.

Signature Compare a table column value with a constant:

int branch_col_ne
 (
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 Label
)

Compare two table column values:

int branch_col_ne
 (
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)

Parameters When comparing a table column value with a constant, this method
takes the four parameters listed here:

193

The NdbInterpretedCode Class

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be
compared with val

• A Label (previously defined using def_label()) to jump to if
the compared values are unequal

When comparing two table column values, the parameters required
are shown here:

• AttrId1: The attribute ID of the first table column whose value is
to be compared

• AttrId2: The attribute ID of the second table column

• label: Location to jump to if the compared columns are not the
same. Must already have been defined using def_label()

When using this method to compare two table column values, the
columns must be of exactly the same type.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_ne_null()

Description This method tests the value of a table column and jumps to the
indicated program label if the column value is not NULL.

Signature int branch_col_ne_null
 (
 Uint32 attrId,
 Uint32 Label
)

Parameters This method requires the following two parameters:

• The attribute ID of the table column

• The program label to jump to if the column value is not NULL. The
label must have been defined previously using def_label().

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::branch_col_ne_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if they are not equal.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking setSqlCmpSemantics().

Signature int branch_col_ne_param
 (
 Uint32 attrId,
 Uint32 paramId,
 Uint32 label
)

194

The NdbInterpretedCode Class

Parameters attrId ID of a table attribute.

paramId Parameter ID.

label Label to jump to if arguments are
not equal.

Return value 0 on success.

NdbInterpretedCode::branch_col_notlike()

Description This method is similar to branch_col_like() in that it tests a
table column value against a regular expression pattern; however
it jumps to the indicated program label only if the pattern and the
column value do not match.

Signature int branch_col_notlike
 (
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 Label
)

Parameters This method takes the following four parameters:

• A regular expression pattern (val); see Pattern-Based
NdbInterpretedCode Branch Operations, for the syntax supported

• Length of the pattern (in bytes)

• The attribute ID for the table column being tested

• The program label to jump to if the table column value does not
match the pattern. The Label must have been defined previously
using def_label().

Return value Returns 0 on success, -1 on failure

NdbInterpretedCode::branch_eq()

Description This method compares two register values; if they are equal, then
the interpreted program jumps to the specified label.

Signature int branch_eq
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters This method takes three parameters, the registers whose values are
to be compared—RegLvalue and RegRvalue—and the program
Label to jump to if they are equal. Label must have been defined
previously using def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_eq_null()

Description This method compares a register value with NULL; if the register
value is null, then the interpreted program jumps to the specified
label.

195

The NdbInterpretedCode Class

Signature int branch_eq_null
 (
 Uint32 RegLvalue,
 Uint32 Label
)

Parameters This method takes two parameters, the register whose value is to be
compared with NULL (RegLvalue) and the program Label to jump
to if RegLvalue is null. Label must have been defined previously
using def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_ge()

Description This method compares two register values; if the first is greater
than or equal to the second, the interpreted program jumps to the
specified label.

Signature int branch_ge
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters This method takes three parameters, the registers whose values
are to be compared—RegLvalue and RegRvalue—and the
program Label to jump to if RegLvalue is greater than or equal
to RegRvalue. Label must have been defined previously using
def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_gt()

Description This method compares two register values; if the first is greater than
the second, the interpreted program jumps to the specified label.

Signature int branch_gt
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters This method takes three parameters, the registers whose values are
to be compared—RegLvalue and RegRvalue—and the program
Label to jump to if RegLvalue is greater than RegRvalue. Label
must have been defined previously using def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_label()

Description This method performs an unconditional jump to an interpreted
program label (see NdbInterpretedCode::def_label()).

Signature int branch_label
 (
 Uint32 Label
)

Parameters This method takes a single parameter, an interpreted program
Label defined using def_label().

196

The NdbInterpretedCode Class

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_le()

Description This method compares two register values; if the first is less than or
equal to the second, the interpreted program jumps to the specified
label.

Signature int branch_le
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters This method takes three parameters, the registers whose values
are to be compared—RegLvalue and RegRvalue—and the
program Label to jump to if RegLvalue is less than or equal to
RegRvalue. Label must have been defined previously using
def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_lt()

Description This method compares two register values; if the first is less than
the second, the interpreted program jumps to the specified label.

Signature int branch_lt
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters This method takes three parameters, the registers whose values are
to be compared—RegLvalue and RegRvalue—and the program
Label to jump to if RegLvalue is less than RegRvalue. Label
must have been defined previously using def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_ne()

Description This method compares two register values; if they are not equal,
then the interpreted program jumps to the specified label.

Signature int branch_ne
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters This method takes three parameters, the registers whose values are
to be compared (RegLvalue and RegRvalue) and the program
label to jump to if they are not equal. Label must have been
defined previously using def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::branch_ne_null()

Description This method compares a register value with NULL; if the value is not
null, then the interpreted program jumps to the specified label.

197

The NdbInterpretedCode Class

Signature int branch_ne_null
 (
 Uint32 RegLvalue,
 Uint32 Label
)

Parameters This method takes two parameters, the register whose value is to
be compared with NULL (RegLvalue) and the program Label to
jump to if RegLvalue is not null. Label must have been defined
previously using def_label().

Return value 0 on success, -1 on failure.

NdbInterpretedCode::call_sub()

Description This method is used to call a subroutine.

Signature int call_sub
 (
 Uint32 SubroutineNumber
)

Parameters This method takes a single parameter, the number identifying the
subroutine to be called.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::copy()

Description Makes a deep copy of an NdbInterpretedCode object.

Signature int copy
 (
 const NdbInterpretedCode& src
)

Parameters A reference to the copy.

Return value 0 on success, or an error code.

NdbInterpretedCode::def_label()

Description This method defines a label to be used as the target of one or more
jumps in an interpreted program.

def_label() uses a 2-word buffer and requires no space for request messages.

Signature int def_label
 (
 int LabelNum
)

Parameters This method takes a single parameter LabelNum, an integer whose
value must be unique among all values used for labels within the
interpreted program.

Return value 0 on success; -1 on failure.

NdbInterpretedCode::def_sub()

Description This method is used to mark the start of a subroutine. See Using
Subroutines with NdbInterpretedCode, for more information.

Signature int def_sub
 (
 Uint32 SubroutineNumber
)

198

The NdbInterpretedCode Class

Parameters A single parameter, a number used to identify the subroutine.

Return value Returns 0 on success, -1 otherwise.

NdbInterpretedCode::finalise()

Description This method prepares an interpreted program, including any
subroutines it might have, by resolving all branching instructions and
calls to subroutines. It must be called before using the program, and
can be invoked only once for any given NdbInterpretedCode
object.

If no instructions have been defined, this method attempts to insert a
single interpret_exit_ok() method call prior to finalization.

Signature int finalise
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 otherwise.

NdbInterpretedCode::getNdbError()

Description This method returns the most recent error associated with this
NdbInterpretedCode object.

Signature const class NdbError& getNdbError
 (
 void
) const

Parameters None.

Return value A reference to an NdbError object.

NdbInterpretedCode::getTable()

Description This method can be used to obtain a reference to the table for which
the NdbInterpretedCode object was defined.

Signature const NdbDictionary::Table* getTable
 (
 void
) const

Parameters None.

Return value A pointer to a Table object. Returns NULL if no table object was
supplied when the NdbInterpretedCode was instantiated.

NdbInterpretedCode::getWordsUsed()

Description This method returns the number of words from the buffer that have
been used, whether the buffer is one that is user-supplied or the
internally-provided buffer.

Signature Uint32 getWordsUsed
 (
 void
) const

Parameters None.

199

The NdbInterpretedCode Class

Return value The 32-bit number of words used from the buffer.

NdbInterpretedCode::interpret_exit_last_row()

Description For a scanning operation, invoking this method indicates that this
row should be returned as part of the scan, and that no more rows in
this fragment should be scanned. For other types of operations, the
method causes the operation to be aborted.

Signature int interpret_exit_last_row
 (
 void
)

Parameters None.

Return value Returns 0 if successful, -1 otherwise.

NdbInterpretedCode::interpret_exit_nok()

Description For scanning operations, this method is used to indicate that the
current row should not be returned as part of the scan, and to cause
the program should move on to the next row. It causes other types
of operations to be aborted.

Signature int interpret_exit_nok
 (
 Uint32 ErrorCode = 626 // HA_ERR_KEY_NOT_FOUND
)

Parameters This method takes a single (optional) parameter ErrorCode.
(For a complete listing of NDB error codes, see Section 2.4.2,
“NDB Error Codes: by Type”.) If not supplied, this defaults to 626
(HA_ERR_KEY_NOT_FOUND, Tuple did not exist. Applications
should use error code 626 or another code in the range 6000 to
6999 inclusive.

For any values other than those mentioned here, the behavior of this
method is undefined, and is subject to change at any time without
prior notice.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::interpret_exit_ok()

Description For a scanning operation, this method indicates that the current
row should be returned as part of the results of the scan and that
the program should move on to the next row. For other operations,
calling this method causes the interpreted program to exit.

Signature int interpret_exit_ok
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on failure.

NdbInterpretedCode::load_const_null()

Description This method is used to load a NULL value into a register.

Signature int load_const_null
 (

200

The NdbInterpretedCode Class

 Uint32 RegDest
)

Parameters This method takes a single parameter, the register into which to
place the NULL.

Return value Returns 0 on success, -1 otherwise.

NdbInterpretedCode::load_const_u16()

Description This method loads a 16-bit value into the specified interpreter
register.

Signature int load_const_u16
 (
 Uint32 RegDest,
 Uint32 Constant
)

Parameters This method takes the following two parameters:

• RegDest: The register into which the value should be loaded.

• A Constant value to be loaded

Return value Returns 0 on success, -1 otherwise.

NdbInterpretedCode::load_const_u32()

Description This method loads a 32-bit value into the specified interpreter
register.

Signature int load_const_u32
 (
 Uint32 RegDest,
 Uint32 Constant
)

Parameters This method takes the following two parameters:

• RegDest: The register into which the value should be loaded.

• A Constant value to be loaded

Return value Returns 0 on success, -1 otherwise.

NdbInterpretedCode::load_const_u64()

Description This method loads a 64-bit value into the specified interpreter
register.

Signature int load_const_u64
 (
 Uint32 RegDest,
 Uint64 Constant
)

Parameters This method takes the following two parameters:

• RegDest: The register into which the value should be loaded.

• A Constant value to be loaded

Return value Returns 0 on success, -1 otherwise.

NdbInterpretedCode::read_attr()

201

The NdbInterpretedCode Class

Description The read_attr() method is used to read a table column value
into a program register. The column may be specified either by
using its attribute ID or as a pointer to a Column object.

Signature This method can be called in either of two ways. The first of these is
by referencing the column by its attribute ID, as shown here:

int read_attr
 (
 Uint32 RegDest,
 Uint32 attrId
)

Alternatively, you can reference the column as a Column object, as
shown here:

int read_attr
 (
 Uint32 RegDest,
 const NdbDictionary::Column* column
)

Parameters This method takes two parameters, as described here:

• The register to which the column value is to be copied (RegDest).

• Either of the following references to the table column whose value
is to be copied:

• The table column's attribute ID (attrId)

• A pointer to a column—that is, a pointer to an Column object
referencing the table column

Return value Returns 0 on success, and -1 on failure.

NdbInterpretedCode::reset()

Description This method clears any existing program from the
NdbInterpretedCode object, which can then be used for
constructing a new program.

Signature int ret_sub
 (
 void
)

Parameters None.

Return value None.

This method was added in NDB 8.0.

NdbInterpretedCode::ret_sub()

Description This method marks the end of the current subroutine.

Signature int ret_sub
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 otherwise.

202

The NdbInterpretedCode Class

NdbInterpretedCode::sub_reg()

Description This method gets the difference between the values stored in any
two given registers and stores the result in a third register.

Signature int sub_reg
 (
 Uint32 RegDest,
 Uint32 RegSource1,
 Uint32 RegSource2
)

Parameters This method takes three parameters. The first of these is the
register in which the result is to be stored (RegDest). The second
and third parameters (RegSource1and RegSource2) are the
registers whose values are to be subtracted. In other words,
the value of register RegDest is calculated as the value of the
expression shown here:

(value in register RegSource1) − (value in register RegSource2)

It is possible to re-use one of the registers whose values are
subtracted for storing the result; that is, RegDest can be the same
as RegSource1 or RegSource2.

Return value 0 on success; -1 on failure.

NdbInterpretedCode::sub_val()

Description This method subtracts a specified value from the value of a given
table column, and places the original and modified column values
in registers 6 and 7. It is equivalent to the following series of
NdbInterpretedCode method calls, where attrId is the table
column' attribute ID and aValue is the value to be subtracted:

read_attr(6, attrId);
load_const_u32(7, aValue);
sub_reg(7,6,7);
write_attr(attrId, 7);

aValue can be a 32-bit or 64-bit integer.

Signature This method can be invoked in either of two ways, depending on
whether aValue is 32-bit or 64-bit.

32-bit aValue:

int sub_val
 (
 Uint32 attrId,
 Uint32 aValue
)

64-bit aValue:

int sub_val
 (
 Uint32 attrId,
 Uint64 aValue
)

Parameters A table column attribute ID and a 32-bit or 64-bit integer value to be
subtracted from this column value.

Return value Returns 0 on success, -1 on failure.

203

The NdbOperation Class

NdbInterpretedCode::write_attr()

Description This method is used to copy a register value to a table column.
The column may be specified either by using its attribute ID or as a
pointer to a Column object.

Signature This method can be invoked in either of two ways. The first of these
is requires referencing the column by its attribute ID, as shown here:

int read_attr
 (
 Uint32 attrId,
 Uint32 RegSource
)

You can also reference the column as a Column object instead, like
this:

int read_attr
 (
 const NdbDictionary::Column* column,
 Uint32 RegSource
)

Parameters This method takes two parameters as follows:

• A reference to the table column to which the register value is to be
copied. This can be either of the following:

• The table column's attribute ID (attrId)

• A pointer to a column—that is, a pointer to an Column object
referencing the table column

• The register whose value is to be copied (RegSource).

Return value Returns 0 on success; -1 on failure.

2.3.20 The NdbOperation Class

This section provides information about the NdbOperation class.

Beginning with NDB 8.0.30, NdbOperation supports an interpreted code API similar to that
implemented by NdbInterpretedCode. See NdbOperation Interpreted Code API, for more
information.

• NdbOperation Class Overview

• NdbOperation Interpreted Code API

• NdbOperation::AbortOption

• NdbOperation::add_reg()

• NdbOperation::branch_col_eq_null()

• NdbOperation::branch_col_ne_null()

• NdbOperation::branch_col_eq()

• NdbOperation::branch_col_ne()

• NdbOperation::branch_col_lt()

• NdbOperation::branch_col_le()

204

The NdbOperation Class

• NdbOperation::branch_col_gt()

• NdbOperation::branch_col_ge()

• NdbOperation::branch_col_like()

• NdbOperation::branch_col_notlike()

• NdbOperation::branch_col_and_mask_eq_mask()

• NdbOperation::branch_col_and_mask_ne_mask()

• NdbOperation::branch_col_and_mask_eq_zero()

• NdbOperation::branch_col_and_mask_ne_zero()

• NdbOperation::branch_ge()

• NdbOperation::branch_gt()

• NdbOperation::branch_le()

• NdbOperation::branch_lt()

• NdbOperation::branch_eq()

• NdbOperation::branch_ne()

• NdbOperation::branch_ne_null()

• NdbOperation::branch_eq_null()

• NdbOperation::branch_label()

• NdbOperation::call_sub()

• NdbOperation::def_label()

• NdbOperation::def_subroutine()

• NdbOperation::deleteTuple()

• NdbOperation::equal()

• NdbOperation::getBlobHandle()

• NdbOperation::getLockHandle

• NdbOperation::getLockMode()

• NdbOperation::getNdbError()

• NdbOperation::getNdbErrorLine()

• NdbOperation::getTable()

• NdbOperation::getTableName()

• NdbOperation::getNdbTransaction()

• NdbOperation::getType()

• NdbOperation::getValue()

• NdbOperation::GetValueSpec

• NdbOperation::incValue()

205

The NdbOperation Class

• NdbOperation::insertTuple()

• NdbOperation::interpret_exit_last_row()

• NdbOperation::interpret_exit_nok()

• NdbOperation::interpret_exit_ok()

• NdbOperation::interpretedDeleteTuple()

• NdbOperation::interpretedUpdateTuple()

• NdbOperation::interpretedWriteTuple()

• NdbOperation::load_const_u32()

• NdbOperation::load_const_u64()

• NdbOperation::load_const_null()

• NdbOperation::LockMode

• NdbOperation::OperationOptions

• NdbOperation::read_attr()

• NdbOperation::readTuple()

• NdbOperation::ret_sub()

• NdbOperation::setValue()

• NdbOperation::SetValueSpec

• NdbOperation::sub_reg()

• NdbOperation::subValue()

• NdbOperation::Type

• NdbOperation::updateTuple()

• NdbOperation::write_attr()

• NdbOperation::writeTuple()

NdbOperation Class Overview

Parent class None

Child classes NdbIndexOperation, NdbScanOperation

Description NdbOperation represents a “generic” data operation. Its
subclasses represent more specific types of operations. See
NdbOperation::Type for a listing of operation types and their
corresponding NdbOperation subclasses.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.49 NdbOperation class methods and descriptions

Name Description

add_reg() Add and store contents of two registers

branch_col_and_mask_eq_mask()Branch if column value AND bitmask equals
bitmask

206

The NdbOperation Class

Name Description

branch_col_and_mask_ne_mask()Branch if column value AND bitmask does
not equal bitmask

branch_col_and_mask_eq_zero()Branch if column value AND bitmask equals
zero

branch_col_and_mask_ne_zero()Branch if column value AND bitmask does
not equal zero

branch_col_eq() Branch if column is equal to specified value

branch_col_eq_null()Branch if column is NULL

branch_col_ge() Branch if column is greater than or equal to
than specified value

branch_col_gt() Branch if column is greater than specified
value

branch_col_le() Branch if column is less than or equal to
specified value

branch_col_like() Branch if column value matches wildcard
pattern

branch_col_lt() Branch if column is less than specified
value

branch_col_ne() Branch if column is not equal to specified
value

branch_col_ne_null()Branch if column is not NULL

branch_col_notlike()Branch if column value does not match
wildcard pattern

branch_eq() Branch if first register value equal to
second register value

branch_eq_null() Branch if register value is null

branch_ge() Branch if first register value is greater than
or equal to second register value

branch_gt() Branch if first register value is greater than
second register value

branch_label() Jump to label in interpeted progam

branch_le() Branch if first register value is less than
second register value

branch_lt() Branch if first register value is less than or
equal to second register value

branch_ne() Branch if first register value not equal to
second register value

branch_ne_null() Branch if register value is not null

call_sub() Call interpreted program subroutine

def_label() Define jump label in interpreted program
operation

def_subroutine() Define interpreted program subroutine

deleteTuple() Removes a tuple from a table

equal() Defines a search condition using equality

getBlobHandle() Used to access blob attributes

207

The NdbOperation Class

Name Description

getLockHandle() Gets a lock handle for the operation

getLockMode() Gets the operation's lock mode

getNdbError() Gets the latest error

getNdbErrorLine() Gets the number of the method where the
latest error occurred

getTableName() Gets the name of the table used for this
operation

getTable() Gets the table object used for this
operation

getNdbTransaction()Gets the NdbTransaction object for this
operation

getType() Gets the type of operation

getValue() Allocates an attribute value holder for later
access

incValue() Adds value to attribute

insertTuple() Adds a new tuple to a table

interpret_exit_last_row()Terminate transaction

interpret_exit_nok()Exit interpreted program with status NOT
OK

interpret_exit_ok()Exit interpreted program with status OK

interpretedDeleteTuple()Delete tuple using interpreted program

interpretedUpdateTuple()Update tuple using interpreted program

interpretedWriteTuple()Write tuple using interpreted program

load_const_u32() Load 32-bit constant value into register

load_const_u64() Load 64-bit constant value into register

load_const_null() Load NULL into register

read_attr() Read given attribute into register

readTuple() Reads a tuple from a table

ret_sub() Return from interpreted program
subroutine

setValue() Defines an attribute to set or update

sub_reg() Store difference of two register values

subValue() Subtracts value from attribute

updateTuple() Updates an existing tuple in a table

write_attr() Write given attribute from register

writeTuple() Inserts or updates a tuple

This class has no public constructor. To create
an instance of NdbOperation, you must use
NdbTransaction::getNdbOperation().

208

The NdbOperation Class

Types The NdbOperation class defines three public types, shown in the
following table:

Table 2.50 NdbOperation class types and descriptions

Name Description

AbortOption Determines whether a failed operation
causes failure of the transaction of which it
is part

LockMode The type of lock used when performing a
read operation

Type Operation access types

For more information about the use of NdbOperation, see Single-row operations.

NdbOperation Interpreted Code API

NdbOperation in NDB 8.0.30 and later supports an interpreted code API similar to that used with
NdbInterpretedCode.

To start with, use one of updateTuple(), writeTuple(), or deleteTuple() to define the
operation as an operation of a given type (update, write, or delete). This is the operation that is to be
performed by an interpreted program; the interpreted program itself is assembled from various register,
comparison, and branch instructions.

The interpreted program is not a separate NdbInterpretedCode object, although it behaves
much like one. Instructions are assigned to the NdbOperation instance (for example, myNdbOp-
>branch_col_lt(col1id, val1, col2id, val2)). To run the interpreted program, call
NdbTransaction::execute().

Another difference between the NdbOperation interpreted code API implementation and that
supported by NdbInterpretedCode is that the order of arguments for analogous methods is not
necessarily the same. One such pair of methods is listed here:

• In NdbOperation::branch_col_lt(ColId, val, len, bool, Label), comparison
happens like this, using the second and first arguments passed to the method, in that order:

if(val < ColId_value)
 branch_to Label

• NdbInterpretedCode::branch_col_lt(*val, Uint32, attrId, Label), compares the
first argument passed with the third, like this:

if(val < attrId_value)
 branch_to Label

Branch column method comparisons. The branch column methods such as branch_col_le()
compare a supplied value with the value of a column. These methods act on the first two arguments
from right to left, so that, for example, branch_col_le(myColId, myValue, 8, true,
myLabel) acts as shown by the following pseudocode:

if(myValue <= value(myColId))
 goto myLabel;

Bitwise logical comparisons. These comparison types are supported only for the bitfield type,
and can be used to test bitfield columns against bit patterns. The value passed in is a bitmask which
is bitwise-ANDed with the column data. Bitfields are passed in and out of the NDB API as 32-bit words
with bits set from least significant bit (LSB) to most significant bit (MSB). The platform's endianness
controls which byte contains the LSB: for x86, this is the first (0th) byte; for SPARC and PPC platforms,
it is the last (3rd) byte.

You can set bit n of a bitmask to 1 from a Uint32* mask like this:

209

The NdbOperation Class

mask[n >> 5] |= (1 << (n & 31))

Four different sorts of branching on bitwise comparison are supported by the methods listed here:

• branch_col_and_mask_eq_mask(): Branch if column value AND mask == mask (all
masked bits set in value).

• branch_col_and_mask_ne_mask(): Branch if column value AND mask != mask (not all
masked bits are set in value).

• branch_col_and_mask_eq_zero(): Branch if column value AND mask == 0 (no masked
bits are set in value).

• branch_col_and_mask_ne_zero(): Branch if column value AND mask != 0 (some masked
bits are set in value).

See the descriptions of the individual methods for more information.

NdbOperation::AbortOption

This section provides information about the AbortOption data type.

Description This type is used to determine whether failed operations should
force a transaction to be aborted. It is used as an argument to the
execute() method—see NdbTransaction::execute(), for more
information.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.51 NdbOperation::AbortOption type values and
descriptions

Name Description

AbortOnError A failed operation causes the transaction to
abort.

AO_IgnoreOnError Failed operations are ignored; the
transaction continues to execute.

DefaultAbortOptionThe AbortOption value is set according
to the operation type:

• Read operations: AO_IgnoreOnError

• Scan takeover or DML operations:
AbortOnError

See NdbTransaction::execute(), for more information.

NdbOperation::add_reg()

Description Add contents of two registers; store result in a third register.

Signature int add_reg
 (
 Uint32 RegSource1,
 Uint32 RegSource2,
 Uint32 RegDest
)

Parameters RegSource1 Register containing first value to
be added.

210

The NdbOperation Class

RegSource2 Register containing second value
to be added.

RegDest Register in which to store the
result.

Return value 0 on success, otherwise -1.

NdbOperation::branch_col_eq_null()

Description Branch to a label in an interpreted program if the specified column is
NULL.

Signature int branch_col_eq_null
 (
 Uint32 ColId,
 Uint32 Label
)

Parameters ColId ID of the column to check.

parLabelam Label to jump to if the column is
NULL.

Return value 0 on success, otherwise -1.

NdbOperation::branch_col_ne_null()

Description Branch to a label in an interpreted program if the specified column is
not NULL.

Signature int branch_col_ne_null
 (
 Uint32 ColId,
 Uint32 Label
)

Parameters ColId ID of the column to check.

parLabelam Label to jump to if the column is
not NULL.

Return value none

NdbOperation::branch_col_eq()

Description Branch to a label in an interpreted program if a given value is equal
to the value of the specified column.

Note

Like the other
NdbOperation::branch_col_*()
methods, branch_col_eg() compares its
second argument with the first, in that order.

Signature int branch_col_eq
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,

211

The NdbOperation Class

 Uint32 Label
)

Parameters ColId ID of column to compare.

val Value to be compared.

len Length of val.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Label to jump to if val is equal to
the column value.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_ne()

Description Branch to a label in an interpreted program if a given value is not
equal to the value of the specified column.

Note

Like the other
NdbOperation::branch_col_*()
methods, branch_col_ne() compares its
second argument with the first, in that order.

Signature int branch_col_ne
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId ID of column to compare.

val Value to be compared.

len Length of val.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Label to jump to if column value
is not equal to val.

Return value 0 on success, else -1.

NdbOperation::branch_col_lt()

Description Branch to a label in an interpreted program if a given value is less
than a column value.

Note

Like the other
NdbOperation::branch_col_*()

212

The NdbOperation Class

methods, branch_col_lt() compares its
second argument with the first, in that order.

Signature int branch_col_lt
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId ID of column to compare.

val Value to be compared.

len Length of val.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Label to jump to if val is less
than the column value.

Return value 0 on success, otherwise -1.

NdbOperation::branch_col_le()

Description Branch to a label in an interpreted program if a given value is less
than or equal to a column value.

Note

Like the other
NdbOperation::branch_col_*()
methods, branch_col_le() compares its
second argument with the first, in that order.

Signature int branch_col_le
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId ID of column to compare.

val Value to be compared.

len Length of val.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Label to jump to if val is less
than or equal to the column
value.

Return value On success, 0; otherwise, -1.

NdbOperation::branch_col_gt()

213

The NdbOperation Class

Description Branch to a label in an interpreted program if a given value is
greater than a column value.

Note

Like the other
NdbOperation::branch_col_*()
methods, branch_col_gt() compares its
second argument with the first, in that order.

Signature int branch_col_gt
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId ID of column to compare.

val Value to be compared.

len Length of val.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Label to jump to if val is greater
than the column value.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_ge()

Description Branch to a label in an interpreted program if a given value is
greater than or equal to a column value.

Note

Like the other
NdbOperation::branch_col_*()
methods, branch_col_ge() compares its
second argument with the first, in that order.

Signature int branch_col_ge
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId ID of column to compare.

val Value to be compared.

len Length of val.

- Boolean true or false required
for legacy reasons, but no longer
used.

214

The NdbOperation Class

Label Label to jump to if val is greater
than or equal to the column
value.

Return value 0 if successful, else -1.

NdbOperation::branch_col_like()

Description Branch if the column value matches a wildcard pattern. This method
and branch_col_notlike() each support the wildcards used by
the MySQL LIKE operator: % for any string of 0 or more characters,
and _ for any single character.

The column's type must be one of CHAR, VARCHAR, BINARY, or
VARBINARY.

Signature int branch_col_like
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId ID of column whose value is to
be compared.

val Pattern to match.

len Length of pattern value.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Label to jump to if column value
matches pattern.

Return value 0 on success, otherwise -1.

NdbOperation::branch_col_notlike()

Description Branch if the column value does not match the given wildcard
pattern. This method and branch_col_like() each support the
same wildcards % (0 or more characters) and _ (any one character)
as the MySQL LIKE operator.

The column's type must be one of CHAR, VARCHAR, BINARY, or
VARBINARY.

Signature int branch_col_notlike
 (
 Uint32 ColId,
 const void* val,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId ID of column whose value is to
be compared.

val Pattern to match.

215

https://dev.mysql.com/doc/refman/8.4/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html

The NdbOperation Class

len Length of pattern value.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Label to jump to if column value
does not match pattern.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_and_mask_eq_mask()

Description Branch if the value of a column in a logical bitwise AND with a
bitmask is equal to the bitmask.

See also Bitwise logical comparisons.

Signature int branch_col_and_mask_eq_mask
 (
 Uint32 ColId,
 const void* mask,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId Use the value of the column
having this ID.

mask Bitmask to compare with column
value.

len Length of mask.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Branch to jump to if the result of
the AND operation is the same as
the mask.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_and_mask_ne_mask()

Description Branch if the value of a column in a logical bitwise AND with a
bitmask is not equal to the bitmask.

See also Bitwise logical comparisons.

Signature int branch_col_and_mask_ne_mask
 (
 Uint32 ColId,
 const void* mask,
 Uint32 len,
 bool,
 Uint32 Label
)

216

The NdbOperation Class

Parameters ColId Use the value of the column
having this ID.

mask Bitmask to compare with column
value.

len Length of mask.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Branch to jump to if the result of
the AND operation is not equal to
the mask.

Return value On success 0, else -1.

NdbOperation::branch_col_and_mask_eq_zero()

Description Branch if the value of a column in a logical bitwise AND with a
bitmask is equal to 0.

See also Bitwise logical comparisons.

Signature int branch_col_and_mask_eq_zero
 (
 Uint32 ColId,
 const void* mask,
 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId Use the value of the column
having this ID.

mask Bitmask to compare with column
value.

len Length of mask.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Branch to jump to if the result of
the AND operation is equal to 0.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_and_mask_ne_zero()

Description Branch if the value of a column in a logical bitwise AND with a
bitmask is not equal to 0.

See also Bitwise logical comparisons.

Signature int branch_col_and_mask_ne_zero
 (
 Uint32 ColId,
 const void* mask,

217

The NdbOperation Class

 Uint32 len,
 bool,
 Uint32 Label
)

Parameters ColId Use the value of the column
having this ID.

mask Bitmask to compare with column
value.

len Length of mask.

- Boolean true or false required
for legacy reasons, but no longer
used.

Label Branch to jump to if the result of
the AND operation is not equal to
0.

Return value Returns 0 on success, -1 otherwise.

NdbOperation::branch_ge()

Description Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is greater than or equal to the LH value.

Note

This method, like the other NdbOperation
branch on comparison methods, compares
the two register values from right to left.

Signature int branch_ge
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters RegLvalue Register value compared with
RegRvalue.

RegRvalue Compare value of this register
with RegLvalue; branch to the
label if this value is greater than
or equal to RegLvalue.

Label Label to branch to if RegRvalue
is greater than or equal to
RegLvalue.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_gt()

Description Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is greater than the LH value.

218

The NdbOperation Class

Note

This method, like the other NdbOperation
branch on comparison methods, compares
the two register values from right to left.

Signature int branch_gt
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters RegLvalue Register value compared with
RegRvalue.

RegRvalue Compare value of this register
with RegLvalue; branch to the
label if this value is greater than
RegLvalue.

Label Label to branch to if RegRvalue
is greater than RegLvalue.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_le()

Description Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is less than the LH value.

Note

This method, like the other NdbOperation
branch on comparison methods, compares
the two register values from right to left.

Signature int branch_le
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters RegLvalue Register value compared with
RegRvalue.

RegRvalue Compare value of this register
with RegLvalue; branch to the
label if this value is less than
RegLvalue.

Label Label to branch to if RegRvalue
is less than RegLvalue.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_lt()

Description Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is less than or equal to the LH value.

219

The NdbOperation Class

Note

This method, like the other NdbOperation
branch on comparison methods, compares
the two register values from right to left.

Signature int branch_lt
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters RegLvalue Register value compared with
RegRvalue.

RegRvalue Compare value of this register
with RegLvalue; branch to the
label if this value is less than or
equal to RegLvalue.

Label Label to branch to if RegRvalue
is less than or equal to
RegLvalue.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_eq()

Description Branch to a label in an interpreted program when two register values
are equal.

Signature int branch_eq
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters RegLvalue One of two register values to be
compared.

RegRvalue The other register value to be
compared.

Label Branch to this label if the register
values are equal.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_ne()

Description Branch to a label in an interpreted program when two register values
are not equal.

Signature int branch_eq
 (
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)

Parameters RegLvalue One of two register values to be
compared.

220

The NdbOperation Class

RegRvalue The other register value to be
compared.

Label Branch to this label if the register
values are not equal.

Return value 0 on success, otherwise -1.

NdbOperation::branch_ne_null()

Description Branch to a label in an interpeted program if a register value is not
NULL.

Signature int branch_ne_null
 (
 Uint32 RegLvalue,
 Uint32 Label
)

Parameters RegLvalue Register to be tested.

Label Branch to this label if
RegLvalue is not NULL.

Return value On success, returns 0; otherwise, returns -1.

NdbOperation::branch_eq_null()

Description Branch to a label in an interpeted program if a register value is
NULL.

Signature int branch_ne_null
 (
 Uint32 RegLvalue,
 Uint32 Label
)

Parameters RegLvalue Register to be tested.

Label Branch to this label if
RegLvalue is NULL.

Return value On success, 0; otherwise, -1.

NdbOperation::branch_label()

Description Jump to a label in an interpeted progam.

Signature int branch_label
 (
 Uint32 Label
)

Parameters Label The label to branch to.

Return value 0 if successful; otherwise, -1.

NdbOperation::call_sub()

Description Call a subroutine in an interpeted program.

Signature int call_sub
 (
 Uint32 Subroutine

221

The NdbOperation Class

)

Parameters Subroutine The subroutine number.

Return value If successful, returns 0; otherwise, returns -1.

NdbOperation::def_label()

Description Define a jump label in an interpreted operation. Labels are
numbered automatically starting with 0.

Signature int def_label
 (
 int labelNumber
)

Parameters labelNumber The label number. For easier
debugging, this should match the
automatic numbering performed
by NDB.

Return value labelNumber on success, -1 otherwise.

NdbOperation::def_subroutine()

Description Define a subroutine in an interpreted program.

Signature int def_subroutine
 (
 int SubroutineNumber
)

Parameters SubroutineNumber The subroutine number.

Return value 0 on success, -1 otherwise.

NdbOperation::deleteTuple()

Description This method defines the NdbOperation as a DELETE operation.
When the NdbTransaction::execute() method is invoked, the
operation deletes a tuple from the table.

Signature virtual int deleteTuple
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on failure.

NdbOperation::equal()

Description This method defines a search condition with an equality. The
condition is true if the attribute has the given value. To set search
conditions on multiple attributes, use several calls to equal(); in
such cases all of them must be satisfied for the tuple to be selected.

If the attribute is of a fixed size, its value must include all bytes.
In particular a Char value must be native-space padded. If the
attribute is of variable size, its value must start with 1 or 2 little-
endian length bytes (2 if its type is Long*).

When using insertTuple(), you may also define the search key
with setValue(). See NdbOperation::setValue().

222

The NdbOperation Class

Signature There are 10 versions of equal(), each having slightly different
parameters. All of these are shown here:

int equal
 (
 const char* name,
 const char* value
)

int equal
 (
 const char* name,
 Int32 value
)

int equal
 (
 const char* name,
 Uint32 value
)

int equal
 (
 const char* name,
 Int64 value
)

int equal
 (
 const char* name,
 Uint64 value
)

int equal
 (
 Uint32 id,
 const char* value
)

int equal
 (
 Uint32 id,
 Int32 value
)

int equal
 (
 Uint32 id,
 Uint32 value
)

int equal
 (
 Uint32 id,
 Int64 value
)

int equal
 (
 Uint32 id,
 Uint64 value
)

223

The NdbOperation Class

Parameters This method requires two parameters:

• The first parameter can be either of the following:

1. The name of the attribute (a string)

2. The id of the attribute (an unsigned 32-bit integer)

• The second parameter is the attribute value to be tested. This
value can be any one of the following 5 types:

• String

• 32-bit integer

• Unsigned 32-bit integer

• 64-bit integer

• Unsigned 64-bit integer

Return value Returns -1 in the event of an error.

NdbOperation::getBlobHandle()

Description This method is used in place of getValue() or setValue()
for blob attributes. It creates a blob handle (NdbBlob object). A
second call with the same argument returns the previously created
handle. The handle is linked to the operation and is maintained
automatically.

Signature This method has two forms, depending on whether it is called with
the name or the ID of the blob attribute:

virtual NdbBlob* getBlobHandle
 (
 const char* name
)

or

virtual NdbBlob* getBlobHandle
 (
 Uint32 id
)

Parameters This method takes a single parameter, which can be either one of
the following:

• The name of the attribute

• The id of the attribute

Return value Regardless of parameter type used, this method return a pointer to
an instance of NdbBlob.

NdbOperation::getLockHandle

Description Returns a pointer to the current operation's lock handle. When
used with NdbRecord, the lock handle must first be requested
with the OO_LOCKHANDLE operation option. For other operations,
this method can be used alone. In any case, the NdbLockHandle
object returned by this method cannot be used until the operation
has been executed.

224

The NdbOperation Class

Signature const NdbLockHandle* getLockHandle
 (
 void
) const

or

const NdbLockHandle* getLockHandle
 (
 void
)

Parameters None.

Return value Pointer to an NdbLockHandle that can be used
by the NdbTransaction methods unlock() and
releaseLockHandle().

Using lock handle methods. Shared or exclusive locks taken by read operations in a transaction
are normally held until the transaction commits or aborts. Such locks can be released before a
transaction commits or aborts by requesting a lock handle when defining the read operation. Once the
read operation has been executed, an NdbLockHandle can be used to create a new unlock operation
(with NdbTransaction::unlock()). When the unlock operation is executed, the row lock placed by
the read operation is released.

The steps required to release these locks are listed here:

• Define the primary key read operation in the normal way with LockMode set to LM_Read or
LM_Exclusive.

• Call NdbOperation::getLockHandle() during operation definition, or, for Ndbrecord, set the
OO_LOCKHANDLE operation option when calling NdbTransaction::readTuple().

• Call NdbTransaction::execute(); the row is now locked from this point on, as normal.

• (Use data, possibly making calls to NdbTransaction::execute().)

• Call NdbTransaction::unlock(), passing in the const NdbLockHandle obtained previously
to create an unlock operation.

• Call NdbTransaction::execute(); this unlocks the row.

Notes:

• As with other operation types, unlock operations can be batched.

• Each NdbLockHandle object refers to a lock placed on a row by a single primary key read
operation. A single row in the database may have concurrent multiple lock holders (mode LM_Read)
and may have multiple lock holders pending (LM_Exclusive), so releasing the claim of one lock
holder may not result in a change to the observable lock status of the row.

• Lock handles are supported for scan lock takeover operations; the lock handle must be requested
before the lock takeover is executed.

• Lock handles and unlock operations are not supported for unique index read operations.

NdbOperation::getLockMode()

Description This method gets the operation's lock mode.

Signature LockMode getLockMode
 (
 void

225

The NdbOperation Class

) const

Parameters None.

Return value A LockMode value. See NdbOperation::LockMode.

NdbOperation::getNdbError()

Description This method gets the most recent error (an NdbError object).

Signature const NdbError& getNdbError
 (
 void
) const

Parameters None.

Return value An NdbError object.

NdbOperation::getNdbErrorLine()

Description This method retrieves the method number in which the latest error
occurred.

Signature int getNdbErrorLine
 (
 void
) const

Parameters None.

Return value The method number (an integer).

NdbOperation::getTable()

Description This method is used to retrieve the table object associated with the
operation.

Signature const NdbDictionary::Table* getTable
 (
 void
) const

Parameters None.

Return value A pointer to an instance of Table.

NdbOperation::getTableName()

Description This method retrieves the name of the table used for the operation.

Signature const char* getTableName
 (
 void
) const

Parameters None.

Return value The name of the table.

NdbOperation::getNdbTransaction()

Description Gets the NdbTransaction object for this operation.

Signature virtual NdbTransaction* getNdbTransaction

226

The NdbOperation Class

 (
 void
) const

Parameters None.

Return value A pointer to an NdbTransaction object.

NdbOperation::getType()

Description This method is used to retrieve the access type for this operation.

Signature Type getType
 (
 void
) const

Parameters None.

Return value A Type value.

NdbOperation::getValue()

Description This method prepares for the retrieval of an attribute value. The
NDB API allocates memory for an NdbRecAttr object that is later
used to obtain the attribute value. This can be done by using one
of the many NdbRecAttr accessor methods, the exact method to
be used depending on the attribute's data type. (This includes the
generic NdbRecAttr::aRef() method, which retrieves the data
as char*, regardless of its actual type. You should be aware that
this is not type-safe, and requires an explicit cast from the user.)

This method does not fetch the attribute value from the database;
the NdbRecAttr object returned by this method is not readable or
printable before calling NdbTransaction::execute().

If a specific attribute has not changed, the corresponding
NdbRecAttr has the state UNDEFINED. This can be checked by
using NdbRecAttr::isNULL(), which in such cases returns -1.

See NdbTransaction::execute(), and NdbRecAttr::isNULL().

Signature There are three versions of this method, each having different
parameters:

NdbRecAttr* getValue
 (
 const char* name,
 char* value = 0
)

NdbRecAttr* getValue
 (
 Uint32 id,
 char* value = 0
)

NdbRecAttr* getValue
 (
 const NdbDictionary::Column* col,
 char* value = 0
)

Parameters All three forms of this method have two parameters, the second
parameter being optional (defaults to 0). They differ only with regard

227

The NdbOperation Class

to the type of the first parameter, which can be any one of the
following:

• The attribute name

• The attribute id

• The table column on which the attribute is defined

In all three cases, the second parameter is a character buffer in
which a non-NULL attribute value is returned. In the event that
the attribute is NULL, is it stored only in the NdbRecAttr object
returned by this method.

If no value is specified in the getValue() method call, or if 0
is passed as the value, then the NdbRecAttr object provides
memory management for storing the received data. If the maximum
size of the received data is above a small fixed size, malloc()
is used to store it: For small sizes, a small, fixed internal buffer
(32 bytes in extent) is provided. This storage is managed by the
NdbRecAttr instance; it is freed when the operation is released,
such as at transaction close time; any data written here that you
wish to preserve should be copied elsewhere before this freeing of
memory takes place.

If you pass a non-zero pointer for value, then it is assumed that
this points to an portion of memory which is large enough to hold the
maximum value of the column; any returned data is written to that
location. The pointer should be at least 32-bit aligned.

Index columns cannot be used in place of table columns with this
method. In cases where a table column is not available, you can
use the attribute name, obtained with getName(), for this purpose
instead.

Return value A pointer to an NdbRecAttr object to hold the value of the attribute,
or a NULL pointer, indicating an error.

Retrieving integers. Integer values can be retrieved from both the value buffer passed as
this method's second parameter, and from the NdbRecAttr object itself. On the other hand,
character data is available from NdbRecAttr if no buffer has been passed in to getValue()
(see NdbRecAttr::aRef()). However, character data is written to the buffer only if one is provided, in
which case it cannot be retrieved from the NdbRecAttr object that was returned. In the latter case,
NdbRecAttr::aRef() returns a buffer pointing to an empty string.

Accessing bit values. The following example shows how to check a given bit from the value
buffer. Here, op is an operation (NdbOperation object), name is the name of the column from which
to get the bit value, and trans is an NdbTransaction object:

Uint32 buf[];

op->getValue(name, buf); /* bit column */

trans->execute();

if(buf[X/32] & 1 << (X & 31)) /* check bit X */
{
 /* bit X set */
}

NdbOperation::GetValueSpec

This section provides information about the GetValueSpec data structure.

228

The NdbOperation Class

Parent class NdbOperation

Description This structure is used to specify an extra value to obtain as part of
an NdbRecord operation.

Members The elements making up this structure are shown in the following
table:

Table 2.52 GetValueSpec structure member names, types, and
descriptions

Name Type Description

column const
Column*

To specify an extra value to
read, the caller must provide
this, as well as (optionally NULL)
appStorage pointer.

appStorage void* If this pointer is null, then
the received value is stored
in memory managed by the
NdbRecAttr object. Otherwise,
the received value is stored
at the location pointed to (and
is still accessable using the
NdbRecAttr object).

Important

It is the
caller's
responsibility
to ensure
that the
following
conditions
are met:

1. appStorage
points
to
sufficient
space
to
store
any
returned
data.

2. Memory
pointed
to by
appStorage
is not
reused
or
freed
until
after
the
execute()

229

The NdbOperation Class

Name Type Description
call
returns.

recAttr NdbRecAttr* After the operation is defined,
recAttr contains a pointer
to the NdbRecAttr object for
receiving the data.

Blob reads cannot be specified using GetValueSpec.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbOperation::incValue()

Description Interpreted program instruction which adds a value to an attribute.
The attribute can be specified by name or by ID. Thus, there are
four versions of of this method having slightly different parameters,
as shown under Signature.

This instruction uses registers 6 and 7, and overwrites these
registers in the course of its operation.

For scans and NdbRecord operations, use the
NdbInterpretedCode interface instead.

Signature int incValue
 (
 const char* anAttrName,
 Uint32 aValue
)

int incValue
 (
 const char* anAttrName,
 Uint64 aValue
)

int incValue
 (
 Uint32 anAttrId,
 Uint32 aValue
)

int incValue
 (
 Uint32 anAttrId,
 Uint64 aValue
)

Parameters anAttrName Name of the attribute.

anAttrId The attribute ID.

aValue The value to be added; this can
be a 32-bit or 64-bit integer.

Return value 0 on success, -1 otherwise.

NdbOperation::insertTuple()

Description This method defines the NdbOperation to be an INSERT
operation. When the NdbTransaction::execute() method is
called, this operation adds a new tuple to the table.

230

The NdbOperation Class

Signature virtual int insertTuple
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on failure.

NdbOperation::interpret_exit_last_row()

Description Terminate the entire transaction.

Signature int interpret_exit_last_row
 (
 void
)

Parameters none

Return value Returns 0 on success; otherwise, returns -1.

NdbOperation::interpret_exit_nok()

Description Exit interpreted program with status NOT OK and an optional error
code (see Section 2.4.2, “NDB Error Codes: by Type”).

Signature int interpret_exit_nok
 (
 Uint32 ErrorCode
)

int interpret_exit_nok
 (
 void
)

Parameters ErrorCode Optional error code, defaults to
error 899. Applications should
use error code 626 or any
code in the 6000-6999 range.
Error code 899 is supported for
backwards compatibility, but 626
is recommmended instead. For
other error codes, the behavior
is undefined and may change at
any time without prior notice.

Return value 0 on success, -1 otherwise.

NdbOperation::interpret_exit_ok()

Description Exit interpreted program with status OK.

Signature int interpret_exit_ok
 (
 void
)

Parameters none

Return value 0 on success, -1 otherwise.

NdbOperation::interpretedDeleteTuple()

231

The NdbOperation Class

Description Delete a tuple using an interpreted program.

Signature virtual
int interpretedDeleteTuple
 (
 void
)

Parameters None.

Return value 0 on success, -1 otherwise.

NdbOperation::interpretedUpdateTuple()

Description Update a tuple using an interpreted program.

Signature virtual
int interpretedUpdateTuple
 (
 void
)

Parameters None.

Return value 0 on success, -1 otherwise.

NdbOperation::interpretedWriteTuple()

Description Write a tuple using an interpreted program.

Signature virtual
int interpretedWriteTuple
 (
 void
)

Parameters None.

Return value 0 on success, -1 otherwise.

NdbOperation::load_const_u32()

Description Load a 32-bit constant value into a register.

Signature int load_const_u32
 (
 Uint32 RegDest,
 Uint32 Constant
)

Parameters RegDest Destination register.

Constant Value to load into the register.

Return value 0 on success, -1 otherwise.

NdbOperation::load_const_u64()

Description Load a 64-bit constant value into a register.

Signature int load_const_u64
 (
 Uint64 RegDest,
 Uint64 Constant
)

232

The NdbOperation Class

Parameters RegDest Destination register.

Constant Value to load into the register.

Return value 0 on success, otherwise -1.

NdbOperation::load_const_null()

Description Load NULL into a register.

Signature int load_const_null
 (
 Uint32 RegDest
)

Parameters RegDest Destination register.

Return value 0 on success, -1 otherwise.

NdbOperation::LockMode

This section provides information about the LockMode data type.

Description This type describes the lock mode used when performing a read
operation.

Enumeration values Possible values for this type are shown, along with descriptions, in
the following table:

Table 2.53 NdbOperation::LockMode type values and
descriptions

Name Description

LM_Read Read with shared lock

LM_Exclusive Read with exclusive lock

LM_CommittedRead Ignore locks; read last committed

LM_SimpleRead Read with shared lock, but release lock
directly

There is also support for dirty reads (LM_Dirty), but this is normally
for internal purposes only, and should not be used for applications
deployed in a production setting.

NdbOperation::OperationOptions

This section provides information about the OperationOptions data structure.

Parent class NdbOperation

Description These options are passed to the NdbRecord-based primary
key and scan takeover operation methods defined in the
NdbTransaction and NdbScanOperation classes.

Most NdbTransaction::*Tuple() methods (see
Section 2.3.25, “The NdbTransaction Class”) take a supplementary
sizeOfOptions parameter. This is optional, and is intended to
permit the interface implementation to remain backward compatible
with older un-recompiled clients that may pass an older (smaller)
version of the OperationOptions structure. This effect is
achieved by passing sizeof(OperationOptions) into this
parameter.

233

The NdbOperation Class

Each option type is marked as present by setting the corresponding
bit in optionsPresent. (Only the option types marked in
optionsPresent need have sensible data.) All data is copied
out of the OperationOptions structure (and any subtended
structures) at operation definition time. If no options are required,
then NULL may be passed instead.

Members The elements making up this structure are shown in the following
table:

Table 2.54 NdbOperation::OperationOptions structure member
names, types, and description

Name Type Description

optionsPresentUint64 Which flags are present.

[...] Flags:

The accepted
names and
values are
shown in the
following list:

• OO_ABORTOPTION:
0x01

• OO_GETVALUE:
0x02

• OO_SETVALUE:
0x04

• OO_PARTITION_ID:
0x08

• OO_INTERPRETED:
0x10

• OO_ANYVALUE:
0x20

• OO_CUSTOMDATA:
0x40

• OO_LOCKHANDLE:
0x80

• OO_QUEUABLE

0x100

• OO_NOT_QUEUABLE

0x200

• OO_DEFERRED_CONSTAINTS

0x400

• OO_DISABLE_FK

Type of flags.

234

The NdbOperation Class

Name Type Description
0x800

• OO_NOWAIT

0x1000

abortOption AbortOption An operation-specific abort
option; necessary only if the
default abortoption behavior is
not satisfactory.

extraGetValuesGetValueSpec Extra column values to be read.

numExtraGetValuesUint32 Number of extra column values
to be read.

extraSetValuesSetValueSpec Extra column values to be set.

numExtraSetValuesUint32 Number of extra column values
to be set.

partitionId Uint32 Limit the scan to the partition
having this ID; alternatively, you
can supply an PartitionSpec
here. For index scans,
partitioning information can be
supplied for each range.

interpretedCodeNdbInterpretedCodeInterpeted code to execute as
part of the scan.

anyValue Uint32 An anyValue to be used with
this operation. This is used by
NDB Cluster Replication to store
the SQL node's server ID. By
starting the SQL node with the
--server-id-bits option
(which causes only some of
the bits in the server_id to
be used for uniquely identifying
it) set to less than 32, the
remaining bits can be used to
store user data.

customData void* Data pointer to associate with
this operation.

partitionInfoPartitionSpecPartition information for
bounding this scan.

sizeOfPartInfoUint32 Size of the bounding partition
information.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbOperation::read_attr()

Description Read an attribute identified by name or ID into a register.

Signature int read_attr
 (
 const char* anAttrName,
 Uint32 RegDest
)

235

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_server_id_bits
https://dev.mysql.com/doc/refman/8.4/en/replication-options.html#sysvar_server_id

The NdbOperation Class

int read_attr
 (
 Uint32 anAttrId,
 Uint32 RegDest
)

Parameters anAttrName Attribute name. Use this or the
attribute ID.

anAttrId Attribute ID. Use this or the name
of the attribute.

RegDest Destination register.

Return value On success, 0; otheriwse, -1.

NdbOperation::readTuple()

Description This method defines the NdbOperation as a READ operation.
When the NdbTransaction::execute() method is invoked, the
operation reads a tuple.

Signature virtual int readTuple
 (
 LockMode mode
)

Parameters mode specifies the locking mode used by the read operation. See
NdbOperation::LockMode, for possible values.

Return value Returns 0 on success, -1 on failure.

NdbOperation::ret_sub()

Description Return from an interpreted program subroutine.

Signature int ret_sub
 (
 void
)

Parameters none.

Return value 0 on success, -1 otherwise.

NdbOperation::setValue()

Description This method defines an attribute to be set or updated.

There are a number of NdbOperation::setValue() methods
that take a certain type as input (pass by value rather than passing a
pointer). It is the responsibility of the application programmer to use
the correct types.

The NDB API does check that the application sends a correct length
to the interface as given in the length parameter. A char* value
can contain any data type or any type of array. If the length is not
provided, or if it is set to zero, then the API assumes that the pointer
is correct, and does not check it.

To set a NULL value, use the following construct:

setValue("ATTR_NAME", (char*)NULL);

236

The NdbOperation Class

When you use insertTuple(), the NDB API automatically detects
that it is supposed to use equal() instead.

In addition, it is not necessary when using insertTuple() to use
setValue() on key attributes before other attributes.

Signature There are 14 versions of NdbOperation::setValue(), each with
slightly different parameters, as listed here:

int setValue
 (
 const char* name,
 const char* value
)

int setValue
 (
 const char* name,
 Int32 value
)

int setValue
 (
 const char* name,
 Uint32 value
)

int setValue
 (
 const char* name,
 Int64 value
)

int setValue
 (
 const char* name,
 Uint64 value
)

int setValue
 (
 const char* name,
 float value
)

int setValue
 (
 const char* name,
 double value
)

int setValue
 (
 Uint32 id,
 const char* value
)

int setValue
 (
 Uint32 id,
 Int32 value
)

int setValue
 (
 Uint32 id,
 Uint32 value
)

int setValue

237

The NdbOperation Class

 (
 Uint32 id,
 Int64 value
)

int setValue
 (
 Uint32 id,
 Uint64 value
)

int setValue
 (
 Uint32 id,
 float value
)

int setValue
 (
 Uint32 id,
 double value
)

Parameters This method requires the following two parameters:

• The first parameter identifies the attribute to be set, and may be
either one of the following:

1. The attribute name (a string)

2. The attribute id (an unsigned 32-bit integer)

• The second parameter is the value to which the attribute is to be
set; its type may be any one of the following 7 types:

1. String (const char*)

2. 32-bit integer

3. Unsigned 32-bit integer

4. 64-bit integer

5. Unsigned 64-bit integer

6. Double

7. Float

See NdbOperation::equal(), for important information regarding
the value's format and length.

Return value Returns -1 in the event of failure.

NdbOperation::SetValueSpec

This section provides information about the SetValueSpec data structure.

Parent class NdbOperation

Description This structure is used to specify an extra value to set as part of an
NdbRecord operation.

Members The elements making up this structure are shown in the following
table:

238

The NdbOperation Class

Table 2.55 NdbOperation::SetValueSpec attributes, with types
and descriptions

Name Type Description

column Column To specify an extra
value to read, the
caller must provide
this, as well as
(optionally NULL)
appStorage
pointer.

value void* This must point to
the value to be set,
or to NULL if the
attribute is to be set
to NULL. The value
pointed to is copied
when the operation
is defined, and need
not remain in place
until execution time.

Blob values cannot be set using SetValueSpec.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbOperation::sub_reg()

Description Store difference of two register values in a third register.

Signature int sub_reg
 (
 Uint32 RegSource1,
 Uint32 RegSource2,
 Uint32 RegDest
)

Parameters param RegSource1 Register
containing
value
to
be
subtracted.

RegSource2 Register
containing
value
to
be
subtracted
from.

RegDest Register
in
which
to
store
the
result.

239

The NdbOperation Class

Return value 0 on success, otherwise -1.

NdbOperation::subValue()

Description Interpreted program instruction which subtracts a value from an
attribute in an interpreted operation. The attribute can be specified
by name or by ID. Thus, there are four versions of of this method
having slightly different parameters, as shown under Signature.

As with incValue(), this instruction uses registers 6 and 7, and
overwrites these registers in the course of its operation.

For scans and NdbRecord operations, use the
NdbInterpretedCode interface instead.

Signature int subValue
 (
 const char* anAttrName,
 Uint32 aValue
)

int subValue
 (
 const char* anAttrName,
 Uint64 aValue
)

int subValue
 (
 Uint32 anAttrId,
 Uint32 aValue
)

int subValue
 (
 Uint32 anAttrId,
 Uint64 aValue
)

Parameters anAttrName Name of the attribute

anAttrId The attribute ID

aValue The value to be subtracted; this
can be a 32-bit or 64-bit integer.

Return value 0 on success, -1 otherwise.

NdbOperation::Type

This section provides information about the Type data type.

Description Type is used to describe the operation access type. Each access
type is supported by NdbOperation or one of its subclasses, as
shown in the following table:

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.56 NdbOperation::Type data type values and
descriptions

Name Description Applicable Class

PrimaryKeyAccess A read, insert, update, or delete operation using the table's
primary key

NdbOperation

240

The NdbOperation Class

Name Description Applicable Class

UniqueIndexAccess A read, update, or delete operation using a unique index NdbIndexOperation

TableScan A full table scan NdbScanOperation

OrderedIndexScan An ordered index scan NdbIndexScanOperation

NdbOperation::updateTuple()

Description This method defines the NdbOperation as an UPDATE operation.
When the NdbTransaction::execute() method is invoked, the
operation updates a tuple found in the table.

Signature virtual int updateTuple
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on failure.

NdbOperation::write_attr()

Description Write an attribute value from a register. The attribute to be written
can be specified by name or ID.

Signature int write_attr
 (
 const char* anAttrName,
 Uint32 RegSource
)

int write_attr
 (
 Uint32 anAttrId,
 Uint32 RegSource
)

Parameters anAttrName Attribute name. Use this or the
attribute ID.

anAttrId Attribute ID. Use this or the name
of the attribute.

RegSource Source register.

Return value Returns 0 on success; otherwise, returns -1.

NdbOperation::writeTuple()

Description This method defines the NdbOperation as a WRITE operation.
When the NdbTransaction::execute() method is invoked, the
operation writes a tuple to the table. If the tuple already exists, it is
updated; otherwise an insert takes place.

Signature virtual int writeTuple
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on failure.

241

The NdbRecAttr Class

2.3.21 The NdbRecAttr Class

This section provides information about the NdbRecAttr class.

• NdbRecAttr Class Overview

• ~NdbRecAttr()

• NdbRecAttr::aRef()

• NdbRecAttr::char_value()

• NdbRecAttr::clone()

• NdbRecAttr::double_value()

• NdbRecAttr::float_value()

• NdbRecAttr::get_size_in_bytes()

• NdbRecAttr::getColumn()

• NdbRecAttr::getType()

• NdbRecAttr::int8_value()

• NdbRecAttr::int32_value()

• NdbRecAttr::int64_value()

• NdbRecAttr::isNULL()

• NdbRecAttr::medium_value()

• NdbRecAttr::short_value()

• NdbRecAttr::u_8_value()

• NdbRecAttr::u_32_value()

• NdbRecAttr::u_64_value()

• NdbRecAttr::u_char_value()

• NdbRecAttr::u_medium_value()

• NdbRecAttr::u_short_value()

NdbRecAttr Class Overview

Parent class None

Child classes None

Description NdbRecAttr contains the value of an attribute. An NdbRecAttr
object is used to store an attribute value after it has been retrieved
using the NdbOperation::getValue() method. This object is
allocated by the NDB API. A brief example is shown here:

MyRecAttr = MyOperation->getValue("ATTR2", NULL);

if(MyRecAttr == NULL)
 goto error;

if(MyTransaction->execute(Commit) == -1)
 goto error;

ndbout << MyRecAttr->u_32_value();

242

The NdbRecAttr Class

For additional examples, see Section 2.5.2, “NDB API Example
Using Synchronous Transactions”.

An NdbRecAttr object is instantiated with its value only
when NdbTransaction::execute() is invoked. Prior to
this, the value is undefined. (Use NdbRecAttr::isNULL()
to check whether the value is defined.) This means that an
NdbRecAttr object has valid information only between
the times that NdbTransaction::execute() and
Ndb::closeTransaction() are called. The value of the NULL
indicator is -1 until the NdbTransaction::execute() method is
invoked.

Methods NdbRecAttr has a number of methods for retrieving values of
various simple types directly from an instance of this class.

It is also possible to obtain a reference to the value regardless of its
actual type, by using NdbRecAttr::aRef(); however, you should
be aware that this is not type-safe, and requires a cast from the
user.

The following table lists all of the public methods of this class and
the purpose or use of each method:

Table 2.57 NdbRecAttr class methods and descriptions

Name Description

~NdbRecAttr() Destructor method

aRef() Gets a pointer to the attribute value

char_value() Retrieves a Char attribute value

clone() Makes a deep copy of the RecAttr object

double_value() Retrieves a Double attribute value, as a
double (8 bytes)

float_value() Retrieves a Float attribute value, as a
float (4 bytes)

get_size_in_bytes()Gets the size of the attribute, in bytes

getColumn() Gets the column to which the attribute
belongs

getType() Gets the attribute's type (Column::Type)

isNULL() Tests whether the attribute is NULL

int8_value() Retrieves a Tinyint attribute value, as an
8-bit integer

int32_value() Retrieves an Int attribute value, as a 32-
bit integer

int64_value() Retrieves a Bigint attribute value, as a
64-bit integer

medium_value() Retrieves a Mediumint attribute value, as
a 32-bit integer

short_value() Retrieves a Smallint attribute value, as a
16-bit integer

u_8_value() Retrieves a Tinyunsigned attribute
value, as an unsigned 8-bit integer

243

The NdbRecAttr Class

Name Description

u_32_value() Retrieves an Unsigned attribute value, as
an unsigned 32-bit integer

u_64_value() Retrieves a Bigunsigned attribute value,
as an unsigned 64-bit integer

u_char_value() Retrieves a Char attribute value, as an
unsigned char

u_medium_value() Retrieves a Mediumunsigned attribute
value, as an unsigned 32-bit integer

u_short_value() Retrieves a Smallunsigned attribute
value, as an unsigned 16-bit integer

The NdbRecAttr class has no public constructor; an instance of
this object is created using NdbTransaction::execute(). For
information about the destructor, which is public, see ~NdbRecAttr().

Types The NdbRecAttr class defines no public types.

~NdbRecAttr()

Description The NdbRecAttr class destructor method.

You should delete only copies of NdbRecAttr objects that were
created in your application using the clone() method.

Signature ~NdbRecAttr
 (
 void
)

Parameters None.

Return value None.

NdbRecAttr::aRef()

Description This method is used to obtain a reference to an attribute value,
as a char pointer. This pointer is aligned appropriately for
the data type. The memory is released by the NDB API when
NdbTransaction::close() is executed on the transaction which
read the value.

Signature char* aRef
 (
 void
) const

Parameters A pointer to the attribute value. Because this pointer is constant, this
method can be called anytime after NdbOperation::getValue()
has been called.

Return value None.

NdbRecAttr::char_value()

Description This method gets a Char value stored in an NdbRecAttr object,
and returns it as a char.

Signature char char_value
 (

244

The NdbRecAttr Class

 void
) const

Parameters None.

Return value A char value.

NdbRecAttr::clone()

Description This method creates a deep copy of an NdbRecAttr object.

The copy created by this method should be deleted by the
application when no longer needed.

Signature NdbRecAttr* clone
 (
 void
) const

Parameters None.

Return value An NdbRecAttr object. This is a complete copy of the original,
including all data.

NdbRecAttr::double_value()

Description This method gets a Double value stored in an NdbRecAttr object,
and returns it as a double.

Signature double double_value
 (
 void
) const

Parameters None.

Return value A double (8 bytes).

NdbRecAttr::float_value()

Description This method gets a Float value stored in an NdbRecAttr object,
and returns it as a float.

Signature float float_value
 (
 void
) const

Parameters None.

Return value A float (4 bytes).

NdbRecAttr::get_size_in_bytes()

Description You can use this method to obtain the size of an attribute (element).

Signature Uint32 get_size_in_bytes
 (
 void
) const

Parameters None.

Return value The attribute size in bytes, as an unsigned 32-bit integer.

245

The NdbRecAttr Class

NdbRecAttr::getColumn()

Description This method is used to obtain the column to which the attribute
belongs.

Signature const NdbDictionary::Column* getColumn
 (
 void
) const

Parameters None.

Return value A pointer to a Column object.

NdbRecAttr::getType()

Description This method is used to obtain the column's data type.

Signature NdbDictionary::Column::Type getType
 (
 void
) const

Parameters None.

Return value A Column::Type value.

NdbRecAttr::int8_value()

Description This method gets a Small value stored in an NdbRecAttr object,
and returns it as an 8-bit signed integer.

Signature Int8 int8_value
 (
 void
) const

Parameters None.

Return value An 8-bit signed integer.

NdbRecAttr::int32_value()

Description This method gets an Int value stored in an NdbRecAttr object,
and returns it as a 32-bit signed integer.

Signature Int32 int32_value
 (
 void
) const

Parameters None.

Return value A 32-bit signed integer.

NdbRecAttr::int64_value()

Description This method gets a Bigint value stored in an NdbRecAttr object,
and returns it as a 64-bit signed integer.

Signature Int64 int64_value
 (
 void
) const

Parameters None.

246

The NdbRecAttr Class

Return value A 64-bit signed integer.

NdbRecAttr::isNULL()

Description This method checks whether a given attribute value is NULL.

Signature int isNULL
 (
 void
) const

Parameters None.

Return value One of the following three values:

• -1: The attribute value is not defined due to an error.

• 0: The attribute value is defined, but is not NULL.

• 1: The attribute value is defined and is NULL.

In the event that NdbTransaction::execute() has not yet been called, the value returned by
isNULL() is not determined.

NdbRecAttr::medium_value()

Description Gets the value of a Mediumint value stored in an NdbRecAttr
object, and returns it as a 32-bit signed integer.

Signature Int32 medium_value
 (
 void
) const

Parameters None.

Return value A 32-bit signed integer.

NdbRecAttr::short_value()

Description This method gets a Smallint value stored in an NdbRecAttr
object, and returns it as a 16-bit signed integer (short).

Signature short short_value
 (
 void
) const

Parameters None.

Return value A 16-bit signed integer.

NdbRecAttr::u_8_value()

Description This method gets a Smallunsigned value stored in an
NdbRecAttr object, and returns it as an 8-bit unsigned integer.

Signature Uint8 u_8_value
 (
 void
) const

Parameters None.

Return value An 8-bit unsigned integer.

247

The NdbRecAttr Class

NdbRecAttr::u_32_value()

Description This method gets an Unsigned value stored in an NdbRecAttr
object, and returns it as a 32-bit unsigned integer.

Signature Uint32 u_32_value
 (
 void
) const

Parameters None.

Return value A 32-bit unsigned integer.

NdbRecAttr::u_64_value()

Description This method gets a Bigunsigned value stored in an NdbRecAttr
object, and returns it as a 64-bit unsigned integer.

Signature Uint64 u_64_value
 (
 void
) const

Parameters None.

Return value A 64-bit unsigned integer.

NdbRecAttr::u_char_value()

Description This method gets a Char value stored in an NdbRecAttr object,
and returns it as an unsigned char.

Signature Uint8 u_char_value
 (
 void
) const

Parameters None.

Return value An 8-bit unsigned char value.

NdbRecAttr::u_medium_value()

Description This method gets an Mediumunsigned value stored in an
NdbRecAttr object, and returns it as a 32-bit unsigned integer.

Signature Uint32 u_medium_value
 (
 void
) const

Parameters None.

Return value A 32-bit unsigned integer.

NdbRecAttr::u_short_value()

Description This method gets a Smallunsigned value stored in an
NdbRecAttr object, and returns it as a 16-bit (short) unsigned
integer.

Signature Uint16 u_short_value
 (
 void

248

The NdbRecord Interface

) const

Parameters None.

Return value A short (16-bit) unsigned integer.

2.3.22 The NdbRecord Interface

This section provides information about the NdbRecord interface.

Decription NdbRecord is an interface which provides a mapping to a full or
a partial record stored in NDB. In the latter case, it can be used in
conjunction with a bitmap to assist in access.

Parent None.

Methods None.

Types None.

NdbRecord has no API methods of its own; rather, it acts as a handle that can be passed between
various method calls for use in many different sorts of operations, including the following:

• Unique key reads and primary key reads

• Table scans and index scans

• DML operations involving unique keys or primary keys

• Operations involving index bounds

The same NdbRecord can be used simultaneously in multiple operations, transactions, and threads.

An NdbRecord can be created in NDB API programs by calling Dictionary::createRecord().
In addition, a number of NDB API methods have additional declarations that enable the programmer to
leverage NdbRecord:

• NdbScanOperation::nextResult()

• NdbScanOperation::lockCurrentTuple()

• NdbScanOperation::updateCurrentTuple()

• NdbScanOperation::deleteCurrentTuple()

• Dictionary::createRecord()

• Dictionary::releaseRecord()

• NdbTransaction::readTuple()

• NdbTransaction::insertTuple()

• NdbTransaction::updateTuple()

• NdbTransaction::writeTuple()

• NdbTransaction::deleteTuple()

• NdbTransaction::scanTable()

• NdbTransaction::scanIndex()

The following members of NdbIndexScanOperation and NdbDictionary can also be used with
NdbRecord scans:

249

The NdbScanFilter Class

• IndexBound is a structure used to describe index scan bounds.

• RecordSpecification is a structure used to specify columns and range offsets.

You can also use NdbRecord in conjunction with the PartitionSpec structure to perform scans that
take advantage of partition pruning, using NdbIndexScanOperation::setBound().

2.3.23 The NdbScanFilter Class

This section provides information about the NdbScanFilter class.

• NdbScanFilter Class Overview

• NdbScanFilter::begin()

• NdbScanFilter::BinaryCondition

• NdbScanFilter::cmp()

• NdbScanFilter::cmp_param()

• NdbScanFilter Constructor

• NdbScanFilter::end()

• NdbScanFilter::eq()

• NdbScanFilter::isfalse()

• NdbScanFilter::isnotnull()

• NdbScanFilter::isnull()

• NdbScanFilter::istrue()

• NdbScanFilter::ge()

• NdbScanFilter::getNdbError()

• NdbScanFilter::getNdbOperation()

• NdbScanFilter::Group

• NdbScanFilter::gt()

• NdbScanFilter::le()

• NdbScanFilter::lt()

• NdbScanFilter::ne()

• NdbScanFilter::reset()

• NdbScanFilter::setSqlCmpSemantics()

NdbScanFilter Class Overview

Parent class None

Child classes None

Description NdbScanFilter provides an alternative means of specifying filters
for scan operations.

250

The NdbScanFilter Class

Because development of this interface is ongoing, the
characteristics of the NdbScanFilter class are subject to change
in future releases.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.58 NdbScanFilter class methods and descriptions

Name Description

NdbScanFilter() Constructor method

~NdbScanFilter() Destructor method

begin() Begins a compound (set of conditions)

cmp() Compares a column value with an arbitrary
value

cmp_param() Compares a column value with the value of
a supplied parameter

end() Ends a compound

eq() Tests for equality

ge() Tests for a greater-than-or-equal condition

getNdbError() Provides access to error information

getNdbOperation() Gets the associated NdbOperation

gt() Tests for a greater-than condition

isfalse() Defines a term in a compound as FALSE

isnotnull() Tests whether a column value is not NULL

isnull() Tests whether a column value is NULL

istrue() Defines a term in a compound as TRUE

le() Tests for a less-than-or-equal condition

lt() Tests for a less-than condition

ne() Tests for inequality

reset() Resets this NdbScanFilter object

setSqlCmpSemantics()Forces use of SQL-compliant NULL
comparison handling

Types The NdbScanFilter class defines two public types:

• BinaryCondition: The type of condition, such as lower bound
or upper bound.

• Group: A logical grouping operator, such as AND or OR.

NdbScanFilter Integer Comparison Methods. NdbScanFilter provides several convenience
methods which can be used in lieu of the cmp() method when the arbitrary value to be compared is an
integer: eq(), ge(), gt(), le(), lt(), and ne().

Each of these methods is essentially a wrapper for cmp() that includes an appropriate value of
BinaryCondition for that method's condition parameter; for example, NdbScanFilter::eq()
is defined like this:

int eq(int columnId, Uint32 value)
{

251

The NdbScanFilter Class

 return cmp(BinaryCondition::COND_EQ, columnId, &value, 4);
}

NdbScanFilter::begin()

Description This method is used to start a compound, and specifies the logical
operator used to group the conditions making up the compound.
The default is AND.

Signature int begin
 (
 Group group = AND
)

Parameters A Group value: one of AND, OR, NAND, or NOR. See
NdbScanFilter::Group, for additional information.

Return value 0 on success, -1 on failure.

NdbScanFilter::BinaryCondition

This section provides information about the BinaryCondition data type.

Description This type represents a condition based on the comparison of a
column value with some arbitrary value—that is, a bound condition.
A value of this type is used as the first argument to the cmp()
method.

When used in comparisons with COND_EQ, COND_NE, COND_LT,
COND_LE, COND_GT, or COND_GE, fixed-length character and binary
column values must be prefixed with the column size, and must
be padded to length. This is not necessary for such values when
used in COND_LIKE, COND_NOTLIKE, COL_AND_MASK_EQ_MASK,
COL_AND_MASK_NE_MASK, COL_AND_MASK_EQ_ZERO, or
COL_AND_MASK_NE_ZERO comparisons.

Strings compared using COND_LIKE and COND_NOTLIKE can use
the pattern metacharacters % and _. See NdbScanFilter::cmp(), for
more information.

The BIT comparison operators are COL_AND_MASK_EQ_MASK,
COL_AND_MASK_NE_MASK, COL_AND_MASK_EQ_ZERO, and
COL_AND_MASK_NE_ZERO. Corresponding methods are available
for NdbInterpretedCode and NdbOperation; for more
information about these methods, see NdbInterpretedCode Bitwise
Comparison Operations.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.59 NdbScanFilter data type values and descriptions

Name Description Column type
compared

COND_EQ Equality (=) any

COND_NE Inequality (<> or !=) any

COND_LE Lower bound (<=) any

COND_LT Strict lower bound (<) any

COND_GE Upper bound (>=) any

252

The NdbScanFilter Class

Name Description Column type
compared

COND_GT Strict upper bound (>) any

COND_LIKE LIKE condition string or binary

COND_NOTLIKE NOT LIKE condition string or binary

COL_AND_MASK_EQ_MASKColumn value ANDed
with bitmask is equal
to bitmask

BIT

COL_AND_MASK_NE_MASKColumn value ANDed
with bitmask is not
equal to bitmask

BIT

COL_AND_MASK_EQ_ZEROColumn value ANDed
with bitmask is equal
to zero

BIT

COL_AND_MASK_NE_ZEROColumn value ANDed
with bitmask is not
equal to zero

BIT

NdbScanFilter::cmp()

Description This method is used to define a comparison between a given value
and the value of a column. In NDB 8.0, it can also be used to
compare two columns. (This method does not actually execute the
comparison, which is done later when performing the scan for which
this NdbScanFilter is defined.)

In many cases, where the value to be compared is an integer, you
can instead use one of several convenience methods provided
by NdbScanFilter for this purpose. See NdbScanFilter Integer
Comparison Methods.

Signature int cmp
 (
 BinaryCondition condition,
 int columnId,
 const void* value,
 Uint32 length = 0
)

Addtionally, in NDB 8.0:

int cmp
 (
 BinaryCondition condition,
 int ColumnId1,
 int ColumnId2
)

Parameters When used to compare a value with a column, this method takes the
following parameters:

• condition: This represents the condition to be tested which
compares the value of the column having the column ID
columnID with some arbitrary value. The condition is a
BinaryCondition value; for permitted values and the relations
that they represent, see NdbScanFilter::BinaryCondition.

The condition values COND_LIKE or COND_NOTLIKE are used
to compare a column value with a string pattern.

253

The NdbScanFilter Class

• columnId: This is the column's identifier, which can be obtained
using the Column::getColumnNo() method.

• value: The value to be compared, represented as a pointer to
void.

When using a COND_LIKE or COND_NOTLIKE comparison
condition, the value is treated as a string pattern. This string
must not be padded or use a prefix. The string value can include
the pattern metacharacters or “wildcard” characters % and _,
which have the meanings shown here:

Table 2.60 Pattern metacharacters used with COND_LIKE and
COND_NOTLIKE comparisons

Metacharacter Description

% Matches zero or more characters

_ Matches exactly one character

To match against a literal “%” or “_” character, use the backslash
(\) as an escape character. To match a literal “\” character, use \
\.

These are the same wildcard characters that are supported by the
SQL LIKE and NOT LIKE operators, and are interpreted in the
same way. See String Comparison Functions and Operators, for
more information.

• length: The length of the value to be compared. The default
value is 0. Using 0 for the length has the same effect as
comparing to NULL, that is using the isnull() method.

When used to compare two columns, cmp() takes the following
parameters:

• condition: The condition to be tested when comparing
the columns. The condition may be any one of the
BinaryCondition values EQ, NE, LT, LE, GT, or GE. Other
values are not accepted.

• columnID1: ID of the first of the two columns to be compared.

• columnID1: ID of the second column.

Columns being compared using this method must be of exactly
the same type. This includes length, precision, scale, and all other
particulars.

Return value This method returns an integer: 0 on success, and -1 on failure.

NdbScanFilter::cmp_param()

Description This method is used to define a comparison between the value
of a column and that of a parameter having the specified ID. The
comparison is actually performed later when executing the scan for
which this NdbScanFilter is defined.

This method was added in NDB 8.0.27.

254

https://dev.mysql.com/doc/refman/8.4/en/string-comparison-functions.html

The NdbScanFilter Class

Signature int cmp_param()
 (
 BinaryCondition condition,
 int colId,
 int paramId
)

Parameters When used to compare a value with a column, this method takes the
following parameters:

• condition: This represents the condition to be tested which
compares the value of the column having the column ID
columnID with some arbitrary value. The condition is a
BinaryCondition value; for permitted values and the relations
that they represent, see NdbScanFilter::BinaryCondition.

The condition values COND_LIKE or COND_NOTLIKE are used
to compare a column value with a string pattern.

• colId: This is the column's identifier, which can be obtained
using the Column::getColumnNo() method.

• paramId: The ID of the parameter whose value is to be
compared.

Values being compared using this method must be of exactly the
same type. This includes length, precision, scale, and all other
particulars.

Return value This method returns an integer: 0 on success, and -1 on failure.

NdbScanFilter Constructor

Description This is the constructor method for NdbScanFilter, and creates a
new instance of the class.

Signature NdbScanFilter
 (
 class NdbOperation* op
)

Parameters This method takes a single parameter, a pointer to the
NdbOperation to which the filter applies.

Return value A new instance of NdbScanFilter.

Destructor The destructor takes no arguments and does not return a value. It
should be called to remove the NdbScanFilter object when it is
no longer needed.

NdbScanFilter::end()

Description This method completes a compound, signalling that there are no
more conditions to be added to it.

Signature int end
 (
 void
)

Parameters None.

Return value Returns 0 on success, or -1 on failure.

NdbScanFilter::eq()

255

The NdbScanFilter Class

Description This method is used to perform an equality test on a column value
and an integer.

Signature int eq
 (
 int ColId,
 Uint32 value
)

or

int eq
 (
 int ColId,
 Uint64 value
)

Parameters This method takes two parameters, listed here:

• The ID (ColId) of the column whose value is to be tested

• An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Return value Returns 0 on success, or -1 on failure.

NdbScanFilter::isfalse()

Description Defines a term of the current group as FALSE.

Signature int isfalse
 (
 void
)

Parameters None.

Return value 0 on success, or -1 on failure.

NdbScanFilter::isnotnull()

Description This method is used to check whether a column value is not NULL.

Signature int isnotnull
 (
 int ColId
)

Parameters The ID of the column whose value is to be tested.

Return value Returns 0, if the column value is not NULL.

NdbScanFilter::isnull()

Description This method is used to check whether a column value is NULL.

Signature int isnull
 (
 int ColId
)

Parameters The ID of the column whose value is to be tested.

Return value Returns 0, if the column value is NULL.

NdbScanFilter::istrue()

Description Defines a term of the current group as TRUE.

256

The NdbScanFilter Class

Signature int istrue
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on failure.

NdbScanFilter::ge()

Description This method is used to perform a greater-than-or-equal test on a
column value and an integer.

Signature This method accepts both 32-bit and 64-bit values, as shown here:

int ge
 (
 int ColId,
 Uint32 value
)

int ge
 (
 int ColId,
 Uint64 value
)

Parameters Like eq(), lt(), le(), and the other NdbScanFilter methods of
this type, this method takes two parameters:

• The ID (ColId) of the column whose value is to be tested

• An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Return value 0 on success; -1 on failure.

NdbScanFilter::getNdbError()

Description Because errors encountered when building an NdbScanFilter
do not propagate to any involved NdbOperation object, it is
necessary to use this method to access error information.

Signature const NdbError& getNdbError
 (
 void
)

Parameters None.

Return value A reference to an NdbError.

NdbScanFilter::getNdbOperation()

Description If the NdbScanFilter was constructed with an NdbOperation,
this method can be used to obtain a pointer to that NdbOperation
object.

Signature NdbOperation* getNdbOperation
 (
 void
)

Parameters None.

257

The NdbScanFilter Class

Return value A pointer to the NdbOperation associated with this
NdbScanFilter, if there is one. Otherwise, NULL.

NdbScanFilter::Group

This section provides information about the Group data type.

Description This type is used to describe logical (grouping) operators, and is
used with the begin() method. (See NdbScanFilter::begin().)

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.61 NdbScanFilter::Group data type values and
descriptions

Value Description

AND Logical AND: A AND B AND C

OR Logical OR: A OR B OR C

NAND Logical NOT AND: NOT (A AND B AND
C)

NOR Logical NOT OR: NOT (A OR B OR C)

NdbScanFilter::gt()

Description This method is used to perform a greater-than (strict upper bound)
test on a column value and an integer.

Signature This method accommodates both 32-bit and 64-bit values:

int gt
 (
 int ColId,
 Uint32 value
)

int gt
 (
 int ColId,
 Uint64 value
)

Parameters Like the other NdbScanFilter methods of this type, this method
takes two parameters:

• The ID (ColId) of the column whose value is to be tested

• An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Return value 0 on success; -1 on failure.

NdbScanFilter::le()

Description This method is used to perform a less-than-or-equal test on a
column value and an integer.

Signature This method has two variants, to accommodate 32-bit and 64-bit
values:

int le
 (

258

The NdbScanFilter Class

 int ColId,
 Uint32 value
)

int le
 (
 int ColId,
 Uint64 value
)

Parameters Like the other NdbScanFilter methods of this type, this method
takes two parameters:

• The ID (ColId) of the column whose value is to be tested

• An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Return value Returns 0 on success, or -1 on failure.

NdbScanFilter::lt()

Description This method is used to perform a less-than (strict lower bound) test
on a column value and an integer.

Signature This method has 32-bit and 64-bit variants, as shown here:

int lt
 (
 int ColId,
 Uint32 value
)

int lt
 (
 int ColId,
 Uint64 value
)

Parameters Like eq(), ne(), and the other NdbScanFilter methods of this
type, this method takes two parameters, listed here:

• The ID (ColId) of the column whose value is to be tested

• An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Return value Retrturns 0 on success, or -1 on failure.

NdbScanFilter::ne()

Description This method is used to perform an inequality test on a column value
and an integer.

Signature This method has 32-bit and 64-bit variants, as shown here:

int ne
 (
 int ColId,
 Uint32 value
)

int ne
 (
 int ColId,
 Uint64 value
)

259

The NdbScanOperation Class

Parameters Like eq() and the other NdbScanFilter methods of this type, this
method takes two parameters:

• The ID (ColId) of the column whose value is to be tested

• An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Return value Returns 0 on success, or -1 on failure.

NdbScanFilter::reset()

Description This method resets the NdbScanFilter object, discarding any
previous filter definition and error state.

Signature void reset
 (
 void
)

Parameters None.

Return value None.

reset() has no effect on the SQL-compliant NULL comparison mode set by
setSqlCmpSemantics().

This method was added in NDB 8.0.

NdbScanFilter::setSqlCmpSemantics()

Description Traditionally, when making comparisons involving NULL,
NdbScanFilter treats NULL as equal to NULL (and thus considers
NULL == NULL to be TRUE). This is not the same as specified by
the SQL Standard, which requires that any comparison with NULL
return NULL, including NULL == NULL.

Beginning with NDB 8.0.26, it is possible to override this behavior
by calling this method, which takes no arguments. Doing so causes
the next NdbScanFilter object to be created to employ SQL-
compliant NULL comparison for all operations for its entire lifetime.
This cannot be unset once setSqlCmpSemantics() is called;
invoking reset() has no effect in this regard. The effect of this
method extends only to the next instance of NdbScanFilter to be
created; any subsequent instance uses the traditional comparison
mode unless setSqlCmpSemantics() is invoked beforehand.

This method has no effect on NULL sorting; NdbScanFilter
always considers NULL to be less than any other value.

Signature void setSqlCmpSemantics
 (
 void
)

Parameters None

Return value None

This method was added in NDB 8.0.26.

2.3.24 The NdbScanOperation Class

This section provides information about the NdbScanOperation class.

260

The NdbScanOperation Class

• NdbScanOperation Class Overview

• NdbScanOperation::close()

• NdbScanOperation::deleteCurrentTuple()

• NdbScanOperation::getNdbTransaction()

• NdbScanOperation::getPruned()

• NdbScanOperation::lockCurrentTuple()

• NdbScanOperation::nextResult()

• NdbScanOperation::readTuples()

• NdbScanOperation::restart()

• NdbScanOperation::ScanFlag

• NdbScanOperation::ScanOptions

• NdbScanOperation::updateCurrentTuple()

NdbScanOperation Class Overview

Parent class NdbOperation

Child classes NdbIndexScanOperation

Description The NdbScanOperation class represents a scanning operation
used in a transaction. This class inherits from NdbOperation.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.62 NdbScanOperation class methods and descriptions

Name Description

close() Closes the scan

deleteCurrentTuple()Deletes the current tuple

lockCurrentTuple()Locks the current tuple

nextResult() Gets the next tuple

getNdbTransaction()Gets the NdbTransaction object for this
scan

getPruned() Used to find out whether this scan is
pruned to a single partition

readTuples() Reads tuples

restart() Restarts the scan

updateCurrentTuple()Updates the current tuple

This class has no public constructor. To create an instance
of NdbScanOperation, it is necessary to use the
NdbTransaction::getNdbScanOperation() method.

Types This class defines two public types, which are listed here:

• ScanFlag

• ScanOptions.

261

The NdbScanOperation Class

For more information about the use of NdbScanOperation, see Scan Operations, and Using Scans
to Update or Delete Rows.

NdbScanOperation::close()

Description Calling this method closes a scan. Rows returned by this scan
are no longer available after the scan has been closed using this
method.

See Scans with exclusive locks, for information about multiple
threads attempting to perform the same scan with an exclusive lock
and how this can affect closing the scans.

Signature void close
 (
 bool forceSend = false,
 bool releaseOp = false
)

Parameters This method takes the two parameters listed here:

• forceSend defaults to false; call close() with this parameter
set to true in order to force transactions to be sent.

• releaseOp also defaults to false; set this to true in order to
release the operation.

The buffer allocated by an NdbScanOperation for receiving
the scanned rows is released whenever the cursor navigating the
result set is closed using the close() method, regardless of the
value of the releaseOp argument.

Return value None.

NdbScanOperation::deleteCurrentTuple()

Description This method is used to delete the current tuple.

Signature const NdbOperation* deleteCurrentTuple
 (
 NdbTransaction* takeOverTrans,
 const NdbRecord* record,
 char* row = 0,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOpts = 0
)

For more information, see Section 2.3.22, “The NdbRecord
Interface”.

Parameters When used with the NdbRecord interface, this method takes the
parameters listed here:

• The transaction (takeOverTrans) that should perform the
lock; when using NdbRecord with scans, this parameter is not
optional.

• The NdbRecord referenced by the scan. This record value is
required, even if no records are being read.

• The row from which to read. Set this to NULL if no read is to
occur.

262

The NdbScanOperation Class

• The mask pointer is optional. If it is present, then only columns for
which the corresponding bit in the mask is set are retrieved by the
scan.

• OperationOptions (opts) can be used to provide more finely-
grained control of operation definitions. An OperationOptions
structure is passed with flags indicating which operation definition
options are present. Not all operation types support all operation
options; the options supported for each type of operation are
shown in the following table:

Table 2.63 Operation types for the NdbRecord
OperationOptions

Operation type
(Method)

OperationOptions Flags
Supported

readTuple() OO_ABORTOPTION, OO_GETVALUE,
OO_PARTITION_ID,
OO_INTERPRETED

insertTuple() OO_ABORTOPTION, OO_SETVALUE,
OO_PARTITION_ID, OO_ANYVALUE

updateTuple() OO_ABORTOPTION, OO_SETVALUE,
OO_PARTITION_ID,
OO_INTERPRETED, OO_ANYVALUE

writeTuple() OO_ABORTOPTION, OO_SETVALUE,
OO_PARTITION_ID, OO_ANYVALUE

deleteTuple() OO_ABORTOPTION, OO_GETVALUE,
OO_PARTITION_ID,
OO_INTERPRETED, OO_ANYVALUE

• The optional sizeOfOptions parameter is used to preserve
backward compatibility of this interface with previous definitions
of the OperationOptions structure. If an unusual size is
detected by the interface implementation, it can use this to
determine how to interpret the passed OperationOptions
structure. To enable this functionality, the caller should pass
sizeof(NdbOperation::OperationOptions) for the value
of this argument.

• If options are specified, their length (sizeOfOpts) must be
specified as well.

Return value Returns 0 on success, or -1 on failure.

NdbScanOperation::getNdbTransaction()

Description Gets the NdbTransaction object for this scan.

Signature NdbTransaction* getNdbTransaction
 (
 void
) const

Parameters None.

Return value A pointer to an NdbTransaction object.

NdbScanOperation::getPruned()

263

The NdbScanOperation Class

Description This method is used to determine whether or not a given scan
operation has been pruned to a single partition. For scans defined
using NdbRecord, this method can be called before or after the
scan is executed. For scans not defined using NdbRecord,
getPruned() is valid only after the scan has been executed.

Signature bool getPruned
 (
 void
) const

Parameters None.

Return value Returns true, if the scan is pruned to a single table partition.

NdbScanOperation::lockCurrentTuple()

Description This method locks the current tuple.

Signature This method can be called with an optional single parameter, in
either of the two ways shown here:

NdbOperation* lockCurrentTuple
 (
 void
)

NdbOperation* lockCurrentTuple
 (
 NdbTransaction* lockTrans
)

The following signature is also supported for this method, when
using NdbRecord:

NdbOperation *lockCurrentTuple
 (
 NdbTransaction* takeOverTrans,
 const NdbRecord* record,
 char* row = 0,
 const unsigned char* mask = 0
)

This method also supports specifying one or more
OperationOptions (also when using NdbRecord):

NdbOperation *lockCurrentTuple
 (
 NdbTransaction* takeOverTrans,
 const NdbRecord* record,
 char* row = 0,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)

Parameters (without
NdbRecord)

This method takes a single, optional parameter—the transaction
that should perform the lock. If this is omitted, the transaction is the
current one.

Parameters (using NdbRecord) When using the NdbRecord interface, this method takes these
parameters, as described in the following list:

• The transaction (takeOverTrans) that should perform the
lock; when using NdbRecord with scans, this parameter is not
optional.

264

The NdbScanOperation Class

• The NdbRecord referenced by the scan. This is required, even if
no records are being read.

• The row from which to read. Set this to NULL if no read is to
occur.

• The mask pointer is optional. If it is present, then only columns for
which the corresponding bit in the mask is set are retrieved by the
scan.

• The opts argument can take on any of the following
OperationOptions values: OO_ABORTOPTION, OO_GETVALUE,
and OO_ANYVALUE.

• If options are specified, their length (sizeOfOptions) must be
specified as well.

Calling an NdbRecord scan lock takeover on an NdbRecAttr-
style scan is not valid, nor is calling an NdbRecAttr-style scan lock
takeover on an NdbRecord-style scan.

Return value This method returns a pointer to an NdbOperation object, or
NULL.

NdbScanOperation::nextResult()

Description This method is used to fetch the next tuple in a scan transaction.
Following each call to nextResult(), the buffers and
NdbRecAttr objects defined in NdbOperation::getValue()
are updated with values from the scanned tuple.

When nextResult() is executed following end-of-file, NDB
returns error code 4210 (Ndb sent more info than length
specified) and the extra transaction object is freed by returning it
to the idle list for the right TC node.

Signatures This method can be invoked in one of two ways. The first of these is
shown here:

int nextResult
 (
 bool fetchAllowed = true,
 bool forceSend = false
)

It is also possible to use this method as shown here:

int nextResult
 (
 const char*& outRow,
 bool fetchAllowed = true,
 bool forceSend = false
)

Parameters (2-parameter
version)

This method takes the following two parameters:

• Normally, the NDB API contacts the NDB kernel for more tuples
whenever it is necessary; setting fetchAllowed to false keeps
this from happening.

Disabling fetchAllowed by setting it to false forces NDB to
process any records it already has in its caches. When there

265

The NdbScanOperation Class

are no more cached records it returns 2. You must then call
nextResult() with fetchAllowed equal to true in order to
contact NDB for more records.

While nextResult(false) returns 0, you should
transfer the record to another transaction using
execute(NdbTransaction::NoCommit). When
nextResult(false) returns 2, you should normally execute
and commit the other transaction. This causes any locks to be
transferred to the other transaction, updates or deletes to be
made, and then, the locks to be released. Following this, you
can call nextResult(true) to have more records fetched and
cached in the NDB API.

Note

If you do not transfer the records to
another transaction, the locks on those
records will be released the next time
that the NDB Kernel is contacted for more
records.

Disabling fetchAllowed can be useful when you want to
update or delete all of the records obtained in a given transaction,
as doing so saves time and speeds up updates or deletes of
scanned records.

• forceSend defaults to false, and can normally be omitted.
However, setting this parameter to true means that transactions
are sent immediately. See Section 1.4.4, “The Adaptive Send
Algorithm”, for more information.

Parameters (3-parameter
version)

This method can also be called with the following three parameters:

• Calling nextResult() sets a pointer to the next row in
outRow (if returning 0). This pointer is valid (only) until the
next call to nextResult() when fetchAllowed is true. The
NdbRecord object defining the row format must be specified
beforehand using NdbTransaction::scanTable() (or
NdbTransaction::scanIndex().

• When false, fetchAllowed forces NDB to process any records it
already has in its caches. See the description for this parameter in
the previous Parameters subsection for more details.

• Setting forceSend to true means that transactions are sent
immediately, as described in the previous Parameters subsection,
as well as in Section 1.4.4, “The Adaptive Send Algorithm”.

Return value This method returns one of the following 4 integer values,
interpreted as shown in the following list:

• -1: Indicates that an error has occurred.

• 0: Another tuple has been received.

• 1: There are no more tuples to scan.

• 2: There are no more cached records (invoke
nextResult(true) to fetch more records).

266

The NdbScanOperation Class

Example See Section 2.5.5, “NDB API Basic Scanning Example”.

NdbScanOperation::readTuples()

Description This method is used to perform a scan.

Signature virtual int readTuples
 (
 LockMode mode = LM_Read,
 Uint32 flags = 0,
 Uint32 parallel = 0,
 Uint32 batch = 0
)

Parameters This method takes the four parameters listed here:

• The lock mode; this is a LockMode value.

Scans with exclusive locks. When scanning with an
exclusive lock, extra care must be taken due to the fact that, if two
threads perform this scan simultaneously over the same range,
then there is a significant probability of causing a deadlock. The
likelihood of a deadlock is increased if the scan is also ordered
(that is, using SF_OrderBy or SF_Descending).

The NdbScanOperation::close() method is also affected by
this deadlock, since all outstanding requests are serviced before
the scan is actually closed.

• One or more ScanFlag values. Multiple values are OR'ed
together

• The number of fragments to scan in parallel; use 0 to require
that the maximum possible number be used.

• The batch parameter specifies how many records will
be returned to the client from the server by the next
NdbScanOperation::nextResult(true) method call. Use 0
to specify the maximum automatically.

Return value Returns 0 on success, -1 on failure.

NdbScanOperation::restart()

Description Use this method to restart a scan without changing any of its
getValue() calls or search conditions.

Signature int restart
 (
 bool forceSend = false
)

Parameters Call this method with forceSend set to true in order to force the
transaction to be sent.

Return value 0 on success; -1 on failure.

NdbScanOperation::ScanFlag

This section provides information about the ScanFlag data type.

Description Values of this type are the scan flags used with the readTuples()
method. More than one may be used, in which case, they are

267

The NdbScanOperation Class

OR'ed together as the second argument to that method. See
NdbScanOperation::readTuples(), for more information.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.64 NdbScanOperation::ScanFlag values and
descriptions

Value Description

SF_TupScan Scan in TUP order (that is, in the order
of the rows in memory). Applies to table
scans only.

SF_DiskScan Scan in disk order (order of rows on disk).
Applies to table scans only.

SF_OrderBy Ordered index scan (ascending); rows
returned from an index scan are sorted,
and ordered on the index key. Scans in
either ascending or descending order are
affected by this flag, which causes the API
to perform a merge-sort among the ordered
scans of each fragment to obtain a single
sorted result set.

Notes:

• Ordered indexes are distributed, with
one ordered index for each fragment of a
table.

• Range scans are often parallel across all
index fragments. Occasionally, they can
be pruned to one index fragment.

• Each index fragment range scan can
return results in either ascending or
descending order. Ascending is the
default; to choose descending order, set
the SF_Descending flag.

• When multiple index fragments are
scanned in parallel, the results are
sent back to NDB where they can
optionally be merge-sorted before being
returned to the user. This merge sorting
is controlled using the SF_OrderBy and
SF_OrderByFull flags.

• If SF_OrderBy or SF_OrderByFull
is not used, the results from each index
fragment are in order (either ascending
or descending), but results from different
fragments may be interleaved.

• When using SF_OrderBy or
SF_OrderByFull, some extra

268

The NdbScanOperation Class

Value Description
constraints are imposed internally; these
are listed here:

1. If the range scan is not pruned to
one index fragment then all index
fragments must be scanned in
parallel. (Unordered scans can
be executed with less than full
parallelism.)

2. Results from every index fragment
must be available before returning
any rows, to ensure a correct merge
sort. This serialises the “scrolling” of
the scan, potentially resulting in lower
row throughput.

3. Unordered scans can return rows
to the API client before all index
fragments have returned any
batches, and can overlap next-batch
requests with row processing.

SF_OrderByFull This is the same as SF_OrderBy,
except that all key columns are added
automatically to the read bitmask.

SF_Descending Causes an ordered index scan to be
performed in descending order.

SF_ReadRangeNo For index scans, when this flag is set,
NdbIndexScanOperation::get_range_no()
can be called to read back
the range_no defined in
NdbIndexScanOperation::setBound().
In addition, when this flag is set, and
SF_OrderBy or SF_OrderByFull is
also set, results from ranges are returned
in their entirety before any results are
returned from subsequent ranges.

SF_MultiRange Indicates that this scan is part of a
multirange scan; each range is scanned
separately.

SF_KeyInfo Requests KeyInfo to be sent back to
the caller. This enables the option to take
over the row lock taken by the scan, using
lockCurrentTuple(), by making sure
that the kernel sends back the information
needed to identify the row and the lock.
This flag is enabled by default for scans
using LM_Exclusive, but must be
explicitly specified to enable the taking over
of LM_Read locks. (See the LockMode
documentation for more information.)

NdbScanOperation::ScanOptions

This section provides information about the ScanOptions data structure.

269

The NdbScanOperation Class

Parent class NdbScanOperation

Description This data structure is used to pass options to the NdbRecord-
based scanTable() and scanIndex() methods of the
NdbTransaction class. Each option type is marked as present by
setting the corresponding bit in the optionsPresent field. Only
the option types marked in the optionsPresent field need have
sensible data.

All data is copied out of the ScanOptions structure (and any
subtended structures) at operation definition time. If no options are
required, then NULL may be passed as the ScanOptions pointer.

Members The elements making up this structure are shown in the following
table:

Table 2.65 NdbScanOperation::ScanOptions attributes, with
types and descriptions

Name Type Description

optionsPresent Uint64 Which options are
present.

[...] Type:

• SO_SCANFLAGS:
0x01

• SO_PARALLEL:
0x02

• SO_BATCH: 0x04

• SO_GETVALUE:
0x08

• SO_PARTITION_ID:
0x10

• SO_INTERPRETED:
0x20

• SO_CUSTOMDATA:
0x40

• SO_PARTINFO:
0x80

Type of options.

scan_flags Uint32 Flags controlling
scan behavior; see
NdbScanOperation::ScanFlag,
for more information.

parallel Uint32 Scan parallelism;
0 (the default)
sets maximum
parallelism.

batch Uint32 Batch size for
transfers from
data nodes to
API nodes; 0 (the

270

The NdbScanOperation Class

Name Type Description
default) enables
this to be selected
automatically.

extraGetValues GetValueSpec Extra values to be
read for each row
matching the sdcan
criteria.

numExtraGetValuesUint32 Number of extra
values to be read.

partitionId Uint32 Limit the scan to
the partition having
this ID; alternatively,
you can supply an
PartitionSpec
here. For index
scans, partitioning
information can be
supplied for each
range.

interpretedCode NdbInterpretedCodeInterpeted code to
execute as part of
the scan.

customData void* Data pointer to
associate with this
scan operation.

partitionInfo PartitionSpec Partition information
for bounding this
scan.

sizeOfPartInfo Uint32 Size of the bounding
partition information.

For more information, see Section 2.3.22, “The NdbRecord
Interface”.

NdbScanOperation::updateCurrentTuple()

Description This method is used to update the current tuple.

Signature Originally, this method could be called with a single. optional
parameter, in either of the ways shown here:

NdbOperation* updateCurrentTuple
 (
 void
)

NdbOperation* updateCurrentTuple
 (
 NdbTransaction* updateTrans
)

It is also possible to employ this method, when using NdbRecord
with scans, as shown here:

NdbOperation* updateCurrentTuple
 (
 NdbTransaction* takeOverTrans,

271

The NdbTransaction Class

 const NdbRecord* record,
 const char* row,
 const unsigned char* mask = 0
)

See Section 2.3.22, “The NdbRecord Interface”, for more
information.

Parameters (original) This method takes a single, optional parameter—the transaction
that should perform the lock. If this is omitted, the transaction is the
current one.

Parameters (using NdbRecord) When using the NdbRecord interface, this method takes the
following parameters, as described in the following list:

• The takeover transaction (takeOverTrans).

• The record (NdbRecord object) referencing the column used for
the scan.

• The row to read from. If no attributes are to be read, set this equal
to NULL.

• The mask pointer is optional. If it is present, then only columns for
which the corresponding bit in the mask is set are retrieved by the
scan.

Return value This method returns an NdbOperation object or NULL.

2.3.25 The NdbTransaction Class

This section provides information about the NdbTransaction class.

• NdbTransaction Class Overview

• NdbTransaction::close()

• NdbTransaction::commitStatus()

• NdbTransaction::CommitStatusType

• NdbTransaction::deleteTuple()

• NdbTransaction::ExecType

• NdbTransaction::execute()

• NdbTransaction::executePendingBlobOps()

• NdbTransaction::getGCI()

• NdbTransaction::getMaxPendingBlobReadBytes()

• NdbTransaction::getMaxPendingBlobWriteBytes()

• NdbTransaction::getNdbError()

• NdbTransaction::getNdbErrorLine()

• NdbTransaction::getNdbErrorOperation()

• NdbTransaction::getNdbIndexOperation()

• NdbTransaction::getNdbIndexScanOperation()

272

The NdbTransaction Class

• NdbTransaction::getNdbOperation()

• NdbTransaction::getNdbScanOperation()

• NdbTransaction::getNextCompletedOperation()

• NdbTransaction::getTransactionId()

• NdbTransaction::insertTuple()

• NdbTransaction::readTuple()

• NdbTransaction::refresh()

• NdbTransaction::releaseLockHandle()

• NdbTransaction::scanIndex()

• NdbTransaction::scanTable()

• NdbTransaction::setMaxPendingBlobReadBytes()

• NdbTransaction::setMaxPendingBlobWriteBytes()

• NdbTransaction::setSchemaObjectOwnerChecks()

• NdbTransaction::unlock()

• NdbTransaction::updateTuple()

• NdbTransaction::writeTuple()

NdbTransaction Class Overview

Parent class None

Child classes None

Description A transaction is represented in the NDB API by an
NdbTransaction object, which belongs to an Ndb object and
is created using Ndb::startTransaction(). A transaction
consists of a list of operations represented by the NdbOperation
class, or by one of its subclasses—NdbScanOperation,
NdbIndexOperation, or NdbIndexScanOperation. Each
operation access exactly one table.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.66 NdbTransaction class methods and descriptions

Name Description

close() Closes a transaction

commitStatus() Gets the transaction's commit status

deleteTuple() Delete a tuple using NdbRecord

execute() Executes a transaction

executePendingBlobOps()Executes a transaction in NoCommit mode
if it includes any blob part operations of the
specified types that are not yet executed.

getGCI() Gets a transaction's global checkpoint ID
(GCI)

273

The NdbTransaction Class

Name Description

getMaxPendingBlobReadBytes()Get the current blob read batch size

getMaxPendingBlobWriteBytes()Get the current blob write batch size

getNdbError() Gets the most recent error

getNdbErrorLine() Gets the line number where the most
recent error occurred

getNdbErrorOperation()Gets the most recent operation which
caused an error

getNextCompletedOperation()Gets operations that have been executed;
used for finding errors

getNdbOperation() Gets an NdbOperation

getNdbScanOperation()Gets an NdbScanOperation

getNdbIndexOperation()Gets an NdbIndexOperation

getNdbIndexScanOperation()Gets an NdbIndexScanOperation

getTransactionId()Gets the transaction ID

insertTuple() Insert a tuple using NdbRecord

readTuple() Read a tuple using NdbRecord

refresh() Keeps a transaction from timing out

releaseLockHandle()Release an NdbLockHandle object once
it is no longer needed

scanIndex() Perform an index scan using NdbRecord

scanTable() Perform a table scan using NdbRecord

setMaxPendingBlobReadBytes()Set the blob read batch size

setMaxPendingBlobWriteBytes()Set the blob write batch size

setSchemaObjectOwnerChecks()Enable or disable schema object
ownership checks

unlock() Create an unlock operation on the current
transaction

updateTuple() Update a tuple using NdbRecord

writeTuple() Write a tuple using NdbRecord

The methods readTuple(), insertTuple(), updateTuple(),
writeTuple(), deleteTuple(), scanTable(), and
scanIndex() require the use of NdbRecord.

Types NdbTransaction defines 2 public types as shown in the following
table:

Table 2.67 NdbTransaction class types and descriptions

Name Description

CommitStatusType()Describes the transaction's commit status

ExecType() Determines whether the transaction should
be committed or rolled back

Using Transactions. After obtaining an NdbTransaction object, it is employed as follows:

1. An operation is allocated to the transaction using any one of the following methods:

• getNdbOperation()

274

The NdbTransaction Class

• getNdbScanOperation()

• getNdbIndexOperation()

• getNdbIndexScanOperation()

Calling one of these methods defines the operation. Several operations can be defined on the same
NdbTransaction object, in which case they are executed in parallel. When all operations are
defined, the execute() method sends them to the NDB kernel for execution.

2. The execute() method returns when the NDB kernel has completed execution of all operations
previously defined.

All allocated operations should be properly defined before calling the execute() method.

3. execute() operates in one of the three modes listed here:

• NdbTransaction::NoCommit: Executes operations without committing them.

• NdbTransaction::Commit: Executes any remaining operation and then commits the complete
transaction.

• NdbTransaction::Rollback: Rolls back the entire transaction.

execute() is also equipped with an extra error handling parameter, which provides the two
alternatives listed here:

• NdbOperation::AbortOnError: Any error causes the transaction to be aborted. This is the
default behavior.

• NdbOperation::AO_IgnoreError: The transaction continues to be executed even if one or
more of the operations defined for that transaction fails.

NdbTransaction::close()

Description This method closes a transaction. It is equivalent to calling
Ndb::closeTransaction().

If the transaction has not yet been committed, it is aborted when this
method is called. See Ndb::startTransaction().

Signature void close
 (
 void
)

Parameters None.

Return value None.

NdbTransaction::commitStatus()

Description This method gets the transaction's commit status.

Signature CommitStatusType commitStatus
 (
 void
)

Parameters None.

Return value The commit status of the transaction, a value of type
CommitStatusType.

275

The NdbTransaction Class

NdbTransaction::CommitStatusType

This section provides information about the CommitStatusType data type.

Description This type is used to describe a transaction's commit status.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.68 NdbTransaction::CommitStatusType values and
descriptions

Name Description

NotStarted The transaction has not yet been started.

Started The transaction has started, but is not yet
committed.

Committed The transaction has completed, and has
been committed.

Aborted The transaction was aborted.

NeedAbort The transaction has encountered an error,
but has not yet been aborted.

A transaction's commit status ca be read using commitStatus().

NdbTransaction::deleteTuple()

Description Deletes a tuple using NdbRecord.

Signature const NdbOperation* deleteTuple
 (
 const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* result_rec,
 char* result_row,
 const unsigned char* result_mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)

Parameters This method takes the following parameters:

• key_rec is a pointer to an NdbRecord for either a table or an
index. If on a table, then the delete operation uses a primary key;
if on an index, then the operation uses a unique key. In either
case, the key_rec must include all columns of the key.

• The key_row passed to this method defines the primary or
unique key of the tuple to be deleted, and must remain valid until
execute() is called.

• The result_rec is the NdbRecord to be used.

• The result_row can be NULL if no attributes are to be returned.

• The result_mask, if not NULL, defines a subset of attributes to
be read and returned to the client. The mask is copied, and so
does not need to remain valid after the call to this method returns.

• OperationOptions (opts) can be used to provide more finely-
grained control of operation definitions. An OperationOptions

276

The NdbTransaction Class

structure is passed with flags indicating which operation definition
options are present. Not all operation types support all operation
options; for the options supported by each type of operation, see
NdbTransaction::readTuple().

• The optional sizeOfOptions parameter provides backward
compatibility of this interface with previous definitions of
the OperationOptions structure. If an unusual size is
detected by the interface implementation, it can use this to
determine how to interpret the passed OperationOptions
structure. To enable this functionality, the caller should pass
sizeof(NdbOperation::OperationOptions) for the value
of this argument.

Return value A const pointer to the NdbOperation representing this write
operation. The operation can be checked for errors if necessary.

NdbTransaction::ExecType

This section provides information about the ExecType data type.

Description This type sets the transaction's execution type; that is,
whether it should execute, execute and commit, or abort.
It is used as a parameter to the execute() method. (See
NdbTransaction::execute().)

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.69 NdbTransaction::ExecType values and descriptions

Name Description

NoCommit The transaction should execute, but not
commit.

Commit The transaction should execute and be
committed.

Rollback The transaction should be rolled back.

NdbTransaction::execute()

Description This method is used to execute a transaction.

Signature int execute
 (
 ExecType execType,
 NdbOperation::AbortOption abortOption = NdbOperation::DefaultAbortOption,
 int force = 0
)

Parameters The execute() method takes the three parameters listed here:

• The execution type (ExecType value); see
NdbTransaction::ExecType, for more information and possible
values.

• An abort option (NdbOperation::AbortOption value).

Errors arising from this method are found with
NdbOperation::getNdbError() rather than
NdbTransaction::getNdbError().

277

The NdbTransaction Class

• A force parameter, which determines when operations should
be sent to the NDB Kernel. It takes ones of the values listed here:

• 0: Nonforced; detected by the adaptive send algorithm.

• 1: Forced; detected by the adaptive send algorithm.

• 2: Nonforced; not detected by the adaptive send algorithm.

See Section 1.4.4, “The Adaptive Send Algorithm”, for more
information.

Return value Returns 0 on success, or -1 on failure. The fact that the transaction
did not abort does not necessarily mean that each operation was
successful; you must check each operation individually for errors.

This method reports a failure if and only if the transaction was aborted. The transaction's error
information is set in such cases to reflect the actual error code and category.

In the case where a NoDataFound error is a possibility, you must check for it explicitly, as shown in
this example:

Ndb_cluster_connection myConnection;

if(myConnection.connect(4, 5, 1))
{
 cout << "Unable to connect to cluster within 30 secs." << endl;
 exit(-1);
}

Ndb myNdb(&myConnection, "test");

// define operations...

myTransaction = myNdb->startTransaction();

if(myTransaction->getNdbError().classification == NdbError:NoDataFound)
{
 cout << "No records found." << endl;
 // ...
}

myNdb->closeTransaction(myTransaction);

You should be aware that a successful execute() call guarantees only that the scan request has
been assembled and sent to the transaction coordinator without any errors; it does not wait for any
signals to be sent in reply from the data nodes before returning.

NdbTransaction::executePendingBlobOps()

Description This method executes the transaction with ExecType equal to
NoCommit if there remain any blob part operations of the given
types which have not yet been executed.

Signature int executePendingBlobOps
 (
 Uint8 flags = 0xFF
)

Parameters The flags argument is the result of a bitwise OR, equal to 1 <<
optype, where optype is an NdbOperation::Type. The default
corresponds to NdbOperation::Type::PrimaryKeyAccess.

278

The NdbTransaction Class

Return value Returns 0 on success, or -1 on failure. The fact that the transaction
did not abort does not necessarily mean that each operation was
successful; you must check each operation individually for errors.

NdbTransaction::getGCI()

Description This method retrieves the transaction's global checkpoint ID (GCI).

Each committed transaction belongs to a GCI. The log for the
committed transaction is saved on disk when a global checkpoint
occurs.

By comparing the GCI of a transaction with the value of the latest
GCI restored in a restarted NDB Cluster, you can determine whether
or not the transaction was restored.

Whether or not the global checkpoint with this GCI has been saved
on disk cannot be determined by this method.

The GCI for a scan transaction is undefined, since no updates are
performed in scan transactions.

No GCI is available until execute() has been called with
ExecType::Commit.

Signature int getGCI
 (
 void
)

Parameters None.

Return value The transaction's GCI, or -1 if none is available.

NdbTransaction::getMaxPendingBlobReadBytes()

Description Gets the current batch size in bytes for blob read operations.
When the volume of blob data to be read within a given transaction
exceeds this amount, all of the transaction's pending blob read
operations are executed.

Signature Uint32 getMaxPendingBlobReadBytes
 (
 void
) const

Parameters None.

Return value The current blob read batch size, in bytes. See
NdbTransaction::setMaxPendingBlobReadBytes(), for more
information.

NdbTransaction::getMaxPendingBlobWriteBytes()

Description Gets the current batch size in bytes for blob write operations. When
the volume of blob data to be written within a given transaction
exceeds this amount, all of the transaction's pending blob write
operations are executed.

Signature Uint32 getMaxPendingBlobWriteBytes
 (
 void
) const

279

The NdbTransaction Class

Parameters None.

Return value The current blob write batch size, in bytes. See
NdbTransaction::setMaxPendingBlobWriteBytes(), for more
information.

NdbTransaction::getNdbError()

Description This method is used to obtain the most recent error (NdbError).

Signature const NdbError& getNdbError
 (
 void
) const

Parameters None.

Return value A reference to an NdbError object.

For additional information about handling errors in transactions, see Error Handling.

NdbTransaction::getNdbErrorLine()

Description This method return the line number where the most recent error
occurred.

Signature int getNdbErrorLine
 (
 void
)

Parameters None.

Return value The line number of the most recent error.

For additional information about handling errors in transactions, see Error Handling.

NdbTransaction::getNdbErrorOperation()

Description This method retrieves the operation that caused an error.

To obtain more information about the actual error, use the
NdbOperation::getNdbError() method of the NdbOperation
object returned by getNdbErrorOperation().

Signature NdbOperation* getNdbErrorOperation
 (
 void
)

Parameters None.

Return value A pointer to an NdbOperation.

For additional information about handling errors in transactions, see Error Handling.

NdbTransaction::getNdbIndexOperation()

Description This method is used to create an NdbIndexOperation associated
with a given table.

All index operations within the same transaction must be initialised
with this method. Operations must be defined before they are
executed.

280

The NdbTransaction Class

Signature NdbIndexOperation* getNdbIndexOperation
 (
 const NdbDictionary::Index* index
)

Parameters The Index object on which the operation is to be performed.

Return value A pointer to the new NdbIndexOperation.

NdbTransaction::getNdbIndexScanOperation()

Description This method is used to create an NdbIndexScanOperation
associated with a given table.

All index scan operations within the same transaction must be
initialised with this method. Operations must be defined before they
are executed.

Signature NdbIndexScanOperation* getNdbIndexScanOperation
 (
 const NdbDictionary::Index* index
)

Parameters The Index object on which the operation is to be performed.

Return value A pointer to the new NdbIndexScanOperation.

NdbTransaction::getNdbOperation()

Description This method is used to create an NdbOperation associated with a
given table.

All operations within the same transaction must be initialized with
this method. Operations must be defined before they are executed.

Signature NdbOperation* getNdbOperation
 (
 const NdbDictionary::Table* table
)

Parameters The Table object on which the operation is to be performed.

Return value A pointer to the new NdbOperation.

NdbTransaction::getNdbScanOperation()

Description This method is used to create an NdbScanOperation associated
with a given table.

All scan operations within the same transaction must be initialized
with this method. Operations must be defined before they are
executed.

Signature NdbScanOperation* getNdbScanOperation
 (
 const NdbDictionary::Table* table
)

Parameters The Table object on which the operation is to be performed.

Return value A pointer to the new NdbScanOperation.

NdbTransaction::getNextCompletedOperation()

281

The NdbTransaction Class

Description This method is used to retrieve a transaction's completed
operations. It is typically used to fetch all operations belonging to a
given transaction to check for errors.

NdbTransaction::getNextCompletedOperation(NULL)
returns the transaction's first NdbOperation object;
NdbTransaction::getNextCompletedOperation(myOp)
returns the NdbOperation object defined after NdbOperation
myOp.

This method should only be used after the transaction has been
executed, but before the transaction has been closed.

Signature const NdbOperation* getNextCompletedOperation
 (
 const NdbOperation* op
) const

Parameters This method requires a single parameter op, which is an operation
(NdbOperation object), or NULL.

Return value The operation following op, or the first operation defined for the
transaction if getNextCompletedOperation() was called using
NULL.

NdbTransaction::getTransactionId()

Description This method is used to obtain the transaction ID.

Signature Uint64 getTransactionId
 (
 void
)

Parameters None.

Return value The transaction ID, as an unsigned 64-bit integer.

NdbTransaction::insertTuple()

Description Inserts a tuple using NdbRecord.

Signatures const NdbOperation* insertTuple
 (
 const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* attr_rec,
 const char* attr_row,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)

const NdbOperation* insertTuple
 (
 const NdbRecord* combined_rec,
 const char* combined_row,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)

Parameters insertTuple() takes the following parameters:

• A pointer to an NdbRecord indicating the record (key_rec) to be
inserted.

282

The NdbTransaction Class

This method can also be called using a single NdbRecord pointer
and single char pointer (combined_rec, combined_row)
where the single NdbRecord represents record and attribute and
data.

• A row (key_row) of data to be inserted.

• A pointer to an NdbRecord indicating an attribute (attr_rec) to
be inserted.

• A row (attr_row) of data to be inserted as the attribute.

• A mask which can be used to filter the columns to be inserted.

• OperationOptions (opts) can be used to provide more finely-
grained control of operation definitions. An OperationOptions
structure is passed with flags indicating which operation definition
options are present. Not all operation types support all operation
options; for the options supported by each type of operation, see
NdbTransaction::readTuple().

• The optional sizeOfOptions parameter is used to preserve
backward compatibility of this interface with previous definitions
of the OperationOptions structure. If an unusual size is
detected by the interface implementation, it can use this to
determine how to interpret the passed OperationOptions
structure. To enable this functionality, the caller should pass
sizeof(NdbOperation::OperationOptions) for the value
of this argument.

Return value A const pointer to the NdbOperation representing this insert
operation.

NdbTransaction::readTuple()

Description This method reads a tuple using NdbRecord objects.

Signature const NdbOperation* readTuple
 (
 const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* result_rec,
 char* result_row,
 NdbOperation::LockMode lock_mode = NdbOperation::LM_Read,
 const unsigned char* result_mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)

Parameters This method takes the following parameters:

• key_rec is a pointer to an NdbRecord for either a table or an
index. If on a table, then the operation uses a primary key; if on
an index, then the operation uses a unique key. In either case, the
key_rec must include all columns of the key.

• The key_row passed to this method defines the primary or
unique key of the affected tuple, and must remain valid until
execute() is called.

The mask, if not NULL, defines a subset of attributes to
read, update, or insert. Only if (mask[attrId >> 3] &

283

The NdbTransaction Class

(1<<(attrId & 7))) is set is the column affected. The mask
is copied by the methods, so need not remain valid after the call
returns.

• result_rec is a pointer to an NdbRecord used to hold the
result

• result_row defines a buffer for the result data.

• lock_mode specifies the lock mode in effect for the operation.
See NdbOperation::LockMode, for permitted values and other
information.

• result_mask defines a subset of attributes to read. Only if
mask[attrId >> 3] & (1<<(attrId & 7)) is set is the
column affected. The mask is copied, and so need not remain
valid after the method call returns.

• OperationOptions (opts) can be used to provide more finely-
grained control of operation definitions. An OperationOptions
structure is passed with flags indicating which operation definition
options are present. Not all operation types support all operation
options; the options supported for each type of operation are
shown in the following table:

Table 2.70 Operation types for NdbTransaction::readTuple()
OperationOptions (opts) parameter, with operation options
supported by each type

Operation type
(Method)

OperationOptions Flags Supported

readTuple() OO_ABORTOPTION, OO_GETVALUE,
OO_PARTITION_ID, OO_INTERPRETED

insertTuple() OO_ABORTOPTION, OO_SETVALUE,
OO_PARTITION_ID, OO_ANYVALUE

updateTuple() OO_ABORTOPTION, OO_SETVALUE,
OO_PARTITION_ID, OO_INTERPRETED,
OO_ANYVALUE

writeTuple() OO_ABORTOPTION, OO_SETVALUE,
OO_PARTITION_ID, OO_ANYVALUE

deleteTuple() OO_ABORTOPTION, OO_GETVALUE,
OO_PARTITION_ID, OO_INTERPRETED,
OO_ANYVALUE

• The optional sizeOfOptions parameter is used to preserve
backward compatibility of this interface with previous definitions
of the OperationOptions structure. If an unusual size is
detected by the interface implementation, it can use this to
determine how to interpret the passed OperationOptions
structure. To enable this functionality, the caller should pass
sizeof(NdbOperation::OperationOptions) for the value
of this argument.

Return value A pointer to the NdbOperation representing this read operation
(this can be used to check for errors).

NdbTransaction::refresh()

284

The NdbTransaction Class

Description This method updates the transaction's timeout counter, and thus
avoids aborting due to transaction timeout.

It is not advisable to take a lock on a record and maintain it for a
extended time since this can impact other transactions.

Signature int refresh
 (
 void
)

Parameters None.

Return value Returns 0 on success, -1 on failure.

NdbTransaction::releaseLockHandle()

Description This method is used to release a lock handle (see
NdbOperation::getLockHandle) when it is no longer required. For
NdbRecord primary key read operations, this cannot be called until
the associated read operation has been executed.

All lock handles associated with a given transaction are released
when that transaction is closed.

Signature int releaseLockHandle
 (
 const NdbLockHandle* lockHandle
)

Parameters The NdbLockHandle object to be released.

Return value 0 on success.

NdbTransaction::scanIndex()

Description Perform an index range scan of a table, with optional ordering.

Signature NdbIndexScanOperation* scanIndex
 (
 const NdbRecord* key_record,
 const NdbRecord* result_record,
 NdbOperation::LockMode lock_mode = NdbOperation::LM_Read,
 const unsigned char* result_mask = 0,
 const NdbIndexScanOperation::IndexBound* bound = 0,
 const NdbScanOperation::ScanOptions* options = 0,
 Uint32 sizeOfOptions = 0
)

Parameters • The key_record describes the index to be scanned. It must be
a key record for the index; that is, it must specify, at a minimum,
all of the key columns of the index. The key_record must be
created from the index to be scanned (and not from the underlying
table).

• The result_record describes the rows to be returned from
the scan. For an ordered index scan, result_record must be
a key record for the index to be scanned; that is, it must include
(at a minimum) all of the columns in the index (the full index key
is needed by the NDB API for merge-sorting the ordered rows
returned from each fragment).

Like the key_record, the result_record must be created
from the underlying table, and not from the index to be scanned.

285

The NdbTransaction Class

Both the key_record and result_record NdbRecord
structures must stay in place until the scan operation is closed.

• The result_mask pointer is optional. If it is present, only
those columns for which the corresponding bits (by attribute
ID order) in result_mask are set are actually retrieved in the
scan. The result_mask is copied internally, so in contrast
to result_record it need not be valid when execute() is
invoked.

• A single IndexBound can be specified either in this call or in a
separate call to NdbIndexScanOperation::setBound().
To perform a multi-range read, the scan_flags in the
ScanOptions structure must include SF_MULTIRANGE.
Additional bounds can be added using successive calls to
NdbIndexScanOperation::setBound().

To specify an equals bound, use the same row pointer for the
low_key and high_key with the low and high inclusive bits set.

For multi-range scans, the low_key and high_key pointers
must be unique. In other words, it is not permissible to reuse
the same row buffer for several different range bounds within
a single scan. However, it is permissible to use the same row
pointer as low_key and high_key in order to specify an
equals bound; it is also permissible to reuse the rows after the
scanIndex() method returns—that is, they need not remain
valid until execute() time (unlike the NdbRecord pointers).

• To specify additional options, pass a ScanOptions structure.

• The sizeOfOptions exists to enable backward compatability
for this interface. This parameter indicates the size of the
ScanOptions structure at the time the client was compiled,
and enables detection of the use of an old-style ScanOptions
structure. If this functionality is not required, this argument can be
left set to 0.

Return value The current NdbIndexScanOperation, which can be used for
error checking.

NdbTransaction::scanTable()

Description This method performs a table scan, using an NdbRecord object to
read out column data.

Signature NdbScanOperation* scanTable
 (
 const NdbRecord* result_record,
 NdbOperation::LockMode lock_mode = NdbOperation::LM_Read,
 const unsigned char* result_mask = 0,
 Uint32 scan_flags = 0,
 Uint32 parallel = 0,
 Uint32 batch = 0
)

Parameters The scanTable() method takes the following parameters:

• A pointer to an NdbRecord for storing the result. This
result_record must remain valid until after the execute()
call has been made.

286

The NdbTransaction Class

• The lock_mode in effect for the operation. See
NdbOperation::LockMode, for permitted values and other
information.

• The result_mask pointer is optional. If it is present, only
those columns for which the corresponding bits (by attribute
ID order) in result_mask are set are actually retrieved in the
scan. The result_mask is copied internally, so in contrast
to result_record it need not be valid when execute() is
invoked.

• scan_flags can be used to impose ordering and sorting
conditions for scans. See NdbScanOperation::ScanFlag, for a list
of permitted values.

• The parallel argument is the desired parallelism, or 0 for
maximum parallelism (receiving rows from all fragments in
parallel), which is the default.

• batch determines whether batching is employed. The default is 0
(off).

Return value A pointer to the NdbScanOperation representing this scan. The
operation can be checked for errors if necessary.

NdbTransaction::setMaxPendingBlobReadBytes()

Description Sets the batch size in bytes for blob read operations. When the
volume of blob data to be read within a given transaction exceeds
this amount, all of the transaction's pending blob read operations are
executed.

Signature void setMaxPendingBlobReadBytes
 (
 Uint32 bytes
)

Parameters The batch size, as the number of bytes. Using 0 causes blob read
batching to be disabled, which is the default behavior (for backward
compatibility).

Return value None.

Note

blob read batching can also be controlled in the mysql client and other MySQL
client application using the MySQL Server's --ndb-blob-read-batch-
bytes option and its associated MySQL Server system variables.

NdbTransaction::setMaxPendingBlobWriteBytes()

Description Sets the batch size in bytes for blob write operations. When the
volume of blob data to be written within a given transaction exceeds
this amount, all of the transaction's pending blob write operations
are executed.

Signature void setMaxPendingBlobWriteBytes
 (
 Uint32 bytes
)

287

https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-read-batch-bytes
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-read-batch-bytes

The NdbTransaction Class

Parameters The batch size, as the number of bytes. Using 0 causes blob write
batching to be disabled, which is the default behavior (for backward
compatibility).

Return value None.

Note

Blob write batching can also be controlled in the mysql client and
other MySQL client applications in NDB 8.0.30 and later by setting the
MySQL Server's ndb_replica_blob_write_batch_bytes server
system variable to an appropriate value. You should be aware that, when
ndb_replica_blob_write_batch_bytesis not set,the effective
blob batch size (that is, the maximum number of pending bytes to write
for blob columns) is determined by the maximum of the default value of
ndb_replica_blob_write_batch_bytes and the value set for the --ndb-
blob-write-batch-bytes MySQL server option. For this reason, you should
use ndb_replica_blob_write_batch_bytes rather than --ndb-blob-
write-batch-bytes.

Prior to NDB 8.0.30, you must use the --ndb-blob-write-batch-bytes
option, or one of its associated MySQL Server system variables, to set the blob
batch size from mysql or another MySQL client program.

NdbTransaction::setSchemaObjectOwnerChecks()

Description Enables or disables a schema object ownership check when
multiple Ndb_cluster_connection objects are in use. When
this check is enabled, objects used by this transaction are checked
to make sure that they belong to the NdbDictionary owned by
this connection. This is done by acquiring the schema objects of
the same names from the connection and comparing these with the
schema objects passed to the transaction. If they do not match, an
error is returned.

This method is available for debugging purposes. (Bug #19875977)
You should be aware that enabling this check carries a performance
penalty and for this reason you should avoid doing so in a
production setting.

Signature void setSchemaObjOwnerChecks
 (
 bool runChecks
)

Parameters A single parameter runChecks. Use true to enable ownership
checks, false to disable them.

Return value None.

NdbTransaction::unlock()

Description This method creates an unlock operation on the current transaction;
when executed, the unlock operation removes the lock referenced
by the NdbLockHandle (see NdbOperation::getLockHandle)
passed to the method.

Signature const NdbOperation* unlock
 (
 const NdbLockHandle* lockHandle,
 NdbOperation::AbortOption ao = NdbOperation::DefaultAbortOption
)

288

https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#sysvar_ndb_replica_blob_write_batch_bytes
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-write-batch-bytes
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-write-batch-bytes
https://dev.mysql.com/doc/refman/8.4/en/mysql.html

The NdbTransaction Class

Parameters A pointer to a lock handle; in addition, optionally, an AbortOption
value ao.

In the event that the unlock operation fails—for example, due to the
row already being unlocked—the AbortOption specifies how this
is handled, the default being that errors cause transactions to abort.

Return value A pointer to an NdbOperation (the unlock operation created).

NdbTransaction::updateTuple()

Description Updates a tuple using an NdbRecord object.

Signature const NdbOperation* updateTuple
 (
 const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* attr_rec,
 const char* attr_row,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)

Parameters updateTuple() takes the following parameters:

• key_rec is a pointer to an NdbRecord for either a table or an
index. If on a table, then the operation uses a primary key; if on
an index, then the operation uses a unique key. In either case, the
key_rec must include all columns of the key.

• The key_row passed to this method defines the primary or
unique key of the affected tuple, and must remain valid until
execute() is called.

• attr_rec is an NdbRecord referencing the attribute to be
updated.

Note

For unique index operations, the
attr_rec must refer to the underlying
table of the index, not to the index itself.

• attr_row is a buffer containing the new data for the update.

• The mask, if not NULL, defines a subset of attributes to be
updated. The mask is copied, and so does not need to remain
valid after the call to this method returns.

• OperationOptions (opts) can be used to provide more finely-
grained control of operation definitions. An OperationOptions
structure is passed with flags indicating which operation definition
options are present. Not all operation types support all operation
options; for the options supported by each type of operation, see
NdbTransaction::readTuple().

• The optional sizeOfOptions parameter is used to preserve
backward compatibility of this interface with previous definitions
of the OperationOptions structure. If an unusual size is
detected by the interface implementation, it can use this to
determine how to interpret the passed OperationOptions
structure. To enable this functionality, the caller should pass

289

The NdbTransaction Class

sizeof(NdbOperation::OperationOptions) for the value
of this argument.

Return value The NdbOperation representing this operation (can be used to
check for errors).

NdbTransaction::writeTuple()

Description This method is used with NdbRecord to write a tuple of data.

Signature const NdbOperation* writeTuple
 (
 const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* attr_rec,
 const char* attr_row,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)

Parameters This method takes the following parameters:

• key_rec is a pointer to an NdbRecord for either a table or an
index. If on a table, then the operation uses a primary key; if on
an index, then the operation uses a unique key. In either case, the
key_rec must include all columns of the key.

• The key_row passed to this method defines the primary or
unique key of the tuple to be written, and must remain valid until
execute() is called.

• attr_rec is an NdbRecord referencing the attribute to be
written.

For unique index operations, the attr_rec must refer to the
underlying table of the index, not to the index itself.

• attr_row is a buffer containing the new data.

• The mask, if not NULL, defines a subset of attributes to be written.
The mask is copied, and so does not need to remain valid after
the call to this method returns.

• OperationOptions (opts) can be used to provide more finely-
grained control of operation definitions. An OperationOptions
structure is passed with flags indicating which operation definition
options are present. Not all operation types support all operation
options; for the options supported by each type of operation, see
NdbTransaction::readTuple().

• The optional sizeOfOptions parameter is used to provide
backward compatibility of this interface with previous definitions
of the OperationOptions structure. If an unusual size is
detected by the interface implementation, it can use this to
determine how to interpret the passed OperationOptions
structure. To enable this functionality, the caller should pass
sizeof(NdbOperation::OperationOptions) for the value
of this argument.

Return value A const pointer to the NdbOperation representing this write
operation. The operation can be checked for errors if and as
necessary.

290

The Object Class

2.3.26 The Object Class

This section provides information about the Object class, which contains meta-information about
database objects such as tables and indexes. Object subclasses model these and other database
objects.

• Object Class Overview

• Object::FragmentType

• Object::getObjectStatus()

• Object::getObjectId()

• Object::getObjectVersion()

• Object::PartitionBalance

• Object::State

• Object::Status

• Object::Store

• Object::Type

Object Class Overview

Parent class NdbDictionary

Child classes Datafile, Event, Index, LogfileGroup, Table, Tablespace,
Undofile, HashMap, ForeignKey

Methods The following table lists the public methods of the Object class and
the purpose or use of each method:

Table 2.71 Object class methods and descriptions

Name Description

getObjectId() Gets an object's ID

getObjectStatus() Gets an object's status

getObjectVersion()Gets the version of an object

All 3 of these methods are pure virtual methods, and are
reimplemented in the Table, Index, and Event subclasses where
needed.

Types These are the public types of the Object class:

Table 2.72 Object class types and descriptions

Name Description

FragmentType Fragmentation type used by the object (a
table or index)

State The object's state (whether it is usable)

Status The object's state (whether it is available)

Store Whether the object has been temporarily or
permanently stored

291

The Object Class

Name Description

Type The object's type (what sort of table, index,
or other database object the Object
represents)

Object::FragmentType

This section provides information about the FragmentType type, which describes the fragmentation
type of an instance of Object.

Description This parameter specifies how data in the table or index is distributed
among the cluster's data nodes, that is, the number of fragments per
node. The larger the table, the larger the number of fragments that
should be used. Note that all fragment replicas count as a single
fragment. For a table, the default is FragAllMedium. For a unique
hash index, the default is taken from the underlying table and cannot
currently be changed.

Enumeration values Possible values for FragmentType are shown, along with
descriptions, in the following table:

Table 2.73 FragmentType values and descriptions

Name Description

FragUndefined The fragmentation type is undefined or the
default

FragAllMedium Two fragments per node

FragAllLarge Four fragments per node

DistrKeyHash Distributed hash key

DistrKeyLin Distributed linear hash key

UserDefined User defined

HashMapPartition Hash map partition

Object::getObjectStatus()

Description This method retrieves the status of the object for which it is invoked.

Signature virtual Status getObjectStatus
 (
 void
) const

Parameters None.

Return value Returns the current Status of the Object.

Object::getObjectId()

Description This method retrieves the object's ID.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The object ID, an integer.

292

The Object Class

Object::getObjectVersion()

Description The method gets the current version of the object.

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The object's version number, an integer.

Object::PartitionBalance

This section provides information about the PartitionBalance data type.

Description This type enumerates partition balance settings
(fragment count types) from which to choose when using
setPartitionBalance(). This is also the type returned by
getPartitionBalance()

Enumeration values Possible values for PartitionBalance are shown, along with
descriptions, in the following table:

Table 2.74 Object::PartitionBalance data type values and
descriptions

Name Description

PartitionBalance_ForRPByLDMUse one fragment per LDM per node

PartitionBalance_ForRAByLDMUse one fragment per LDM per node group

PartitionBalance_ForRPByNodeUse one fragment per node

PartitionBalance_ForRAByNodeUse one fragment per node group

PartitionBalance_SpecificUse setting determined by
setPartitionBalance()

In NDB 7.4 and earlier, this was known as FragmentCountType, and could take one of the
values FragmentCount_OnePerLDMPerNode, FragmentCount_OnePerLDMPerNodeGroup,
FragmentCount_OnePerNode, FragmentCount_OnePerNodeGroup, or
FragmentCount_Specific. These values correspond to those shown in the previous table, in the
order shown.

Object::State

This section provides information about the State type, which models the state of the Object.

Description This parameter provides us with the object's state. By state, we
mean whether or not the object is defined and is in a usable
condition. The numeric values are used in the state columns
of the dict_obj_info and hash_maps tables in the ndbinfo
information database.

Enumeration values Possible values for State are shown, along with descriptions, in the
following table:

Table 2.75 Object State type values and descriptions

ID Name Description

1 StateUndefinedUndefined

293

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-dict-obj-info.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-hash-maps.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo.html

The Object Class

ID Name Description

StateOffline Offline, not useable

2 StateBuildingBuilding (e.g. restore?), not useable(?)

3 StateDroppingGoing offline or being dropped; not
usable

4 StateOnline Online, usable

5 StateBackup Online, being backed up, usable

6 StateBroken Broken; should be dropped and re-
created

Object::Status

This section provides information about the Status type, which models the status of an Object.

Description Reading an object's Status tells whether or not it is available in the
NDB kernel.

Enumeration values Possible values for Status are shown, along with descriptions, in
the following table:

Table 2.76 Object Status data type values and descriptions

Name Description

New The object exists only in memory, and has
not yet been created in the NDB kernel

Changed The object has been modified in memory,
and must be committed in the NDB Kernel
for changes to take effect

Retrieved The object exists, and has been read into
main memory from the NDB Kernel

Invalid The object has been invalidated, and
should no longer be used

Altered The table has been altered in the NDB
kernel, but is still available for use

Object::Store

This section provides information about the Store type, which describes the persistence of an
Object.

Description Reading this value tells us is the object is temporary or permanent.

Enumeration values Possible values for Store are shown, along with descriptions, in the
following table:

Table 2.77 Object Store data type values and descriptions

Name Description

StoreUndefined The object is undefined

StoreTemporary Temporary storage; the object or data will
be deleted on system restart

StorePermanent The object or data is permanent; it has
been logged to disk

Object::Type

294

The Table Class

This section provides information about the Type type.

Description The Type of the object can be one of several different sorts of
index, trigger, tablespace, and so on.

Enumeration values Possible values for Type are shown, along with descriptions, in the
following table:

Table 2.78 Object Type data type values and descriptions

Name Description

TypeUndefined Undefined

SystemTable System table

UserTable User table (may be temporary)

UniqueHashIndex Unique (but unordered) hash index

OrderedIndex Ordered (but not unique) index

HashIndexTrigger Index maintenance (internal)

IndexTrigger Index maintenance (internal)

SubscriptionTriggerBackup or replication (internal)

ReadOnlyConstraintTrigger (internal)

Tablespace Tablespace

LogfileGroup Log file group

Datafile Data file

Undofile Undo file

ReorgTrigger Trigger

HashMap Hash map

ForeignKey Foreign key

FKParentTrigger Trigger on a foreign key's parent table

FKChildTrigger Trigger on a foreign key's child table

For more information about ForeignKey, FKParentTrigger, and FKChildTrigger, see
Section 2.3.6, “The ForeignKey Class”.

2.3.27 The Table Class

This section provides information about the Table class, which models a database table in the NDB
API.

• Table Class Overview

• Table::addColumn()

• Table::aggregate()

• Table Constructor

• Table::equal()

• Table::getColumn()

• Table::getDefaultNoPartitionsFlag()

• Table::getExtraMetadata()

• Table::getForceVarPart()

295

The Table Class

• Table::getFragmentCount()

• Table::getFragmentData()

• Table::getFragmentDataLen()

• Table::getFragmentNodes()

• Table::getFragmentType()

• Table::getFrmData()

• Table::getFrmLength()

• Table::getHashMap()

• Table::getKValue()

• Table::getLinearFlag()

• Table::getLogging()

• Table::getMaxLoadFactor()

• Table::getMaxRows()

• Table::getMinLoadFactor()

• Table::getMinRows()

• Table:getName()

• Table::getNoOfAutoIncrementColumns()

• Table::getNoOfColumns()

• Table::getNoOfPrimaryKeys()

• Table::getObjectId()

• Table::getObjectStatus()

• Table::getObjectType() (OBSOLETE)

• Table::getObjectVersion()

• Table::getPartitionBalance()

• Table::getPartitionBalanceString()

• Table::getPartitionId()

• Table::getPrimaryKey()

• Table::getRangeListData()

• Table::getRangeListDataLen()

• Table::getRowChecksumIndicator()

• Table::getRowGCIIndicator()

• Table::getRowSizeInBytes()

• Table::getSingleUserMode()

296

The Table Class

• Table::getTableId()

• Table::getTablespace()

• Table::getTablespaceData()

• Table::getTablespaceDataLen()

• Table::getTablespaceNames()

• Table::getTablespaceNamesLen()

• Table::hasDefaultValues()

• Table::setDefaultNoPartitionsFlag()

• Table::setExtraMetadata()

• Table::setForceVarPart()

• Table::setFragmentCount()

• Table::setFragmentData()

• Table::setFragmentType()

• Table::setFrm()

• Table::setHashMap()

• Table::setKValue()

• Table::setLinearFlag()

• Table::setLogging()

• Table::setMaxLoadFactor()

• Table::setMaxRows()

• Table::setMinLoadFactor()

• Table::setName()

• Table::setObjectType() (OBSOLETE)

• Table::setPartitionBalance()

• Table::setRangeListData()

• Table::setRowChecksumIndicator()

• Table::setRowGCIIndicator()

• Table::setSingleUserMode()

• Table::setStatusInvalid()

• Table::setTablespace()

• Table::setTablespaceData()

• Table::setTablespaceNames()

• Table::SingleUserMode

297

The Table Class

• Table::validate()

Table Class Overview

Parent class NdbDictionary

Child classes None

Description The Table class represents a table in an NDB Cluster database.
This class extends the Object class, which in turn is an inner class
of the NdbDictionary class.

It is possible using the NDB API to create tables independently of
the MySQL server. However, it is usually not advisable to do so,
since tables created in this fashion cannot be seen by the MySQL
server. Similarly, it is possible using Table methods to modify
existing tables, but these changes (except for renaming tables) are
not visible to MySQL.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.79 Table class methods and descriptions

Name Description

Table() Class constructor

~Table() Destructor

addColumn() Adds a column to the table

aggregate() Computes aggregate data for the
table

equal() Compares the table with another
table

getColumn() Gets a column (by name) from the
table

getDefaultNoPartitionsFlag()Checks whether the default number
of partitions is being used

getFragmentCount() Gets the number of fragments for
this table

getExtraMetadata() Gets extra metadata for this table

getForceVarPart() Whether the table is forced to
allocate a variable part

getFragmentData() Gets table fragment data (ID, state,
and node group)

getFragmentDataLen() Gets the length of the table
fragment data

getFragmentNodes() Gets IDs of data nodes on which
fragments are located

getFragmentType() Gets the table's FragmentType

getFrmData() Gets the data from the table .FRM
file; deprecated in NDB 8.0.27

getFrmLength() Gets the length of the table's .FRM
file; deprecated in NDB 8.0.27

getHashMap() Gets the table's hash map.

298

The Table Class

Name Description

getKValue() Gets the table's KValue

getLinearFlag() Gets the current setting for the
table's linear hashing flag

getLogging() Checks whether logging to disk is
enabled for this table

getMaxLoadFactor() Gets the table's maximum load
factor

getMaxRows() Gets the maximum number of rows
that this table may contain

getMinLoadFactor() Gets the table's minimum load factor

getMinRows() Gets the minimum number of
rows in the table (for calculating
partitions)

getName() Gets the table's name

getNoOfAutoIncrementColumns()Gets the number of auto-increment
columns in the table

getNoOfColumns() Gets the number of columns in the
table

getNoOfPrimaryKeys() Gets the number of columns in the
table's primary key

getObjectId() Gets the table's object ID

getObjectStatus() Gets the table's object status

getObjectType() Removed in NDB 7.5.0 (Bug
#47960, Bug #11756088)

getObjectVersion() Gets the table's object version

getPartitionBalance() Gets partition balance (fragment
count type) used for this table (NDB
7.5 and later)

getPartitionBalanceString()Gets partition balance used for this
table, as a string (NDB 7.5 and later)

getPartitionId() Gets a partition ID from a hash
value

getPrimaryKey() Gets the name of the table's primary
key

getRangeListData() Gets a RANGE or LIST array

getRangeListDataLen() Gets the length of the table RANGE
or LIST array

getRowChecksumIndicator()Checks whether the row checksum
indicator has been set

getRowGCIIndicator() Checks whether the row GCI
indicator has been set

getRowGCIIndicator() Checks whether the row GCI
indicator has been set

getRowSizeInBytes() Gets the size of a row of this table,
in bytes

getSingleUserMode() Gets the SingleUserMode for this
table

299

The Table Class

Name Description

getTableId() Gets the table's ID

getTablespace() Gets the tablespace containing this
table

getTablespaceData() Gets the ID and version of the
tablespace containing the table

getTablespaceDataLen() Gets the length of the table's
tablespace data

getTablespaceNames() Gets the names of the tablespaces
used in the table fragments

hasDefaultValues() Determine whether table has any
columns using default values

setDefaultNoPartitionsFlag()Toggles whether the default number
of partitions should be used for the
table

setExtraMetadata() Sets extra metadata for this table

setForceVarPart() Forces the table to allocate a
variable part

getFragmentCount() Gets the number of fragments for
this table

setFragmentData() Sets the fragment ID, node group
ID, and fragment state

setFragmentType() Sets the table's FragmentType

setFrm() Sets the .FRM file to be used for this
table; deprecated in NDB 8.0.27

setHashMap() Sets the table's hash map.

setKValue() Set the KValue

setLinearFlag() Sets the table's linear hashing flag

setLogging() Toggle logging of the table to disk

setMaxLoadFactor() Set the table's maximum load factor
(MaxLoadFactor)

setMaxRows() Sets the maximum number of rows
in the table

setMinLoadFactor() Set the table's minimum load factor
(MinLoadFactor)

setPartitionBalance() Sets the partition balance (fragment
count type) for this table (NDB 7.5
and later)

setName() Sets the table's name

setObjectType() Removed in NDB 7.5.0 (Bug
#47960, Bug #11756088)

setRangeListData() Sets LIST and RANGE partition data

setRowChecksumIndicator()Sets the row checksum indicator

setRowGCIIndicator() Sets the row GCI indicator

setSingleUserMode() Sets the SingleUserMode value
for this table

setStatusInvalid()

300

The Table Class

Name Description

setTablespace() Set the tablespace to use for this
table

setTablespaceData() Sets the tablespace ID and version

setTablespaceNames() Sets the tablespace names for
fragments

validate() Validates the definition for a new
table prior to creating it

Types The Table class defines a single public type SingleUserMode.

The assignment (=) operator is overloaded for this class, so that it always performs a deep copy.

As with other database objects, Table object creation and attribute changes to existing tables done
using the NDB API are not visible from MySQL. For example, if you add a new column to a table using
Table::addColumn(), MySQL cannot see the new column. The only exception to this rule with
regard to tables is that a change of name of an existing NDB table using Table::setName() is visible
to MySQL.

Calculating Table Sizes. When calculating the data storage one should add the size of all attributes
(each attribute consuming a minimum of 4 bytes) and well as 12 bytes overhead. Variable size
attributes have a size of 12 bytes plus the actual data storage parts, with an additional overhead based
on the size of the variable part. For example, consider a table with 5 attributes: one 64-bit attribute,
one 32-bit attribute, two 16-bit attributes, and one array of 64 8-bit attributes. The amount of memory
consumed per record by this table is the sum of the following:

• 8 bytes for the 64-bit attribute

• 4 bytes for the 32-bit attribute

• 8 bytes for the two 16-bit attributes, each of these taking up 4 bytes due to right-alignment

• 64 bytes for the array (64 * 1 byte per array element)

• 12 bytes overhead

This totals 96 bytes per record. In addition, you should assume an overhead of about 2% for the
allocation of page headers and wasted space. Thus, 1 million records should consume 96 MB, and the
additional page header and other overhead comes to approximately 2 MB. Rounding up yields 100 MB.

Table::addColumn()

Description Adds a column to a table.

Signature void addColumn
 (
 const Column& column
)

Parameters A reference to the column which is to be added to the table.

Return value This method's return type is void, but it does create a copy of the
original Column object.

Table::aggregate()

Description This method computes aggregate data for the table. It is required in
order for aggregate methods such as getNoOfPrimaryKeys() to
work properly before the table has been created and retrieved via
getTableId().

301

The Table Class

Signature int aggregate
 (
 struct NdbError& error
)

Parameters A reference to an NdbError object.

Return value An integer, whose value is 0 on success, and -1 if the table is in an
inconsistent state. In the latter case, the error is also set.

Table Constructor

Description Creates a Table instance. There are two versions of the
Table constructor, one for creating a new instance, and a copy
constructor.

Tables created in the NDB API using this method are not accessible
from MySQL.

Signature New instance:

Table
 (
 const char* name = ""
)

Copy constructor:

Table
 (
 const Table& table
)

Parameters For a new instance, the name of the table to be created. For a copy,
a reference to the table to be copied.

Return value A Table object.

Destructor virtual ~Table()

Table::equal()

Description This method is used to compare one instance of Table with
another.

Signature bool equal
 (
 const Table& table
) const

Parameters A reference to the Table object with which the current instance is to
be compared.

Return value true if the two tables are the same, otherwise false.

Table::getColumn()

Description This method is used to obtain a column definition, given either the
index or the name of the column.

Signature This method can be invoked using either the column ID or column
name, as shown here:

Column* getColumn

302

The Table Class

 (
 const int AttributeId
)

Column* getColumn
 (
 const char* name
)

Parameters Either of: the column's index in the table (as it would be returned by
the column's getColumnNo() method), or the name of the column.

Return value A pointer to the column with the specified index or name. If there is
no such column, then this method returns NULL.

Table::getDefaultNoPartitionsFlag()

Description This method is used to find out whether the default number of
partitions is used for the table.

Signature Uint32 getDefaultNoPartitionsFlag
 (
 void
) const

Parameters None.

Return value A 32-bit unsigned integer.

Table::getExtraMetadata()

Description Get and unpack extra metadata for this table.

This method was added in NDB 8.0.

Signature int getExtraMetadata
 (
 Uint32& version,
 void** data,
 Uint32* length
) const

Parameters This method takes the following three parameters:

• version: By convention, as used in NDB Cluster code, 1 means
that the extra metadata contains a .frm file (blob data) as in
NDB 7.6 and earlier; 2 indicates that it is serialized dictionary
information as in NDB 8.0. The values are actually arbritrary, and
application-specific.

• data: The stored data retrieved as metadata.

• length: The length of the stored data (metadata).

Return value Returns 0 on success, any other value on failure. A nonzer4o value
should be interpreted as an error code for the type of error.

Table::getForceVarPart()

Description Whether the table is forced to allocate a variable-size part,
regardless of whether the table actually has any variable sized
columns. This is needed to allow subsequent adding of columns to
the table online (see Online Operations with ALTER TABLE in NDB
Cluster).

303

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-online-operations.html

The Table Class

Signature bool getForceVarPart
 (
 void
) const

Parameters None.

Return value true when the table is forced to allocate a variable size part.

Table::getFragmentCount()

Description This method gets the number of fragments in the table.

Signature Uint32 getFragmentCount
 (
 void
) const

Parameters None.

Return value The number of table fragments, as a 32-bit unsigned integer.

Table::getFragmentData()

Description This method gets the table's fragment data (ID, state, and node
group).

Signature const void* getFragmentData
 (
 void
) const

Parameters None.

Return value A pointer to the data to be read.

Table::getFragmentDataLen()

Description Gets the length of the table fragment data to be read, in bytes.

Signature Uint32 getFragmentDataLen
 (
 void
) const

Parameters None.

Return value The number of bytes to be read, as an unsigned 32-bit integer.

Table::getFragmentNodes()

Description This method retrieves a list of nodes storing a given fragment.

Signature Uint32 getFragmentNodes
 (
 Uint32 fragmentId,
 Uint32* nodeIdArrayPtr,
 Uint32 arraySize
) const

Parameters This method takes the following three parameters:

• fragmentId: The ID of the desired fragment.

• nodeIdArrayPtr: Pointer to an array of node IDs of the nodes
containing this fragment.

304

The Table Class

Note

Normally, the primary fragment is entry 0
in this array.

• arraySize: The size of the array containing the node IDs. If
this is less than the number of fragments, then only the first
arraySize entries are written to this array.

Return value A return value of 0 indicates an error; otherwise, this is the number
of table fragments, as a 32-bit unsigned integer.

Table::getFragmentType()

Description This method gets the table's fragmentation type.

Signature FragmentType getFragmentType
 (
 void
) const

Parameters None.

Return value An Object::FragmentType value.

Table::getFrmData()

Note

This feature is deprecated and should be avoided. It is subject to removal in a
future version of NDB Cluster.

Description Gets the data from the .FRM file associated with the table.

MySQL 8.0 and NDB 8.0 no longer use .FRM files but rather the
MySQL data dictionary to store table metadata; thus this method
is deprecated as of NDB 8.0.27, and subject to removal in a
future NDB release. For reading and writing table metadata, use
getExtraMetadata() and setExtraMetadata() instead.

Signature const void* getFrmData
 (
 void
) const

Parameters None.

Return value A pointer to the .FRM data.

Table::getFrmLength()

Note

This feature is deprecated and should be avoided. It is subject to removal in a
future version of NDB Cluster.

Description Gets the length of the table's .FRM file data, in bytes.

MySQL 8.0 and NDB 8.0 no longer use .FRM files but rather the
MySQL data dictionary to store table metadata; thus this method
is deprecated as of NDB 8.0.27, and subject to removal in a
future NDB release. For reading and writing table metadata, use
getExtraMetadata() and setExtraMetadata() instead.

305

The Table Class

Signature Uint32 getFrmLength
 (
 void
) const

Parameters None.

Return value The length of the .FRM file data (an unsigned 32-bit integer).

Table::getHashMap()

Description Get the hash map used for this table.

Signature bool getHashMap
 (
 Uint32* id = 0,
 Uint32* version = 0
) const

Parameters The table ID and version.

Return value True if the table has a hash map, otherwise false.

Table::getKValue()

Description This method gets the KValue, a hashing parameter which is
currently restricted to the value 6. In a future release, it may become
feasible to set this parameter to other values.

Signature int getKValue
 (
 void
) const

Parameters None.

Return value An integer (currently always 6).

Table::getLinearFlag()

Description This method retrieves the value of the table's linear hashing flag.

Signature bool getLinearFlag
 (
 void
) const

Parameters None.

Return value true if the flag is set, and false if it is not.

Table::getLogging()

Description This class is used to check whether a table is logged to disk—that
is, whether it is permanent or temporary.

Signature bool getLogging
 (
 void
) const

Parameters None.

Return value Returns a Boolean value. If this method returns true, then full
checkpointing and logging are done on the table. If false, then the

306

The Table Class

table is a temporary table and is not logged to disk; in the event of a
system restart the table still exists and retains its definition, but it will
be empty. The default logging value is true.

Table::getMaxLoadFactor()

Description This method returns the load factor (a hashing parameter) when
splitting of the containers in the local hash tables begins.

Signature int getMaxLoadFactor
 (
 void
) const

Parameters None.

Return value An integer whose maximum value is 100. When the maximum
value is returned, this means that memory usage is optimised.
Smaller values indicate that less data is stored in each container,
which means that keys are found more quickly but more memory is
consumed.

Table::getMaxRows()

Description This method gets the maximum number of rows that the table can
hold. This is used for calculating the number of partitions.

Signature Uint64 getMaxRows
 (
 void
) const

Parameters None.

Return value The maximum number of table rows, as a 64-bit unsigned integer.

Table::getMinLoadFactor()

Description This method gets the value of the load factor when reduction of
the hash table begins. This should always be less than the value
returned by getMaxLoadFactor().

Signature int getMinLoadFactor
 (
 void
) const

Parameters None.

Return value A percentage expressed as an integer; see
Table::getMaxLoadFactor().

Table::getMinRows()

Description This method gets the minimum number of rows that the table can
hold, for use in calculating the number of partitions.

Signature Uint64 getMinRows
 (
 void
) const

Parameters None.

307

The Table Class

Return value The minimum number of table rows, as a 64-bit unsigned integer.

Table:getName()

Description Gets the name of a table.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The name of the table (a string).

Table::getNoOfAutoIncrementColumns()

Description This method is used to obtain the number of auto-incrment columns
in a table.

Signature int getNoOfAutoIncrementColumns
 (
 void
) const

Parameters None.

Return value An integer representing the number of auto-increment columns in
the table.

Table::getNoOfColumns()

Description This method is used to obtain the number of columns in a table.

Signature int getNoOfColumns
 (
 void
) const

Parameters None.

Return value An integer representing the number of columns in the table.

Table::getNoOfPrimaryKeys()

Description This method finds the number of primary key columns in the table.

Signature int getNoOfPrimaryKeys
 (
 void
) const

Parameters None.

Return value An integer representing the number of primary key columns in the
table.

Table::getObjectId()

Description This method gets the table's object ID.

Signature virtual int getObjectId
 (
 void
) const

308

The Table Class

Parameters None.

Return value The object ID is returned as an integer.

Table::getObjectStatus()

Description This method gets the table's status..

Signature virtual Object::Status getObjectStatus
 (
 void
) const

Parameters None.

Return value An Object::Status value.

Table::getObjectType() (OBSOLETE)

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature Object::Type getObjectType
 (
 void
) const

Parameters None.

Return value Returns an Object::Type value.

Table::getObjectVersion()

Description This method gets the table's object version (see NDB Schema
Object Versions).

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The table's object version, as an integer.

Table::getPartitionBalance()

Description This method gets the table' partition balance scheme (fragment
count type).

Prior to NDB 7.5, this method was known as
getFragmentCountType().

Signature Object::PartitionBalance getPartitionBalance
 (
 void
) const

Parameters None.

Return value The partition balancing scheme, as a value of type
Object::PartitionBalance.

Table::getPartitionBalanceString()

309

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Table Class

Description This method gets the table' partition balance scheme (fragment
count type), and returns it as a string.

Prior to NDB 7.5, this method was known as
getFragmentCountTypeString().

Signature const char* getPartitionBalanceString
 (
 void
) const

Parameters None.

Return value The partition balancing scheme, as a string value.

Table::getPartitionId()

Description Gets a table partition ID, given its hash value.

Signature Uint32 getPartitionId
 (
 Uint32 hashvalue
) const

Parameters A hashvalue. Note that if the table has not actually been retrieved
(using, for example, getTableId()), then the result is likely not to
be accurate or useful.

Return value The identifier of the partition corresponding to the hashvalue.

Table::getPrimaryKey()

Description This method is used to obtain the name of the table's primary key.

Signature const char* getPrimaryKey
 (
 int no
) const

Parameters None.

Return value The name of the primary key, a string (character pointer).

Table::getRangeListData()

Description This method gets the range or list data associated with the table.

Signature const void* getRangeListData
 (
 void
) const

Parameters None.

Return value A pointer to the data.

Table::getRangeListDataLen()

Description This method gets the size of the table's range or list array.

Signature Uint32 getRangeListDataLen
 (
 void
) const

310

The Table Class

Parameters None.

Return value The length of the list or range array, as an integer.

Table::getRowChecksumIndicator()

Description Check whether the row checksum indicator has been set.

Signature bool getRowChecksumIndicator
 (
 void
) const

Parameters None.

Return value A true or false value.

Table::getRowGCIIndicator()

Description Checks whether the row GCI indicator has been set.

Signature bool getRowGCIIndicator
 (
 void
) const

Parameters None.

Return value A true or false value.

Table::getRowSizeInBytes()

Description Gets the size of a row in this table. This is the (maximum) amount of
data that can be stored in a single row of the table, exclusive of any
blob data stored external to the table.

Signature int getRowSizeInBytes
 (
 void
) const

Parameters None.

Return value The size of the row, in bytes.

Table::getSingleUserMode()

Description Gets the single user mode of the table.

Signature enum SingleUserMode getSingleUserMode
 (
 void
) const

Parameters None.

Return value A SingleUserMode value.

Table::getTableId()

Description This method gets a table's ID.

Signature int getTableId
 (
 void

311

The Table Class

) const

Parameters None.

Return value The table ID, as an integer.

Table::getTablespace()

Description This method is used in two ways: to obtain the name of the
tablespace to which this table is assigned; to verify that a given
tablespace is the one being used by this table.

Signatures To obtain the name of the tablespace, invoke without any
arguments:

const char* getTablespace
 (
 void
) const

To determine whether the tablespace is the one indicated by the
given ID and version, supply these as arguments, as shown here:

bool getTablespace
 (
 Uint32* id = 0,
 Uint32* version = 0
) const

Parameters The number and types of parameters depend on how this method is
being used:

A. When used to obtain the name of the tablespace in use by the
table, it is called without any arguments.

B. When used to determine whether the given tablespace is the
one being used by this table, then getTablespace() takes two
parameters:

• The tablespace id, given as a pointer to a 32-bit unsigned
integer

• The tablespace version, also given as a pointer to a 32-bit
unsigned integer

The default value for both id and version is 0.

Return value The return type depends on how the method is called:

A. When getTablespace() is called without any arguments, it
returns a Tablespace object instance.

B. When called with two arguments, it returns true if the
tablespace is the same as the one having the ID and version
indicated; otherwise, it returns false.

Table::getTablespaceData()

Description This method gets the table's tablespace data (ID and version).

Signature const void* getTablespaceData
 (
 void

312

The Table Class

) const

Parameters None.

Return value A pointer to the data.

Table::getTablespaceDataLen()

Description This method is used to get the length of the table's tablespace data.

Signature Uint32 getTablespaceDataLen
 (
 void
) const

Parameters None.

Return value The length of the data, as a 32-bit unsigned integer.

Table::getTablespaceNames()

Description This method gets a pointer to the names of the tablespaces used in
the table fragments.

Signature const void* getTablespaceNames
 (
 void
)

Parameters None.

Return value Returns a pointer to the tablespace name data.

Table::getTablespaceNamesLen()

Description This method gets the length of the tablespace name
data returned by getTablespaceNames(). (See
Table::getTablespaceNames().)

Signature Uint32 getTablespaceNamesLen
 (
 void
) const

Parameters None.

Return value Returns the length of the name data, in bytes, as a 32-but unsigned
integer.

Table::hasDefaultValues()

Description Used to determine whether the table has any columns that are
defined with default values other than NULL.

To read and write default column values,
use Column::getDefaultValue() and
Column::setDefaultValue().

Signature bool hasDefaultValues
 (
 void
) const

Parameters None.

313

The Table Class

Return value Returns true if the table has any non-NULL columns with default
values, otherwise false.

Table::setDefaultNoPartitionsFlag()

Description This method sets an indicator that determines whether the default
number of partitions is used for the table.

Signature void setDefaultNoPartitionsFlag
 (
 Uint32 indicator
) const

Parameters This method takes a single argument indicator, a 32-bit unsigned
integer.

Return value None.

Table::setExtraMetadata()

Description Store packed extra metadata for this table. The data is packed
without any modification into the buffer of the given Table object.

Added in NDB 8.0.

Signature int setExtraMetadata
 (
 Uint32 version,
 const void* data,
 Uint32 length
)

Parameters The three parameters used by this method are listed here:

• version: As used in NDB Cluster code, 1 means that the extra
metadata contains a .frm file (blob data) as in NDB 7.6 and
earlier; 2 indicates that it is serialized dictionary information as in
NDB 8.0. You should be aware that this is merely a convention,
and the values can be application-specific, as desired.

• data: The actual data to be stored as metadata.

• length: The length of the data to be stored.

Return value 0 on success. Any other value indicates failure; in this case, the
value is an error code indicating indicating the type of error.

Table::setForceVarPart()

Description Forces the table to allocate a variable sized part, to permit online
operations on the table even when it has no variable sized columns.
See Online Operations with ALTER TABLE in NDB Cluster, for more
information about online operations in NDB Cluster.

Signature void setForceVarPart
 (
 bool force
)

Parameters Use with force set to true to cause the table to have a variable
size part.

Return value None.

314

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-online-operations.html

The Table Class

Table::setFragmentCount()

Description Sets the number of table fragments.

Signature void setFragmentCount
 (
 Uint32 count
)

Parameters count is the number of fragments to be used for the table.

Return value None.

Table::setFragmentData()

Description This method writes an array containing the following fragment
information:

• Fragment ID

• Node group ID

• Fragment State

Signature void setFragmentData
 (
 const void* data,
 Uint32 len
)

Parameters This method takes the following two parameters:

• A pointer to the fragment data to be written

• The length (len) of this data, in bytes, as a 32-bit unsigned
integer

Return value None.

Table::setFragmentType()

Description This method sets the table's fragmentation type.

Signature void setFragmentType
 (
 FragmentType fragmentType
)

Parameters This method takes one argument, an Object::FragmentType
value.

Return value None.

Table::setFrm()

Note

This feature is deprecated and should be avoided. It is subject to removal in a
future version of NDB Cluster.

Description This method is used to write data to this table's .FRM file.

MySQL 8.0 and NDB 8.0 no longer use .FRM files but rather the
MySQL data dictionary to store table metadata; thus this method

315

The Table Class

is deprecated as of NDB 8.0.27, and subject to removal in a
future NDB release. For reading and writing table metadata, use
getExtraMetadata() and setExtraMetadata() instead.

Signature void setFrm
 (
 const void* data,
 Uint32 len
)

Parameters This method takes the following two arguments:

• A pointer to the data to be written.

• The length (len) of the data.

Return value None.

Table::setHashMap()

Description Set a hash map for the table.

Signature int setHashMap
 (
 const class HashMap &
)

Parameters A reference to the hash map.

Return value Returns 0 on success; on failure, returns -1 and sets error.

Table::setKValue()

Description This sets the KValue, a hashing parameter.

Signature void setKValue
 (
 int kValue
)

Parameters kValue is an integer. Currently the only permitted value is 6. In a
future version this may become a variable parameter.

Return value None.

Table::setLinearFlag()

Description Set the table's linear hash flag. See Table::getLinearFlag().

Signature void setLinearFlag
 (
 Uint32 flag
)

Parameters The flag is a 32-bit unsigned integer.

Return value None.

Table::setLogging()

Description Toggles the table's logging state. See Table::getLogging().

Signature void setLogging
 (
 bool enable
)

316

The Table Class

Parameters If enable is true, then logging for this table is enabled; if it is
false, then logging is disabled.

Return value None.

Table::setMaxLoadFactor()

Description This method sets the maximum load factor when splitting the
containers in the local hash tables.

Signature void setMaxLoadFactor
 (
 int max
)

Parameters This method takes a single parameter max, an integer
representation of a percentage (for example, 45 represents 45
percent). For more information, see Table::getMaxLoadFactor().

This should never be greater than the minimum load factor.

Return value None.

Table::setMaxRows()

Description This method sets the maximum number of rows that can be held by
the table.

Signature void setMaxRows
 (
 Uint64 maxRows
)

Parameters maxRows is a 64-bit unsigned integer that represents the maximum
number of rows to be held in the table.

Return value None.

Table::setMinLoadFactor()

Description This method sets the minimum load factor when reduction of the
hash table begins.

Signature void setMinLoadFactor
 (
 int min
)

Parameters This method takes a single parameter min, an integer
representation of a percentage (for example, 45 represents 45
percent). For more information, see Table::getMinLoadFactor().

Return value None.

Table::setName()

Description This method sets the name of the table.

This is the only set*() method of Table whose effects are visible
to MySQL.

Signature void setName
 (
 const char* name
)

317

The Table Class

Parameters name is the (new) name of the table.

Return value None.

Table::setObjectType() (OBSOLETE)

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature void setObjectType
 (
 Object::Type type
)

Parameters The desired object type. This must be one of the Type values
listed in Object::Type.

Return value None.

Table::setPartitionBalance()

Description Sets the table's partition balancing scheme.

Prior to NDB 7.5, this method was known as
setFragmentCountType().

Signature void setPartitionBalance
 (
 Object::PartitionBalance scheme
)

Parameters scheme is the partition balancing scheme to be used for the table.
This is a value of type PartitionBalance.

Return value None.

Table::setRangeListData()

Description This method sets an array containing information that maps range
values and list values to fragments. This is essentially a sorted map
consisting of fragment-ID/value pairs. For range partitions there is
one pair per fragment. For list partitions it could be any number of
pairs, but at least as many pairs as there are fragments.

Signature void setRangeListData
 (
 const void* data,
 Uint32 len
)

Parameters This method requires the following two parameters:

• A pointer to the range or list data containing the ID/value pairs

• The length (len) of this data, as a 32-bit unsigned integer.

Return value None.

Table::setRowChecksumIndicator()

Description Set the row checksum indicator.

Signature void setRowChecksumIndicator
 (
 bool value

318

The Table Class

) const

Parameters A true or false value.

Return value None.

Table::setRowGCIIndicator()

Description Sets the row GCI indicator.

Signature void setRowGCIIndicator
 (
 bool value
) const

Parameters A true or false value.

Return value None.

Table::setSingleUserMode()

Description Sets a SingleUserMode for the table.

Signature void setSingleUserMode
 (
 enum SingleUserMode
)

Parameters A SingleUserMode value.

Return value None.

Table::setStatusInvalid()

Description Forces the table's status to be invalidated.

Signature void setStatusInvalid
 (
 void
) const

Parameters None.

Return value None.

Table::setTablespace()

Description This method sets the tablespace for the table.

See Section 2.3.28, “The Tablespace Class”.

Signatures Using the name of the tablespace:

void setTablespace
 (
 const char* name
)

Using a Tablespace object:

void setTablespace
 (
 const class Tablespace& tablespace
)

Parameters This method can be called with a single argument, which can be of
either one of these two types:

319

The Table Class

• The name of the tablespace (a string).

• A reference to an existing Tablespace instance.

Return value None.

Table::setTablespaceData()

Description This method sets the tablespace information for each fragment, and
includes a tablespace ID and a tablespace version.

Signature void setTablespaceData
 (
 const void* data,
 Uint32 len
)

Parameters This method requires the following two parameters:

• A pointer to the data containing the tablespace ID and version

• The length (len) of this data, as a 32-bit unsigned integer.

Return value None.

Table::setTablespaceNames()

Description Sets the names of the tablespaces used by the table fragments.

Signature void setTablespaceNames
 (
 const void* data
 Uint32 len
)

Parameters This method takes the following two parameters:

• A pointer to the tablespace names data

• The length (len) of the names data, as a 32-bit unsigned integer.

Return value None.

Table::SingleUserMode

This section provides information about the SingleUserMode data type.

Description SingleUserMode specifies access rights to the table when single
user mode is in effect.

Enumeration values Possible values for SingleUserMode are shown, along with
descriptions, in the following table:

Table 2.80 Table::SingleUserMode values and descriptions

Name Description

SingleUserModeLockedThe table is locked (unavailable).

SingleUserModeReadOnlyThe table is available in read-only mode.

SingleUserModeReadWriteThe table is available in read-write mode.

Table::validate()

320

The Tablespace Class

Description This method validates the definition for a new table prior to creating
it, executes the Table::aggregate() method, and performs
additional checks. validate() is called automatically when a table
is created or retrieved. For this reason, it is usually not necessary to
call aggregate() or validate() directly.

You should be aware that, even after the validate() method is
called, there may still exist errors which can be detected only by the
NDB kernel when the table is actually created.

Signature int validate
 (
 struct NdbError& error
)

Parameters A reference to an NdbError object.

Return value An integer, whose value is 0 on success, and -1 if the table is in an
inconsistent state. In the latter case, the error is also set.

2.3.28 The Tablespace Class

This section provides information about the Tablespace class.

• Tablespace Class Overview

• Tablespace Constructor

• Tablespace::getAutoGrowSpecification()

• Tablespace::getDefaultLogfileGroup()

• Tablespace::getDefaultLogfileGroupId()

• Tablespace::getExtentSize()

• Tablespace::getObjectId()

• Tablespace::getName()

• Tablespace::getObjectStatus()

• Tablespace::getObjectVersion()

• Tablespace::setAutoGrowSpecification()

• Tablespace::setDefaultLogfileGroup()

• Tablespace::setExtentSize()

• Tablespace::setName()

Tablespace Class Overview

Parent class NdbDictionary

Child classes None

Description The Tablespace class models an NDB Cluster Disk Data
tablespace, which contains the data files used to store Cluster
Disk Data. For an overview of Cluster Disk Data and data file
characteristics, see CREATE TABLESPACE Statement, in the
MySQL Manual.

321

https://dev.mysql.com/doc/refman/8.4/en/create-tablespace.html

The Tablespace Class

Only unindexed column data can be stored on disk. Indexes and
indexes columns are always stored in memory.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.81 Tablespace class methods and descriptions

Name Description

Tablespace() Class constructor

~Tablespace() Virtual destructor method

getAutoGrowSpecification()Used to obtain the
AutoGrowSpecification structure
associated with the tablespace

getDefaultLogfileGroup()Gets the name of the tablespace's default
log file group

getDefaultLogfileGroupId()Gets the ID of the tablespace's default log
file group

getExtentSize() Gets the extent size used by the
tablespace

getName() Gets the name of the tablespace

getObjectId() Gets the object ID of a Tablespace
instance

getObjectStatus() Used to obtain the Object::Status of
the Tablespace instance for which it is
called

getObjectVersion()Gets the object version of the
Tablespace object for which it is invoked

setAutoGrowSpecification()Used to set the auto-grow characteristics of
the tablespace

setDefaultLogfileGroup()Sets the tablespace's default log file group

setExtentSize() Sets the size of the extents used by the
tablespace

setName() Sets the name for the tablespace

Types The Tablespace class defines no public types of its own; however,
two of its methods make use of the AutoGrowSpecification
data structure.

Tablespace Constructor

Description These methods are used to create a new instance of Tablespace,
or to copy an existing one.

Note

The Dictionary class also supplies methods for creating and dropping
tablespaces.

Signatures. New instance:

Tablespace
 (
 void

322

The Tablespace Class

)

Copy constructor:

Tablespace
 (
 const Tablespace& tablespace
)

Parameters New instance: None. Copy constructor: a reference to an existing
Tablespace instance.

Return value A Tablespace object.

Destructor. The class defines a virtual destructor ~Tablespace() which takes no arguments and
returns no value.

Tablespace::getAutoGrowSpecification()

Description.

Signature const AutoGrowSpecification& getAutoGrowSpecification
 (
 void
) const

Parameters None.

Return value A reference to the structure which describes the
tablespace auto-grow characteristics; for details, see
NdbDictionary::AutoGrowSpecification.

Tablespace::getDefaultLogfileGroup()

Description This method retrieves the name of the tablespace's default log file
group.

Alternatively, you may wish to obtain the ID of the default log file
group; see Tablespace::getDefaultLogfileGroupId().

Signature const char* getDefaultLogfileGroup
 (
 void
) const

Parameters None.

Return value The name of the log file group (string value as character pointer).

Tablespace::getDefaultLogfileGroupId()

Description This method retrieves the ID of the tablespace's default log file
group.

You can also obtain directly the name of the default log file group
rather than its ID; see Tablespace::getDefaultLogfileGroup().

Signature Uint32 getDefaultLogfileGroupId
 (
 void
) const

Parameters None.

Return value The ID of the log file group, as an unsigned 32-bit integer.

323

The Tablespace Class

Tablespace::getExtentSize()

Description This method is used to retrieve the extent size—that is the size of
the memory allocation units—used by the tablespace.

Note

The same extent size is used for all data files contained in a given tablespace.

Signature Uint32 getExtentSize
 (
 void
) const

Parameters None.

Return value The tablespace's extent size in bytes, as an unsigned 32-bit integer.

Tablespace::getObjectId()

Description This method retrieves the tablespace's object ID.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The object ID, as an integer.

Tablespace::getName()

Description This method retrieves the name of the tablespace.

Signature const char* getName
 (
 void
) const

Parameters None.

Return value The name of the tablespace, a string value (as a character pointer).

Tablespace::getObjectStatus()

Description This method is used to retrieve the object status of a tablespace.

Signature virtual Object::Status getObjectStatus
 (
 void
) const

Parameters None.

Return value An Object::Status value.

Tablespace::getObjectVersion()

Description This method gets the tablespace object version (see NDB Schema
Object Versions).

Signature virtual int getObjectVersion
 (
 void

324

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Tablespace Class

) const

Parameters None.

Return value The object version, as an integer.

Tablespace::setAutoGrowSpecification()

Description This method is used to set the auto-grow characteristics of the
tablespace.

Signature void setAutoGrowSpecification
 (
 const AutoGrowSpecification& autoGrowSpec
)

Parameters This method takes a single parameter, an
AutoGrowSpecification data structure.

Return value None.

Tablespace::setDefaultLogfileGroup()

Description This method is used to set a tablespace's default log file group.

Signature This method can be called in two different ways. The first of these
uses the name of the log file group, as shown here:

void setDefaultLogfileGroup
 (
 const char* name
)

This method can also be called by passing it a reference to a
LogfileGroup object:

void setDefaultLogfileGroup
 (
 const class LogfileGroup& lGroup
)

The NDB API provides no method for setting a log file group as the
default for a tablespace by referencing the log file group's ID.

Parameters Either the name of the log file group to be assigned to the
tablespace, or a reference lGroup to this log file group.

Return value None.

Tablespace::setExtentSize()

Description This method sets the tablespace's extent size.

Signature void setExtentSize
 (
 Uint32 size
)

Parameters The size to be used for this tablespace's extents, in bytes.

Return value None.

Tablespace::setName()

Description This method sets the name of the tablespace.

325

The Undofile Class

Signature void setName
 (
 const char* name
) const

Parameters The name of the tablespace, a string (character pointer).

Return value None.

2.3.29 The Undofile Class

This section provides information about the Undofile class.

• Undofile Class Overview

• Undofile Constructor

• Undofile::getFileNo() (OBSOLETE)

• Undofile::getLogfileGroup()

• Undofile::getLogfileGroupId()

• Undofile::getNode() (OBSOLETE)

• Undofile::getObjectId()

• Undofile::getObjectStatus()

• Undofile::getObjectVersion()

• Undofile::getPath()

• Undofile::getSize()

• Undofile::setLogfileGroup()

• Undofile::setNode() (OBSOLETE)

• Undofile::setPath()

• Undofile::setSize()

Undofile Class Overview

Parent class NdbDictionary

Child classes None

Description The Undofile class models an NDB Cluster Disk Data undo file,
which stores data used for rolling back transactions.

Only unindexed column data can be stored on disk. Indexes and
indexes columns are always stored in memory.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.82 Undofile class methods and descriptions

Name Description

Undofile() Class constructor

~Undofile() Virtual destructor

326

The Undofile Class

Name Description

getFileNo() Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

getLogfileGroup() Gets the name of the log file group to
which the undo file belongs

getLogfileGroupId()Gets the ID of the log file group to which
the undo file belongs

getNode() Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

getObjectId() Gets the undo file's object ID

getObjectStatus() Gets the undo file's Status

getObjectVersion()Gets the undo file's object version

getPath() Gets the undo file's file system path

getSize() Gets the size of the undo file

setLogfileGroup() Sets the undo file's log file group using the
name of the log file group or a reference to
the corresponding LogfileGroup object

setNode() Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

setPath() Sets the file system path for the undo file

setSize() Sets the undo file's size

Types The Undofile class defines no public types.

Undofile Constructor

Description The class constructor can be used to create a new Undofile
instance, or to copy an existing one.

Signatures Create a new instance:

Undofile
 (
 void
)

Copy constructor:

Undofile
 (
 const Undofile& undoFile
)

Parameters New instance: None. The copy constructor takes a single argument
—a reference to the Undofile object to be copied.

Return value An Undofile object.

Destructor. The class defines a virtual destructor which takes no arguments and has the return type
void.

Undofile::getFileNo() (OBSOLETE)

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature Uint32 getFileNo

327

The Undofile Class

 (
 void
) const

Parameters None.

Return value The number of the undo file, as an unsigned 32-bit integer.

Undofile::getLogfileGroup()

Description This method retrieves the name of the log file group to which the
undo file belongs.

Signature const char* getLogfileGroup
 (
 void
) const

Parameters None.

Return value The name of the log file group, a string value (as a character
pointer).

Undofile::getLogfileGroupId()

Description This method retrieves the ID of the log file group to which the undo
file belongs.

It is also possible to obtain the name of the log file group directly.
See Undofile::getLogfileGroup()

Signature Uint32 getLogfileGroupId
 (
 void
) const

Parameters None.

Return value The ID of the log file group, as an unsigned 32-bit integer.

Undofile::getNode() (OBSOLETE)

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature Uint32 getNode
 (
 void
) const

Parameters None.

Return value The node ID, as an unsigned 32-bit integer.

Undofile::getObjectId()

Description This method retrieves the undo file's object ID.

Signature virtual int getObjectId
 (
 void
) const

Parameters None.

Return value The object ID, as an integer.

328

The Undofile Class

Undofile::getObjectStatus()

Description This method is used to retrieve the object status of an undo file.

Signature virtual Object::Status getObjectStatus
 (
 void
) const

Parameters None.

Return value An Object::Status value.

Undofile::getObjectVersion()

Description This method gets the undo file's object version (see NDB Schema
Object Versions).

Signature virtual int getObjectVersion
 (
 void
) const

Parameters None.

Return value The object version, as an integer.

Undofile::getPath()

Description This method retrieves the path matching the location of the undo file
on the data node's file system.

Signature const char* getPath
 (
 void
) const

Parameters None.

Return value The file system path, a string (as a character pointer).

Undofile::getSize()

Description This method gets the size of the undo file in bytes.

Signature Uint64 getSize
 (
 void
) const

Parameters None.

Return value The size in bytes of the undo file, as an unsigned 64-bit integer.

Undofile::setLogfileGroup()

Description Given either a name or an object reference to a log file group, the
setLogfileGroup() method assigns the undo file to that log file
group.

Signature Using a log file group name:

void setLogfileGroup
 (
 const char* name

329

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

NDB API Errors and Error Handling

)

Using a reference to an instance of LogfileGroup:

void setLogfileGroup
 (
 const class LogfileGroup & logfileGroup
)

Parameters The name of the log file group (a character pointer), or a reference
to a LogfileGroup instance.

Return value None.

Undofile::setNode() (OBSOLETE)

Description This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Signature void setNode
 (
 Uint32 nodeId
)

Parameters The nodeId of the data node where the undo file is to be placed;
this is an unsigned 32-bit integer.

Return value None.

Undofile::setPath()

Description This method is used to set the file system path of the undo file on
the data node where it resides.

Signature void setPath
 (
 const char* path
)

Parameters The desired path to the undo file.

Return value None.

Undofile::setSize()

Description Sets the size of the undo file in bytes.

Signature void setSize
 (
 Uint64 size
)

Parameters The intended size of the undo file in bytes, as an unsigned 64-bit
integer.

Return value None.

2.4 NDB API Errors and Error Handling
This section contains a discussion of error handling in NDB API applications as well as listing listings of the most
common NDB error codes and messages, along with their classifications and likely causes for which they might be
raised.

For information about the NdbError structure, which is used to convey error information to NDB API
applications, see Section 2.3.15, “The NdbError Structure”.

330

Handling NDB API Errors

Important

It is strongly recommended that you not depend on specific error codes in
your NDB API applications, as they are subject to change over time. Instead,
you should use the NdbError::Status and error classification in your
source code, or consult the output of perror --ndb error_code to obtain
information about a specific error code.

If you find a situation in which you need to use a specific error code in your
application, please file a bug report at http://bugs.mysql.com/ so that we can
update the corresponding status and classification.

2.4.1 Handling NDB API Errors

This section describes how NDB API errors can be detected and mapped onto particular operations.

NDB API errors can be generated in either of two ways:

• When an operation is defined

• When an operation is executed

Errors raised during operation definition. Errors generated during operation definition result in
a failure return code from the method called. The actual error can be determined by examining the
relevant NdbOperation object, or the operation's NdbTransaction object.

Errors raised during operation execution. Errors occurring during operation execution cause the
transaction of which they are a part to be aborted unless the AO_IgnoreError abort option is set for
the operation.

By default, read operations are run with AO_IgnoreError, and write operations are run with
AbortOnError, but this can be overridden by the user. When an error during execution causes a
transaction to be aborted, the execute() method returns a failure return code. If an error is ignored
due to AO_IgnoreError being set on the operation, the execute() method returns a success code,
and the user must examine all operations for failure using NdbOperation::getNdbError(). For
this reason, the return value of getNdbError() should usually be checked, even if execute()
returns success. If the client application does not keep track of NdbOperation objects during
execution, then NdbTransaction::getNextCompletedOperation() can be used to iterate over
them.

You should also be aware that use of NdbBlob can result in extra operations being added
to the batches executed. This means that, when iterating over completed operations using
getNextCompletedOperation(), you may encounter operations related to NdbBlob objects which
were not defined by your application.

Note

A read whose LockMode is CommittedRead cannot be AbortOnError. In
this case, it is always be IgnoreError.

In all cases where operation-specific errors arise, an execution error with an operation is marked
against both the operation and the associated transaction object. Where there are multiple operation
errors in a single NdbTransaction::execute() call, due to operation batching and the use of
AO_IgnoreError, only the first is marked against the NdbTransaction object. The remaining errors
are recorded against the corresponding NdbOperation objects only.

It is also possible for errors to occur during execution—such as a data node failure—which are marked
against the transaction object, but not against the underlying operation objects. This is because these
errors apply to the transaction as a whole, and not to individual operations within the transaction.

For this reason, applications should use NdbTransaction::getNdbError() as the first way to
determine whether an NdbTransaction::execute() call failed. If the batch of operations being

331

http://bugs.mysql.com/

Handling NDB API Errors

executed included operations with the AO_IgnoreError abort option set, then it is possible that there
were multiple failures, and the completed operations should be checked individually for errors using
NdbOperation::getNdbError().

Implicit NdbTransaction::execute() calls in scan and BLOB methods. Scan operations are
executed in the same way as other operations, and also have implicit execute() calls within the
NdbScanOperation::nextResult() method. When NdbScanOperation::nextResult()
indicates failure (that is, if the method returns -1), the transaction object should be checked for an
error. The NdbScanOperation may also contain the error, but only if the error is not operation-
specific.

Some blob manipulation methods also have implicit internal execute() calls, and so can experience
operation execution failures at these points. The following NdbBlob methods can generate implicit
execute() calls; this means that they also require checks of the NdbTransaction object for errors
via NdbTransaction::getNdbError() if they return an error code:

• setNull()

• truncate()

• readData()

• writeData()

Summary. In general, it is possible for an error to occur during execution (resulting in a failure return
code) when calling any of the following methods:

• NdbTransaction::execute()

• NdbBlob::setNull()

• NdbBlob::truncate()

• NdbBlob::readData()

• NdbBlob::writeData()

• NdbScanOperation::nextResult()

Note

This method does not perform an implicit execute() call. The NdbBlob
methods can cause other defined operations to be executed when these
methods are called; however, nextResult() calls do not do so.

If this happens, the NdbTransaction::getNdbError() method should be called to identify the
first error that occurred. When operations are batched, and there are IgnoreError operations in
the batch, there may be multiple operations with errors in the transaction. These can be found by
using NdbTransaction::getNextCompletedOperation() to iterate over the set of completed
operations, calling NdbOperation::getNdbError() for each operation.

When IgnoreError has been set on any operations in a batch of operations to be executed,
the NdbTransaction::execute() method indicates success even where errors have actually
occurred, as long as none of these errors caused a transaction to be aborted. To determine
whether there were any ignored errors, the transaction error status should be checked using
NdbTransaction::getNdbError(). Only if this indicates success can you be certain that no errors
occurred. If an error code is returned by this method, and operations were batched, then you should
iterate over all completed operations to find all the operations with ignored errors.

Example (pseudocode). We begin by executing a transaction which may have batched operations
and a mix of AO_IgnoreError and AbortOnError abort options:

332

Handling NDB API Errors

int execResult= NdbTransaction.execute(args);

Note

For the number and permitted values of args, see NdbTransaction::execute().

Next, because errors on AO_IgnoreError operations do not affect execResult—that is, the value
returned by execute()—we check for errors on the transaction:

NdbError err= NdbTransaction.getNdbError();

if (err.code != 0)
{

An nonzero value for the error code means that an error was raised on the transaction. This could be
due to any of the following conditions:

• A transaction-wide error, such as a data node failure, that caused the transaction to be aborted

• A single operation-specific error, such as a constraint violation, that caused the transaction to be
aborted

• A single operation-specific ignored error, such as no data found, that did not cause the transaction to
be aborted

• The first of many operation-specific ignored errors, such as no data found when batching, that did not
cause the transaction to be aborted

• First of a number of operation-specific ignored errors such as no data found (when batching) before
an aborting operation error (transaction aborted)

 if (execResult != 0)
 {

The transaction has been aborted. The recommended strategy for handling the error in this case is to
test the transaction error status and take appropriate action based on its value:

 switch (err.status)
 {
 case value1:
 // statement block handling value1 ...
 case value2:
 // statement block handling value2 ...
 // (etc. ...)
 case valueN:
 // statement block handling valueN ...
 }

Since the transaction was aborted, it is generally necessary to iterate over the completed operations (if
any) and find the errors raised by each only if you wish to do so for reporting purposes.

 }
 else
 {

The transaction itself was not aborted, but there must be one or more ignored errors. In this case, you
should iterate over the operations to determine what happened and handle the cause accordingly.

 }
}

To handle a NdbScanOperation::nextResult() which returns -1, indicating that the operation
failed (omitting cases where the operation was successful):

333

NDB Error Codes: by Type

int nextrc= NdbScanOperation.nextResult(args);

Note

For the number and permitted values of args, see
NdbScanOperation::nextResult().

if (nextrc == -1)
{

First, you should check the NdbScanOperation object for any errors:

 NdbError err= NdbScanOperation.getNdbError();

 if (err.code == 0)
 {

No error was found in the scan operation; the error must belong to the transaction as whole.

 }
 err= NdbTransaction.getNdbError();

Now you can handle the error based on the error status:

 switch (err.status)
 {
 case value1:
 // statement block handling value1 ...
 case value2:
 // statement block handling value2 ...
 // (etc. ...)
 case valueN:
 // statement block handling valueN ...
 }
}

For information about NDB API error classification and status codes, see Section 2.4.4, “NDB Error
Classifications”. While you should not rely on a specific error code or message text in your NDB API
applications—since error codes and messages are both subject to change over time—it can be useful
to check error codes and messages to help determine why a particular failure occurred. For more
information about these, see Section 2.4.2, “NDB Error Codes: by Type”. For more about NdbError
and the types of information which can be obtained from NdbError objects, see Section 2.3.15, “The
NdbError Structure”.

2.4.2 NDB Error Codes: by Type

This section contains a number of error code lists, one for each type of NDB API error. The error types
include the following:

• No error

• Application error

• Scan application error

• Configuration or application error (currently unused)

• No data found

• Constraint violation

• Schema error

334

NDB Error Codes: by Type

• User defined error

• Insufficient space

• Temporary Resource error

• Node Recovery error

• Overload error

• Timeout expired

• Node shutdown

• Internal temporary

• Unknown result error

• Unknown error code (currently unused)

• Internal error

• Function not implemented

The information in each list includes, for each error:

• The NDB error code

• The corresponding MySQL error code

• The NDB classification code

See Section 2.4.4, “NDB Error Classifications”, for the meanings of these classification codes.

• The text of the error message

Similar errors have been grouped together in each list. Each list is ordered alphabetically.

You can always obtain the latest error codes and information from the file storage/ndb/src/
ndbapi/ndberror.cpp. (In previous releases of NDB Cluster, this file was named ndberror.c.)

These types are also shown in the error_status column of the ndbinfo.error_messages table.

2.4.2.1 No error

The following list enumerates all NDB errors of type NE (No error).

NDB error code 0

MySQL error 0

Error message No error

2.4.2.2 Application error

The following list enumerates all NDB errors of type AE (Application error).

NDB error code 1233

MySQL error DMEC

Error message Table read-only

NDB error code 1302

335

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-error-messages.html

NDB Error Codes: by Type

MySQL error DMEC

Error message A backup is already running

NDB error code 1306

MySQL error DMEC

Error message Backup not supported in diskless mode (change Diskless)

NDB error code 1329

MySQL error DMEC

Error message Backup during software upgrade not supported

NDB error code 1342

MySQL error DMEC

Error message Backup failed to allocate buffers (check configuration)

NDB error code 1343

MySQL error DMEC

Error message Backup failed to setup fs buffers (check configuration)

NDB error code 1344

MySQL error DMEC

Error message Backup failed to allocate tables (check configuration)

NDB error code 1345

MySQL error DMEC

Error message Backup failed to insert file header (check configuration)

NDB error code 1346

MySQL error DMEC

Error message Backup failed to insert table list (check configuration)

NDB error code 1347

MySQL error DMEC

Error message Backup failed to allocate table memory (check configuration)

NDB error code 1348

MySQL error DMEC

Error message Backup failed to allocate file record (check configuration)

NDB error code 1349

MySQL error DMEC

Error message Backup failed to allocate attribute record (check configuration)

NDB error code 1701

336

NDB Error Codes: by Type

MySQL error DMEC

Error message Node already reserved

NDB error code 1702

MySQL error DMEC

Error message Node already connected

NDB error code 1704

MySQL error DMEC

Error message Node type mismatch

NDB error code 21000

MySQL error HA_ERR_CANNOT_ADD_FOREIGN

Error message Create foreign key failed - parent key is primary key and on-update-
cascade is not allowed

NDB error code 21026

MySQL error HA_ERR_CANNOT_ADD_FOREIGN

Error message Create foreign key failed in NDB - parent index is not unique index

NDB error code 21033

MySQL error HA_ERR_CANNOT_ADD_FOREIGN

Error message Create foreign key failed in NDB - No parent row found

NDB error code 21034

MySQL error HA_ERR_CANNOT_ADD_FOREIGN

Error message Create foreign key failed - child table has Blob or Text column and
on-delete-cascade is not allowed

NDB error code 21040

MySQL error DMEC

Error message Drop foreign key failed in NDB - foreign key not found

NDB error code 21060

MySQL error DMEC

Error message Build foreign key failed in NDB - foreign key not found

NDB error code 21080

MySQL error HA_ERR_ROW_IS_REFERENCED

Error message Drop table not allowed in NDB - referenced by foreign key on
another table

NDB error code 21081

MySQL error HA_ERR_DROP_INDEX_FK

337

NDB Error Codes: by Type

Error message Drop index not allowed in NDB - used as parent index of a foreign
key

NDB error code 21082

MySQL error HA_ERR_DROP_INDEX_FK

Error message Drop index not allowed in NDB - used as child index of a foreign key

NDB error code 21090

MySQL error HA_ERR_CANNOT_ADD_FOREIGN

Error message Create foreign key failed in NDB - name contains invalid character
(/)

NDB error code 242

MySQL error DMEC

Error message Zero concurrency in scan

NDB error code 244

MySQL error DMEC

Error message Too high concurrency in scan

NDB error code 261

MySQL error DMEC

Error message DML count in transaction exceeds config parameter
MaxDMLOperationsPerTransaction/MaxNoOfConcurrentOperations

NDB error code 269

MySQL error DMEC

Error message No condition and attributes to read in scan

NDB error code 281

MySQL error HA_ERR_NO_CONNECTION

Error message Operation not allowed due to cluster shutdown in progress

NDB error code 299

MySQL error DMEC

Error message Operation not allowed or aborted due to single user mode

NDB error code 311

MySQL error DMEC

Error message Undefined partition used in setPartitionId

NDB error code 320

MySQL error DMEC

Error message Invalid no of nodes specified for new nodegroup

338

NDB Error Codes: by Type

NDB error code 321

MySQL error DMEC

Error message Invalid nodegroup id

NDB error code 322

MySQL error DMEC

Error message Invalid node(s) specified for new nodegroup, node already in
nodegroup

NDB error code 323

MySQL error DMEC

Error message Invalid nodegroup id, nodegroup already existing

NDB error code 324

MySQL error DMEC

Error message Invalid node(s) specified for new nodegroup, no node in nodegroup
is started

NDB error code 325

MySQL error DMEC

Error message Invalid node(s) specified for new nodegroup, node ID invalid or
undefined

NDB error code 326

MySQL error DMEC

Error message Same node(s) specified for new nodegroup

NDB error code 4004

MySQL error DMEC

Error message Attribute name or id not found in the table

NDB error code 4100

MySQL error DMEC

Error message Status Error in NDB

NDB error code 4101

MySQL error DMEC

Error message No connections to NDB available and connect failed

NDB error code 4102

MySQL error DMEC

Error message Type in NdbTamper not correct

NDB error code 4103

339

NDB Error Codes: by Type

MySQL error DMEC

Error message No schema connections to NDB available and connect failed

NDB error code 4104

MySQL error DMEC

Error message Ndb Init in wrong state, destroy Ndb object and create a new

NDB error code 4105

MySQL error DMEC

Error message Too many Ndb objects

NDB error code 4106

MySQL error DMEC

Error message All Not NULL attribute have not been defined

NDB error code 4114

MySQL error DMEC

Error message Transaction is already completed

NDB error code 4116

MySQL error DMEC

Error message Operation was not defined correctly, probably missing a key

NDB error code 4117

MySQL error DMEC

Error message Could not start transporter, configuration error

NDB error code 4118

MySQL error DMEC

Error message Parameter error in API call

NDB error code 4120

MySQL error DMEC

Error message Scan already complete

NDB error code 4121

MySQL error DMEC

Error message Cannot set name twice for an Ndb object

NDB error code 4122

MySQL error DMEC

Error message Cannot set name after Ndb object is initialised

NDB error code 4123

340

NDB Error Codes: by Type

MySQL error DMEC

Error message Free percent out of range. Allowed range is 1-99

NDB error code 417

MySQL error DMEC

Error message Bad operation reference - double unlock

NDB error code 4200

MySQL error DMEC

Error message Status Error when defining an operation

NDB error code 4201

MySQL error DMEC

Error message Variable Arrays not yet supported

NDB error code 4202

MySQL error DMEC

Error message Set value on tuple key attribute is not allowed

NDB error code 4203

MySQL error DMEC

Error message Trying to set a NOT NULL attribute to NULL

NDB error code 4204

MySQL error DMEC

Error message Set value and Read/Delete Tuple is incompatible

NDB error code 4205

MySQL error DMEC

Error message No Key attribute used to define tuple

NDB error code 4206

MySQL error DMEC

Error message Not allowed to equal key attribute twice

NDB error code 4207

MySQL error DMEC

Error message Key size is limited to 4092 bytes

NDB error code 4208

MySQL error DMEC

Error message Trying to read a non-stored attribute

NDB error code 4209

341

NDB Error Codes: by Type

MySQL error DMEC

Error message Length parameter in equal/setValue is incorrect

NDB error code 4210

MySQL error DMEC

Error message Ndb sent more info than the length he specified

NDB error code 4211

MySQL error DMEC

Error message Inconsistency in list of NdbRecAttr-objects

NDB error code 4212

MySQL error DMEC

Error message Ndb reports NULL value on Not NULL attribute

NDB error code 4213

MySQL error DMEC

Error message Not all data of an attribute has been received

NDB error code 4214

MySQL error DMEC

Error message Not all attributes have been received

NDB error code 4215

MySQL error DMEC

Error message More data received than reported in TCKEYCONF message

NDB error code 4216

MySQL error DMEC

Error message More than 8052 bytes in setValue cannot be handled

NDB error code 4217

MySQL error DMEC

Error message It is not allowed to increment any other than unsigned ints

NDB error code 4218

MySQL error DMEC

Error message Currently not allowed to increment NULL-able attributes

NDB error code 4219

MySQL error DMEC

Error message Maximum size of interpretative attributes are 64 bits

NDB error code 4220

342

NDB Error Codes: by Type

MySQL error DMEC

Error message Maximum size of interpretative attributes are 64 bits

NDB error code 4221

MySQL error DMEC

Error message Trying to jump to a non-defined label

NDB error code 4222

MySQL error DMEC

Error message Label was not found, internal error

NDB error code 4223

MySQL error DMEC

Error message Not allowed to create jumps to yourself

NDB error code 4224

MySQL error DMEC

Error message Not allowed to jump to a label in a different subroutine

NDB error code 4225

MySQL error DMEC

Error message All primary keys defined, call setValue/getValue

NDB error code 4226

MySQL error DMEC

Error message Bad number when defining a label

NDB error code 4227

MySQL error DMEC

Error message Bad number when defining a subroutine

NDB error code 4228

MySQL error DMEC

Error message Illegal interpreter function in scan definition

NDB error code 4229

MySQL error DMEC

Error message Illegal register in interpreter function definition

NDB error code 4230

MySQL error DMEC

Error message Illegal state when calling getValue, probably not a read

NDB error code 4231

343

NDB Error Codes: by Type

MySQL error DMEC

Error message Illegal state when calling interpreter routine

NDB error code 4232

MySQL error DMEC

Error message Parallelism can only be between 1 and 240

NDB error code 4233

MySQL error DMEC

Error message Calling execute (synchronous) when already prepared
asynchronous transaction exists

NDB error code 4234

MySQL error DMEC

Error message Illegal to call setValue in this state

NDB error code 4235

MySQL error DMEC

Error message No callback from execute

NDB error code 4236

MySQL error DMEC

Error message Trigger name too long

NDB error code 4237

MySQL error DMEC

Error message Too many triggers

NDB error code 4238

MySQL error DMEC

Error message Trigger not found

NDB error code 4239

MySQL error DMEC

Error message Trigger with given name already exists

NDB error code 4240

MySQL error DMEC

Error message Unsupported trigger type

NDB error code 4241

MySQL error DMEC

Error message Index name too long

344

NDB Error Codes: by Type

NDB error code 4242

MySQL error DMEC

Error message Too many indexes

NDB error code 4243

MySQL error DMEC

Error message Index not found

NDB error code 4247

MySQL error DMEC

Error message Illegal index/trigger create/drop/alter request

NDB error code 4248

MySQL error DMEC

Error message Trigger/index name invalid

NDB error code 4249

MySQL error DMEC

Error message Invalid table

NDB error code 4250

MySQL error DMEC

Error message Invalid index type or index logging option

NDB error code 4251

MySQL error HA_ERR_FOUND_DUPP_UNIQUE

Error message Cannot create unique index, duplicate keys found

NDB error code 4252

MySQL error DMEC

Error message Failed to allocate space for index

NDB error code 4253

MySQL error DMEC

Error message Failed to create index table

NDB error code 4254

MySQL error DMEC

Error message Table not an index table

NDB error code 4255

MySQL error DMEC

Error message Hash index attributes must be specified in same order as table
attributes

345

NDB Error Codes: by Type

NDB error code 4256

MySQL error DMEC

Error message Must call Ndb::init() before this function

NDB error code 4257

MySQL error DMEC

Error message Tried to read too much - too many getValue calls

NDB error code 4258

MySQL error DMEC

Error message Cannot create unique index, duplicate attributes found in definition

NDB error code 4259

MySQL error DMEC

Error message Invalid set of range scan bounds

NDB error code 4264

MySQL error DMEC

Error message Invalid usage of blob attribute

NDB error code 4265

MySQL error DMEC

Error message The method is not valid in current blob state

NDB error code 4266

MySQL error DMEC

Error message Invalid blob seek position

NDB error code 4271

MySQL error DMEC

Error message Invalid index object, not retrieved via getIndex()

NDB error code 4272

MySQL error DMEC

Error message Table definition has undefined column

NDB error code 4275

MySQL error DMEC

Error message The blob method is incompatible with operation type or lock mode

NDB error code 4276

MySQL error DMEC

Error message Missing NULL ptr in end of keyData list

346

NDB Error Codes: by Type

NDB error code 4277

MySQL error DMEC

Error message Key part len is to small for column

NDB error code 4278

MySQL error DMEC

Error message Supplied buffer to small

NDB error code 4279

MySQL error DMEC

Error message Malformed string

NDB error code 4280

MySQL error DMEC

Error message Inconsistent key part length

NDB error code 4281

MySQL error DMEC

Error message Too many keys specified for key bound in scanIndex

NDB error code 4282

MySQL error DMEC

Error message range_no not strictly increasing in ordered multi-range index scan

NDB error code 4283

MySQL error DMEC

Error message key_record in index scan is not an index ndbrecord

NDB error code 4284

MySQL error DMEC

Error message Cannot mix NdbRecAttr and NdbRecord methods in one operation

NDB error code 4285

MySQL error DMEC

Error message NULL NdbRecord pointer

NDB error code 4286

MySQL error DMEC

Error message Invalid range_no (must be < 4096)

NDB error code 4287

MySQL error DMEC

Error message The key_record and attribute_record in primary key operation do not
belong to the same table

347

NDB Error Codes: by Type

NDB error code 4288

MySQL error DMEC

Error message Blob handle for column not available

NDB error code 4289

MySQL error DMEC

Error message API version mismatch or wrong
sizeof(NdbDictionary::RecordSpecification)

NDB error code 4290

MySQL error DMEC

Error message Missing column specification in NdbDictionary::RecordSpecification

NDB error code 4291

MySQL error DMEC

Error message Duplicate column specification in
NdbDictionary::RecordSpecification

NDB error code 4292

MySQL error DMEC

Error message NdbRecord for tuple access is not an index key NdbRecord

NDB error code 4293

MySQL error DMEC

Error message Error returned from application scanIndex() callback

NDB error code 4294

MySQL error DMEC

Error message Scan filter is too large, discarded

NDB error code 4295

MySQL error DMEC

Error message Column is NULL in Get/SetValueSpec structure

NDB error code 4296

MySQL error DMEC

Error message Invalid AbortOption

NDB error code 4297

MySQL error DMEC

Error message Invalid or unsupported OperationOptions structure

NDB error code 4298

MySQL error DMEC

348

NDB Error Codes: by Type

Error message Invalid or unsupported ScanOptions structure

NDB error code 4299

MySQL error DMEC

Error message Incorrect combination of ScanOption flags, extraGetValues ptr and
numExtraGetValues

NDB error code 4300

MySQL error DMEC

Error message Tuple Key Type not correct

NDB error code 4301

MySQL error DMEC

Error message Fragment Type not correct

NDB error code 4302

MySQL error DMEC

Error message Minimum Load Factor not correct

NDB error code 4303

MySQL error DMEC

Error message Maximum Load Factor not correct

NDB error code 4304

MySQL error DMEC

Error message Maximum Load Factor smaller than Minimum

NDB error code 4305

MySQL error DMEC

Error message K value must currently be set to 6

NDB error code 4306

MySQL error DMEC

Error message Memory Type not correct

NDB error code 4307

MySQL error DMEC

Error message Invalid table name

NDB error code 4308

MySQL error DMEC

Error message Attribute Size not correct

NDB error code 4309

349

NDB Error Codes: by Type

MySQL error DMEC

Error message Fixed array too large, maximum 64000 bytes

NDB error code 4310

MySQL error DMEC

Error message Attribute Type not correct

NDB error code 4311

MySQL error DMEC

Error message Storage Mode not correct

NDB error code 4312

MySQL error DMEC

Error message Null Attribute Type not correct

NDB error code 4313

MySQL error DMEC

Error message Index only storage for non-key attribute

NDB error code 4314

MySQL error DMEC

Error message Storage Type of attribute not correct

NDB error code 4315

MySQL error DMEC

Error message No more key attributes allowed after defining variable length key
attribute

NDB error code 4316

MySQL error DMEC

Error message Key attributes are not allowed to be NULL attributes

NDB error code 4317

MySQL error DMEC

Error message Too many primary keys defined in table

NDB error code 4318

MySQL error DMEC

Error message Invalid attribute name or number

NDB error code 4319

MySQL error DMEC

Error message createAttribute called at erroneus place

NDB error code 4322

350

NDB Error Codes: by Type

MySQL error DMEC

Error message Attempt to define distribution key when not prepared to

NDB error code 4323

MySQL error DMEC

Error message Distribution Key set on table but not defined on first attribute

NDB error code 4324

MySQL error DMEC

Error message Attempt to define distribution group when not prepared to

NDB error code 4325

MySQL error DMEC

Error message Distribution Group set on table but not defined on first attribute

NDB error code 4326

MySQL error DMEC

Error message Distribution Group with erroneus number of bits

NDB error code 4327

MySQL error DMEC

Error message Distribution key is only supported on part of primary key

NDB error code 4328

MySQL error DMEC

Error message Disk memory attributes not yet supported

NDB error code 4329

MySQL error DMEC

Error message Variable stored attributes not yet supported

NDB error code 4335

MySQL error DMEC

Error message Only one autoincrement column allowed per table. Having a table
without primary key uses an autoincremented hidden key, i.e.
a table without a primary key can not have an autoincremented
column

NDB error code 4340

MySQL error DMEC

Error message Result or attribute record must be a base table ndbrecord, not an
index ndbrecord

NDB error code 4341

MySQL error DMEC

351

NDB Error Codes: by Type

Error message Not all keys read when using option SF_OrderBy

NDB error code 4342

MySQL error DMEC

Error message Scan defined but not prepared

NDB error code 4343

MySQL error DMEC

Error message Table with blobs does not support refresh

NDB error code 4377

MySQL error DMEC

Error message Database and schema name must be set on Ndb object

NDB error code 4400

MySQL error DMEC

Error message Status Error in NdbSchemaCon

NDB error code 4401

MySQL error DMEC

Error message Only one schema operation per schema transaction

NDB error code 4402

MySQL error DMEC

Error message No schema operation defined before calling execute

NDB error code 4410

MySQL error DMEC

Error message Schema transaction is already started

NDB error code 4411

MySQL error DMEC

Error message Schema transaction not possible until upgrade complete

NDB error code 4412

MySQL error DMEC

Error message Schema transaction is not started

NDB error code 4501

MySQL error DMEC

Error message Insert in hash table failed when getting table information from Ndb

NDB error code 4502

MySQL error DMEC

352

NDB Error Codes: by Type

Error message GetValue not allowed in Update operation

NDB error code 4503

MySQL error DMEC

Error message GetValue not allowed in Insert operation

NDB error code 4504

MySQL error DMEC

Error message SetValue not allowed in Read operation

NDB error code 4505

MySQL error DMEC

Error message NULL value not allowed in primary key search

NDB error code 4506

MySQL error DMEC

Error message Missing getValue/setValue when calling execute

NDB error code 4507

MySQL error DMEC

Error message Missing operation request when calling execute

NDB error code 4508

MySQL error DMEC

Error message GetValue not allowed for NdbRecord defined operation

NDB error code 4509

MySQL error DMEC

Error message Non SF_MultiRange scan cannot have more than one bound

NDB error code 4510

MySQL error DMEC

Error message User specified partition id not allowed for scan takeover operation

NDB error code 4511

MySQL error DMEC

Error message Blobs not allowed in NdbRecord delete result record

NDB error code 4512

MySQL error DMEC

Error message Incorrect combination of OperationOptions optionsPresent,
extraGet/SetValues ptr and numExtraGet/SetValues

NDB error code 4513

MySQL error DMEC

353

NDB Error Codes: by Type

Error message Only one scan bound allowed for non-NdbRecord setBound() API

NDB error code 4514

MySQL error DMEC

Error message Can only call setBound/equal() for an NdbIndexScanOperation

NDB error code 4515

MySQL error DMEC

Error message Method not allowed for NdbRecord, use OperationOptions or
ScanOptions structure instead

NDB error code 4516

MySQL error DMEC

Error message Illegal instruction in interpreted program

NDB error code 4517

MySQL error DMEC

Error message Bad label in branch instruction

NDB error code 4518

MySQL error DMEC

Error message Too many instructions in interpreted program

NDB error code 4519

MySQL error DMEC

Error message NdbInterpretedCode::finalise() not called

NDB error code 4520

MySQL error DMEC

Error message Call to undefined subroutine

NDB error code 4521

MySQL error DMEC

Error message Call to undefined subroutine, internal error

NDB error code 4522

MySQL error DMEC

Error message setBound() called twice for same key

NDB error code 4523

MySQL error DMEC

Error message Pseudo columns not supported by NdbRecord

NDB error code 4524

MySQL error DMEC

354

NDB Error Codes: by Type

Error message NdbInterpretedCode is for different table

NDB error code 4535

MySQL error DMEC

Error message Attempt to set bound on non key column

NDB error code 4536

MySQL error DMEC

Error message NdbScanFilter constructor taking NdbOperation is not supported for
NdbRecord

NDB error code 4537

MySQL error DMEC

Error message Wrong API. Use NdbInterpretedCode for NdbRecord operations

NDB error code 4538

MySQL error DMEC

Error message NdbInterpretedCode instruction requires that table is set

NDB error code 4539

MySQL error DMEC

Error message NdbInterpretedCode not supported for operation type

NDB error code 4540

MySQL error DMEC

Error message Attempt to pass an Index column to createRecord. Use base table
columns only

NDB error code 4542

MySQL error DMEC

Error message Unknown partition information type

NDB error code 4543

MySQL error DMEC

Error message Duplicate partitioning information supplied

NDB error code 4544

MySQL error DMEC

Error message Wrong partitionInfo type for table

NDB error code 4545

MySQL error DMEC

Error message Invalid or Unsupported PartitionInfo structure

NDB error code 4546

355

NDB Error Codes: by Type

MySQL error DMEC

Error message Explicit partitioning info not allowed for table and operation

NDB error code 4547

MySQL error DMEC

Error message RecordSpecification has overlapping offsets

NDB error code 4548

MySQL error DMEC

Error message RecordSpecification has too many elements

NDB error code 4549

MySQL error DMEC

Error message getLockHandle only supported for primary key read with a lock

NDB error code 4550

MySQL error DMEC

Error message Cannot releaseLockHandle until operation executed

NDB error code 4551

MySQL error DMEC

Error message NdbLockHandle already released

NDB error code 4552

MySQL error DMEC

Error message NdbLockHandle does not belong to transaction

NDB error code 4553

MySQL error DMEC

Error message NdbLockHandle original operation not executed successfully

NDB error code 4554

MySQL error DMEC

Error message NdbBlob can only be closed from Active state

NDB error code 4555

MySQL error DMEC

Error message NdbBlob cannot be closed with pending operations

NDB error code 4556

MySQL error DMEC

Error message RecordSpecification has illegal value in column_flags

NDB error code 4557

356

NDB Error Codes: by Type

MySQL error DMEC

Error message Column types must be identical when comparing two columns

NDB error code 4558

MySQL error DMEC

Error message Pending Blob operations must be executed before this call

NDB error code 4559

MySQL error DMEC

Error message Failed to transfer KeyInfo to AttrInfo for InterpretedWrite

NDB error code 4600

MySQL error DMEC

Error message Transaction is already started

NDB error code 4601

MySQL error DMEC

Error message Transaction is not started

NDB error code 4602

MySQL error DMEC

Error message You must call getNdbOperation before executeScan

NDB error code 4603

MySQL error DMEC

Error message There can only be ONE operation in a scan transaction

NDB error code 4604

MySQL error DMEC

Error message takeOverScanOp, to take over a scanned row one must explicitly
request keyinfo on readTuples call

NDB error code 4605

MySQL error DMEC

Error message You may only call readTuples() once for each operation

NDB error code 4607

MySQL error DMEC

Error message There may only be one operation in a scan transaction

NDB error code 4608

MySQL error DMEC

Error message You can not takeOverScan unless you have used
openScanExclusive

357

NDB Error Codes: by Type

NDB error code 4609

MySQL error DMEC

Error message You must call nextScanResult before trying to takeOverScan

NDB error code 4707

MySQL error DMEC

Error message Too many event have been defined

NDB error code 4708

MySQL error DMEC

Error message Event name is too long

NDB error code 4709

MySQL error DMEC

Error message Can't accept more subscribers

NDB error code 4710

MySQL error DMEC

Error message Event not found

NDB error code 4711

MySQL error DMEC

Error message Creation of event failed

NDB error code 4712

MySQL error DMEC

Error message Stopped event operation does not exist. Already stopped?

NDB error code 4714

MySQL error DMEC

Error message Index stats system tables do not exist

NDB error code 4715

MySQL error DMEC

Error message Index stats for specified index do not exist

NDB error code 4716

MySQL error DMEC

Error message Index stats methods usage error

NDB error code 4717

MySQL error DMEC

Error message Index stats cannot allocate memory

358

NDB Error Codes: by Type

NDB error code 4720

MySQL error DMEC

Error message partly missing or invalid

NDB error code 4723

MySQL error DMEC

Error message Mysqld: index stats request ignored due to recent error

NDB error code 4724

MySQL error DMEC

Error message Mysqld: index stats request aborted by stats thread

NDB error code 4725

MySQL error DMEC

Error message Index stats were deleted by another process

NDB error code 5000

MySQL error DMEC

Error message No contact with the process (dead ?).

NDB error code 5002

MySQL error DMEC

Error message The process has wrong type. Expected a DB process.

NDB error code 5005

MySQL error DMEC

Error message Send to process or receive failed.

NDB error code 5007

MySQL error DMEC

Error message Invalid error number. Should be >= 0.

NDB error code 5008

MySQL error DMEC

Error message Invalid trace number.

NDB error code 5010

MySQL error DMEC

Error message Invalid block name

NDB error code 5026

MySQL error DMEC

Error message Node shutdown in progress

359

NDB Error Codes: by Type

NDB error code 5027

MySQL error DMEC

Error message System shutdown in progress

NDB error code 5028

MySQL error DMEC

Error message Node shutdown would cause system crash

NDB error code 5030

MySQL error DMEC

Error message No contact with database nodes

NDB error code 5031

MySQL error DMEC

Error message Unsupported multi node shutdown. Abort option required.

NDB error code 5062

MySQL error DMEC

Error message The specified node is not an API node.

NDB error code 5063

MySQL error DMEC

Error message

NDB error code 720

MySQL error DMEC

Error message Attribute name reused in table definition

NDB error code 763

MySQL error DMEC

Error message DDL is not supported with mixed data-node versions

NDB error code 771

MySQL error HA_WRONG_CREATE_OPTION

Error message Given NODEGROUP doesn't exist in this cluster

NDB error code 776

MySQL error DMEC

Error message Index created on temporary table must itself be temporary

NDB error code 777

MySQL error DMEC

Error message Cannot create a temporary index on a non-temporary table

360

NDB Error Codes: by Type

NDB error code 778

MySQL error DMEC

Error message A temporary table or index must be specified as not logging

NDB error code 789

MySQL error HA_WRONG_CREATE_OPTION

Error message Logfile group not found

NDB error code 793

MySQL error DMEC

Error message Object definition too big

NDB error code 794

MySQL error DMEC

Error message Schema feature requires data node upgrade

NDB error code 798

MySQL error DMEC

Error message A disk table must not be specified as no logging

NDB error code 823

MySQL error DMEC

Error message Too much attrinfo from application in tuple manager

NDB error code 829

MySQL error DMEC

Error message Corrupt data received for insert/update

NDB error code 831

MySQL error DMEC

Error message Too many nullable/bitfields in table definition

NDB error code 850

MySQL error DMEC

Error message Too long or too short default value

NDB error code 851

MySQL error DMEC

Error message Fixed-size column offset exceeded max.Use VARCHAR or
COLUMN_FORMAT DYNAMIC for memory-stored columns

NDB error code 874

MySQL error DMEC

361

NDB Error Codes: by Type

Error message Too much attrinfo (e.g. scan filter) for scan in tuple manager

NDB error code 876

MySQL error DMEC

Error message 876

NDB error code 877

MySQL error DMEC

Error message 877

NDB error code 878

MySQL error DMEC

Error message 878

NDB error code 879

MySQL error DMEC

Error message 879

NDB error code 880

MySQL error DMEC

Error message Tried to read too much - too many getValue calls

NDB error code 884

MySQL error DMEC

Error message Stack overflow in interpreter

NDB error code 885

MySQL error DMEC

Error message Stack underflow in interpreter

NDB error code 886

MySQL error DMEC

Error message More than 65535 instructions executed in interpreter

NDB error code 892

MySQL error DMEC

Error message Unsupported type in scan filter

NDB error code 897

MySQL error DMEC

Error message Update attempt of primary key via ndbcluster internal api (if this
occurs via the MySQL server it is a bug, please report)

NDB error code 912

362

NDB Error Codes: by Type

MySQL error DMEC

Error message Index stat scan requested with wrong lock mode

NDB error code 913

MySQL error DMEC

Error message Invalid index for index stats update

NDB error code 920

MySQL error DMEC

Error message Row operation defined after refreshTuple()

NDB error code QRY_BATCH_SIZE_TOO_SMALL

MySQL error DMEC

Error message Batch size for sub scan cannot be smaller than number of
fragments.

NDB error code QRY_CHAR_OPERAND_TRUNCATED

MySQL error DMEC

Error message Character operand was right truncated

NDB error code QRY_CHAR_PARAMETER_TRUNCATED

MySQL error DMEC

Error message Character Parameter was right truncated

NDB error code QRY_DEFINITION_TOO_LARGE

MySQL error DMEC

Error message Query definition too large.

NDB error code QRY_EMPTY_PROJECTION

MySQL error DMEC

Error message Query has operation with empty projection.

NDB error code QRY_HAS_ZERO_OPERATIONS

MySQL error DMEC

Error message Query defintion should have at least one operation.

NDB error code QRY_ILLEGAL_STATE

MySQL error DMEC

Error message Query is in illegal state for this operation.

NDB error code QRY_IN_ERROR_STATE

MySQL error DMEC

Error message A previous query operation failed, which you missed to catch.

NDB error code QRY_MULTIPLE_PARENTS

363

NDB Error Codes: by Type

MySQL error DMEC

Error message Multiple 'parents' specified in linkedValues for this operation

NDB error code QRY_MULTIPLE_SCAN_SORTED

MySQL error DMEC

Error message Query with multiple scans may not be sorted.

NDB error code QRY_NEST_NOT_SUPPORTED

MySQL error DMEC

Error message FirstInner/Upper has to be an ancestor or a sibling

NDB error code QRY_NUM_OPERAND_RANGE

MySQL error DMEC

Error message Numeric operand out of range

NDB error code QRY_OJ_NOT_SUPPORTED

MySQL error DMEC

Error message Outer joined scans not supported by data nodes.

NDB error code QRY_OPERAND_ALREADY_BOUND

MySQL error DMEC

Error message Can't use same operand value to specify different column values

NDB error code QRY_OPERAND_HAS_WRONG_TYPE

MySQL error DMEC

Error message Incompatible datatype specified in operand argument

NDB error code QRY_PARAMETER_HAS_WRONG_TYPE

MySQL error DMEC

Error message Parameter value has an incompatible datatype

NDB error code QRY_REQ_ARG_IS_NULL

MySQL error DMEC

Error message Required argument is NULL

NDB error code QRY_RESULT_ROW_ALREADY_DEFINED

MySQL error DMEC

Error message Result row already defined for NdbQueryOperation.

NDB error code QRY_SCAN_ORDER_ALREADY_SET

MySQL error DMEC

Error message Index scan order was already set in query definition.

NDB error code QRY_SEQUENTIAL_SCAN_SORTED

364

NDB Error Codes: by Type

MySQL error DMEC

Error message Parallelism cannot be restricted for sorted scans.

NDB error code QRY_TOO_FEW_KEY_VALUES

MySQL error DMEC

Error message All required 'key' values was not specified

NDB error code QRY_TOO_MANY_KEY_VALUES

MySQL error DMEC

Error message Too many 'key' or 'bound' values was specified

NDB error code QRY_UNKNOWN_PARENT

MySQL error DMEC

Error message Unknown 'parent' specified in linkedValue

NDB error code QRY_UNRELATED_INDEX

MySQL error DMEC

Error message Specified 'index' does not belong to specified 'table'

NDB error code QRY_WRONG_INDEX_TYPE

MySQL error DMEC

Error message Wrong type of index specified for this operation

NDB error code QRY_WRONG_OPERATION_TYPE

MySQL error DMEC

Error message This method cannot be invoked on this type of operation (lookup/
scan/index scan).

2.4.2.3 Configuration or application error

The following list enumerates all NDB errors of type CE (Configuration or application error).

NDB error code 1308

MySQL error DMEC

Error message Data node/s configured to have encryption but password not
provided

NDB error code 1309

MySQL error DMEC

Error message Encryption password has bad character/s (see 'HELP START
BACKUP')

NDB error code 1310

MySQL error DMEC

Error message Encryption password is too long (see 'HELP START BACKUP')

365

NDB Error Codes: by Type

NDB error code 1311

MySQL error DMEC

Error message Encryption password is of zero length

2.4.2.4 No data found

The following list enumerates all NDB errors of type ND (No data found).

NDB error code 626

MySQL error HA_ERR_KEY_NOT_FOUND

Error message Tuple did not exist

2.4.2.5 Constraint violation

The following list enumerates all NDB errors of type CV (Constraint violation).

NDB error code 255

MySQL error HA_ERR_NO_REFERENCED_ROW

Error message Foreign key constraint violated: No parent row found

NDB error code 256

MySQL error HA_ERR_ROW_IS_REFERENCED

Error message Foreign key constraint violated: Referenced row exists

NDB error code 630

MySQL error HA_ERR_FOUND_DUPP_KEY

Error message Tuple already existed when attempting to insert

NDB error code 839

MySQL error DMEC

Error message Illegal null attribute

NDB error code 840

MySQL error DMEC

Error message Trying to set a NOT NULL attribute to NULL

NDB error code 893

MySQL error HA_ERR_FOUND_DUPP_KEY

Error message Constraint violation e.g. duplicate value in unique index

2.4.2.6 Schema error

The following list enumerates all NDB errors of type SE (Schema error).

NDB error code 1224

MySQL error HA_WRONG_CREATE_OPTION

Error message Too many fragments

366

NDB Error Codes: by Type

NDB error code 1225

MySQL error DMEC

Error message Table not defined in local query handler

NDB error code 1226

MySQL error HA_ERR_NO_SUCH_TABLE

Error message Table is being dropped

NDB error code 1227

MySQL error HA_WRONG_CREATE_OPTION

Error message Invalid schema version

NDB error code 1228

MySQL error DMEC

Error message Cannot use drop table for drop index

NDB error code 1229

MySQL error DMEC

Error message Too long frm data supplied

NDB error code 1231

MySQL error DMEC

Error message Invalid table or index to scan

NDB error code 1232

MySQL error DMEC

Error message Invalid table or index to scan

NDB error code 1407

MySQL error DMEC

Error message Subscription not found in subscriber manager

NDB error code 1415

MySQL error DMEC

Error message Subscription not unique in subscriber manager

NDB error code 1417

MySQL error DMEC

Error message Table in suscription not defined, probably dropped

NDB error code 1418

MySQL error DMEC

Error message Subscription dropped, no new subscribers allowed

367

NDB Error Codes: by Type

NDB error code 1419

MySQL error DMEC

Error message Subscription already dropped

NDB error code 1421

MySQL error DMEC

Error message Partially connected API in NdbOperation::execute()

NDB error code 1422

MySQL error DMEC

Error message Out of subscription records

NDB error code 1423

MySQL error DMEC

Error message Out of table records in SUMA

NDB error code 1424

MySQL error DMEC

Error message Out of MaxNoOfConcurrentSubOperations

NDB error code 1425

MySQL error DMEC

Error message Subscription being defined...while trying to stop subscriber

NDB error code 1426

MySQL error DMEC

Error message No such subscriber

NDB error code 1503

MySQL error DMEC

Error message Out of filegroup records

NDB error code 1504

MySQL error DMEC

Error message Out of logbuffer memory(specify smaller undo_buffer_size or
increase SharedGlobalMemory)

NDB error code 1508

MySQL error DMEC

Error message Out of file records

NDB error code 1509

MySQL error DMEC

Error message File system error, check if path,permissions etc

368

NDB Error Codes: by Type

NDB error code 1512

MySQL error DMEC

Error message File read error

NDB error code 1514

MySQL error DMEC

Error message Currently there is a limit of one logfile group

NDB error code 1515

MySQL error DMEC

Error message Currently there is a 4G limit of one undo/data-file in 32-bit host

NDB error code 1516

MySQL error DMEC

Error message File too small

NDB error code 1517

MySQL error DMEC

Error message Insufficient disk page buffer memory. Increase
DiskPageBufferMemory or reduce data file size.

NDB error code 20019

MySQL error HA_ERR_NO_SUCH_TABLE

Error message Query table not defined

NDB error code 20020

MySQL error HA_ERR_NO_SUCH_TABLE

Error message Query table is being dropped

NDB error code 20021

MySQL error HA_ERR_TABLE_DEF_CHANGED

Error message Query table definition has changed

NDB error code 21022

MySQL error DMEC

Error message Create foreign key failed in NDB - parent table is not table

NDB error code 21023

MySQL error DMEC

Error message Create foreign key failed in NDB - invalid parent table version

NDB error code 21024

MySQL error DMEC

Error message Create foreign key failed in NDB - child table is not table

369

NDB Error Codes: by Type

NDB error code 21025

MySQL error DMEC

Error message Create foreign key failed in NDB - invalid child table version

NDB error code 21027

MySQL error DMEC

Error message Create foreign key failed in NDB - invalid parent index version

NDB error code 21028

MySQL error DMEC

Error message Create foreign key failed in NDB - child index is not index

NDB error code 21029

MySQL error DMEC

Error message Create foreign key failed in NDB - invalid child index version

NDB error code 21041

MySQL error DMEC

Error message Drop foreign key failed in NDB - invalid foreign key version

NDB error code 21042

MySQL error DMEC

Error message Drop foreign key failed in NDB - foreign key not found in TC

NDB error code 21061

MySQL error DMEC

Error message Build foreign key failed in NDB - invalid foreign key version

NDB error code 241

MySQL error HA_ERR_TABLE_DEF_CHANGED

Error message Invalid schema object version

NDB error code 283

MySQL error HA_ERR_NO_SUCH_TABLE

Error message Table is being dropped

NDB error code 284

MySQL error HA_ERR_TABLE_DEF_CHANGED

Error message Table not defined in transaction coordinator

NDB error code 285

MySQL error DMEC

Error message Unknown table error in transaction coordinator

370

NDB Error Codes: by Type

NDB error code 4713

MySQL error DMEC

Error message Column defined in event does not exist in table

NDB error code 703

MySQL error DMEC

Error message Invalid table format

NDB error code 704

MySQL error DMEC

Error message Attribute name too long

NDB error code 705

MySQL error DMEC

Error message Table name too long

NDB error code 707

MySQL error DMEC

Error message No more table metadata records (increase MaxNoOfTables)

NDB error code 708

MySQL error DMEC

Error message No more attribute metadata records (increase MaxNoOfAttributes)

NDB error code 709

MySQL error HA_ERR_NO_SUCH_TABLE

Error message No such table existed

NDB error code 710

MySQL error DMEC

Error message Internal: Get by table name not supported, use table id.

NDB error code 712

MySQL error DMEC

Error message No more hashmap metadata records

NDB error code 723

MySQL error HA_ERR_NO_SUCH_TABLE

Error message No such table existed

NDB error code 736

MySQL error DMEC

Error message Unsupported array size

371

NDB Error Codes: by Type

NDB error code 737

MySQL error HA_WRONG_CREATE_OPTION

Error message Attribute array size too big

NDB error code 738

MySQL error HA_WRONG_CREATE_OPTION

Error message Record too big

NDB error code 739

MySQL error HA_WRONG_CREATE_OPTION

Error message Unsupported primary key length

NDB error code 740

MySQL error HA_WRONG_CREATE_OPTION

Error message Nullable primary key not supported

NDB error code 741

MySQL error DMEC

Error message Unsupported alter table

NDB error code 743

MySQL error HA_WRONG_CREATE_OPTION

Error message Unsupported character set in table or index

NDB error code 744

MySQL error DMEC

Error message Character string is invalid for given character set

NDB error code 745

MySQL error HA_WRONG_CREATE_OPTION

Error message Distribution key not supported for char attribute (use binary attribute)

NDB error code 750

MySQL error IE

Error message Invalid file type

NDB error code 751

MySQL error DMEC

Error message Out of file records

NDB error code 752

MySQL error DMEC

Error message Invalid file format

372

NDB Error Codes: by Type

NDB error code 753

MySQL error IE

Error message Invalid filegroup for file

NDB error code 754

MySQL error IE

Error message Invalid filegroup version when creating file

NDB error code 755

MySQL error HA_MISSING_CREATE_OPTION

Error message Invalid tablespace

NDB error code 756

MySQL error DMEC

Error message Index on disk column is not supported

NDB error code 757

MySQL error DMEC

Error message Varsize bitfield not supported

NDB error code 758

MySQL error DMEC

Error message Tablespace has changed

NDB error code 759

MySQL error DMEC

Error message Invalid tablespace version

NDB error code 760

MySQL error DMEC

Error message File already exists,

NDB error code 761

MySQL error DMEC

Error message Unable to drop table as backup is in progress

NDB error code 762

MySQL error DMEC

Error message Unable to alter table as backup is in progress

NDB error code 764

MySQL error HA_WRONG_CREATE_OPTION

Error message Invalid extent size

373

NDB Error Codes: by Type

NDB error code 765

MySQL error DMEC

Error message Out of filegroup records

NDB error code 766

MySQL error DMEC

Error message Cant drop file, no such file

NDB error code 767

MySQL error DMEC

Error message Cant drop filegroup, no such filegroup

NDB error code 768

MySQL error DMEC

Error message Cant drop filegroup, filegroup is used

NDB error code 769

MySQL error DMEC

Error message Drop undofile not supported, drop logfile group instead

NDB error code 770

MySQL error DMEC

Error message Cant drop file, file is used

NDB error code 773

MySQL error DMEC

Error message Out of string memory, please modify StringMemory config
parameter

NDB error code 774

MySQL error DMEC

Error message Invalid schema object for drop

NDB error code 775

MySQL error DMEC

Error message Create file is not supported when Diskless=1

NDB error code 779

MySQL error HA_WRONG_CREATE_OPTION

Error message Invalid undo buffer size

NDB error code 790

MySQL error HA_WRONG_CREATE_OPTION

Error message Invalid hashmap

374

NDB Error Codes: by Type

NDB error code 791

MySQL error HA_WRONG_CREATE_OPTION

Error message Too many total bits in bitfields

NDB error code 792

MySQL error DMEC

Error message Default value for primary key column not supported

NDB error code 796

MySQL error DMEC

Error message Out of schema transaction memory

NDB error code 799

MySQL error HA_WRONG_CREATE_OPTION

Error message Non default partitioning without partitions

NDB error code 881

MySQL error DMEC

Error message Unable to create table, out of data pages (increase DataMemory)

NDB error code 906

MySQL error DMEC

Error message Unsupported attribute type in index

NDB error code 907

MySQL error DMEC

Error message Unsupported character set in table or index

NDB error code 910

MySQL error HA_ERR_NO_SUCH_TABLE

Error message Index is being dropped

NDB error code 911

MySQL error DMEC

Error message Index stat scan requested on index with unsupported key size

2.4.2.7 Schema object already exists

The following list enumerates all NDB errors of type OE (Schema object already exists).

NDB error code 4244

MySQL error HA_ERR_TABLE_EXIST

Error message Index or table with given name already exists

NDB error code 721

375

NDB Error Codes: by Type

MySQL error HA_ERR_TABLE_EXIST

Error message Schema object with given name already exists

NDB error code 746

MySQL error DMEC

Error message Event name already exists

2.4.2.8 User defined error

The following list enumerates all NDB errors of type UD (User defined error).

NDB error code 1321

MySQL error DMEC

Error message Backup aborted by user request

NDB error code 4260

MySQL error DMEC

Error message NdbScanFilter: Operator is not defined in NdbScanFilter::Group

NDB error code 4261

MySQL error DMEC

Error message NdbScanFilter: Column is NULL

NDB error code 4262

MySQL error DMEC

Error message NdbScanFilter: Condition is out of bounds

2.4.2.9 Insufficient space

The following list enumerates all NDB errors of type IS (Insufficient space).

NDB error code 1303

MySQL error DMEC

Error message Out of resources

NDB error code 1412

MySQL error DMEC

Error message Can't accept more subscribers, out of space in pool

NDB error code 1416

MySQL error DMEC

Error message Can't accept more subscriptions, out of space in pool

NDB error code 1601

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Out of extents, tablespace full

376

NDB Error Codes: by Type

NDB error code 1602

MySQL error DMEC

Error message No datafile in tablespace

NDB error code 1603

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Table fragment fixed data reference has reached maximum possible
value (specify MAXROWS or increase no of partitions)

NDB error code 1604

MySQL error DMEC

Error message Error -1 from get_page

NDB error code 1605

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Out of page request records when allocating disk record

NDB error code 1606

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Out of extent records when allocating disk record

NDB error code 623

MySQL error HA_ERR_RECORD_FILE_FULL

Error message 623

NDB error code 624

MySQL error HA_ERR_RECORD_FILE_FULL

Error message 624

NDB error code 625

MySQL error HA_ERR_INDEX_FILE_FULL

Error message Out of memory in Ndb Kernel, hash index part (increase
DataMemory)

NDB error code 633

MySQL error HA_ERR_INDEX_FILE_FULL

Error message Table fragment hash index has reached maximum possible size

NDB error code 640

MySQL error DMEC

Error message Too many hash indexes (should not happen)

NDB error code 747

MySQL error DMEC

377

NDB Error Codes: by Type

Error message Out of event records

NDB error code 826

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Too many tables and attributes (increase MaxNoOfAttributes or
MaxNoOfTables)

NDB error code 827

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Out of memory in Ndb Kernel, table data (increase DataMemory)

NDB error code 889

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Table fragment fixed data reference has reached maximum possible
value (specify MAXROWS or increase no of partitions)

NDB error code 902

MySQL error HA_ERR_RECORD_FILE_FULL

Error message Out of memory in Ndb Kernel, ordered index data (increase
DataMemory)

NDB error code 903

MySQL error HA_ERR_INDEX_FILE_FULL

Error message Too many ordered indexes (increase MaxNoOfOrderedIndexes)

NDB error code 904

MySQL error HA_ERR_INDEX_FILE_FULL

Error message Out of fragment records (increase MaxNoOfOrderedIndexes)

NDB error code 905

MySQL error DMEC

Error message Out of attribute records (increase MaxNoOfAttributes)

NDB error code 908

MySQL error DMEC

Error message Invalid ordered index tree node size

2.4.2.10 Temporary Resource error

The following list enumerates all NDB errors of type TR (Temporary Resource error).

NDB error code 1217

MySQL error DMEC

Error message Out of operation records in local data manager (increase
SharedGlobalMemory)

NDB error code 1218

378

NDB Error Codes: by Type

MySQL error DMEC

Error message Send Buffers overloaded in NDB kernel

NDB error code 1220

MySQL error DMEC

Error message REDO log files overloaded (increase FragmentLogFileSize)

NDB error code 1222

MySQL error DMEC

Error message Out of transaction markers in LQH, increase SharedGlobalMemory

NDB error code 1234

MySQL error DMEC

Error message REDO log files overloaded (increase disk hardware)

NDB error code 1350

MySQL error DMEC

Error message Backup failed: file already exists (use 'START BACKUP <backup
id>')

NDB error code 1411

MySQL error DMEC

Error message Subscriber manager busy with adding/removing a subscriber

NDB error code 1413

MySQL error DMEC

Error message Subscriber manager busy with adding the subscription

NDB error code 1414

MySQL error DMEC

Error message Subscriber manager has subscribers on this subscription

NDB error code 1420

MySQL error DMEC

Error message Subscriber manager busy with adding/removing a table

NDB error code 1501

MySQL error DMEC

Error message Out of undo space

NDB error code 20000

MySQL error DMEC

Error message Query aborted due out of operation records

NDB error code 20006

379

NDB Error Codes: by Type

MySQL error DMEC

Error message Query aborted due to out of LongMessageBuffer

NDB error code 20008

MySQL error DMEC

Error message Query aborted due to out of query memory

NDB error code 20015

MySQL error DMEC

Error message Query aborted due to out of row memory

NDB error code 21020

MySQL error DMEC

Error message Create foreign key failed in NDB - no more object records

NDB error code 217

MySQL error DMEC

Error message 217

NDB error code 218

MySQL error DMEC

Error message Out of LongMessageBuffer

NDB error code 219

MySQL error DMEC

Error message 219

NDB error code 221

MySQL error DMEC

Error message Too many concurrently fired triggers, increase
SharedGlobalMemory

NDB error code 233

MySQL error DMEC

Error message Out of operation records in transaction coordinator (increase
SharedGlobalMemory)

NDB error code 234

MySQL error DMEC

Error message Out of operation records in transaction coordinator (increase
MaxNoOfConcurrentOperations)

NDB error code 245

MySQL error DMEC

380

NDB Error Codes: by Type

Error message Too many active scans, increase MaxNoOfConcurrentScans

NDB error code 251

MySQL error DMEC

Error message Out of frag location records in TC (increase SharedGlobalMemory)

NDB error code 273

MySQL error DMEC

Error message Out of transaction markers databuffer in TC, increase
SharedGlobalMemory

NDB error code 275

MySQL error DMEC

Error message Out of transaction records for complete phase (increase
SharedGlobalMemory)

NDB error code 279

MySQL error DMEC

Error message Out of transaction markers in TC, increase SharedGlobalMemory

NDB error code 2810

MySQL error DMEC

Error message No space left on the device

NDB error code 2811

MySQL error DMEC

Error message Error with file permissions, please check file system

NDB error code 2815

MySQL error DMEC

Error message Error in reading files, please check file system

NDB error code 288

MySQL error DMEC

Error message Out of index operations in transaction coordinator (increase
SharedGlobalMemory)

NDB error code 289

MySQL error DMEC

Error message Out of transaction buffer memory in TC (increase
SharedGlobalMemory)

NDB error code 291

MySQL error DMEC

Error message Out of scanfrag records in TC (increase SharedGlobalMemory)

381

NDB Error Codes: by Type

NDB error code 293

MySQL error DMEC

Error message Out of attribute buffers in TC block, increase SharedGlobalMemory

NDB error code 312

MySQL error DMEC

Error message Out of LongMessageBuffer

NDB error code 4021

MySQL error DMEC

Error message Out of Send Buffer space in NDB API

NDB error code 4022

MySQL error DMEC

Error message Out of Send Buffer space in NDB API

NDB error code 4032

MySQL error DMEC

Error message Out of Send Buffer space in NDB API

NDB error code 414

MySQL error DMEC

Error message 414

NDB error code 418

MySQL error DMEC

Error message Out of transaction buffers in LQH, increase LongMessageBuffer

NDB error code 419

MySQL error DMEC

Error message Out of signal memory, increase LongMessageBuffer

NDB error code 488

MySQL error DMEC

Error message Too many active scans

NDB error code 489

MySQL error DMEC

Error message Out of scan records in LQH, increase SharedGlobalMemory

NDB error code 490

MySQL error DMEC

Error message Too many active scans

382

NDB Error Codes: by Type

NDB error code 748

MySQL error DMEC

Error message Busy during read of event table

NDB error code 780

MySQL error DMEC

Error message Too many schema transactions

NDB error code 783

MySQL error DMEC

Error message Too many schema operations

NDB error code 784

MySQL error DMEC

Error message Invalid schema transaction state

NDB error code 785

MySQL error DMEC

Error message Schema object is busy with another schema transaction

NDB error code 788

MySQL error DMEC

Error message Missing schema operation at takeover of schema transaction

NDB error code 805

MySQL error DMEC

Error message Out of attrinfo records in tuple manager, increase
LongMessageBuffer

NDB error code 830

MySQL error DMEC

Error message Out of add fragment operation records

NDB error code 873

MySQL error DMEC

Error message Out of transaction memory in local data manager, ordered index
data (increase SharedGlobalMemory)

NDB error code 899

MySQL error DMEC

Error message Rowid already allocated

NDB error code 909

MySQL error DMEC

383

NDB Error Codes: by Type

Error message Out of transaction memory in local data manager, ordered scan
operation (increase SharedGlobalMemory)

NDB error code 915

MySQL error DMEC

Error message No free index stats op

NDB error code 918

MySQL error DMEC

Error message Cannot prepare index stats update

NDB error code 919

MySQL error DMEC

Error message Cannot execute index stats update

NDB error code 921

MySQL error DMEC

Error message Out of transaction memory in local data manager, copy tuples
(increase SharedGlobalMemory)

NDB error code 923

MySQL error DMEC

Error message Out of UNDO buffer memory (increase UNDO_BUFFER_SIZE)

NDB error code 924

MySQL error DMEC

Error message Out of transaction memory in local data manager, stored procedure
record (increase SharedGlobalMemory)

NDB error code 925

MySQL error DMEC

Error message Out of transaction memory in local data manager, tup scan
operation (increase SharedGlobalMemory)

NDB error code 926

MySQL error DMEC

Error message Out of transaction memory in local data manager, acc scan
operation (increase SharedGlobalMemory)

2.4.2.11 Node Recovery error

The following list enumerates all NDB errors of type NR (Node Recovery error).

NDB error code 1204

MySQL error DMEC

Error message Temporary failure, distribution changed

384

NDB Error Codes: by Type

NDB error code 1405

MySQL error DMEC

Error message Subscriber manager busy with node recovery

NDB error code 1427

MySQL error DMEC

Error message Api node died, when SUB_START_REQ reached node

NDB error code 20016

MySQL error DMEC

Error message Query aborted due to node failure

NDB error code 250

MySQL error DMEC

Error message Node where lock was held crashed, restart scan transaction

NDB error code 286

MySQL error DMEC

Error message Node failure caused abort of transaction

NDB error code 4002

MySQL error DMEC

Error message Send to NDB failed

NDB error code 4007

MySQL error DMEC

Error message Send to ndbd node failed

NDB error code 4010

MySQL error DMEC

Error message Node failure caused abort of transaction

NDB error code 4013

MySQL error DMEC

Error message Request timed out in waiting for node failure

NDB error code 4025

MySQL error DMEC

Error message Node failure caused abort of transaction

NDB error code 4027

MySQL error DMEC

Error message Node failure caused abort of transaction

385

NDB Error Codes: by Type

NDB error code 4028

MySQL error DMEC

Error message Node failure caused abort of transaction

NDB error code 4029

MySQL error DMEC

Error message Node failure caused abort of transaction

NDB error code 4031

MySQL error DMEC

Error message Node failure caused abort of transaction

NDB error code 4033

MySQL error DMEC

Error message Send to NDB failed

NDB error code 4035

MySQL error DMEC

Error message Cluster temporary unavailable

NDB error code 4115

MySQL error DMEC

Error message Transaction was committed but all read information was not
received due to node crash

NDB error code 4119

MySQL error DMEC

Error message Simple/dirty read failed due to node failure

NDB error code 499

MySQL error DMEC

Error message Scan take over error, restart scan transaction

NDB error code 631

MySQL error DMEC

Error message Scan take over error, restart scan transaction

NDB error code 786

MySQL error DMEC

Error message Schema transaction aborted due to node-failure

2.4.2.12 Overload error

The following list enumerates all NDB errors of type OL (Overload error).

386

NDB Error Codes: by Type

NDB error code 1221

MySQL error DMEC

Error message REDO buffers overloaded (increase RedoBuffer)

NDB error code 1518

MySQL error DMEC

Error message IO overload error

NDB error code 4006

MySQL error DMEC

Error message Connect failure - out of connection objects (increase
MaxNoOfConcurrentTransactions)

NDB error code 410

MySQL error DMEC

Error message REDO log files overloaded (decrease
TimeBetweenLocalCheckpoints or increase NoOfFragmentLogFiles)

NDB error code 677

MySQL error DMEC

Error message Index UNDO buffers overloaded (increase UndoIndexBuffer)

NDB error code 711

MySQL error DMEC

Error message System busy with node restart, schema operations not allowed

NDB error code 891

MySQL error DMEC

Error message Data UNDO buffers overloaded (increase UndoDataBuffer)

2.4.2.13 Timeout expired

The following list enumerates all NDB errors of type TO (Timeout expired).

NDB error code 266

MySQL error HA_ERR_LOCK_WAIT_TIMEOUT

Error message Time-out in NDB, probably caused by deadlock

NDB error code 274

MySQL error HA_ERR_LOCK_WAIT_TIMEOUT

Error message {296, HA_ERR_LOCK_WAIT_TIMEOUT, TO,{297,
HA_ERR_LOCK_WAIT_TIMEOUT, TO,Time-out in NDB, probably
caused by deadlock

NDB error code 4351

MySQL error DMEC

387

NDB Error Codes: by Type

Error message Timeout/deadlock during index build

NDB error code 5024

MySQL error DMEC

Error message Time-out due to node shutdown not starting in time

NDB error code 5025

MySQL error DMEC

Error message Time-out due to node shutdown not completing in time

NDB error code 635

MySQL error HA_ERR_LOCK_WAIT_TIMEOUT

Error message {701, DMEC, OL, System busy with other schema operation

2.4.2.14 Node shutdown

The following list enumerates all NDB errors of type NS (Node shutdown).

NDB error code 1223

MySQL error DMEC

Error message Read operation aborted due to node shutdown

NDB error code 270

MySQL error DMEC

Error message Transaction aborted due to node shutdown

NDB error code 280

MySQL error DMEC

Error message Transaction aborted due to node shutdown

NDB error code 4023

MySQL error DMEC

Error message Transaction aborted due to node shutdown

NDB error code 4030

MySQL error DMEC

Error message Transaction aborted due to node shutdown

NDB error code 4034

MySQL error DMEC

Error message Transaction aborted due to node shutdown

2.4.2.15 Internal temporary

The following list enumerates all NDB errors of type IT (Internal temporary).

NDB error code 1703

388

NDB Error Codes: by Type

MySQL error DMEC

Error message Node failure handling not completed

NDB error code 1705

MySQL error DMEC

Error message Not ready for connection allocation yet

NDB error code 702

MySQL error DMEC

Error message Request to non-master

NDB error code 787

MySQL error DMEC

Error message Schema transaction aborted

2.4.2.16 Unknown result error

The following list enumerates all NDB errors of type UR (Unknown result error).

NDB error code 4008

MySQL error DMEC

Error message Receive from NDB failed

NDB error code 4009

MySQL error HA_ERR_NO_CONNECTION

Error message Cluster Failure

NDB error code 4012

MySQL error DMEC

Error message Request ndbd time-out, maybe due to high load or communication
problems

2.4.2.17 Internal error

The following list enumerates all NDB errors of type IE (Internal error).

NDB error code 1237

MySQL error DMEC

Error message LQHKEYREQ Protocol error

NDB error code 1300

MySQL error DMEC

Error message Undefined error

NDB error code 1301

MySQL error DMEC

389

NDB Error Codes: by Type

Error message Backup issued to not master (reissue command to master)

NDB error code 1304

MySQL error DMEC

Error message Sequence failure

NDB error code 1305

MySQL error DMEC

Error message Backup definition not implemented

NDB error code 1307

MySQL error DMEC

Error message Encrypted backup is not supported by the data node/s

NDB error code 1322

MySQL error DMEC

Error message Backup already completed

NDB error code 1323

MySQL error DMEC

Error message 1323

NDB error code 1324

MySQL error DMEC

Error message Backup log buffer full

NDB error code 1325

MySQL error DMEC

Error message File or scan error

NDB error code 1326

MySQL error DMEC

Error message Backup aborted due to node failure

NDB error code 1327

MySQL error DMEC

Error message 1327

NDB error code 1340

MySQL error DMEC

Error message Backup undefined error

NDB error code 1428

MySQL error DMEC

390

NDB Error Codes: by Type

Error message No replica to scan on this node (internal index stats error)

NDB error code 1429

MySQL error DMEC

Error message Subscriber node undefined in SubStartReq (config change?)

NDB error code 1502

MySQL error DMEC

Error message Filegroup already exists

NDB error code 1505

MySQL error DMEC

Error message Invalid filegroup

NDB error code 1506

MySQL error DMEC

Error message Invalid filegroup version

NDB error code 1507

MySQL error DMEC

Error message File no already inuse

NDB error code 1510

MySQL error DMEC

Error message File meta data error

NDB error code 1511

MySQL error DMEC

Error message Out of memory

NDB error code 1513

MySQL error DMEC

Error message Filegroup not online

NDB error code 1700

MySQL error DMEC

Error message Undefined error

NDB error code 20001

MySQL error DMEC

Error message Query aborted due to empty query tree

NDB error code 20002

MySQL error DMEC

391

NDB Error Codes: by Type

Error message Query aborted due to invalid request

NDB error code 20003

MySQL error DMEC

Error message Query aborted due to unknown query operation

NDB error code 20004

MySQL error DMEC

Error message Query aborted due to invalid tree node specification

NDB error code 20005

MySQL error DMEC

Error message Query aborted due to invalid tree parameter specification

NDB error code 20007

MySQL error DMEC

Error message Query aborted due to invalid pattern

NDB error code 20009

MySQL error DMEC

Error message Query aborted due to query node too big

NDB error code 20010

MySQL error DMEC

Error message Query aborted due to query node parameters too big

NDB error code 20011

MySQL error DMEC

Error message Query aborted due to both tree and parameters contain interpreted
program

NDB error code 20012

MySQL error DMEC

Error message Query aborted due to invalid tree parameter specification: Key
parameter bits mismatch

NDB error code 20013

MySQL error DMEC

Error message Query aborted due to invalid tree parameter specification: Incorrect
key parameter count

NDB error code 20014

MySQL error DMEC

Error message Query aborted due to internal error

392

NDB Error Codes: by Type

NDB error code 20017

MySQL error DMEC

Error message Query aborted due to invalid node count

NDB error code 20018

MySQL error DMEC

Error message Query aborted due to index fragment not found

NDB error code 202

MySQL error DMEC

Error message 202

NDB error code 203

MySQL error DMEC

Error message 203

NDB error code 207

MySQL error DMEC

Error message 207

NDB error code 208

MySQL error DMEC

Error message 208

NDB error code 209

MySQL error DMEC

Error message Communication problem, signal error

NDB error code 21021

MySQL error DMEC

Error message Create foreign key failed in NDB - invalid request

NDB error code 21030

MySQL error DMEC

Error message Create foreign key failed in NDB - object already exists in TC

NDB error code 21031

MySQL error DMEC

Error message Create foreign key failed in NDB - no more object records in TC

NDB error code 21032

MySQL error DMEC

Error message Create foreign key failed in NDB - invalid request to TC

393

NDB Error Codes: by Type

NDB error code 220

MySQL error DMEC

Error message 220

NDB error code 230

MySQL error DMEC

Error message 230

NDB error code 232

MySQL error DMEC

Error message 232

NDB error code 238

MySQL error DMEC

Error message 238

NDB error code 240

MySQL error DMEC

Error message Invalid data encountered during foreign key trigger execution

NDB error code 271

MySQL error DMEC

Error message Simple Read transaction without any attributes to read

NDB error code 272

MySQL error DMEC

Error message Update operation without any attributes to update

NDB error code 276

MySQL error DMEC

Error message 276

NDB error code 277

MySQL error DMEC

Error message 277

NDB error code 278

MySQL error DMEC

Error message 278

NDB error code 287

MySQL error DMEC

Error message Index corrupted

394

NDB Error Codes: by Type

NDB error code 290

MySQL error DMEC

Error message Corrupt key in TC, unable to xfrm

NDB error code 292

MySQL error DMEC

Error message Inconsistent index state in TC block

NDB error code 294

MySQL error DMEC

Error message Unlocked operation has out of range index

NDB error code 295

MySQL error DMEC

Error message Unlocked operation has invalid state

NDB error code 298

MySQL error DMEC

Error message Invalid distribution key

NDB error code 306

MySQL error DMEC

Error message Out of fragment records in DIH

NDB error code 4000

MySQL error DMEC

Error message MEMORY ALLOCATION ERROR

NDB error code 4001

MySQL error DMEC

Error message Signal Definition Error

NDB error code 4005

MySQL error DMEC

Error message Internal Error in NdbApi

NDB error code 4011

MySQL error DMEC

Error message Internal Error in NdbApi

NDB error code 4107

MySQL error DMEC

Error message Simple Transaction and Not Start

395

NDB Error Codes: by Type

NDB error code 4108

MySQL error DMEC

Error message Faulty operation type

NDB error code 4109

MySQL error DMEC

Error message Faulty primary key attribute length

NDB error code 4110

MySQL error DMEC

Error message Faulty length in ATTRINFO signal

NDB error code 4111

MySQL error DMEC

Error message Status Error in NdbConnection

NDB error code 4113

MySQL error DMEC

Error message Too many operations received

NDB error code 416

MySQL error DMEC

Error message Bad state handling unlock request

NDB error code 4263

MySQL error DMEC

Error message Invalid blob attributes or invalid blob parts table

NDB error code 4267

MySQL error DMEC

Error message Corrupted blob value

NDB error code 4268

MySQL error DMEC

Error message Error in blob head update forced rollback of transaction

NDB error code 4269

MySQL error DMEC

Error message No connection to ndb management server

NDB error code 4270

MySQL error DMEC

Error message Unknown blob error

396

NDB Error Codes: by Type

NDB error code 4273

MySQL error DMEC

Error message No blob table in dict cache

NDB error code 4274

MySQL error DMEC

Error message Corrupted main table PK in blob operation

NDB error code 4320

MySQL error DMEC

Error message Cannot use the same object twice to create table

NDB error code 4321

MySQL error DMEC

Error message Trying to start two schema transactions

NDB error code 4344

MySQL error DMEC

Error message Only DBDICT and TRIX can send requests to TRIX

NDB error code 4345

MySQL error DMEC

Error message TRIX block is not available yet, probably due to node failure

NDB error code 4346

MySQL error DMEC

Error message Internal error at index create/build

NDB error code 4347

MySQL error DMEC

Error message Bad state at alter index

NDB error code 4348

MySQL error DMEC

Error message Inconsistency detected at alter index

NDB error code 4349

MySQL error DMEC

Error message Inconsistency detected at index usage

NDB error code 4350

MySQL error DMEC

Error message Transaction already aborted

397

NDB Error Codes: by Type

NDB error code 4718

MySQL error DMEC

Error message Index stats samples data or memory cache is invalid

NDB error code 4719

MySQL error DMEC

Error message Index stats internal error

NDB error code 4721

MySQL error DMEC

Error message Mysqld: index stats thread not open for requests

NDB error code 4722

MySQL error DMEC

Error message Mysqld: index stats entry unexpectedly not found

NDB error code 4731

MySQL error DMEC

Error message Event not found

NDB error code 632

MySQL error DMEC

Error message 632

NDB error code 706

MySQL error DMEC

Error message Inconsistency during table creation

NDB error code 749

MySQL error HA_WRONG_CREATE_OPTION

Error message Primary Table in wrong state

NDB error code 772

MySQL error HA_WRONG_CREATE_OPTION

Error message Given fragmentType doesn't exist

NDB error code 781

MySQL error DMEC

Error message Invalid schema transaction key from NDB API

NDB error code 782

MySQL error DMEC

Error message Invalid schema transaction id from NDB API

398

NDB Error Codes: by Type

NDB error code 795

MySQL error DMEC

Error message Out of LongMessageBuffer in DICT

NDB error code 809

MySQL error DMEC

Error message 809

NDB error code 812

MySQL error DMEC

Error message 812

NDB error code 833

MySQL error DMEC

Error message 833

NDB error code 871

MySQL error DMEC

Error message 871

NDB error code 882

MySQL error DMEC

Error message 882

NDB error code 883

MySQL error DMEC

Error message 883

NDB error code 887

MySQL error DMEC

Error message 887

NDB error code 888

MySQL error DMEC

Error message 888

NDB error code 890

MySQL error DMEC

Error message 890

NDB error code 896

MySQL error DMEC

Error message Tuple corrupted - wrong checksum or column data in invalid format

399

NDB Error Codes: Single Listing

NDB error code 901

MySQL error DMEC

Error message Inconsistent ordered index. The index needs to be dropped and
recreated

NDB error code 914

MySQL error DMEC

Error message Invalid index stats request

NDB error code 916

MySQL error DMEC

Error message Invalid index stats sys tables

NDB error code 917

MySQL error DMEC

Error message Invalid index stats sys tables data

2.4.2.18 Function not implemented

The following list enumerates all NDB errors of type NI (Function not implemented).

NDB error code 4003

MySQL error DMEC

Error message Function not implemented yet

NDB error code 797

MySQL error DMEC

Error message Wrong fragment count for fully replicated table

2.4.3 NDB Error Codes: Single Listing

This section lists all NDB errors, ordered by NDB error code. Each listing also includes the error's NDB
error type, the corresponding MySQL Server error, and the text of the error message.

/* Scan trans timeout MySQL error. {237

NDB error type. Error type not found

Error message. TO,Transaction had timed out when
trying to commit it

// "Outer joined scans
need FirstInner/Upper to
be specified"

MySQL error.

NDB error type. Error type not found

Error message.

0 MySQL error. 0

NDB error type. No error

Error message. No error

400

NDB Error Codes: Single Listing

1204 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Temporary failure, distribution
changed

1217 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of operation records in local
data manager (increase SharedGlobalMemory)

1218 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Send Buffers overloaded in NDB
kernel

1220 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. REDO log files overloaded (increase
FragmentLogFileSize)

1221 MySQL error. DMEC

NDB error type. Overload error

Error message. REDO buffers overloaded (increase
RedoBuffer)

1222 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction markers in LQH,
increase SharedGlobalMemory

1223 MySQL error. DMEC

NDB error type. Node shutdown

Error message. Read operation aborted due to node
shutdown

1224 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Too many fragments

1225 MySQL error. DMEC

NDB error type. Schema error

Error message. Table not defined in local query
handler

1226 MySQL error. HA_ERR_NO_SUCH_TABLE

401

NDB Error Codes: Single Listing

NDB error type. Schema error

Error message. Table is being dropped

1227 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Invalid schema version

1228 MySQL error. DMEC

NDB error type. Schema error

Error message. Cannot use drop table for drop
index

1229 MySQL error. DMEC

NDB error type. Schema error

Error message. Too long frm data supplied

1231 MySQL error. DMEC

NDB error type. Schema error

Error message. Invalid table or index to scan

1232 MySQL error. DMEC

NDB error type. Schema error

Error message. Invalid table or index to scan

1233 MySQL error. DMEC

NDB error type. Application error

Error message. Table read-only

1234 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. REDO log files overloaded (increase
disk hardware)

1237 MySQL error. DMEC

NDB error type. Internal error

Error message. LQHKEYREQ Protocol error

1300 MySQL error. DMEC

NDB error type. Internal error

Error message. Undefined error

1301 MySQL error. DMEC

NDB error type. Internal error

402

NDB Error Codes: Single Listing

Error message. Backup issued to not master
(reissue command to master)

1302 MySQL error. DMEC

NDB error type. Application error

Error message. A backup is already running

1303 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Out of resources

1304 MySQL error. DMEC

NDB error type. Internal error

Error message. Sequence failure

1305 MySQL error. DMEC

NDB error type. Internal error

Error message. Backup definition not implemented

1306 MySQL error. DMEC

NDB error type. Application error

Error message. Backup not supported in diskless
mode (change Diskless)

1307 MySQL error. DMEC

NDB error type. Internal error

Error message. Encrypted backup is not supported
by the data node/s

1308 MySQL error. DMEC

NDB error type. Configuration or application error

Error message. Data node/s configured to have
encryption but password not provided

1309 MySQL error. DMEC

NDB error type. Configuration or application error

Error message. Encryption password has bad
character/s (see 'HELP START BACKUP')

1310 MySQL error. DMEC

NDB error type. Configuration or application error

Error message. Encryption password is too long
(see 'HELP START BACKUP')

1311 MySQL error. DMEC

403

NDB Error Codes: Single Listing

NDB error type. Configuration or application error

Error message. Encryption password is of zero
length

1321 MySQL error. DMEC

NDB error type. User defined error

Error message. Backup aborted by user request

1322 MySQL error. DMEC

NDB error type. Internal error

Error message. Backup already completed

1323 MySQL error. DMEC

NDB error type. Internal error

Error message. 1323

1324 MySQL error. DMEC

NDB error type. Internal error

Error message. Backup log buffer full

1325 MySQL error. DMEC

NDB error type. Internal error

Error message. File or scan error

1326 MySQL error. DMEC

NDB error type. Internal error

Error message. Backup aborted due to node failure

1327 MySQL error. DMEC

NDB error type. Internal error

Error message. 1327

1329 MySQL error. DMEC

NDB error type. Application error

Error message. Backup during software upgrade not
supported

1340 MySQL error. DMEC

NDB error type. Internal error

Error message. Backup undefined error

1342 MySQL error. DMEC

NDB error type. Application error

404

NDB Error Codes: Single Listing

Error message. Backup failed to allocate buffers
(check configuration)

1343 MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to setup fs buffers
(check configuration)

1344 MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to allocate tables
(check configuration)

1345 MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to insert file header
(check configuration)

1346 MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to insert table list
(check configuration)

1347 MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to allocate table
memory (check configuration)

1348 MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to allocate file
record (check configuration)

1349 MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to allocate attribute
record (check configuration)

1350 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Backup failed: file already exists
(use 'START BACKUP <backup id>')

1405 MySQL error. DMEC

NDB error type. Node Recovery error

405

NDB Error Codes: Single Listing

Error message. Subscriber manager busy with node
recovery

1407 MySQL error. DMEC

NDB error type. Schema error

Error message. Subscription not found in
subscriber manager

1411 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Subscriber manager busy with
adding/removing a subscriber

1412 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Can't accept more subscribers, out
of space in pool

1413 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Subscriber manager busy with adding
the subscription

1414 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Subscriber manager has subscribers
on this subscription

1415 MySQL error. DMEC

NDB error type. Schema error

Error message. Subscription not unique in
subscriber manager

1416 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Can't accept more subscriptions,
out of space in pool

1417 MySQL error. DMEC

NDB error type. Schema error

Error message. Table in suscription not defined,
probably dropped

1418 MySQL error. DMEC

NDB error type. Schema error

406

NDB Error Codes: Single Listing

Error message. Subscription dropped, no new
subscribers allowed

1419 MySQL error. DMEC

NDB error type. Schema error

Error message. Subscription already dropped

1420 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Subscriber manager busy with
adding/removing a table

1421 MySQL error. DMEC

NDB error type. Schema error

Error message. Partially connected API in
NdbOperation::execute()

1422 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of subscription records

1423 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of table records in SUMA

1424 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of
MaxNoOfConcurrentSubOperations

1425 MySQL error. DMEC

NDB error type. Schema error

Error message. Subscription being defined...while
trying to stop subscriber

1426 MySQL error. DMEC

NDB error type. Schema error

Error message. No such subscriber

1427 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Api node died, when SUB_START_REQ
reached node

1428 MySQL error. DMEC

407

NDB Error Codes: Single Listing

NDB error type. Internal error

Error message. No replica to scan on this node
(internal index stats error)

1429 MySQL error. DMEC

NDB error type. Internal error

Error message. Subscriber node undefined in
SubStartReq (config change?)

1501 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of undo space

1502 MySQL error. DMEC

NDB error type. Internal error

Error message. Filegroup already exists

1503 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of filegroup records

1504 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of logbuffer memory(specify
smaller undo_buffer_size or increase
SharedGlobalMemory)

1505 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid filegroup

1506 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid filegroup version

1507 MySQL error. DMEC

NDB error type. Internal error

Error message. File no already inuse

1508 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of file records

1509 MySQL error. DMEC

408

NDB Error Codes: Single Listing

NDB error type. Schema error

Error message. File system error, check if
path,permissions etc

1510 MySQL error. DMEC

NDB error type. Internal error

Error message. File meta data error

1511 MySQL error. DMEC

NDB error type. Internal error

Error message. Out of memory

1512 MySQL error. DMEC

NDB error type. Schema error

Error message. File read error

1513 MySQL error. DMEC

NDB error type. Internal error

Error message. Filegroup not online

1514 MySQL error. DMEC

NDB error type. Schema error

Error message. Currently there is a limit of one
logfile group

1515 MySQL error. DMEC

NDB error type. Schema error

Error message. Currently there is a 4G limit of
one undo/data-file in 32-bit host

1516 MySQL error. DMEC

NDB error type. Schema error

Error message. File too small

1517 MySQL error. DMEC

NDB error type. Schema error

Error message. Insufficient disk page buffer
memory. Increase DiskPageBufferMemory or reduce
data file size.

1518 MySQL error. DMEC

NDB error type. Overload error

Error message. IO overload error

409

NDB Error Codes: Single Listing

1601 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Out of extents, tablespace full

1602 MySQL error. DMEC

NDB error type. Insufficient space

Error message. No datafile in tablespace

1603 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Table fragment fixed data reference
has reached maximum possible value (specify
MAXROWS or increase no of partitions)

1604 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Error -1 from get_page

1605 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Out of page request records when
allocating disk record

1606 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Out of extent records when
allocating disk record

1700 MySQL error. DMEC

NDB error type. Internal error

Error message. Undefined error

1701 MySQL error. DMEC

NDB error type. Application error

Error message. Node already reserved

1702 MySQL error. DMEC

NDB error type. Application error

Error message. Node already connected

1703 MySQL error. DMEC

NDB error type. Internal temporary

Error message. Node failure handling not completed

410

NDB Error Codes: Single Listing

1704 MySQL error. DMEC

NDB error type. Application error

Error message. Node type mismatch

1705 MySQL error. DMEC

NDB error type. Internal temporary

Error message. Not ready for connection allocation
yet

20000 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Query aborted due out of operation
records

20001 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to empty query
tree

20002 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to invalid
request

20003 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to unknown query
operation

20004 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to invalid tree
node specification

20005 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to invalid tree
parameter specification

20006 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Query aborted due to out of
LongMessageBuffer

20007 MySQL error. DMEC

411

NDB Error Codes: Single Listing

NDB error type. Internal error

Error message. Query aborted due to invalid
pattern

20008 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Query aborted due to out of query
memory

20009 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to query node too
big

20010 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to query node
parameters too big

20011 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to both tree and
parameters contain interpreted program

20012 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to invalid tree
parameter specification: Key parameter bits
mismatch

20013 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to invalid tree
parameter specification: Incorrect key parameter
count

20014 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to internal error

20015 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Query aborted due to out of row
memory

20016 MySQL error. DMEC

412

NDB Error Codes: Single Listing

NDB error type. Node Recovery error

Error message. Query aborted due to node failure

20017 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to invalid node
count

20018 MySQL error. DMEC

NDB error type. Internal error

Error message. Query aborted due to index fragment
not found

20019 MySQL error. HA_ERR_NO_SUCH_TABLE

NDB error type. Schema error

Error message. Query table not defined

20020 MySQL error. HA_ERR_NO_SUCH_TABLE

NDB error type. Schema error

Error message. Query table is being dropped

20021 MySQL error. HA_ERR_TABLE_DEF_CHANGED

NDB error type. Schema error

Error message. Query table definition has changed

202 MySQL error. DMEC

NDB error type. Internal error

Error message. 202

203 MySQL error. DMEC

NDB error type. Internal error

Error message. 203

207 MySQL error. DMEC

NDB error type. Internal error

Error message. 207

208 MySQL error. DMEC

NDB error type. Internal error

Error message. 208

209 MySQL error. DMEC

NDB error type. Internal error

413

NDB Error Codes: Single Listing

Error message. Communication problem, signal error

21000 MySQL error. HA_ERR_CANNOT_ADD_FOREIGN

NDB error type. Application error

Error message. Create foreign key failed - parent
key is primary key and on-update-cascade is not
allowed

21020 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Create foreign key failed in NDB -
no more object records

21021 MySQL error. DMEC

NDB error type. Internal error

Error message. Create foreign key failed in NDB -
invalid request

21022 MySQL error. DMEC

NDB error type. Schema error

Error message. Create foreign key failed in NDB -
parent table is not table

21023 MySQL error. DMEC

NDB error type. Schema error

Error message. Create foreign key failed in NDB -
invalid parent table version

21024 MySQL error. DMEC

NDB error type. Schema error

Error message. Create foreign key failed in NDB -
child table is not table

21025 MySQL error. DMEC

NDB error type. Schema error

Error message. Create foreign key failed in NDB -
invalid child table version

21026 MySQL error. HA_ERR_CANNOT_ADD_FOREIGN

NDB error type. Application error

Error message. Create foreign key failed in NDB -
parent index is not unique index

21027 MySQL error. DMEC

NDB error type. Schema error

414

NDB Error Codes: Single Listing

Error message. Create foreign key failed in NDB -
invalid parent index version

21028 MySQL error. DMEC

NDB error type. Schema error

Error message. Create foreign key failed in NDB -
child index is not index

21029 MySQL error. DMEC

NDB error type. Schema error

Error message. Create foreign key failed in NDB -
invalid child index version

21030 MySQL error. DMEC

NDB error type. Internal error

Error message. Create foreign key failed in NDB -
object already exists in TC

21031 MySQL error. DMEC

NDB error type. Internal error

Error message. Create foreign key failed in NDB -
no more object records in TC

21032 MySQL error. DMEC

NDB error type. Internal error

Error message. Create foreign key failed in NDB -
invalid request to TC

21033 MySQL error. HA_ERR_CANNOT_ADD_FOREIGN

NDB error type. Application error

Error message. Create foreign key failed in NDB -
No parent row found

21034 MySQL error. HA_ERR_CANNOT_ADD_FOREIGN

NDB error type. Application error

Error message. Create foreign key failed - child
table has Blob or Text column and on-delete-
cascade is not allowed

21040 MySQL error. DMEC

NDB error type. Application error

Error message. Drop foreign key failed in NDB -
foreign key not found

21041 MySQL error. DMEC

NDB error type. Schema error

415

NDB Error Codes: Single Listing

Error message. Drop foreign key failed in NDB -
invalid foreign key version

21042 MySQL error. DMEC

NDB error type. Schema error

Error message. Drop foreign key failed in NDB -
foreign key not found in TC

21060 MySQL error. DMEC

NDB error type. Application error

Error message. Build foreign key failed in NDB -
foreign key not found

21061 MySQL error. DMEC

NDB error type. Schema error

Error message. Build foreign key failed in NDB -
invalid foreign key version

21080 MySQL error. HA_ERR_ROW_IS_REFERENCED

NDB error type. Application error

Error message. Drop table not allowed in NDB -
referenced by foreign key on another table

21081 MySQL error. HA_ERR_DROP_INDEX_FK

NDB error type. Application error

Error message. Drop index not allowed in NDB -
used as parent index of a foreign key

21082 MySQL error. HA_ERR_DROP_INDEX_FK

NDB error type. Application error

Error message. Drop index not allowed in NDB -
used as child index of a foreign key

21090 MySQL error. HA_ERR_CANNOT_ADD_FOREIGN

NDB error type. Application error

Error message. Create foreign key failed in NDB -
name contains invalid character (/)

217 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. 217

218 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of LongMessageBuffer

416

NDB Error Codes: Single Listing

219 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. 219

220 MySQL error. DMEC

NDB error type. Internal error

Error message. 220

221 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Too many concurrently fired
triggers, increase SharedGlobalMemory

230 MySQL error. DMEC

NDB error type. Internal error

Error message. 230

232 MySQL error. DMEC

NDB error type. Internal error

Error message. 232

233 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of operation records
in transaction coordinator (increase
SharedGlobalMemory)

234 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of operation records
in transaction coordinator (increase
MaxNoOfConcurrentOperations)

238 MySQL error. DMEC

NDB error type. Internal error

Error message. 238

240 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid data encountered during
foreign key trigger execution

241 MySQL error. HA_ERR_TABLE_DEF_CHANGED

NDB error type. Schema error

417

NDB Error Codes: Single Listing

Error message. Invalid schema object version

242 MySQL error. DMEC

NDB error type. Application error

Error message. Zero concurrency in scan

244 MySQL error. DMEC

NDB error type. Application error

Error message. Too high concurrency in scan

245 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Too many active scans, increase
MaxNoOfConcurrentScans

250 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node where lock was held crashed,
restart scan transaction

251 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of frag location records in TC
(increase SharedGlobalMemory)

255 MySQL error. HA_ERR_NO_REFERENCED_ROW

NDB error type. Constraint violation

Error message. Foreign key constraint violated: No
parent row found

256 MySQL error. HA_ERR_ROW_IS_REFERENCED

NDB error type. Constraint violation

Error message. Foreign key constraint violated:
Referenced row exists

261 MySQL error. DMEC

NDB error type. Application error

Error message. DML count in transaction exceeds
config parameter MaxDMLOperationsPerTransaction/
MaxNoOfConcurrentOperations

266 MySQL error. HA_ERR_LOCK_WAIT_TIMEOUT

NDB error type. Timeout expired

Error message. Time-out in NDB, probably caused by
deadlock

418

NDB Error Codes: Single Listing

269 MySQL error. DMEC

NDB error type. Application error

Error message. No condition and attributes to read
in scan

270 MySQL error. DMEC

NDB error type. Node shutdown

Error message. Transaction aborted due to node
shutdown

271 MySQL error. DMEC

NDB error type. Internal error

Error message. Simple Read transaction without any
attributes to read

272 MySQL error. DMEC

NDB error type. Internal error

Error message. Update operation without any
attributes to update

273 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction markers
databuffer in TC, increase SharedGlobalMemory

274 MySQL error. HA_ERR_LOCK_WAIT_TIMEOUT

NDB error type. Timeout expired

Error message. {296, HA_ERR_LOCK_WAIT_TIMEOUT, TO,
{297, HA_ERR_LOCK_WAIT_TIMEOUT, TO,Time-out in
NDB, probably caused by deadlock

275 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction records for
complete phase (increase SharedGlobalMemory)

276 MySQL error. DMEC

NDB error type. Internal error

Error message. 276

277 MySQL error. DMEC

NDB error type. Internal error

Error message. 277

278 MySQL error. DMEC

419

NDB Error Codes: Single Listing

NDB error type. Internal error

Error message. 278

279 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction markers in TC,
increase SharedGlobalMemory

280 MySQL error. DMEC

NDB error type. Node shutdown

Error message. Transaction aborted due to node
shutdown

281 MySQL error. HA_ERR_NO_CONNECTION

NDB error type. Application error

Error message. Operation not allowed due to
cluster shutdown in progress

2810 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. No space left on the device

2811 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Error with file permissions, please
check file system

2815 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Error in reading files, please
check file system

283 MySQL error. HA_ERR_NO_SUCH_TABLE

NDB error type. Schema error

Error message. Table is being dropped

284 MySQL error. HA_ERR_TABLE_DEF_CHANGED

NDB error type. Schema error

Error message. Table not defined in transaction
coordinator

420

NDB Error Codes: Single Listing

285 MySQL error. DMEC

NDB error type. Schema error

Error message. Unknown table error in transaction
coordinator

286 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node failure caused abort of
transaction

287 MySQL error. DMEC

NDB error type. Internal error

Error message. Index corrupted

288 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of index operations
in transaction coordinator (increase
SharedGlobalMemory)

289 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction buffer memory in
TC (increase SharedGlobalMemory)

290 MySQL error. DMEC

NDB error type. Internal error

Error message. Corrupt key in TC, unable to xfrm

291 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of scanfrag records in TC
(increase SharedGlobalMemory)

292 MySQL error. DMEC

NDB error type. Internal error

Error message. Inconsistent index state in TC
block

293 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of attribute buffers in TC
block, increase SharedGlobalMemory

294 MySQL error. DMEC

421

NDB Error Codes: Single Listing

NDB error type. Internal error

Error message. Unlocked operation has out of range
index

295 MySQL error. DMEC

NDB error type. Internal error

Error message. Unlocked operation has invalid
state

298 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid distribution key

299 MySQL error. DMEC

NDB error type. Application error

Error message. Operation not allowed or aborted
due to single user mode

306 MySQL error. DMEC

NDB error type. Internal error

Error message. Out of fragment records in DIH

311 MySQL error. DMEC

NDB error type. Application error

Error message. Undefined partition used in
setPartitionId

312 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of LongMessageBuffer

320 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid no of nodes specified for
new nodegroup

321 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid nodegroup id

322 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid node(s) specified for new
nodegroup, node already in nodegroup

422

NDB Error Codes: Single Listing

323 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid nodegroup id, nodegroup
already existing

324 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid node(s) specified for new
nodegroup, no node in nodegroup is started

325 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid node(s) specified for new
nodegroup, node ID invalid or undefined

326 MySQL error. DMEC

NDB error type. Application error

Error message. Same node(s) specified for new
nodegroup

4000 MySQL error. DMEC

NDB error type. Internal error

Error message. MEMORY ALLOCATION ERROR

4001 MySQL error. DMEC

NDB error type. Internal error

Error message. Signal Definition Error

4002 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Send to NDB failed

4003 MySQL error. DMEC

NDB error type. Function not implemented

Error message. Function not implemented yet

4004 MySQL error. DMEC

NDB error type. Application error

Error message. Attribute name or id not found in
the table

4005 MySQL error. DMEC

NDB error type. Internal error

Error message. Internal Error in NdbApi

423

NDB Error Codes: Single Listing

4006 MySQL error. DMEC

NDB error type. Overload error

Error message. Connect failure - out of connection
objects (increase MaxNoOfConcurrentTransactions)

4007 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Send to ndbd node failed

4008 MySQL error. DMEC

NDB error type. Unknown result error

Error message. Receive from NDB failed

4009 MySQL error. HA_ERR_NO_CONNECTION

NDB error type. Unknown result error

Error message. Cluster Failure

4010 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node failure caused abort of
transaction

4011 MySQL error. DMEC

NDB error type. Internal error

Error message. Internal Error in NdbApi

4012 MySQL error. DMEC

NDB error type. Unknown result error

Error message. Request ndbd time-out, maybe due to
high load or communication problems

4013 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Request timed out in waiting for
node failure

4021 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of Send Buffer space in NDB API

4022 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of Send Buffer space in NDB API

424

NDB Error Codes: Single Listing

4023 MySQL error. DMEC

NDB error type. Node shutdown

Error message. Transaction aborted due to node
shutdown

4025 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node failure caused abort of
transaction

4027 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node failure caused abort of
transaction

4028 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node failure caused abort of
transaction

4029 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node failure caused abort of
transaction

4030 MySQL error. DMEC

NDB error type. Node shutdown

Error message. Transaction aborted due to node
shutdown

4031 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Node failure caused abort of
transaction

4032 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of Send Buffer space in NDB API

4033 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Send to NDB failed

4034 MySQL error. DMEC

NDB error type. Node shutdown

425

NDB Error Codes: Single Listing

Error message. Transaction aborted due to node
shutdown

4035 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Cluster temporary unavailable

410 MySQL error. DMEC

NDB error type. Overload error

Error message. REDO log files overloaded
(decrease TimeBetweenLocalCheckpoints or increase
NoOfFragmentLogFiles)

4100 MySQL error. DMEC

NDB error type. Application error

Error message. Status Error in NDB

4101 MySQL error. DMEC

NDB error type. Application error

Error message. No connections to NDB available and
connect failed

4102 MySQL error. DMEC

NDB error type. Application error

Error message. Type in NdbTamper not correct

4103 MySQL error. DMEC

NDB error type. Application error

Error message. No schema connections to NDB
available and connect failed

4104 MySQL error. DMEC

NDB error type. Application error

Error message. Ndb Init in wrong state, destroy
Ndb object and create a new

4105 MySQL error. DMEC

NDB error type. Application error

Error message. Too many Ndb objects

4106 MySQL error. DMEC

NDB error type. Application error

Error message. All Not NULL attribute have not
been defined

426

NDB Error Codes: Single Listing

4107 MySQL error. DMEC

NDB error type. Internal error

Error message. Simple Transaction and Not Start

4108 MySQL error. DMEC

NDB error type. Internal error

Error message. Faulty operation type

4109 MySQL error. DMEC

NDB error type. Internal error

Error message. Faulty primary key attribute length

4110 MySQL error. DMEC

NDB error type. Internal error

Error message. Faulty length in ATTRINFO signal

4111 MySQL error. DMEC

NDB error type. Internal error

Error message. Status Error in NdbConnection

4113 MySQL error. DMEC

NDB error type. Internal error

Error message. Too many operations received

4114 MySQL error. DMEC

NDB error type. Application error

Error message. Transaction is already completed

4115 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Transaction was committed but all
read information was not received due to node
crash

4116 MySQL error. DMEC

NDB error type. Application error

Error message. Operation was not defined
correctly, probably missing a key

4117 MySQL error. DMEC

NDB error type. Application error

Error message. Could not start transporter,
configuration error

427

NDB Error Codes: Single Listing

4118 MySQL error. DMEC

NDB error type. Application error

Error message. Parameter error in API call

4119 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Simple/dirty read failed due to
node failure

4120 MySQL error. DMEC

NDB error type. Application error

Error message. Scan already complete

4121 MySQL error. DMEC

NDB error type. Application error

Error message. Cannot set name twice for an Ndb
object

4122 MySQL error. DMEC

NDB error type. Application error

Error message. Cannot set name after Ndb object is
initialised

4123 MySQL error. DMEC

NDB error type. Application error

Error message. Free percent out of range. Allowed
range is 1-99

414 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. 414

416 MySQL error. DMEC

NDB error type. Internal error

Error message. Bad state handling unlock request

417 MySQL error. DMEC

NDB error type. Application error

Error message. Bad operation reference - double
unlock

428

NDB Error Codes: Single Listing

418 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction buffers in LQH,
increase LongMessageBuffer

419 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of signal memory, increase
LongMessageBuffer

4200 MySQL error. DMEC

NDB error type. Application error

Error message. Status Error when defining an
operation

4201 MySQL error. DMEC

NDB error type. Application error

Error message. Variable Arrays not yet supported

4202 MySQL error. DMEC

NDB error type. Application error

Error message. Set value on tuple key attribute is
not allowed

4203 MySQL error. DMEC

NDB error type. Application error

Error message. Trying to set a NOT NULL attribute
to NULL

4204 MySQL error. DMEC

NDB error type. Application error

Error message. Set value and Read/Delete Tuple is
incompatible

4205 MySQL error. DMEC

NDB error type. Application error

Error message. No Key attribute used to define
tuple

4206 MySQL error. DMEC

NDB error type. Application error

Error message. Not allowed to equal key attribute
twice

4207 MySQL error. DMEC

429

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Key size is limited to 4092 bytes

4208 MySQL error. DMEC

NDB error type. Application error

Error message. Trying to read a non-stored
attribute

4209 MySQL error. DMEC

NDB error type. Application error

Error message. Length parameter in equal/setValue
is incorrect

4210 MySQL error. DMEC

NDB error type. Application error

Error message. Ndb sent more info than the length
he specified

4211 MySQL error. DMEC

NDB error type. Application error

Error message. Inconsistency in list of
NdbRecAttr-objects

4212 MySQL error. DMEC

NDB error type. Application error

Error message. Ndb reports NULL value on Not NULL
attribute

4213 MySQL error. DMEC

NDB error type. Application error

Error message. Not all data of an attribute has
been received

4214 MySQL error. DMEC

NDB error type. Application error

Error message. Not all attributes have been
received

4215 MySQL error. DMEC

NDB error type. Application error

Error message. More data received than reported in
TCKEYCONF message

4216 MySQL error. DMEC

NDB error type. Application error

430

NDB Error Codes: Single Listing

Error message. More than 8052 bytes in setValue
cannot be handled

4217 MySQL error. DMEC

NDB error type. Application error

Error message. It is not allowed to increment any
other than unsigned ints

4218 MySQL error. DMEC

NDB error type. Application error

Error message. Currently not allowed to increment
NULL-able attributes

4219 MySQL error. DMEC

NDB error type. Application error

Error message. Maximum size of interpretative
attributes are 64 bits

4220 MySQL error. DMEC

NDB error type. Application error

Error message. Maximum size of interpretative
attributes are 64 bits

4221 MySQL error. DMEC

NDB error type. Application error

Error message. Trying to jump to a non-defined
label

4222 MySQL error. DMEC

NDB error type. Application error

Error message. Label was not found, internal error

4223 MySQL error. DMEC

NDB error type. Application error

Error message. Not allowed to create jumps to
yourself

4224 MySQL error. DMEC

NDB error type. Application error

Error message. Not allowed to jump to a label in a
different subroutine

431

NDB Error Codes: Single Listing

4225 MySQL error. DMEC

NDB error type. Application error

Error message. All primary keys defined, call
setValue/getValue

4226 MySQL error. DMEC

NDB error type. Application error

Error message. Bad number when defining a label

4227 MySQL error. DMEC

NDB error type. Application error

Error message. Bad number when defining a
subroutine

4228 MySQL error. DMEC

NDB error type. Application error

Error message. Illegal interpreter function in
scan definition

4229 MySQL error. DMEC

NDB error type. Application error

Error message. Illegal register in interpreter
function definition

4230 MySQL error. DMEC

NDB error type. Application error

Error message. Illegal state when calling
getValue, probably not a read

4231 MySQL error. DMEC

NDB error type. Application error

Error message. Illegal state when calling
interpreter routine

4232 MySQL error. DMEC

NDB error type. Application error

Error message. Parallelism can only be between 1
and 240

4233 MySQL error. DMEC

NDB error type. Application error

Error message. Calling execute (synchronous) when
already prepared asynchronous transaction exists

4234 MySQL error. DMEC

432

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Illegal to call setValue in this
state

4235 MySQL error. DMEC

NDB error type. Application error

Error message. No callback from execute

4236 MySQL error. DMEC

NDB error type. Application error

Error message. Trigger name too long

4237 MySQL error. DMEC

NDB error type. Application error

Error message. Too many triggers

4238 MySQL error. DMEC

NDB error type. Application error

Error message. Trigger not found

4239 MySQL error. DMEC

NDB error type. Application error

Error message. Trigger with given name already
exists

4240 MySQL error. DMEC

NDB error type. Application error

Error message. Unsupported trigger type

4241 MySQL error. DMEC

NDB error type. Application error

Error message. Index name too long

4242 MySQL error. DMEC

NDB error type. Application error

Error message. Too many indexes

4243 MySQL error. DMEC

NDB error type. Application error

Error message. Index not found

4244 MySQL error. HA_ERR_TABLE_EXIST

NDB error type. Schema object already exists

433

NDB Error Codes: Single Listing

Error message. Index or table with given name
already exists

4247 MySQL error. DMEC

NDB error type. Application error

Error message. Illegal index/trigger create/drop/
alter request

4248 MySQL error. DMEC

NDB error type. Application error

Error message. Trigger/index name invalid

4249 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid table

4250 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid index type or index logging
option

4251 MySQL error. HA_ERR_FOUND_DUPP_UNIQUE

NDB error type. Application error

Error message. Cannot create unique index,
duplicate keys found

4252 MySQL error. DMEC

NDB error type. Application error

Error message. Failed to allocate space for index

4253 MySQL error. DMEC

NDB error type. Application error

Error message. Failed to create index table

4254 MySQL error. DMEC

NDB error type. Application error

Error message. Table not an index table

4255 MySQL error. DMEC

NDB error type. Application error

Error message. Hash index attributes must be
specified in same order as table attributes

4256 MySQL error. DMEC

434

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Must call Ndb::init() before this
function

4257 MySQL error. DMEC

NDB error type. Application error

Error message. Tried to read too much - too many
getValue calls

4258 MySQL error. DMEC

NDB error type. Application error

Error message. Cannot create unique index,
duplicate attributes found in definition

4259 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid set of range scan bounds

4260 MySQL error. DMEC

NDB error type. User defined error

Error message. NdbScanFilter: Operator is not
defined in NdbScanFilter::Group

4261 MySQL error. DMEC

NDB error type. User defined error

Error message. NdbScanFilter: Column is NULL

4262 MySQL error. DMEC

NDB error type. User defined error

Error message. NdbScanFilter: Condition is out of
bounds

4263 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid blob attributes or invalid
blob parts table

4264 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid usage of blob attribute

435

NDB Error Codes: Single Listing

4265 MySQL error. DMEC

NDB error type. Application error

Error message. The method is not valid in current
blob state

4266 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid blob seek position

4267 MySQL error. DMEC

NDB error type. Internal error

Error message. Corrupted blob value

4268 MySQL error. DMEC

NDB error type. Internal error

Error message. Error in blob head update forced
rollback of transaction

4269 MySQL error. DMEC

NDB error type. Internal error

Error message. No connection to ndb management
server

4270 MySQL error. DMEC

NDB error type. Internal error

Error message. Unknown blob error

4271 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid index object, not retrieved
via getIndex()

4272 MySQL error. DMEC

NDB error type. Application error

Error message. Table definition has undefined
column

4273 MySQL error. DMEC

NDB error type. Internal error

Error message. No blob table in dict cache

436

NDB Error Codes: Single Listing

4274 MySQL error. DMEC

NDB error type. Internal error

Error message. Corrupted main table PK in blob
operation

4275 MySQL error. DMEC

NDB error type. Application error

Error message. The blob method is incompatible
with operation type or lock mode

4276 MySQL error. DMEC

NDB error type. Application error

Error message. Missing NULL ptr in end of keyData
list

4277 MySQL error. DMEC

NDB error type. Application error

Error message. Key part len is to small for column

4278 MySQL error. DMEC

NDB error type. Application error

Error message. Supplied buffer to small

4279 MySQL error. DMEC

NDB error type. Application error

Error message. Malformed string

4280 MySQL error. DMEC

NDB error type. Application error

Error message. Inconsistent key part length

4281 MySQL error. DMEC

NDB error type. Application error

Error message. Too many keys specified for key
bound in scanIndex

4282 MySQL error. DMEC

NDB error type. Application error

Error message. range_no not strictly increasing in
ordered multi-range index scan

437

NDB Error Codes: Single Listing

4283 MySQL error. DMEC

NDB error type. Application error

Error message. key_record in index scan is not an
index ndbrecord

4284 MySQL error. DMEC

NDB error type. Application error

Error message. Cannot mix NdbRecAttr and NdbRecord
methods in one operation

4285 MySQL error. DMEC

NDB error type. Application error

Error message. NULL NdbRecord pointer

4286 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid range_no (must be < 4096)

4287 MySQL error. DMEC

NDB error type. Application error

Error message. The key_record and attribute_record
in primary key operation do not belong to the same
table

4288 MySQL error. DMEC

NDB error type. Application error

Error message. Blob handle for column not
available

4289 MySQL error. DMEC

NDB error type. Application error

Error message. API version mismatch or wrong
sizeof(NdbDictionary::RecordSpecification)

4290 MySQL error. DMEC

NDB error type. Application error

Error message. Missing column specification in
NdbDictionary::RecordSpecification

4291 MySQL error. DMEC

NDB error type. Application error

Error message. Duplicate column specification in
NdbDictionary::RecordSpecification

4292 MySQL error. DMEC

438

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. NdbRecord for tuple access is not
an index key NdbRecord

4293 MySQL error. DMEC

NDB error type. Application error

Error message. Error returned from application
scanIndex() callback

4294 MySQL error. DMEC

NDB error type. Application error

Error message. Scan filter is too large, discarded

4295 MySQL error. DMEC

NDB error type. Application error

Error message. Column is NULL in Get/SetValueSpec
structure

4296 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid AbortOption

4297 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid or unsupported
OperationOptions structure

4298 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid or unsupported ScanOptions
structure

4299 MySQL error. DMEC

NDB error type. Application error

Error message. Incorrect combination of ScanOption
flags, extraGetValues ptr and numExtraGetValues

4300 MySQL error. DMEC

NDB error type. Application error

Error message. Tuple Key Type not correct

4301 MySQL error. DMEC

NDB error type. Application error

Error message. Fragment Type not correct

439

NDB Error Codes: Single Listing

4302 MySQL error. DMEC

NDB error type. Application error

Error message. Minimum Load Factor not correct

4303 MySQL error. DMEC

NDB error type. Application error

Error message. Maximum Load Factor not correct

4304 MySQL error. DMEC

NDB error type. Application error

Error message. Maximum Load Factor smaller than
Minimum

4305 MySQL error. DMEC

NDB error type. Application error

Error message. K value must currently be set to 6

4306 MySQL error. DMEC

NDB error type. Application error

Error message. Memory Type not correct

4307 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid table name

4308 MySQL error. DMEC

NDB error type. Application error

Error message. Attribute Size not correct

4309 MySQL error. DMEC

NDB error type. Application error

Error message. Fixed array too large, maximum
64000 bytes

4310 MySQL error. DMEC

NDB error type. Application error

Error message. Attribute Type not correct

4311 MySQL error. DMEC

NDB error type. Application error

Error message. Storage Mode not correct

440

NDB Error Codes: Single Listing

4312 MySQL error. DMEC

NDB error type. Application error

Error message. Null Attribute Type not correct

4313 MySQL error. DMEC

NDB error type. Application error

Error message. Index only storage for non-key
attribute

4314 MySQL error. DMEC

NDB error type. Application error

Error message. Storage Type of attribute not
correct

4315 MySQL error. DMEC

NDB error type. Application error

Error message. No more key attributes allowed
after defining variable length key attribute

4316 MySQL error. DMEC

NDB error type. Application error

Error message. Key attributes are not allowed to
be NULL attributes

4317 MySQL error. DMEC

NDB error type. Application error

Error message. Too many primary keys defined in
table

4318 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid attribute name or number

4319 MySQL error. DMEC

NDB error type. Application error

Error message. createAttribute called at erroneus
place

4320 MySQL error. DMEC

NDB error type. Internal error

Error message. Cannot use the same object twice to
create table

4321 MySQL error. DMEC

NDB error type. Internal error

441

NDB Error Codes: Single Listing

Error message. Trying to start two schema
transactions

4322 MySQL error. DMEC

NDB error type. Application error

Error message. Attempt to define distribution key
when not prepared to

4323 MySQL error. DMEC

NDB error type. Application error

Error message. Distribution Key set on table but
not defined on first attribute

4324 MySQL error. DMEC

NDB error type. Application error

Error message. Attempt to define distribution
group when not prepared to

4325 MySQL error. DMEC

NDB error type. Application error

Error message. Distribution Group set on table but
not defined on first attribute

4326 MySQL error. DMEC

NDB error type. Application error

Error message. Distribution Group with erroneus
number of bits

4327 MySQL error. DMEC

NDB error type. Application error

Error message. Distribution key is only supported
on part of primary key

4328 MySQL error. DMEC

NDB error type. Application error

Error message. Disk memory attributes not yet
supported

4329 MySQL error. DMEC

NDB error type. Application error

Error message. Variable stored attributes not yet
supported

4335 MySQL error. DMEC

NDB error type. Application error

442

NDB Error Codes: Single Listing

Error message. Only one autoincrement column
allowed per table. Having a table without primary
key uses an autoincremented hidden key, i.e.
a table without a primary key can not have an
autoincremented column

4340 MySQL error. DMEC

NDB error type. Application error

Error message. Result or attribute record must be
a base table ndbrecord, not an index ndbrecord

4341 MySQL error. DMEC

NDB error type. Application error

Error message. Not all keys read when using option
SF_OrderBy

4342 MySQL error. DMEC

NDB error type. Application error

Error message. Scan defined but not prepared

4343 MySQL error. DMEC

NDB error type. Application error

Error message. Table with blobs does not support
refresh

4344 MySQL error. DMEC

NDB error type. Internal error

Error message. Only DBDICT and TRIX can send
requests to TRIX

4345 MySQL error. DMEC

NDB error type. Internal error

Error message. TRIX block is not available yet,
probably due to node failure

4346 MySQL error. DMEC

NDB error type. Internal error

Error message. Internal error at index create/
build

4347 MySQL error. DMEC

NDB error type. Internal error

Error message. Bad state at alter index

4348 MySQL error. DMEC

NDB error type. Internal error

443

NDB Error Codes: Single Listing

Error message. Inconsistency detected at alter
index

4349 MySQL error. DMEC

NDB error type. Internal error

Error message. Inconsistency detected at index
usage

4350 MySQL error. DMEC

NDB error type. Internal error

Error message. Transaction already aborted

4351 MySQL error. DMEC

NDB error type. Timeout expired

Error message. Timeout/deadlock during index build

4377 MySQL error. DMEC

NDB error type. Application error

Error message. Database and schema name must be
set on Ndb object

4400 MySQL error. DMEC

NDB error type. Application error

Error message. Status Error in NdbSchemaCon

4401 MySQL error. DMEC

NDB error type. Application error

Error message. Only one schema operation per
schema transaction

4402 MySQL error. DMEC

NDB error type. Application error

Error message. No schema operation defined before
calling execute

4410 MySQL error. DMEC

NDB error type. Application error

Error message. Schema transaction is already
started

4411 MySQL error. DMEC

NDB error type. Application error

Error message. Schema transaction not possible
until upgrade complete

444

NDB Error Codes: Single Listing

4412 MySQL error. DMEC

NDB error type. Application error

Error message. Schema transaction is not started

4501 MySQL error. DMEC

NDB error type. Application error

Error message. Insert in hash table failed when
getting table information from Ndb

4502 MySQL error. DMEC

NDB error type. Application error

Error message. GetValue not allowed in Update
operation

4503 MySQL error. DMEC

NDB error type. Application error

Error message. GetValue not allowed in Insert
operation

4504 MySQL error. DMEC

NDB error type. Application error

Error message. SetValue not allowed in Read
operation

4505 MySQL error. DMEC

NDB error type. Application error

Error message. NULL value not allowed in primary
key search

4506 MySQL error. DMEC

NDB error type. Application error

Error message. Missing getValue/setValue when
calling execute

4507 MySQL error. DMEC

NDB error type. Application error

Error message. Missing operation request when
calling execute

4508 MySQL error. DMEC

NDB error type. Application error

Error message. GetValue not allowed for NdbRecord
defined operation

4509 MySQL error. DMEC

445

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Non SF_MultiRange scan cannot have
more than one bound

4510 MySQL error. DMEC

NDB error type. Application error

Error message. User specified partition id not
allowed for scan takeover operation

4511 MySQL error. DMEC

NDB error type. Application error

Error message. Blobs not allowed in NdbRecord
delete result record

4512 MySQL error. DMEC

NDB error type. Application error

Error message. Incorrect combination of
OperationOptions optionsPresent, extraGet/
SetValues ptr and numExtraGet/SetValues

4513 MySQL error. DMEC

NDB error type. Application error

Error message. Only one scan bound allowed for
non-NdbRecord setBound() API

4514 MySQL error. DMEC

NDB error type. Application error

Error message. Can only call setBound/equal() for
an NdbIndexScanOperation

4515 MySQL error. DMEC

NDB error type. Application error

Error message. Method not allowed for NdbRecord,
use OperationOptions or ScanOptions structure
instead

4516 MySQL error. DMEC

NDB error type. Application error

Error message. Illegal instruction in interpreted
program

4517 MySQL error. DMEC

NDB error type. Application error

Error message. Bad label in branch instruction

4518 MySQL error. DMEC

446

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Too many instructions in
interpreted program

4519 MySQL error. DMEC

NDB error type. Application error

Error message. NdbInterpretedCode::finalise() not
called

4520 MySQL error. DMEC

NDB error type. Application error

Error message. Call to undefined subroutine

4521 MySQL error. DMEC

NDB error type. Application error

Error message. Call to undefined subroutine,
internal error

4522 MySQL error. DMEC

NDB error type. Application error

Error message. setBound() called twice for same
key

4523 MySQL error. DMEC

NDB error type. Application error

Error message. Pseudo columns not supported by
NdbRecord

4524 MySQL error. DMEC

NDB error type. Application error

Error message. NdbInterpretedCode is for different
table

4535 MySQL error. DMEC

NDB error type. Application error

Error message. Attempt to set bound on non key
column

4536 MySQL error. DMEC

NDB error type. Application error

Error message. NdbScanFilter constructor taking
NdbOperation is not supported for NdbRecord

4537 MySQL error. DMEC

NDB error type. Application error

447

NDB Error Codes: Single Listing

Error message. Wrong API. Use NdbInterpretedCode
for NdbRecord operations

4538 MySQL error. DMEC

NDB error type. Application error

Error message. NdbInterpretedCode instruction
requires that table is set

4539 MySQL error. DMEC

NDB error type. Application error

Error message. NdbInterpretedCode not supported
for operation type

4540 MySQL error. DMEC

NDB error type. Application error

Error message. Attempt to pass an Index column to
createRecord. Use base table columns only

4542 MySQL error. DMEC

NDB error type. Application error

Error message. Unknown partition information type

4543 MySQL error. DMEC

NDB error type. Application error

Error message. Duplicate partitioning information
supplied

4544 MySQL error. DMEC

NDB error type. Application error

Error message. Wrong partitionInfo type for table

4545 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid or Unsupported
PartitionInfo structure

4546 MySQL error. DMEC

NDB error type. Application error

Error message. Explicit partitioning info not
allowed for table and operation

4547 MySQL error. DMEC

NDB error type. Application error

Error message. RecordSpecification has overlapping
offsets

448

NDB Error Codes: Single Listing

4548 MySQL error. DMEC

NDB error type. Application error

Error message. RecordSpecification has too many
elements

4549 MySQL error. DMEC

NDB error type. Application error

Error message. getLockHandle only supported for
primary key read with a lock

4550 MySQL error. DMEC

NDB error type. Application error

Error message. Cannot releaseLockHandle until
operation executed

4551 MySQL error. DMEC

NDB error type. Application error

Error message. NdbLockHandle already released

4552 MySQL error. DMEC

NDB error type. Application error

Error message. NdbLockHandle does not belong to
transaction

4553 MySQL error. DMEC

NDB error type. Application error

Error message. NdbLockHandle original operation
not executed successfully

4554 MySQL error. DMEC

NDB error type. Application error

Error message. NdbBlob can only be closed from
Active state

4555 MySQL error. DMEC

NDB error type. Application error

Error message. NdbBlob cannot be closed with
pending operations

4556 MySQL error. DMEC

NDB error type. Application error

Error message. RecordSpecification has illegal
value in column_flags

4557 MySQL error. DMEC

449

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Column types must be identical when
comparing two columns

4558 MySQL error. DMEC

NDB error type. Application error

Error message. Pending Blob operations must be
executed before this call

4559 MySQL error. DMEC

NDB error type. Application error

Error message. Failed to transfer KeyInfo to
AttrInfo for InterpretedWrite

4600 MySQL error. DMEC

NDB error type. Application error

Error message. Transaction is already started

4601 MySQL error. DMEC

NDB error type. Application error

Error message. Transaction is not started

4602 MySQL error. DMEC

NDB error type. Application error

Error message. You must call getNdbOperation
before executeScan

4603 MySQL error. DMEC

NDB error type. Application error

Error message. There can only be ONE operation in
a scan transaction

4604 MySQL error. DMEC

NDB error type. Application error

Error message. takeOverScanOp, to take over a
scanned row one must explicitly request keyinfo on
readTuples call

4605 MySQL error. DMEC

NDB error type. Application error

Error message. You may only call readTuples() once
for each operation

4607 MySQL error. DMEC

NDB error type. Application error

450

NDB Error Codes: Single Listing

Error message. There may only be one operation in
a scan transaction

4608 MySQL error. DMEC

NDB error type. Application error

Error message. You can not takeOverScan unless you
have used openScanExclusive

4609 MySQL error. DMEC

NDB error type. Application error

Error message. You must call nextScanResult before
trying to takeOverScan

4707 MySQL error. DMEC

NDB error type. Application error

Error message. Too many event have been defined

4708 MySQL error. DMEC

NDB error type. Application error

Error message. Event name is too long

4709 MySQL error. DMEC

NDB error type. Application error

Error message. Can't accept more subscribers

4710 MySQL error. DMEC

NDB error type. Application error

Error message. Event not found

4711 MySQL error. DMEC

NDB error type. Application error

Error message. Creation of event failed

4712 MySQL error. DMEC

NDB error type. Application error

Error message. Stopped event operation does not
exist. Already stopped?

4713 MySQL error. DMEC

NDB error type. Schema error

Error message. Column defined in event does not
exist in table

4714 MySQL error. DMEC

451

NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Index stats system tables do not
exist

4715 MySQL error. DMEC

NDB error type. Application error

Error message. Index stats for specified index do
not exist

4716 MySQL error. DMEC

NDB error type. Application error

Error message. Index stats methods usage error

4717 MySQL error. DMEC

NDB error type. Application error

Error message. Index stats cannot allocate memory

4718 MySQL error. DMEC

NDB error type. Internal error

Error message. Index stats samples data or memory
cache is invalid

4719 MySQL error. DMEC

NDB error type. Internal error

Error message. Index stats internal error

4720 MySQL error. DMEC

NDB error type. Application error

Error message. partly missing or invalid

4721 MySQL error. DMEC

NDB error type. Internal error

Error message. Mysqld: index stats thread not open
for requests

4722 MySQL error. DMEC

NDB error type. Internal error

Error message. Mysqld: index stats entry
unexpectedly not found

4723 MySQL error. DMEC

NDB error type. Application error

Error message. Mysqld: index stats request ignored
due to recent error

452

NDB Error Codes: Single Listing

4724 MySQL error. DMEC

NDB error type. Application error

Error message. Mysqld: index stats request aborted
by stats thread

4725 MySQL error. DMEC

NDB error type. Application error

Error message. Index stats were deleted by another
process

4731 MySQL error. DMEC

NDB error type. Internal error

Error message. Event not found

488 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Too many active scans

489 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of scan records in LQH,
increase SharedGlobalMemory

490 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Too many active scans

499 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Scan take over error, restart scan
transaction

5000 MySQL error. DMEC

NDB error type. Application error

Error message. No contact with the process
(dead ?).

5002 MySQL error. DMEC

NDB error type. Application error

Error message. The process has wrong type.
Expected a DB process.

5005 MySQL error. DMEC

NDB error type. Application error

453

NDB Error Codes: Single Listing

Error message. Send to process or receive failed.

5007 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid error number. Should be >=
0.

5008 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid trace number.

5010 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid block name

5024 MySQL error. DMEC

NDB error type. Timeout expired

Error message. Time-out due to node shutdown not
starting in time

5025 MySQL error. DMEC

NDB error type. Timeout expired

Error message. Time-out due to node shutdown not
completing in time

5026 MySQL error. DMEC

NDB error type. Application error

Error message. Node shutdown in progress

5027 MySQL error. DMEC

NDB error type. Application error

Error message. System shutdown in progress

5028 MySQL error. DMEC

NDB error type. Application error

Error message. Node shutdown would cause system
crash

5030 MySQL error. DMEC

NDB error type. Application error

Error message. No contact with database nodes

5031 MySQL error. DMEC

NDB error type. Application error

454

NDB Error Codes: Single Listing

Error message. Unsupported multi node shutdown.
Abort option required.

5062 MySQL error. DMEC

NDB error type. Application error

Error message. The specified node is not an API
node.

5063 MySQL error. DMEC

NDB error type. Application error

Error message.

623 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. 623

624 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. 624

625 MySQL error. HA_ERR_INDEX_FILE_FULL

NDB error type. Insufficient space

Error message. Out of memory in Ndb Kernel, hash
index part (increase DataMemory)

626 MySQL error. HA_ERR_KEY_NOT_FOUND

NDB error type. No data found

Error message. Tuple did not exist

630 MySQL error. HA_ERR_FOUND_DUPP_KEY

NDB error type. Constraint violation

Error message. Tuple already existed when
attempting to insert

631 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Scan take over error, restart scan
transaction

632 MySQL error. DMEC

NDB error type. Internal error

Error message. 632

633 MySQL error. HA_ERR_INDEX_FILE_FULL

455

NDB Error Codes: Single Listing

NDB error type. Insufficient space

Error message. Table fragment hash index has
reached maximum possible size

635 MySQL error. HA_ERR_LOCK_WAIT_TIMEOUT

NDB error type. Timeout expired

Error message. {701, DMEC, OL, System busy with
other schema operation

640 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Too many hash indexes (should not
happen)

677 MySQL error. DMEC

NDB error type. Overload error

Error message. Index UNDO buffers overloaded
(increase UndoIndexBuffer)

702 MySQL error. DMEC

NDB error type. Internal temporary

Error message. Request to non-master

703 MySQL error. DMEC

NDB error type. Schema error

Error message. Invalid table format

704 MySQL error. DMEC

NDB error type. Schema error

Error message. Attribute name too long

705 MySQL error. DMEC

NDB error type. Schema error

Error message. Table name too long

706 MySQL error. DMEC

NDB error type. Internal error

Error message. Inconsistency during table creation

707 MySQL error. DMEC

NDB error type. Schema error

Error message. No more table metadata records
(increase MaxNoOfTables)

456

NDB Error Codes: Single Listing

708 MySQL error. DMEC

NDB error type. Schema error

Error message. No more attribute metadata records
(increase MaxNoOfAttributes)

709 MySQL error. HA_ERR_NO_SUCH_TABLE

NDB error type. Schema error

Error message. No such table existed

710 MySQL error. DMEC

NDB error type. Schema error

Error message. Internal: Get by table name not
supported, use table id.

711 MySQL error. DMEC

NDB error type. Overload error

Error message. System busy with node restart,
schema operations not allowed

712 MySQL error. DMEC

NDB error type. Schema error

Error message. No more hashmap metadata records

720 MySQL error. DMEC

NDB error type. Application error

Error message. Attribute name reused in table
definition

721 MySQL error. HA_ERR_TABLE_EXIST

NDB error type. Schema object already exists

Error message. Schema object with given name
already exists

723 MySQL error. HA_ERR_NO_SUCH_TABLE

NDB error type. Schema error

Error message. No such table existed

736 MySQL error. DMEC

NDB error type. Schema error

Error message. Unsupported array size

737 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Attribute array size too big

457

NDB Error Codes: Single Listing

738 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Record too big

739 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Unsupported primary key length

740 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Nullable primary key not supported

741 MySQL error. DMEC

NDB error type. Schema error

Error message. Unsupported alter table

743 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Unsupported character set in table
or index

744 MySQL error. DMEC

NDB error type. Schema error

Error message. Character string is invalid for
given character set

745 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Distribution key not supported for
char attribute (use binary attribute)

746 MySQL error. DMEC

NDB error type. Schema object already exists

Error message. Event name already exists

747 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Out of event records

748 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Busy during read of event table

749 MySQL error. HA_WRONG_CREATE_OPTION

458

NDB Error Codes: Single Listing

NDB error type. Internal error

Error message. Primary Table in wrong state

750 MySQL error. IE

NDB error type. Schema error

Error message. Invalid file type

751 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of file records

752 MySQL error. DMEC

NDB error type. Schema error

Error message. Invalid file format

753 MySQL error. IE

NDB error type. Schema error

Error message. Invalid filegroup for file

754 MySQL error. IE

NDB error type. Schema error

Error message. Invalid filegroup version when
creating file

755 MySQL error. HA_MISSING_CREATE_OPTION

NDB error type. Schema error

Error message. Invalid tablespace

756 MySQL error. DMEC

NDB error type. Schema error

Error message. Index on disk column is not
supported

757 MySQL error. DMEC

NDB error type. Schema error

Error message. Varsize bitfield not supported

758 MySQL error. DMEC

NDB error type. Schema error

Error message. Tablespace has changed

759 MySQL error. DMEC

NDB error type. Schema error

459

NDB Error Codes: Single Listing

Error message. Invalid tablespace version

760 MySQL error. DMEC

NDB error type. Schema error

Error message. File already exists,

761 MySQL error. DMEC

NDB error type. Schema error

Error message. Unable to drop table as backup is
in progress

762 MySQL error. DMEC

NDB error type. Schema error

Error message. Unable to alter table as backup is
in progress

763 MySQL error. DMEC

NDB error type. Application error

Error message. DDL is not supported with mixed
data-node versions

764 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Invalid extent size

765 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of filegroup records

766 MySQL error. DMEC

NDB error type. Schema error

Error message. Cant drop file, no such file

767 MySQL error. DMEC

NDB error type. Schema error

Error message. Cant drop filegroup, no such
filegroup

768 MySQL error. DMEC

NDB error type. Schema error

Error message. Cant drop filegroup, filegroup is
used

769 MySQL error. DMEC

460

NDB Error Codes: Single Listing

NDB error type. Schema error

Error message. Drop undofile not supported, drop
logfile group instead

770 MySQL error. DMEC

NDB error type. Schema error

Error message. Cant drop file, file is used

771 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Application error

Error message. Given NODEGROUP doesn't exist in
this cluster

772 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Internal error

Error message. Given fragmentType doesn't exist

773 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of string memory, please modify
StringMemory config parameter

774 MySQL error. DMEC

NDB error type. Schema error

Error message. Invalid schema object for drop

775 MySQL error. DMEC

NDB error type. Schema error

Error message. Create file is not supported when
Diskless=1

776 MySQL error. DMEC

NDB error type. Application error

Error message. Index created on temporary table
must itself be temporary

777 MySQL error. DMEC

NDB error type. Application error

Error message. Cannot create a temporary index on
a non-temporary table

461

NDB Error Codes: Single Listing

778 MySQL error. DMEC

NDB error type. Application error

Error message. A temporary table or index must be
specified as not logging

779 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Invalid undo buffer size

780 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Too many schema transactions

781 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid schema transaction key from
NDB API

782 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid schema transaction id from
NDB API

783 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Too many schema operations

784 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Invalid schema transaction state

785 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Schema object is busy with another
schema transaction

786 MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Schema transaction aborted due to
node-failure

787 MySQL error. DMEC

NDB error type. Internal temporary

Error message. Schema transaction aborted

462

NDB Error Codes: Single Listing

788 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Missing schema operation at
takeover of schema transaction

789 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Application error

Error message. Logfile group not found

790 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Invalid hashmap

791 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Too many total bits in bitfields

792 MySQL error. DMEC

NDB error type. Schema error

Error message. Default value for primary key
column not supported

793 MySQL error. DMEC

NDB error type. Application error

Error message. Object definition too big

794 MySQL error. DMEC

NDB error type. Application error

Error message. Schema feature requires data node
upgrade

795 MySQL error. DMEC

NDB error type. Internal error

Error message. Out of LongMessageBuffer in DICT

796 MySQL error. DMEC

NDB error type. Schema error

Error message. Out of schema transaction memory

797 MySQL error. DMEC

NDB error type. Function not implemented

Error message. Wrong fragment count for fully
replicated table

463

NDB Error Codes: Single Listing

798 MySQL error. DMEC

NDB error type. Application error

Error message. A disk table must not be specified
as no logging

799 MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Non default partitioning without
partitions

805 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of attrinfo records in tuple
manager, increase LongMessageBuffer

809 MySQL error. DMEC

NDB error type. Internal error

Error message. 809

812 MySQL error. DMEC

NDB error type. Internal error

Error message. 812

823 MySQL error. DMEC

NDB error type. Application error

Error message. Too much attrinfo from application
in tuple manager

826 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Too many tables and attributes
(increase MaxNoOfAttributes or MaxNoOfTables)

827 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Out of memory in Ndb Kernel, table
data (increase DataMemory)

829 MySQL error. DMEC

NDB error type. Application error

Error message. Corrupt data received for insert/
update

830 MySQL error. DMEC

NDB error type. Temporary Resource error

464

NDB Error Codes: Single Listing

Error message. Out of add fragment operation
records

831 MySQL error. DMEC

NDB error type. Application error

Error message. Too many nullable/bitfields in
table definition

833 MySQL error. DMEC

NDB error type. Internal error

Error message. 833

839 MySQL error. DMEC

NDB error type. Constraint violation

Error message. Illegal null attribute

840 MySQL error. DMEC

NDB error type. Constraint violation

Error message. Trying to set a NOT NULL attribute
to NULL

850 MySQL error. DMEC

NDB error type. Application error

Error message. Too long or too short default value

851 MySQL error. DMEC

NDB error type. Application error

Error message. Fixed-size column offset exceeded
max.Use VARCHAR or COLUMN_FORMAT DYNAMIC for
memory-stored columns

871 MySQL error. DMEC

NDB error type. Internal error

Error message. 871

873 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction memory in
local data manager, ordered index data (increase
SharedGlobalMemory)

874 MySQL error. DMEC

NDB error type. Application error

Error message. Too much attrinfo (e.g. scan
filter) for scan in tuple manager

465

NDB Error Codes: Single Listing

876 MySQL error. DMEC

NDB error type. Application error

Error message. 876

877 MySQL error. DMEC

NDB error type. Application error

Error message. 877

878 MySQL error. DMEC

NDB error type. Application error

Error message. 878

879 MySQL error. DMEC

NDB error type. Application error

Error message. 879

880 MySQL error. DMEC

NDB error type. Application error

Error message. Tried to read too much - too many
getValue calls

881 MySQL error. DMEC

NDB error type. Schema error

Error message. Unable to create table, out of data
pages (increase DataMemory)

882 MySQL error. DMEC

NDB error type. Internal error

Error message. 882

883 MySQL error. DMEC

NDB error type. Internal error

Error message. 883

884 MySQL error. DMEC

NDB error type. Application error

Error message. Stack overflow in interpreter

885 MySQL error. DMEC

NDB error type. Application error

Error message. Stack underflow in interpreter

466

NDB Error Codes: Single Listing

886 MySQL error. DMEC

NDB error type. Application error

Error message. More than 65535 instructions
executed in interpreter

887 MySQL error. DMEC

NDB error type. Internal error

Error message. 887

888 MySQL error. DMEC

NDB error type. Internal error

Error message. 888

889 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Table fragment fixed data reference
has reached maximum possible value (specify
MAXROWS or increase no of partitions)

890 MySQL error. DMEC

NDB error type. Internal error

Error message. 890

891 MySQL error. DMEC

NDB error type. Overload error

Error message. Data UNDO buffers overloaded
(increase UndoDataBuffer)

892 MySQL error. DMEC

NDB error type. Application error

Error message. Unsupported type in scan filter

893 MySQL error. HA_ERR_FOUND_DUPP_KEY

NDB error type. Constraint violation

Error message. Constraint violation e.g. duplicate
value in unique index

896 MySQL error. DMEC

NDB error type. Internal error

Error message. Tuple corrupted - wrong checksum or
column data in invalid format

897 MySQL error. DMEC

NDB error type. Application error

467

NDB Error Codes: Single Listing

Error message. Update attempt of primary key via
ndbcluster internal api (if this occurs via the
MySQL server it is a bug, please report)

899 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Rowid already allocated

901 MySQL error. DMEC

NDB error type. Internal error

Error message. Inconsistent ordered index. The
index needs to be dropped and recreated

902 MySQL error. HA_ERR_RECORD_FILE_FULL

NDB error type. Insufficient space

Error message. Out of memory in Ndb Kernel,
ordered index data (increase DataMemory)

903 MySQL error. HA_ERR_INDEX_FILE_FULL

NDB error type. Insufficient space

Error message. Too many ordered indexes (increase
MaxNoOfOrderedIndexes)

904 MySQL error. HA_ERR_INDEX_FILE_FULL

NDB error type. Insufficient space

Error message. Out of fragment records (increase
MaxNoOfOrderedIndexes)

905 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Out of attribute records (increase
MaxNoOfAttributes)

906 MySQL error. DMEC

NDB error type. Schema error

Error message. Unsupported attribute type in index

907 MySQL error. DMEC

NDB error type. Schema error

Error message. Unsupported character set in table
or index

468

NDB Error Codes: Single Listing

908 MySQL error. DMEC

NDB error type. Insufficient space

Error message. Invalid ordered index tree node
size

909 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction memory in local
data manager, ordered scan operation (increase
SharedGlobalMemory)

910 MySQL error. HA_ERR_NO_SUCH_TABLE

NDB error type. Schema error

Error message. Index is being dropped

911 MySQL error. DMEC

NDB error type. Schema error

Error message. Index stat scan requested on index
with unsupported key size

912 MySQL error. DMEC

NDB error type. Application error

Error message. Index stat scan requested with
wrong lock mode

913 MySQL error. DMEC

NDB error type. Application error

Error message. Invalid index for index stats
update

914 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid index stats request

915 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. No free index stats op

916 MySQL error. DMEC

NDB error type. Internal error

Error message. Invalid index stats sys tables

917 MySQL error. DMEC

NDB error type. Internal error

469

NDB Error Codes: Single Listing

Error message. Invalid index stats sys tables data

918 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Cannot prepare index stats update

919 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Cannot execute index stats update

920 MySQL error. DMEC

NDB error type. Application error

Error message. Row operation defined after
refreshTuple()

921 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction memory in
local data manager, copy tuples (increase
SharedGlobalMemory)

923 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of UNDO buffer memory (increase
UNDO_BUFFER_SIZE)

924 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction memory in local
data manager, stored procedure record (increase
SharedGlobalMemory)

925 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction memory in
local data manager, tup scan operation (increase
SharedGlobalMemory)

926 MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction memory in
local data manager, acc scan operation (increase
SharedGlobalMemory)

QRY_BATCH_SIZE_TOO_SMALL MySQL error. DMEC

NDB error type. Application error

470

NDB Error Codes: Single Listing

Error message. Batch size for sub scan cannot be
smaller than number of fragments.

QRY_CHAR_OPERAND_TRUNCATEDMySQL error. DMEC

NDB error type. Application error

Error message. Character operand was right
truncated

QRY_CHAR_PARAMETER_TRUNCATEDMySQL error. DMEC

NDB error type. Application error

Error message. Character Parameter was right
truncated

QRY_DEFINITION_TOO_LARGE MySQL error. DMEC

NDB error type. Application error

Error message. Query definition too large.

QRY_EMPTY_PROJECTION MySQL error. DMEC

NDB error type. Application error

Error message. Query has operation with empty
projection.

QRY_HAS_ZERO_OPERATIONS MySQL error. DMEC

NDB error type. Application error

Error message. Query defintion should have at
least one operation.

QRY_ILLEGAL_STATE MySQL error. DMEC

NDB error type. Application error

Error message. Query is in illegal state for this
operation.

QRY_IN_ERROR_STATE MySQL error. DMEC

NDB error type. Application error

Error message. A previous query operation failed,
which you missed to catch.

QRY_MULTIPLE_PARENTS MySQL error. DMEC

NDB error type. Application error

Error message. Multiple 'parents' specified in
linkedValues for this operation

471

NDB Error Codes: Single Listing

QRY_MULTIPLE_SCAN_SORTED MySQL error. DMEC

NDB error type. Application error

Error message. Query with multiple scans may not
be sorted.

QRY_NEST_NOT_SUPPORTED MySQL error. DMEC

NDB error type. Application error

Error message. FirstInner/Upper has to be an
ancestor or a sibling

QRY_NUM_OPERAND_RANGE MySQL error. DMEC

NDB error type. Application error

Error message. Numeric operand out of range

QRY_OJ_NOT_SUPPORTED MySQL error. DMEC

NDB error type. Application error

Error message. Outer joined scans not supported by
data nodes.

QRY_OPERAND_ALREADY_BOUND MySQL error. DMEC

NDB error type. Application error

Error message. Can't use same operand value to
specify different column values

QRY_OPERAND_HAS_WRONG_TYPEMySQL error. DMEC

NDB error type. Application error

Error message. Incompatible datatype specified in
operand argument

QRY_PARAMETER_HAS_WRONG_TYPEMySQL error. DMEC

NDB error type. Application error

Error message. Parameter value has an incompatible
datatype

QRY_REQ_ARG_IS_NULL MySQL error. DMEC

NDB error type. Application error

Error message. Required argument is NULL

QRY_RESULT_ROW_ALREADY_DEFINEDMySQL error. DMEC

NDB error type. Application error

Error message. Result row already defined for
NdbQueryOperation.

QRY_SCAN_ORDER_ALREADY_SETMySQL error. DMEC

NDB error type. Application error

472

NDB Error Classifications

Error message. Index scan order was already set in
query definition.

QRY_SEQUENTIAL_SCAN_SORTEDMySQL error. DMEC

NDB error type. Application error

Error message. Parallelism cannot be restricted
for sorted scans.

QRY_TOO_FEW_KEY_VALUES MySQL error. DMEC

NDB error type. Application error

Error message. All required 'key' values was not
specified

QRY_TOO_MANY_KEY_VALUES MySQL error. DMEC

NDB error type. Application error

Error message. Too many 'key' or 'bound' values
was specified

QRY_UNKNOWN_PARENT MySQL error. DMEC

NDB error type. Application error

Error message. Unknown 'parent' specified in
linkedValue

QRY_UNRELATED_INDEX MySQL error. DMEC

NDB error type. Application error

Error message. Specified 'index' does not belong
to specified 'table'

QRY_WRONG_INDEX_TYPE MySQL error. DMEC

NDB error type. Application error

Error message. Wrong type of index specified for
this operation

QRY_WRONG_OPERATION_TYPE MySQL error. DMEC

NDB error type. Application error

Error message. This method cannot be invoked on
this type of operation (lookup/scan/index scan).

2.4.4 NDB Error Classifications

The following table lists the classification codes used for NDB API errors, and their descriptions. These
can also be found in the file /storage/ndb/src/ndbapi/ndberror.cpp (NDB 7.6 and earlier:
ndberror.c).

473

NDB API Examples

Table 2.83 Classification codes for NDB API errors, with corresponding error status and
description.

Classification Code Error Status Description

NE Success No error

AE Permanent error Application error

CE Permanent error Configuration or
application error

ND Permanent error No data found

CV Permanent error Constraint violation

SE Permanent error Schema error

OE Permanent error Schema object already
exists

UD Permanent error User defined error

IS Permanent error Insufficient space

TR Temporary error Temporary Resource error

NR Temporary error Node Recovery error

OL Temporary error Overload error

TO Temporary error Timeout expired

NS Temporary error Node shutdown

IT Temporary error Internal temporary

UR Unknown result Unknown result error

UE Unknown result Unknown error code

IE Permanent error Internal error

NI Permanent error Function not implemented

DMEC Default MySQL error code Used for NDB errors that
are not otherwise mapped
to MySQL error codes

In NDB 7.6 and later, you can also obtain the descriptions for the classification codes from the
error_classification column of the ndbinfo.error_messages table.

2.5 NDB API Examples

This section provides code examples illustrating how to accomplish some basic tasks using the NDB
API.

All of these examples can be compiled and run as provided, and produce sample output to
demonstrate their effects.

Note

For an NDB API program to connect to the cluster, the cluster configuration file
must have at least one [api] section that is not assigned to an SQL node and
that can be accessed from the host where the NDB API application runs. You
can also use an unassigned [mysqld] section for this purpose, although we
recommend that you use [mysqld] sections for SQL nodes and [api] sections
for NDB client programs. See NDB Cluster Configuration Files, and especially
Defining SQL and Other API Nodes in an NDB Cluster, for more information.

474

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-ndbinfo-error-messages.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-config-file.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-api-definition.html

Basic NDB API Examples

2.5.1 Basic NDB API Examples

The next few sections contain the sources for a set of C++ programming examples demonstrating
the basics of connecting to an NDB Cluster, inserting data into a table, reading data from a table, and
deleting data from a table.

2.5.1.1 NDB API Basic Connection Example

This example, which can also be found in storage/ndb/ndbapi-examples/ndbapi_basic/
ndbapi_basic_connect.cpp, demonstrates the use of Ndb_cluster_connection to connect
to an NDB management server using a given connection string. On success, it obtains and prints out
some information about the cluster. If it is unable to connect to the management or to the data nodes, it
prints an appropriate error and exits.

#include <iostream>
#include <cstdlib>

#include <NdbApi.hpp>

namespace
{
 inline void test_connection(const Ndb_cluster_connection &connection)
 {
 std::cout << "Connected to: " << connection.get_system_name()
 << ",\n\ton port: " << connection.get_connected_port()
 << ",\n\tactive NDBDs: " << connection.get_active_ndb_objects()
 << std::endl;
 }
}

int main(int argc, char **argv)
{
 if (argc != 2)
 {
 std::cout << "Usage: ndb_ndbapi_basic_connect <connectstring>"
 << std::endl;
 return EXIT_FAILURE;
 }

 const char *connectstring = argv[1];

 ndb_init();
 {
 Ndb_cluster_connection connection(connectstring);
 if (connection.connect() != 0)
 {
 std::cout << "Cannot connect to cluster management server" << std::endl;
 return EXIT_FAILURE;
 }

 if (connection.wait_until_ready(30, 0) != 0)
 {
 std::cout << "Cluster was not ready within 30 secs" << std::endl;
 return EXIT_FAILURE;
 }

 // Let's verify connection
 test_connection(connection);
 }
 ndb_end(0);

 return EXIT_SUCCESS;
}

2.5.1.2 NDB API Basic Insertion Example

475

Basic NDB API Examples

Prior to running this example, start a mysql client session on an SQL node connected to the cluster
and execute the following statements to create the database and table used by the example:

mysql> CREATE DATABASE ndbapi_examples;

mysql> USE ndbapi_examples;

mysql> CREATE TABLE basic (
 > ATTR1 INT NOT NULL PRIMARY KEY,
 > ATTR2 INT NOT NULL
 >) ENGINE=NDB;

After running the example, you can check the table using SELECT * FROM basic in the mysql
client, or by running the example read program (see Section 2.5.1.3, “NDB API Basic Reading
Example”).

You can also find the source code for this example in the file storage/ndb/ndbapi-examples/
ndbapi_basic/ndbapi_basic_insert.cpp.

#include <iostream>
#include <cstdlib>
#include <string>

#include <NdbApi.hpp>

class BasicInsert
{
 public:
 BasicInsert(const char *connectstring)
 : m_connection(connectstring), m_ndb(&m_connection, "ndbapi_examples") {}
 bool init();
 bool do_insert(long long, long long);

 private:
 Ndb_cluster_connection m_connection;
 Ndb m_ndb;

 inline bool on_error(const struct NdbError &error,
 const std::string &explanation)
 {
 // prints error in format:
 // ERROR <NdbErrorCode>: <NdbError message>
 // explanation what went wrong on higher level (in the example code)
 std::cout << "ERROR "<< error.code << ": " << error.message << std::endl;
 std::cout << explanation << std::endl;
 return false;
 }
};

int main(int argc, char **argv)
{
 if (argc != 4)
 {
 std::cout << "Usage: "
 << "ndb_ndbapi_basic_insert <connectstring> <key: int> <value: int>"
 << std::endl;
 return EXIT_FAILURE;
 }

 const char *connectstring = argv[1];
 const long long key = std::strtoll(argv[2], nullptr, 10);
 const long long value = std::strtoll(argv[3], nullptr, 10);

 ndb_init();
 {
 BasicInsert example(connectstring);

 if (!example.init()) return EXIT_FAILURE;

 // Let's verify inserts

476

https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html

Basic NDB API Examples

 if (example.do_insert(key, value))
 std::cout << "Done, check your database:\n"
 << "\t SELECT * FROM ndbapi_examples.basic;\n"
 << "\t or run the example: ndb_ndbapi_basic_read"
 << std::endl;
 else return EXIT_FAILURE;
 }
 ndb_end(0);

 return EXIT_SUCCESS;
}

bool BasicInsert::do_insert(long long key, long long value)
{
 const NdbDictionary::Dictionary *dict = m_ndb.getDictionary();
 const NdbDictionary::Table *table = dict->getTable("basic");

 if (table == nullptr)
 return on_error(dict->getNdbError(),
 "Failed to access 'ndbapi_examples.basic'");

 // The insert will be performed within single transaction
 NdbTransaction *transaction = m_ndb.startTransaction(table);
 if(transaction == nullptr)
 return on_error(m_ndb.getNdbError(), "Failed to start transaction");

 NdbOperation *operation = transaction->getNdbOperation(table);
 if(operation == nullptr)
 return on_error(transaction->getNdbError(),
 "Failed to start insert operation");

 operation->insertTuple();
 operation->equal("ATTR1", key);
 operation->setValue("ATTR2", value);

 if (transaction->execute(NdbTransaction::Commit) != 0)
 return on_error(transaction->getNdbError(),
 "Failed to execute transaction");

 m_ndb.closeTransaction(transaction);

 return true;
}

bool BasicInsert::init()
{
 if (m_connection.connect() != 0)
 {
 std::cout << "Cannot connect to cluster management server" << std::endl;
 return false;
 }

 if (m_connection.wait_until_ready(30, 0) != 0)
 {
 std::cout << "Cluster was not ready within 30 secs" << std::endl;
 return false;
 }

 if (m_ndb.init() != 0)
 return on_error(m_ndb.getNdbError(), "Failed to initialize ndb object");

 return true;
}

2.5.1.3 NDB API Basic Reading Example

This example illustrates basic retrieval of one or more rows from an NDB table using the NdbRecord
interface and an NdbScanOperation. We assume that you have already created and populated the
basic table, perhaps using the row insertion example shown previously (see Section 2.5.1.2, “NDB
API Basic Insertion Example”).

477

Basic NDB API Examples

You can also find the source code for this example in the file storage/ndb/ndbapi-examples/
ndbapi_basic/ndbapi_basic_read.cpp.

#include <iostream>
#include <cstdlib>
#include <string>
#include <iterator>

#include <NdbApi.hpp>

class BasicRead
{
 public:
 BasicRead(const char *connectstring)
 : m_connection(connectstring), m_ndb(&m_connection, "ndbapi_examples") {}

 bool init();
 bool do_read();

 private:
 Ndb_cluster_connection m_connection;
 Ndb m_ndb;

 struct BasicRow
 {
 int attr1, attr2;
 };

 inline bool on_error(const struct NdbError &error,
 const std::string &explanation)
 {
 // prints error in format:
 // ERROR <NdbErrorCode>: <NdbError message>
 // explanation what went wrong on higher level (in the example code)
 std::cout << "ERROR "<< error.code << ": " << error.message << std::endl;
 std::cout << explanation << std::endl;
 return false;
 }
};

int main(int argc, char **argv)
{
 if (argc != 2)
 {
 std::cout << "Usage: ndb_ndbapi_basic_read <connectstring>" << std::endl;
 return EXIT_FAILURE;
 }
 const char *connectstring = argv[1];

 ndb_init();
 {
 BasicRead example(connectstring);
 if (!example.init())
 return EXIT_FAILURE;

 // Let's verify reads
 if (!example.do_read()) return EXIT_FAILURE;
 }
 ndb_end(0);
 return EXIT_SUCCESS;
}

bool BasicRead::do_read()
{
 NdbDictionary::Dictionary *dict = m_ndb.getDictionary();
 const NdbDictionary::Table *table = dict->getTable("basic");
 if (table == nullptr)
 return on_error(dict->getNdbError(),
 "Cannot access table 'ndbapi_examples.basic'");

 // Prepare record specification,
 // this will allow us later to access rows in the table

478

Basic NDB API Examples

 // using our structure BasicRow
 NdbRecord* record;
 NdbDictionary::RecordSpecification record_spec[] = {
 { table->getColumn("ATTR1"), offsetof(BasicRow, attr1), 0, 0, 0 },
 { table->getColumn("ATTR2"), offsetof(BasicRow, attr2), 0, 0, 0 }
 };

 record = dict->createRecord(table,
 record_spec,
 std::size(record_spec),
 sizeof(record_spec[0]));
 if (record == nullptr)
 return on_error(dict->getNdbError(), "Failed to create record");

 // All reads will be performed within single transaction
 NdbTransaction *transaction = m_ndb.startTransaction(table);
 if(transaction == nullptr)
 return on_error(m_ndb.getNdbError(), "Failed to start transaction");

 // Note the usage of NdbScanOperation instead of regular NdbOperation
 NdbScanOperation *operation = transaction->scanTable(record);
 if(operation == nullptr)
 return on_error(transaction->getNdbError(),
 "Failed to start scanTable operation");

 // Note the usage of NoCommit flag, as we are only reading the tuples
 if (transaction->execute(NdbTransaction::NoCommit) != 0)
 return on_error(transaction->getNdbError(),
 "Failed to execute transaction");

 const BasicRow *row_ptr;
 int rc;
 std::cout << "ATTR1" << "\t" << "ATTR2" << std::endl;
 // Loop over all read results to print them
 while ((rc = operation->nextResult(reinterpret_cast<const char **>(&row_ptr),
 true, false)) == 0)
 std::cout << row_ptr->attr1 << "\t" << row_ptr->attr2
 << std::endl;
 if (rc == -1)
 return on_error(transaction->getNdbError(), "Failed to read tuple");

 operation->close();
 m_ndb.closeTransaction(transaction);
 dict->releaseRecord(record);

 return true;
}

bool BasicRead::init()
{
 if (m_connection.connect() != 0)
 {
 std::cout << "Cannot connect to cluster management server" << std::endl;
 return false;
 }

 if (m_connection.wait_until_ready(30, 0) != 0)
 {
 std::cout << "Cluster was not ready within 30 secs" << std::endl;
 return false;
 }

 if (m_ndb.init() != 0)
 return on_error(m_ndb.getNdbError(), "Failed to initialize ndb object");

 return true;
}

479

Basic NDB API Examples

2.5.1.4 NDB API Basic Delete Example

This example shows deleting a row from a table already created and populated previously (see
Section 2.5.1.2, “NDB API Basic Insertion Example”). It performs the deletion using a single
NdbOperation within a transaction, and handles errors using NdbError.

You can verify afterwards that the row was deleted by running the read example (Section 2.5.1.3, “NDB
API Basic Reading Example”), or by executing SELECT * FROM basic in the mysql client.

The source code for this example can also be found in the file storage/ndb/ndbapi-examples/
ndbapi_basic/ndbapi_basic_delete.cpp.

#include <iostream>
#include <cstdlib>
#include <string>

#include <NdbApi.hpp>

class BasicDelete
{
 public:
 BasicDelete(const char * connectstring)
 : m_connection(connectstring), m_ndb(&m_connection, "ndbapi_examples") {}

 bool init();
 bool do_delete(long long);

 private:
 Ndb_cluster_connection m_connection;
 Ndb m_ndb;

 inline bool on_error(const struct NdbError &error,
 const std::string &explanation)
 {
 // prints error in format:
 // ERROR <NdbErrorCode>: <NdbError message>
 // explanation what went wrong on higher level (in the example code)
 std::cout << "ERROR "<< error.code << ": " << error.message << std::endl;
 std::cout << explanation << std::endl;
 return false;
 }
};

int main(int argc, char **argv)
{
 if (argc != 3)
 {
 std::cout << "Usage: ndb_ndbapi_basic_delete <connectstring> <key: int>"
 << std::endl;
 return EXIT_FAILURE;
 }

 const char *connectstring = argv[1];
 const long long key = std::strtoll(argv[2], nullptr, 10);

 ndb_init();
 {
 BasicDelete example(connectstring);
 if (!example.init()) return EXIT_FAILURE;

 // Let's verify delete
 if (example.do_delete(key))
 std::cout << "Done, check your database:\n"
 << "\t SELECT * FROM ndbapi_examples.basic;\n"
 << "\t or run the example: ndb_ndbapi_basic_read"
 << std::endl;
 else return EXIT_FAILURE;
 }
 ndb_end(0);

 return EXIT_SUCCESS;

480

https://dev.mysql.com/doc/refman/8.4/en/mysql.html

NDB API Example Using Synchronous Transactions

}

bool BasicDelete::do_delete(long long key)
{
 const NdbDictionary::Dictionary *dict = m_ndb.getDictionary();
 const NdbDictionary::Table *table = dict->getTable("basic");

 if (table == nullptr)
 return on_error(dict->getNdbError(),
 "Failed to access 'ndbapi_examples.basic'");

 // The delete operation will be performed within single transaction
 NdbTransaction *transaction = m_ndb.startTransaction(table);
 if(transaction == nullptr)
 return on_error(m_ndb.getNdbError(), "Failed to start transaction");

 NdbOperation *operation = transaction->getNdbOperation(table);
 if(operation == nullptr)
 return on_error(transaction->getNdbError(),
 "Failed to start delete operation");

 operation->deleteTuple();
 operation->equal("ATTR1", key);

 if (transaction->execute(NdbTransaction::Commit) != 0)
 return on_error(transaction->getNdbError(),
 "Failed to execute transaction");

 m_ndb.closeTransaction(transaction);

 return true;
}

bool BasicDelete::init()
{
 if (m_connection.connect() != 0)
 {
 std::cout << "Cannot connect to cluster management server" << std::endl;
 return false;
 }

 if (m_connection.wait_until_ready(30, 0) != 0)
 {
 std::cout << "Cluster was not ready within 30 secs" << std::endl;
 return false;
 }

 if (m_ndb.init() != 0)
 return on_error(m_ndb.getNdbError(), "Failed to initialize ndb object");

 return true;
}

2.5.2 NDB API Example Using Synchronous Transactions

This example illustrates the use of synchronous transactions in the NDB API. It first creates a database
ndb_examples and a table api_simple (if these objects do not already exist) using the MySQL
C API with an SQL node, then performs a series of basic data operations (insert, update, read, and
select) on this table using the NDB API.

The compiled program takes two arguments:

1. The path to a MySQL socket file (mysqld --socket option)

2. An NDB Cluster connection string (see NDB Cluster Connection Strings)

The correct output from this program is as follows:

 ATTR1 ATTR2
 0 10
 1 1

481

https://dev.mysql.com/doc/refman/8.4/en/mysqld.html
https://dev.mysql.com/doc/refman/8.4/en/server-options.html#option_mysqld_socket
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-connection-strings.html

NDB API Example Using Synchronous Transactions

 2 12
 Detected that deleted tuple doesn't exist!
 4 14
 5 5
 6 16
 7 7
 8 18
 9 9

The source code for this example can be found in storage/ndb/ndbapi-examples/
ndbapi_simple/ndbapi_simple.cpp in the NDB Cluster source tree, and is reproduced here:

/*
 * ndbapi_simple.cpp: Using synchronous transactions in NDB API
 *
 * Correct output from this program is:
 *
 * ATTR1 ATTR2
 * 0 10
 * 1 1
 * 2 12
 * Detected that deleted tuple doesn't exist!
 * 4 14
 * 5 5
 * 6 16
 * 7 7
 * 8 18
 * 9 9
 *
 */

#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>
// Used for cout
#include <stdio.h>
#include <iostream>

static void run_application(MYSQL &, Ndb_cluster_connection &);

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";
 exit(-1);
 }
 // ndb_init must be called first
 ndb_init();

 // connect to mysql server and cluster and run application
 {
 char * mysqld_sock = argv[1];
 const char *connection_string = argv[2];
 // Object representing the cluster
 Ndb_cluster_connection cluster_connection(connection_string);

 // Connect to cluster management server (ndb_mgmd)
 if (cluster_connection.connect(4 /* retries */,
 5 /* delay between retries */,
 1 /* verbose */))

482

NDB API Example Using Synchronous Transactions

 {
 std::cout << "Cluster management server was not ready within 30 secs.\n";
 exit(-1);
 }

 // Optionally connect and wait for the storage nodes (ndbd's)
 if (cluster_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 // connect to mysql server
 MYSQL mysql;
 if (!mysql_init(&mysql)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", "", "",
 0, mysqld_sock, 0))
 MYSQLERROR(mysql);

 // run the application code
 run_application(mysql, cluster_connection);
 mysql_close(&mysql);
 }

 ndb_end(0);

 return 0;
}

static void create_table(MYSQL &);
static void do_insert(Ndb &);
static void do_update(Ndb &);
static void do_delete(Ndb &);
static void do_read(Ndb &);

static void run_application(MYSQL &mysql,
 Ndb_cluster_connection &cluster_connection)
{
 /**
 * Connect to database via mysql-c *ndb_examples
 **/
 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);
 create_table(mysql);

 /**
 * Connect to database via NDB API *
 **/
 // Object representing the database
 Ndb myNdb(&cluster_connection, "ndb_examples");
 if (myNdb.init()) APIERROR(myNdb.getNdbError());

 /*
 * Do different operations on database
 */
 do_insert(myNdb);
 do_update(myNdb);
 do_delete(myNdb);
 do_read(myNdb);
}

/***
 * Create a table named api_simple if it does not exist *
 ***/
static void create_table(MYSQL &mysql)
{
 while (mysql_query(&mysql,
 "CREATE TABLE"
 " api_simple"

483

NDB API Example Using Synchronous Transactions

 " (ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,"
 " ATTR2 INT UNSIGNED NOT NULL)"
 " ENGINE=NDB"))
 {
 if (mysql_errno(&mysql) == ER_TABLE_EXISTS_ERROR)
 {
 std::cout << "NDB Cluster already has example table: api_simple. "
 << "Dropping it..." << std::endl;
 mysql_query(&mysql, "DROP TABLE api_simple");
 }
 else MYSQLERROR(mysql);
 }
}

/**
 * Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *
 **/
static void do_insert(Ndb &myNdb)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_simple");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 for (int i = 0; i < 5; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("ATTR1", i+5);
 myOperation->setValue("ATTR2", i+5);

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
 }
}

/***
 * Update the second attribute in half of the tuples (adding 10) *
 ***/
static void do_update(Ndb &myNdb)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_simple");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->updateTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i+10);

484

NDB API Example Using Synchronous Transactions

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
 }
}

/***
 * Delete one tuple (the one with primary key 3) *
 ***/
static void do_delete(Ndb &myNdb)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_simple");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->deleteTuple();
 myOperation->equal("ATTR1", 3);

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
}

/*****************************
 * Read and print all tuples *
 *****************************/
static void do_read(Ndb &myNdb)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_simple");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->readTuple(NdbOperation::LM_Read);
 myOperation->equal("ATTR1", i);

 NdbRecAttr *myRecAttr= myOperation->getValue("ATTR2", NULL);
 if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->getNdbError().classification == NdbError::NoDataFound)
 if (i == 3)
 std::cout << "Detected that deleted tuple doesn't exist!" << std::endl;
 else
 APIERROR(myTransaction->getNdbError());

 if (i != 3) {
 printf(" %2d %2d\n", i, myRecAttr->u_32_value());
 }
 myNdb.closeTransaction(myTransaction);

485

NDB API Example Using Synchronous Transactions and Multiple Clusters

 }
}

2.5.3 NDB API Example Using Synchronous Transactions and Multiple
Clusters

This example demonstrates synchronous transactions and connecting to multiple clusters in a single
NDB API application.

The source code for this program may be found in the NDB Cluster source tree, in the file storage/
ndb/ndbapi-examples/ndbapi_simple_dual/main.cpp.

Note

The example file was formerly named ndbapi_simple_dual.cpp.

/*
 * ndbapi_simple_dual: Using synchronous transactions in NDB API
 *
 * Correct output from this program is:
 *
 * ATTR1 ATTR2
 * 0 10
 * 1 1
 * 2 12
 * Detected that deleted tuple doesn't exist!
 * 4 14
 * 5 5
 * 6 16
 * 7 7
 * 8 18
 * 9 9
 * ATTR1 ATTR2
 * 0 10
 * 1 1
 * 2 12
 * Detected that deleted tuple doesn't exist!
 * 4 14
 * 5 5
 * 6 16
 * 7 7
 * 8 18
 * 9 9
 *
 */

#ifdef _WIN32
#include <winsock2.h>
#endif
#include <mysql.h>
#include <NdbApi.hpp>
#include <stdlib.h>
// Used for cout
#include <stdio.h>
#include <iostream>

static void run_application(MYSQL &, Ndb_cluster_connection &, const char* table, const char* db);

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

486

NDB API Example Using Synchronous Transactions and Multiple Clusters

int main(int argc, char** argv)
{
 if (argc != 5)
 {
 std::cout << "Arguments are <socket mysqld1> <connect_string cluster 1> <socket mysqld2> <connect_string cluster 2>.\n";
 exit(-1);
 }
 // ndb_init must be called first
 ndb_init();
 {
 char * mysqld1_sock = argv[1];
 const char *connectstring1 = argv[2];
 char * mysqld2_sock = argv[3];
 const char *connectstring2 = argv[4];

 // Object representing the cluster 1
 Ndb_cluster_connection cluster1_connection(connectstring1);
 MYSQL mysql1;
 // Object representing the cluster 2
 Ndb_cluster_connection cluster2_connection(connectstring2);
 MYSQL mysql2;

 // connect to mysql server and cluster 1 and run application
 // Connect to cluster 1 management server (ndb_mgmd)
 if (cluster1_connection.connect(4 /* retries */,
 5 /* delay between retries */,
 1 /* verbose */))
 {
 std::cout << "Cluster 1 management server was not ready within 30 secs.\n";
 exit(-1);
 }
 // Optionally connect and wait for the storage nodes (ndbd's)
 if (cluster1_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster 1 was not ready within 30 secs.\n";
 exit(-1);
 }
 // connect to mysql server in cluster 1
 if (!mysql_init(&mysql1)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql1, "localhost", "root", "", "",
 0, mysqld1_sock, 0))
 MYSQLERROR(mysql1);

 // connect to mysql server and cluster 2 and run application

 // Connect to cluster management server (ndb_mgmd)
 if (cluster2_connection.connect(4 /* retries */,
 5 /* delay between retries */,
 1 /* verbose */))
 {
 std::cout << "Cluster 2 management server was not ready within 30 secs.\n";
 exit(-1);
 }
 // Optionally connect and wait for the storage nodes (ndbd's)
 if (cluster2_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster 2 was not ready within 30 secs.\n";
 exit(-1);
 }
 // connect to mysql server in cluster 2
 if (!mysql_init(&mysql2)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql2, "localhost", "root", "", "",
 0, mysqld2_sock, 0))
 MYSQLERROR(mysql2);

487

NDB API Example Using Synchronous Transactions and Multiple Clusters

 // run the application code
 run_application(mysql1, cluster1_connection, "api_simple_dual_1", "ndb_examples");
 run_application(mysql2, cluster2_connection, "api_simple_dual_2", "ndb_examples");
 }
 // Note: all connections must have been destroyed before calling ndb_end()
 ndb_end(0);

 return 0;
}

static void create_table(MYSQL &, const char* table);
static void do_insert(Ndb &, const char* table);
static void do_update(Ndb &, const char* table);
static void do_delete(Ndb &, const char* table);
static void do_read(Ndb &, const char* table);
static void drop_table(MYSQL &,const char* table);

static void run_application(MYSQL &mysql,
 Ndb_cluster_connection &cluster_connection,
 const char* table,
 const char* db)
{
 /**
 * Connect to database via mysql-c *
 **/
 char db_stmt[256];
 sprintf(db_stmt, "CREATE DATABASE %s\n", db);
 mysql_query(&mysql, db_stmt);
 sprintf(db_stmt, "USE %s", db);
 if (mysql_query(&mysql, db_stmt) != 0) MYSQLERROR(mysql);
 create_table(mysql, table);

 /**
 * Connect to database via NdbApi *
 **/
 // Object representing the database
 Ndb myNdb(&cluster_connection, db);
 if (myNdb.init()) APIERROR(myNdb.getNdbError());

 /*
 * Do different operations on database
 */
 do_insert(myNdb, table);
 do_update(myNdb, table);
 do_delete(myNdb, table);
 do_read(myNdb, table);
 /*
 * Drop the table
 */
 drop_table(mysql,table);
}

/***
 * Create a table named by table if it does not exist *
 ***/
static void create_table(MYSQL &mysql, const char* table)
{
 char create_stmt[256];

 sprintf(create_stmt, "CREATE TABLE %s \
 (ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,\
 ATTR2 INT UNSIGNED NOT NULL)\
 ENGINE=NDB", table);
 if (mysql_query(&mysql, create_stmt))
 MYSQLERROR(mysql);
}

/**
 * Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *
 **/
static void do_insert(Ndb &myNdb, const char* table)

488

NDB API Example Using Synchronous Transactions and Multiple Clusters

{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 for (int i = 0; i < 5; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i);

 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("ATTR1", i+5);
 myOperation->setValue("ATTR2", i+5);

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
 }
}

/***
 * Update the second attribute in half of the tuples (adding 10) *
 ***/
static void do_update(Ndb &myNdb, const char* table)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->updateTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i+10);

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
 }
}

/***
 * Delete one tuple (the one with primary key 3) *
 ***/
static void do_delete(Ndb &myNdb, const char* table)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

489

NDB API Example Using Synchronous Transactions and Multiple Clusters

 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->deleteTuple();
 myOperation->equal("ATTR1", 3);

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
}

/*****************************
 * Read and print all tuples *
 *****************************/
static void do_read(Ndb &myNdb, const char* table)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->readTuple(NdbOperation::LM_Read);
 myOperation->equal("ATTR1", i);

 NdbRecAttr *myRecAttr= myOperation->getValue("ATTR2", NULL);
 if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 {
 if (i == 3) {
 std::cout << "Detected that deleted tuple doesn't exist!" << std::endl;
 } else {
 APIERROR(myTransaction->getNdbError());
 }
 }

 if (i != 3) {
 printf(" %2d %2d\n", i, myRecAttr->u_32_value());
 }
 myNdb.closeTransaction(myTransaction);
 }
}

/**************************
 * Drop table after usage *
 **************************/
static void drop_table(MYSQL &mysql, const char* table)
{
 char drop_stmt[75];
 sprintf(drop_stmt, "DROP TABLE %s", table);
 if (mysql_query(&mysql,drop_stmt))
 MYSQLERROR(mysql);
}

Prior to NDB 8.0, this program could not be run more than once in succession during the same session
(Bug #27009386).

490

NDB API Example: Handling Errors and Retrying Transactions

2.5.4 NDB API Example: Handling Errors and Retrying Transactions

This program demonstrates handling errors and retrying failed transactions using the NDB API.

The source code for this example can be found in storage/ndb/ndbapi-examples/
ndbapi_retries/ndbapi_retries.cpp in the NDB Cluster source tree.

There are many ways to program using the NDB API. In this example, we perform two inserts in the
same transaction using NdbTransaction::execute(NoCommit).

In NDB API applications, there are two types of failures to be taken into account:

1. Transaction failures: If nonpermanent, these can be handled by re-executing the transaction.

2. Application errors: These are indicated by APIERROR; they must be handled by the application
programmer.

//
// ndbapi_retries.cpp: Error handling and transaction retries
//
// There are many ways to program using the NDB API. In this example
// we execute two inserts in the same transaction using
// NdbConnection::execute(NoCommit).
//
// Transaction failing is handled by re-executing the transaction
// in case of non-permanent transaction errors.
// Application errors (i.e. errors at points marked with APIERROR)
// should be handled by the application programmer.

#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>

// Used for cout
#include <iostream>

// Used for sleep (use your own version of sleep)
#include <unistd.h>
#define TIME_TO_SLEEP_BETWEEN_TRANSACTION_RETRIES 1

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }

//
// APIERROR prints an NdbError object
//
#define APIERROR(error) \
 { std::cout << "API ERROR: " << error.code << " " << error.message \
 << std::endl \
 << " " << "Status: " << error.status \
 << ", Classification: " << error.classification << std::endl\
 << " " << "File: " << __FILE__ \
 << " (Line: " << __LINE__ << ")" << std::endl \
 ; \
 }

//
// TRANSERROR prints all error info regarding an NdbTransaction
//
#define TRANSERROR(ndbTransaction) \
 { NdbError error = ndbTransaction->getNdbError(); \
 std::cout << "TRANS ERROR: " << error.code << " " << error.message \
 << std::endl \
 << " " << "Status: " << error.status \
 << ", Classification: " << error.classification << std::endl \

491

NDB API Example: Handling Errors and Retrying Transactions

 << " " << "File: " << __FILE__ \
 << " (Line: " << __LINE__ << ")" << std::endl \
 ; \
 printTransactionError(ndbTransaction); \
 }

void printTransactionError(NdbTransaction *ndbTransaction) {
 const NdbOperation *ndbOp = NULL;
 int i=0;

 /**
 * Print NdbError object of every operations in the transaction *
 **/
 while ((ndbOp = ndbTransaction->getNextCompletedOperation(ndbOp)) != NULL) {
 NdbError error = ndbOp->getNdbError();
 std::cout << " OPERATION " << i+1 << ": "
 << error.code << " " << error.message << std::endl
 << " Status: " << error.status
 << ", Classification: " << error.classification << std::endl;
 i++;
 }
}

//
// Example insert
// @param myNdb Ndb object representing NDB Cluster
// @param myTransaction NdbTransaction used for transaction
// @param myTable Table to insert into
// @param error NdbError object returned in case of errors
// @return -1 in case of failures, 0 otherwise
//
int insert(int transactionId, NdbTransaction* myTransaction,
 const NdbDictionary::Table *myTable) {
 NdbOperation *myOperation; // For other operations

 myOperation = myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) return -1;

 if (myOperation->insertTuple() ||
 myOperation->equal("ATTR1", transactionId) ||
 myOperation->setValue("ATTR2", transactionId)) {
 APIERROR(myOperation->getNdbError());
 exit(-1);
 }

 return myTransaction->execute(NdbTransaction::NoCommit);
}

//
// Execute function which re-executes (tries 10 times) the transaction
// if there are temporary errors (e.g. the NDB Cluster is overloaded).
// @return -1 failure, 1 success
//
int executeInsertTransaction(int transactionId, Ndb* myNdb,
 const NdbDictionary::Table *myTable) {
 int result = 0; // No result yet
 int noOfRetriesLeft = 10;
 NdbTransaction *myTransaction; // For other transactions
 NdbError ndberror;

 while (noOfRetriesLeft > 0 && !result) {

 /*********************************
 * Start and execute transaction *
 *********************************/
 myTransaction = myNdb->startTransaction();
 if (myTransaction == NULL) {
 APIERROR(myNdb->getNdbError());
 ndberror = myNdb->getNdbError();
 result = -1; // Failure

492

NDB API Example: Handling Errors and Retrying Transactions

 } else if (insert(transactionId, myTransaction, myTable) ||
 insert(10000+transactionId, myTransaction, myTable) ||
 myTransaction->execute(NdbTransaction::Commit)) {
 TRANSERROR(myTransaction);
 ndberror = myTransaction->getNdbError();
 result = -1; // Failure
 } else {
 result = 1; // Success
 }

 /**********************************
 * If failure, then analyze error *
 **********************************/
 if (result == -1) {
 switch (ndberror.status) {
 case NdbError::Success:
 break;
 case NdbError::TemporaryError:
 std::cout << "Retrying transaction..." << std::endl;
 sleep(TIME_TO_SLEEP_BETWEEN_TRANSACTION_RETRIES);
 --noOfRetriesLeft;
 result = 0; // No completed transaction yet
 break;

 case NdbError::UnknownResult:
 case NdbError::PermanentError:
 std::cout << "No retry of transaction..." << std::endl;
 result = -1; // Permanent failure
 break;
 }
 }

 /*********************
 * Close transaction *
 *********************/
 if (myTransaction != NULL) {
 myNdb->closeTransaction(myTransaction);
 }
 }

 if (result != 1) exit(-1);
 return result;
}

/***
 * Create a table named api_retries if it does not exist *
 ***/
static void create_table(MYSQL &mysql)
{
 while(mysql_query(&mysql,
 "CREATE TABLE "
 " api_retries"
 " (ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,"
 " ATTR2 INT UNSIGNED NOT NULL)"
 " ENGINE=NDB"))
 {
 if (mysql_errno(&mysql) == ER_TABLE_EXISTS_ERROR)
 {
 std::cout << "NDB Cluster already has example table: api_scan. "
 << "Dropping it..." << std::endl;
 mysql_query(&mysql, "DROP TABLE api_retries");
 }
 else MYSQLERROR(mysql);
 }
}

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";

493

NDB API Example: Handling Errors and Retrying Transactions

 exit(-1);
 }
 char * mysqld_sock = argv[1];
 const char *connection_string = argv[2];
 ndb_init();

 Ndb_cluster_connection *cluster_connection=
 new Ndb_cluster_connection(connection_string); // Object representing the cluster

 int r= cluster_connection->connect(5 /* retries */,
 3 /* delay between retries */,
 1 /* verbose */);
 if (r > 0)
 {
 std::cout
 << "Cluster connect failed, possibly resolved with more retries.\n";
 exit(-1);
 }
 else if (r < 0)
 {
 std::cout
 << "Cluster connect failed.\n";
 exit(-1);
 }

 if (cluster_connection->wait_until_ready(30,30))
 {
 std::cout << "Cluster was not ready within 30 secs." << std::endl;
 exit(-1);
 }
 // connect to mysql server
 MYSQL mysql;
 if (!mysql_init(&mysql)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", "", "",
 0, mysqld_sock, 0))
 MYSQLERROR(mysql);

 /**
 * Connect to database via mysql-c *
 **/
 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);
 create_table(mysql);
 mysql_close(&mysql);

 Ndb* myNdb= new Ndb(cluster_connection,
 "ndb_examples"); // Object representing the database

 if (myNdb->init() == -1) {
 APIERROR(myNdb->getNdbError());
 exit(-1);
 }

 const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_retries");
 if (myTable == NULL)
 {
 APIERROR(myDict->getNdbError());
 return -1;
 }
 /************************************
 * Execute some insert transactions *
 ************************************/

 std::cout << "Ready to insert rows. You will see notices for temporary "
 "errors, permenant errors, and retries. \n";
 for (int i = 10000; i < 20000; i++) {
 executeInsertTransaction(i, myNdb, myTable);
 }

494

NDB API Basic Scanning Example

 std::cout << "Done.\n";

 delete myNdb;
 delete cluster_connection;

 ndb_end(0);
 return 0;
}

2.5.5 NDB API Basic Scanning Example

This example illustrates how to use the NDB scanning API. It shows how to perform a scan, how
to scan for an update, and how to scan for a delete, making use of the NdbScanFilter and
NdbScanOperation classes.

The source code for this example may found in the NDB Cluster source tree, in the file storage/ndb/
ndbapi-examples/ndbapi_scan/ndbapi_scan.cpp.

This example makes use of the following classes and methods:

• Ndb_cluster_connection:

• connect()

• wait_until_ready()

• Ndb:

• init()

• getDictionary()

• startTransaction()

• closeTransaction()

• NdbTransaction:

• getNdbScanOperation()

• execute()

• NdbOperation:

• insertTuple()

• equal()

• getValue()

• setValue()

• NdbScanOperation:

• readTuples()

• nextResult()

• deleteCurrentTuple()

• updateCurrentTuple()

• NdbDictionary:

• Dictionary::getTable()

495

NDB API Basic Scanning Example

• Table::getColumn()

• Column::getLength()

• NdbScanFilter:

• begin()

• eq()

• end()

/*
 Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; version 2 of the License.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

/*
 * ndbapi_scan.cpp:
 * Illustrates how to use the scan api in the NDBAPI.
 * The example shows how to do scan, scan for update and scan for delete
 * using NdbScanFilter and NdbScanOperation
 *
 * Classes and methods used in this example:
 *
 * Ndb_cluster_connection
 * connect()
 * wait_until_ready()
 *
 * Ndb
 * init()
 * getDictionary()
 * startTransaction()
 * closeTransaction()
 *
 * NdbTransaction
 * getNdbScanOperation()
 * execute()
 *
 * NdbScanOperation
 * getValue()
 * readTuples()
 * nextResult()
 * deleteCurrentTuple()
 * updateCurrentTuple()
 *
 * const NdbDictionary::Dictionary
 * getTable()
 *
 * const NdbDictionary::Table
 * getColumn()
 *
 * const NdbDictionary::Column
 * getLength()
 *
 * NdbOperation
 * insertTuple()

496

NDB API Basic Scanning Example

 * equal()
 * setValue()
 *
 * NdbScanFilter
 * begin()
 * eq()
 * end()
 *
 */

#ifdef _WIN32
#include <winsock2.h>
#endif
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>
// Used for cout
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <config.h>
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif

/**
 * Helper sleep function
 */
static void
milliSleep(int milliseconds){
 struct timeval sleeptime;
 sleeptime.tv_sec = milliseconds / 1000;
 sleeptime.tv_usec = (milliseconds - (sleeptime.tv_sec * 1000)) * 1000000;
 select(0, 0, 0, 0, &sleeptime);
}

/**
 * Helper debugging macros
 */
#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

struct Car
{
 /**
 * Note memset, so that entire char-fields are cleared
 * as all 20 bytes are significant (as type is char)
 */
 Car() { memset(this, 0, sizeof(* this)); }

 unsigned int reg_no;
 char brand[20];
 char color[20];
};

/**
 * Function to drop table
 */
void drop_table(MYSQL &mysql)
{
 if (mysql_query(&mysql, "DROP TABLE IF EXISTS api_scan"))
 MYSQLERROR(mysql);

497

NDB API Basic Scanning Example

}

/**
 * Function to create table
 */
void create_table(MYSQL &mysql)
{
 while (mysql_query(&mysql,
 "CREATE TABLE"
 " api_scan"
 " (REG_NO INT UNSIGNED NOT NULL,"
 " BRAND CHAR(20) NOT NULL,"
 " COLOR CHAR(20) NOT NULL,"
 " PRIMARY KEY USING HASH (REG_NO))"
 " ENGINE=NDB"))
 {
 if (mysql_errno(&mysql) != ER_TABLE_EXISTS_ERROR)
 MYSQLERROR(mysql);
 std::cout << "NDB Cluster already has example table: api_scan. "
 << "Dropping it..." << std::endl;
 drop_table(mysql);
 }
}

int populate(Ndb * myNdb)
{
 int i;
 Car cars[15];

 const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_scan");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 /**
 * Five blue mercedes
 */
 for (i = 0; i < 5; i++)
 {
 cars[i].reg_no = i;
 sprintf(cars[i].brand, "Mercedes");
 sprintf(cars[i].color, "Blue");
 }

 /**
 * Five black bmw
 */
 for (i = 5; i < 10; i++)
 {
 cars[i].reg_no = i;
 sprintf(cars[i].brand, "BMW");
 sprintf(cars[i].color, "Black");
 }

 /**
 * Five pink toyotas
 */
 for (i = 10; i < 15; i++)
 {
 cars[i].reg_no = i;
 sprintf(cars[i].brand, "Toyota");
 sprintf(cars[i].color, "Pink");
 }

 NdbTransaction* myTrans = myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 for (i = 0; i < 15; i++)
 {

498

NDB API Basic Scanning Example

 NdbOperation* myNdbOperation = myTrans->getNdbOperation(myTable);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
 myNdbOperation->insertTuple();
 myNdbOperation->equal("REG_NO", cars[i].reg_no);
 myNdbOperation->setValue("BRAND", cars[i].brand);
 myNdbOperation->setValue("COLOR", cars[i].color);
 }

 int check = myTrans->execute(NdbTransaction::Commit);

 myTrans->close();

 return check != -1;
}

int scan_delete(Ndb* myNdb,
 int column,
 const char * color)

{

 // Scan all records exclusive and delete
 // them one by one
 int retryAttempt = 0;
 const int retryMax = 10;
 int deletedRows = 0;
 int check;
 NdbError err;
 NdbTransaction *myTrans;
 NdbScanOperation *myScanOp;

 const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_scan");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 /**
 * Loop as long as :
 * retryMax not reached
 * failed operations due to TEMPORARY erros
 *
 * Exit loop;
 * retyrMax reached
 * Permanent error (return -1)
 */
 while (true)
 {
 if (retryAttempt >= retryMax)
 {
 std::cout << "ERROR: has retried this operation " << retryAttempt
 << " times, failing!" << std::endl;
 return -1;
 }

 myTrans = myNdb->startTransaction();
 if (myTrans == NULL)
 {
 const NdbError err = myNdb->getNdbError();

 if (err.status == NdbError::TemporaryError)
 {
 milliSleep(50);
 retryAttempt++;
 continue;
 }
 std::cout << err.message << std::endl;
 return -1;
 }

 /**

499

NDB API Basic Scanning Example

 * Get a scan operation.
 */
 myScanOp = myTrans->getNdbScanOperation(myTable);
 if (myScanOp == NULL)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Define a result set for the scan.
 */
 if(myScanOp->readTuples(NdbOperation::LM_Exclusive) != 0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Use NdbScanFilter to define a search critera
 */
 NdbScanFilter filter(myScanOp) ;
 if(filter.begin(NdbScanFilter::AND) < 0 ||
 filter.cmp(NdbScanFilter::COND_EQ, column, color, 20) < 0 ||
 filter.end() < 0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Start scan (NoCommit since we are only reading at this stage);
 */
 if(myTrans->execute(NdbTransaction::NoCommit) != 0){
 err = myTrans->getNdbError();
 if(err.status == NdbError::TemporaryError){
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 std::cout << err.code << std::endl;
 std::cout << myTrans->getNdbError().code << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * start of loop: nextResult(true) means that "parallelism" number of
 * rows are fetched from NDB and cached in NDBAPI
 */
 while((check = myScanOp->nextResult(true)) == 0){
 do
 {
 if (myScanOp->deleteCurrentTuple() != 0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }
 deletedRows++;

 /**
 * nextResult(false) means that the records
 * cached in the NDBAPI are modified before
 * fetching more rows from NDB.
 */
 } while((check = myScanOp->nextResult(false)) == 0);

500

NDB API Basic Scanning Example

 /**
 * NoCommit when all cached tuple have been marked for deletion
 */
 if(check != -1)
 {
 check = myTrans->execute(NdbTransaction::NoCommit);
 }

 /**
 * Check for errors
 */
 err = myTrans->getNdbError();
 if(check == -1)
 {
 if(err.status == NdbError::TemporaryError)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 }
 /**
 * End of loop
 */
 }
 /**
 * Commit all prepared operations
 */
 if(myTrans->execute(NdbTransaction::Commit) == -1)
 {
 if(err.status == NdbError::TemporaryError){
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 }

 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return 0;
 }

 if(myTrans!=0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 }
 return -1;
}

int scan_update(Ndb* myNdb,
 int update_column,
 const char * before_color,
 const char * after_color)

{

 // Scan all records exclusive and update
 // them one by one
 int retryAttempt = 0;
 const int retryMax = 10;
 int updatedRows = 0;
 int check;
 NdbError err;
 NdbTransaction *myTrans;
 NdbScanOperation *myScanOp;

 const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();

501

NDB API Basic Scanning Example

 const NdbDictionary::Table *myTable= myDict->getTable("api_scan");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 /**
 * Loop as long as :
 * retryMax not reached
 * failed operations due to TEMPORARY erros
 *
 * Exit loop;
 * retryMax reached
 * Permanent error (return -1)
 */
 while (true)
 {

 if (retryAttempt >= retryMax)
 {
 std::cout << "ERROR: has retried this operation " << retryAttempt
 << " times, failing!" << std::endl;
 return -1;
 }

 myTrans = myNdb->startTransaction();
 if (myTrans == NULL)
 {
 const NdbError err = myNdb->getNdbError();

 if (err.status == NdbError::TemporaryError)
 {
 milliSleep(50);
 retryAttempt++;
 continue;
 }
 std::cout << err.message << std::endl;
 return -1;
 }

 /**
 * Get a scan operation.
 */
 myScanOp = myTrans->getNdbScanOperation(myTable);
 if (myScanOp == NULL)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Define a result set for the scan.
 */
 if(myScanOp->readTuples(NdbOperation::LM_Exclusive))
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Use NdbScanFilter to define a search critera
 */
 NdbScanFilter filter(myScanOp) ;
 if(filter.begin(NdbScanFilter::AND) < 0 ||
 filter.cmp(NdbScanFilter::COND_EQ, update_column, before_color, 20) <0||
 filter.end() <0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

502

NDB API Basic Scanning Example

 /**
 * Start scan (NoCommit since we are only reading at this stage);
 */
 if(myTrans->execute(NdbTransaction::NoCommit) != 0)
 {
 err = myTrans->getNdbError();
 if(err.status == NdbError::TemporaryError){
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 std::cout << myTrans->getNdbError().code << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * start of loop: nextResult(true) means that "parallelism" number of
 * rows are fetched from NDB and cached in NDBAPI
 */
 while((check = myScanOp->nextResult(true)) == 0){
 do {
 /**
 * Get update operation
 */
 NdbOperation * myUpdateOp = myScanOp->updateCurrentTuple();
 if (myUpdateOp == 0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }
 updatedRows++;

 /**
 * do the update
 */
 myUpdateOp->setValue(update_column, after_color);
 /**
 * nextResult(false) means that the records
 * cached in the NDBAPI are modified before
 * fetching more rows from NDB.
 */
 } while((check = myScanOp->nextResult(false)) == 0);

 /**
 * NoCommit when all cached tuple have been updated
 */
 if(check != -1)
 {
 check = myTrans->execute(NdbTransaction::NoCommit);
 }

 /**
 * Check for errors
 */
 err = myTrans->getNdbError();
 if(check == -1)
 {
 if(err.status == NdbError::TemporaryError){
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 }
 /**
 * End of loop
 */
 }

503

NDB API Basic Scanning Example

 /**
 * Commit all prepared operations
 */
 if(myTrans->execute(NdbTransaction::Commit) == -1)
 {
 if(err.status == NdbError::TemporaryError){
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 }

 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return 0;
 }

 if(myTrans!=0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 }
 return -1;
}

int scan_print(Ndb * myNdb)
{
// Scan all records exclusive and update
 // them one by one
 int retryAttempt = 0;
 const int retryMax = 10;
 int fetchedRows = 0;
 int check;
 NdbError err;
 NdbTransaction *myTrans;
 NdbScanOperation *myScanOp;
 /* Result of reading attribute value, three columns:
 REG_NO, BRAND, and COLOR
 */
 NdbRecAttr * myRecAttr[3];

 const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_scan");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 /**
 * Loop as long as :
 * retryMax not reached
 * failed operations due to TEMPORARY erros
 *
 * Exit loop;
 * retyrMax reached
 * Permanent error (return -1)
 */
 while (true)
 {

 if (retryAttempt >= retryMax)
 {
 std::cout << "ERROR: has retried this operation " << retryAttempt
 << " times, failing!" << std::endl;
 return -1;
 }

 myTrans = myNdb->startTransaction();

504

NDB API Basic Scanning Example

 if (myTrans == NULL)
 {
 const NdbError err = myNdb->getNdbError();

 if (err.status == NdbError::TemporaryError)
 {
 milliSleep(50);
 retryAttempt++;
 continue;
 }
 std::cout << err.message << std::endl;
 return -1;
 }
 /*
 * Define a scan operation.
 * NDBAPI.
 */
 myScanOp = myTrans->getNdbScanOperation(myTable);
 if (myScanOp == NULL)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Read without locks, without being placed in lock queue
 */
 if(myScanOp->readTuples(NdbOperation::LM_CommittedRead) == -1)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Define storage for fetched attributes.
 * E.g., the resulting attributes of executing
 * myOp->getValue("REG_NO") is placed in myRecAttr[0].
 * No data exists in myRecAttr until transaction has commited!
 */
 myRecAttr[0] = myScanOp->getValue("REG_NO");
 myRecAttr[1] = myScanOp->getValue("BRAND");
 myRecAttr[2] = myScanOp->getValue("COLOR");
 if(myRecAttr[0] ==NULL || myRecAttr[1] == NULL || myRecAttr[2]==NULL)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }
 /**
 * Start scan (NoCommit since we are only reading at this stage);
 */
 if(myTrans->execute(NdbTransaction::NoCommit) != 0){
 err = myTrans->getNdbError();
 if(err.status == NdbError::TemporaryError){
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 std::cout << err.code << std::endl;
 std::cout << myTrans->getNdbError().code << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * start of loop: nextResult(true) means that "parallelism" number of
 * rows are fetched from NDB and cached in NDBAPI
 */
 while((check = myScanOp->nextResult(true)) == 0){

505

NDB API Basic Scanning Example

 do {

 fetchedRows++;
 /**
 * print REG_NO unsigned int
 */
 std::cout << myRecAttr[0]->u_32_value() << "\t";

 /**
 * print BRAND character string
 */
 std::cout << myRecAttr[1]->aRef() << "\t";

 /**
 * print COLOR character string
 */
 std::cout << myRecAttr[2]->aRef() << std::endl;

 /**
 * nextResult(false) means that the records
 * cached in the NDBAPI are modified before
 * fetching more rows from NDB.
 */
 } while((check = myScanOp->nextResult(false)) == 0);

 }
 myNdb->closeTransaction(myTrans);
 return 1;
 }
 return -1;

}

void mysql_connect_and_create(MYSQL & mysql, const char *socket)
{
 bool ok;

 ok = mysql_real_connect(&mysql, "localhost", "root", "", "", 0, socket, 0);
 if(ok) {
 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 ok = ! mysql_select_db(&mysql, "ndb_examples");
 }
 if(ok) {
 create_table(mysql);
 }

 if(! ok) MYSQLERROR(mysql);
}

void ndb_run_scan(const char * connectstring)
{

 /**
 * Connect to ndb cluster *
 **/

 Ndb_cluster_connection cluster_connection(connectstring);
 if (cluster_connection.connect(4, 5, 1))
 {
 std::cout << "Unable to connect to cluster within 30 secs." << std::endl;
 exit(-1);
 }
 // Optionally connect and wait for the storage nodes (ndbd's)
 if (cluster_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 Ndb myNdb(&cluster_connection,"ndb_examples");
 if (myNdb.init(1024) == -1) { // Set max 1024 parallel transactions
 APIERROR(myNdb.getNdbError());

506

NDB API Basic Scanning Example

 exit(-1);
 }

 /***
 * Check table definition *
 ***/
 int column_color;
 {
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *t= myDict->getTable("api_scan");
 if(t == NULL)
 {
 std::cout << "Dictionary::getTable() failed.";
 exit(-1);
 }
 Car car;
 if (t->getColumn("COLOR")->getLength() != sizeof(car.color) ||
 t->getColumn("BRAND")->getLength() != sizeof(car.brand))
 {
 std::cout << "Wrong table definition" << std::endl;
 exit(-1);
 }
 column_color= t->getColumn("COLOR")->getColumnNo();
 }

 if(populate(&myNdb) > 0)
 std::cout << "populate: Success!" << std::endl;

 if(scan_print(&myNdb) > 0)
 std::cout << "scan_print: Success!" << std::endl << std::endl;

 std::cout << "Going to delete all pink cars!" << std::endl;

 {
 /**
 * Note! color needs to be of exact the same size as column defined
 */
 Car tmp;
 sprintf(tmp.color, "Pink");
 if(scan_delete(&myNdb, column_color, tmp.color) > 0)
 std::cout << "scan_delete: Success!" << std::endl << std::endl;
 }

 if(scan_print(&myNdb) > 0)
 std::cout << "scan_print: Success!" << std::endl << std::endl;

 {
 /**
 * Note! color1 & 2 need to be of exact the same size as column defined
 */
 Car tmp1, tmp2;
 sprintf(tmp1.color, "Blue");
 sprintf(tmp2.color, "Black");
 std::cout << "Going to update all " << tmp1.color
 << " cars to " << tmp2.color << " cars!" << std::endl;
 if(scan_update(&myNdb, column_color, tmp1.color, tmp2.color) > 0)
 std::cout << "scan_update: Success!" << std::endl << std::endl;
 }
 if(scan_print(&myNdb) > 0)
 std::cout << "scan_print: Success!" << std::endl << std::endl;
}

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";
 exit(-1);
 }
 char * mysqld_sock = argv[1];
 const char *connectstring = argv[2];
 MYSQL mysql;

507

NDB API Example: Using Secondary Indexes in Scans

 mysql_init(& mysql);
 mysql_connect_and_create(mysql, mysqld_sock);

 ndb_init();
 ndb_run_scan(connectstring);
 ndb_end(0);

 mysql_close(&mysql);

 return 0;
}

2.5.6 NDB API Example: Using Secondary Indexes in Scans

This program illustrates how to use secondary indexes in the NDB API.

The source code for this example may be found in the NDB Cluster source tree, in storage/ndb/
ndbapi-examples/ndbapi_simple_index/main.cpp.

Note

This file was previously named ndbapi_simple_index.cpp.

The correct output from this program is shown here:

ATTR1 ATTR2
0 10
1 1
2 12
Detected that deleted tuple doesn't exist!
4 14
5 5
6 16
7 7
8 18
9 9

The listing for this program is shown here:

#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>

// Used for cout
#include <stdio.h>
#include <iostream>

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";
 exit(-1);
 }
 char * mysqld_sock = argv[1];
 const char *connection_string = argv[2];
 ndb_init();

508

NDB API Example: Using Secondary Indexes in Scans

 /**
 * Connect to mysql server and create table *
 **/
 MYSQL mysql;
 {
 if (!mysql_init(&mysql)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", "", "",
 0, mysqld_sock, 0))
 MYSQLERROR(mysql);

 mysql_query(&mysql, "CREATE DATABASE ndb_examples_1");
 if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);

 while (mysql_query(&mysql,
 "CREATE TABLE"
 " api_simple_index"
 " (ATTR1 INT UNSIGNED,"
 " ATTR2 INT UNSIGNED NOT NULL,"
 " PRIMARY KEY USING HASH (ATTR1),"
 " UNIQUE MYINDEXNAME USING HASH (ATTR2))"
 " ENGINE=NDB"))
 {
 if (mysql_errno(&mysql) == ER_TABLE_EXISTS_ERROR)
 {
 std::cout << "NDB Cluster already has example table: api_scan. "
 << "Dropping it..." << std::endl;
 mysql_query(&mysql, "DROP TABLE api_simple_index");
 }
 else MYSQLERROR(mysql);
 }
 mysql_close(&mysql);
 }

 /**
 * Connect to ndb cluster *
 **/

 Ndb_cluster_connection *cluster_connection=
 new Ndb_cluster_connection(connection_string); // Object representing the cluster

 if (cluster_connection->connect(5,3,1))
 {
 std::cout << "Connect to cluster management server failed.\n";
 exit(-1);
 }

 if (cluster_connection->wait_until_ready(30,30))
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 Ndb* myNdb = new Ndb(cluster_connection,
 "ndb_examples"); // Object representing the database
 if (myNdb->init() == -1) {
 APIERROR(myNdb->getNdbError());
 exit(-1);
 }

 const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_simple_index");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 const NdbDictionary::Index *myIndex= myDict->getIndex("MYINDEXNAME$unique","api_simple_index");
 if (myIndex == NULL)
 APIERROR(myDict->getNdbError());

 /**
 * Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *

509

NDB API Example: Using Secondary Indexes in Scans

 **/
 for (int i = 0; i < 5; i++) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i);

 myOperation = myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("ATTR1", i+5);
 myOperation->setValue("ATTR2", i+5);

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb->closeTransaction(myTransaction);
 }

 /***
 * Read and print all tuples using index *
 ***/
 std::cout << "ATTR1 ATTR2" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

 NdbIndexOperation *myIndexOperation=
 myTransaction->getNdbIndexOperation(myIndex);
 if (myIndexOperation == NULL) APIERROR(myTransaction->getNdbError());

 myIndexOperation->readTuple(NdbOperation::LM_Read);
 myIndexOperation->equal("ATTR2", i);

 NdbRecAttr *myRecAttr= myIndexOperation->getValue("ATTR1", NULL);
 if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit,
 NdbOperation::AbortOnError) != -1)
 printf(" %2d %2d\n", myRecAttr->u_32_value(), i);

 myNdb->closeTransaction(myTransaction);
 }

 /***
 * Update the second attribute in half of the tuples (adding 10) *
 ***/
 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

 NdbIndexOperation *myIndexOperation=
 myTransaction->getNdbIndexOperation(myIndex);
 if (myIndexOperation == NULL) APIERROR(myTransaction->getNdbError());

 myIndexOperation->updateTuple();
 myIndexOperation->equal("ATTR2", i);
 myIndexOperation->setValue("ATTR2", i+10);

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb->closeTransaction(myTransaction);
 }

510

NDB API Example: Using NdbRecord with Hash Indexes

 /***
 * Delete one tuple (the one with primary key 3) *
 ***/
 {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

 NdbIndexOperation *myIndexOperation=
 myTransaction->getNdbIndexOperation(myIndex);
 if (myIndexOperation == NULL) APIERROR(myTransaction->getNdbError());

 myIndexOperation->deleteTuple();
 myIndexOperation->equal("ATTR2", 3);

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb->closeTransaction(myTransaction);
 }

 /*****************************
 * Read and print all tuples *
 *****************************/
 {
 std::cout << "ATTR1 ATTR2" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->readTuple(NdbOperation::LM_Read);
 myOperation->equal("ATTR1", i);

 NdbRecAttr *myRecAttr= myOperation->getValue("ATTR2", NULL);
 if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit,
 NdbOperation::AbortOnError) == -1)
 if (i == 3) {
 std::cout << "Detected that deleted tuple doesn't exist!\n";
 } else {
 APIERROR(myTransaction->getNdbError());
 }

 if (i != 3) {
 printf(" %2d %2d\n", i, myRecAttr->u_32_value());
 }
 myNdb->closeTransaction(myTransaction);
 }
 }

 delete myNdb;
 delete cluster_connection;

 ndb_end(0);
 return 0;
}

2.5.7 NDB API Example: Using NdbRecord with Hash Indexes

This program illustrates how to use secondary indexes in the NDB API with the aid of the NdbRecord
interface.

The source code for this example may be found in the NDB Cluster source trees, in the file storage/
ndb/ndbapi-examples/ndbapi_s_i_ndbrecord/main.cpp.

When run on a cluster having 2 data nodes, the correct output from this program is as shown here:

511

NDB API Example: Using NdbRecord with Hash Indexes

ATTR1 ATTR2
 0 0 (frag=0)
 1 1 (frag=1)
 2 2 (frag=1)
 3 3 (frag=0)
 4 4 (frag=1)
 5 5 (frag=1)
 6 6 (frag=0)
 7 7 (frag=0)
 8 8 (frag=1)
 9 9 (frag=0)
ATTR1 ATTR2
 0 10
 1 1
 2 12
Detected that deleted tuple doesn't exist!
 4 14
 5 5
 6 16
 7 7
 8 18
 9 9

The program listing is shown here:

//
// ndbapi_simple_index_ndbrecord.cpp: Using secondary unique hash indexes
// in NDB API, utilising the NdbRecord interface.
//
// Correct output from this program is (from a two-node cluster):
//
// ATTR1 ATTR2
// 0 0 (frag=0)
// 1 1 (frag=1)
// 2 2 (frag=1)
// 3 3 (frag=0)
// 4 4 (frag=1)
// 5 5 (frag=1)
// 6 6 (frag=0)
// 7 7 (frag=0)
// 8 8 (frag=1)
// 9 9 (frag=0)
// ATTR1 ATTR2
// 0 10
// 1 1
// 2 12
// Detected that deleted tuple doesn't exist!
// 4 14
// 5 5
// 6 16
// 7 7
// 8 18
// 9 9

#include <mysql.h>
#include <NdbApi.hpp>

// Used for cout
#include <stdio.h>
#include <iostream>

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(1); }

512

NDB API Example: Using NdbRecord with Hash Indexes

/* C struct representing layout of data from table
 * api_s_i_ndbrecord in memory
 * This can make it easier to work with rows in the application,
 * but is not necessary - NdbRecord can map columns to any
 * pattern of offsets.
 * In this program, the same row offsets are used for columns
 * specified as part of a key, and as part of an attribute or
 * result. This makes the example simpler, but is not
 * essential.
 */
struct MyTableRow
{
 unsigned int attr1;
 unsigned int attr2;
};

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";
 exit(1);
 }
 char * mysqld_sock = argv[1];
 const char *connection_string = argv[2];
 ndb_init();
 MYSQL mysql;

 /**
 * Connect to mysql server and create table *
 **/
 {
 if (!mysql_init(&mysql)) {
 std::cout << "mysql_init failed\n";
 exit(1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", "", "",
 0, mysqld_sock, 0))
 MYSQLERROR(mysql);

 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 if (mysql_query(&mysql, "USE ndb_examples") != 0)
 MYSQLERROR(mysql);

 mysql_query(&mysql, "DROP TABLE api_s_i_ndbrecord");
 if (mysql_query(&mysql,
 "CREATE TABLE"
 " api_s_i_ndbrecord"
 " (ATTR1 INT UNSIGNED,"
 " ATTR2 INT UNSIGNED NOT NULL,"
 " PRIMARY KEY USING HASH (ATTR1),"
 " UNIQUE MYINDEXNAME USING HASH (ATTR2))"
 " ENGINE=NDB"))
 MYSQLERROR(mysql);
 }

 /**
 * Connect to ndb cluster *
 **/

 Ndb_cluster_connection *cluster_connection=
 new Ndb_cluster_connection(connection_string); // Object representing the cluster

 if (cluster_connection->connect(5,3,1))
 {
 std::cout << "Connect to cluster management server failed.\n";
 exit(1);
 }

 if (cluster_connection->wait_until_ready(30,30))
 {
 std::cout << "Cluster was not ready within 30 secs.\n";

513

NDB API Example: Using NdbRecord with Hash Indexes

 exit(1);
 }

 Ndb* myNdb = new Ndb(cluster_connection,
 "ndb_examples"); // Object representing the database
 if (myNdb->init() == -1) {
 APIERROR(myNdb->getNdbError());
 exit(1);
 }

 NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_s_i_ndbrecord");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 const NdbDictionary::Index *myIndex= myDict->getIndex("MYINDEXNAME$unique","api_s_i_ndbrecord");
 if (myIndex == NULL)
 APIERROR(myDict->getNdbError());

 /* Create NdbRecord descriptors. */
 const NdbDictionary::Column *col1= myTable->getColumn("ATTR1");
 if (col1 == NULL)
 APIERROR(myDict->getNdbError());
 const NdbDictionary::Column *col2= myTable->getColumn("ATTR2");
 if (col2 == NULL)
 APIERROR(myDict->getNdbError());

 /* NdbRecord for primary key lookup. */
 NdbDictionary::RecordSpecification spec[2];
 spec[0].column= col1;
 spec[0].offset= offsetof(MyTableRow, attr1);
 // So that it goes nicely into the struct
 spec[0].nullbit_byte_offset= 0;
 spec[0].nullbit_bit_in_byte= 0;
 const NdbRecord *pk_record=
 myDict->createRecord(myTable, spec, 1, sizeof(spec[0]));
 if (pk_record == NULL)
 APIERROR(myDict->getNdbError());

 /* NdbRecord for all table attributes (insert/read). */
 spec[0].column= col1;
 spec[0].offset= offsetof(MyTableRow, attr1);
 spec[0].nullbit_byte_offset= 0;
 spec[0].nullbit_bit_in_byte= 0;
 spec[1].column= col2;
 spec[1].offset= offsetof(MyTableRow, attr2);
 spec[1].nullbit_byte_offset= 0;
 spec[1].nullbit_bit_in_byte= 0;
 const NdbRecord *attr_record=
 myDict->createRecord(myTable, spec, 2, sizeof(spec[0]));
 if (attr_record == NULL)
 APIERROR(myDict->getNdbError());

 /* NdbRecord for unique key lookup. */
 spec[0].column= col2;
 spec[0].offset= offsetof(MyTableRow, attr2);
 spec[0].nullbit_byte_offset= 0;
 spec[0].nullbit_bit_in_byte= 0;
 const NdbRecord *key_record=
 myDict->createRecord(myIndex, spec, 1, sizeof(spec[0]));
 if (key_record == NULL)
 APIERROR(myDict->getNdbError());

 MyTableRow row;

 /**
 * Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *
 **/
 for (int i = 0; i < 5; i++) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

 /*

514

NDB API Example: Using NdbRecord with Hash Indexes

 We initialise the row data and pass to each insertTuple operation
 The data is copied in the call to insertTuple and so the original
 row object can be reused for the two operations.
 */
 row.attr1= row.attr2= i;

 const NdbOperation *myOperation=
 myTransaction->insertTuple(attr_record, (const char*)&row);
 if (myOperation == NULL)
 APIERROR(myTransaction->getNdbError());

 row.attr1= row.attr2= i+5;
 myOperation=
 myTransaction->insertTuple(attr_record, (const char*)&row);
 if (myOperation == NULL)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb->closeTransaction(myTransaction);
 }

 /***
 * Read and print all tuples using index *
 ***/
 std::cout << "ATTR1 ATTR2" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL)
 APIERROR(myNdb->getNdbError());

 /* The optional OperationOptions parameter to NdbRecord methods
 * can be used to specify extra reads of columns which are not in
 * the NdbRecord specification, which need to be stored somewhere
 * other than specified in the NdbRecord specification, or
 * which cannot be specified as part of an NdbRecord (pseudo
 * columns)
 */
 Uint32 frag;
 NdbOperation::GetValueSpec getSpec[1];
 getSpec[0].column=NdbDictionary::Column::FRAGMENT;
 getSpec[0].appStorage=&frag;

 NdbOperation::OperationOptions options;
 options.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;
 options.extraGetValues = &getSpec[0];
 options.numExtraGetValues = 1;

 /* We're going to read using the secondary unique hash index
 * Set the value of its column
 */
 row.attr2= i;

 MyTableRow resultRow;

 unsigned char mask[1]= { 0x01 }; // Only read ATTR1 into resultRow
 const NdbOperation *myOperation=
 myTransaction->readTuple(key_record, (const char*) &row,
 attr_record, (char*) &resultRow,
 NdbOperation::LM_Read, mask,
 &options,
 sizeof(NdbOperation::OperationOptions));
 if (myOperation == NULL)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->execute(NdbTransaction::Commit,
 NdbOperation::AbortOnError) != -1)
 {
 printf(" %2d %2d (frag=%u)\n", resultRow.attr1, i, frag);
 }

515

NDB API Example: Using NdbRecord with Hash Indexes

 myNdb->closeTransaction(myTransaction);
 }

 /***
 * Update the second attribute in half of the tuples (adding 10) *
 ***/
 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL)
 APIERROR(myNdb->getNdbError());

 /* Specify key column to lookup in secondary index */
 row.attr2= i;

 /* Specify new column value to set */
 MyTableRow newRowData;
 newRowData.attr2= i+10;
 unsigned char mask[1]= { 0x02 }; // Only update ATTR2

 const NdbOperation *myOperation=
 myTransaction->updateTuple(key_record, (const char*)&row,
 attr_record,(char*) &newRowData, mask);
 if (myOperation == NULL)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb->closeTransaction(myTransaction);
 }

 /***
 * Delete one tuple (the one with unique key 3) *
 ***/
 {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL)
 APIERROR(myNdb->getNdbError());

 row.attr2= 3;
 const NdbOperation *myOperation=
 myTransaction->deleteTuple(key_record, (const char*) &row,
 attr_record);
 if (myOperation == NULL)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb->closeTransaction(myTransaction);
 }

 /*****************************
 * Read and print all tuples *
 *****************************/
 {
 std::cout << "ATTR1 ATTR2" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb->startTransaction();
 if (myTransaction == NULL)
 APIERROR(myNdb->getNdbError());

 row.attr1= i;

 /* Read using pk. Note the same row space is used as
 * key and result storage space
 */
 const NdbOperation *myOperation=
 myTransaction->readTuple(pk_record, (const char*) &row,
 attr_record, (char*) &row);

516

NDB API Example Comparing RecAttr and NdbRecord

 if (myOperation == NULL)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->execute(NdbTransaction::Commit,
 NdbOperation::AbortOnError) == -1)
 if (i == 3) {
 std::cout << "Detected that deleted tuple doesn't exist!\n";
 } else {
 APIERROR(myTransaction->getNdbError());
 }

 if (i != 3)
 printf(" %2d %2d\n", row.attr1, row.attr2);

 myNdb->closeTransaction(myTransaction);
 }
 }

 delete myNdb;
 delete cluster_connection;

 ndb_end(0);
 return 0;
}

2.5.8 NDB API Example Comparing RecAttr and NdbRecord

This example illustrates the key differences between the old-style NdbRecAttr API and the newer
approach using NdbRecord when performing some common tasks in an NDB API application.

The source code can be found can be found in the file storage/ndb/ndbapi-examples/
ndbapi_recattr_vs_record/main.cpp in the NDB Cluster source tree.

#include <mysql.h>
#include <NdbApi.hpp>

// Used for cout
#include <stdio.h>
#include <iostream>

// Do we use old-style (NdbRecAttr?) or new style (NdbRecord?)
enum ApiType {api_attr, api_record};

static void run_application(MYSQL &, Ndb_cluster_connection &, ApiType);

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ \
 << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

int main(int argc, char** argv)
{
 if (argc != 4)
 {
 std::cout << "Arguments are <socket mysqld> "
 << "<connect_string cluster> <attr|record>.\n";
 exit(-1);
 }
 // ndb_init must be called first
 ndb_init();

 // connect to mysql server and cluster and run application
 {
 char * mysqld_sock = argv[1];

517

NDB API Example Comparing RecAttr and NdbRecord

 const char *connection_string = argv[2];
 ApiType accessType=api_attr;

 // Object representing the cluster
 Ndb_cluster_connection cluster_connection(connection_string);

 // Connect to cluster management server (ndb_mgmd)
 if (cluster_connection.connect(4 /* retries */,
 5 /* delay between retries */,
 1 /* verbose */))
 {
 std::cout << "Management server not ready within 30 sec.\n";
 exit(-1);
 }

 // Optionally connect and wait for the storage nodes (ndbd's)
 if (cluster_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster not ready within 30 sec.\n";
 exit(-1);
 }

 // connect to mysql server
 MYSQL mysql;
 if (!mysql_init(&mysql)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", "", "",
 0, mysqld_sock, 0))
 MYSQLERROR(mysql);

 if (0==strncmp("attr", argv[3], 4))
 {
 accessType=api_attr;
 }
 else if (0==strncmp("record", argv[3], 6))
 {
 accessType=api_record;
 }
 else
 {
 std::cout << "Bad access type argument : "
 << argv[3] << "\n";
 exit(-1);
 }

 // run the application code
 run_application(mysql, cluster_connection, accessType);
 }

 ndb_end(0);

 return 0;
}

static void init_ndbrecord_info(Ndb &);
static void create_table(MYSQL &);
static void do_insert(Ndb &, ApiType);
static void do_update(Ndb &, ApiType);
static void do_delete(Ndb &, ApiType);
static void do_read(Ndb &, ApiType);
static void do_mixed_read(Ndb &);
static void do_mixed_update(Ndb &);
static void do_scan(Ndb &, ApiType);
static void do_mixed_scan(Ndb &);
static void do_indexScan(Ndb &, ApiType);
static void do_mixed_indexScan(Ndb&);
static void do_read_and_delete(Ndb &);
static void do_scan_update(Ndb&, ApiType);
static void do_scan_delete(Ndb&, ApiType);
static void do_scan_lock_reread(Ndb&, ApiType);

518

NDB API Example Comparing RecAttr and NdbRecord

static void do_all_extras_read(Ndb &myNdb);
static void do_secondary_indexScan(Ndb &myNdb, ApiType accessType);
static void do_secondary_indexScanEqual(Ndb &myNdb, ApiType accessType);
static void do_interpreted_update(Ndb &myNdb, ApiType accessType);
static void do_interpreted_scan(Ndb &myNdb, ApiType accessType);
static void do_read_using_default(Ndb &myNdb);

/* This structure is used describe how we want data read using
 * NDBRecord to be placed into memory. This can make it easier
 * to work with data, but is not essential.
 */
struct RowData
{
 int attr1;
 int attr2;
 int attr3;
};

/* Handy struct for representing the data in the
 * secondary index
 */
struct IndexRow
{
 unsigned int attr3;
 unsigned int attr2;
};

static void run_application(MYSQL &mysql,
 Ndb_cluster_connection &cluster_connection,
 ApiType accessType)
{
 /**
 * Connect to database via mysql-c *
 **/
 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);
 create_table(mysql);

 /**
 * Connect to database via NDB API *
 **/
 // Object representing the database
 Ndb myNdb(&cluster_connection, "ndb_examples");
 if (myNdb.init()) APIERROR(myNdb.getNdbError());

 init_ndbrecord_info(myNdb);
 /*
 * Do different operations on database
 */
 do_insert(myNdb, accessType);
 do_update(myNdb, accessType);
 do_delete(myNdb, accessType);
 do_read(myNdb, accessType);
 do_mixed_read(myNdb);
 do_mixed_update(myNdb);
 do_read(myNdb, accessType);
 do_scan(myNdb, accessType);
 do_mixed_scan(myNdb);
 do_indexScan(myNdb, accessType);
 do_mixed_indexScan(myNdb);
 do_read_and_delete(myNdb);
 do_scan_update(myNdb, accessType);
 do_scan_delete(myNdb, accessType);
 do_scan_lock_reread(myNdb, accessType);
 do_all_extras_read(myNdb);
 do_secondary_indexScan(myNdb, accessType);
 do_secondary_indexScanEqual(myNdb, accessType);
 do_scan(myNdb, accessType);
 do_interpreted_update(myNdb, accessType);
 do_interpreted_scan(myNdb, accessType);
 do_read_using_default(myNdb);

519

NDB API Example Comparing RecAttr and NdbRecord

 do_scan(myNdb, accessType);
}

/***
 * Create a table named api_recattr_vs_record if it does not exist *
 ***/
static void create_table(MYSQL &mysql)
{
 if (mysql_query(&mysql,
 "DROP TABLE IF EXISTS"
 " api_recattr_vs_record"))
 MYSQLERROR(mysql);

 if (mysql_query(&mysql,
 "CREATE TABLE"
 " api_recattr_vs_record"
 " (ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,"
 " ATTR2 INT UNSIGNED NOT NULL,"
 " ATTR3 INT UNSIGNED NOT NULL)"
 " ENGINE=NDB"))
 MYSQLERROR(mysql);

 /* Add ordered secondary index on 2 attributes, in reverse order */
 if (mysql_query(&mysql,
 "CREATE INDEX"
 " MYINDEXNAME"
 " ON api_recattr_vs_record"
 " (ATTR3, ATTR2)"))
 MYSQLERROR(mysql);
}

/* Clunky statics for shared NdbRecord stuff */
static const NdbDictionary::Column *pattr1Col;
static const NdbDictionary::Column *pattr2Col;
static const NdbDictionary::Column *pattr3Col;

static const NdbRecord *pkeyColumnRecord;
static const NdbRecord *pallColsRecord;
static const NdbRecord *pkeyIndexRecord;
static const NdbRecord *psecondaryIndexRecord;

static int attr1ColNum;
static int attr2ColNum;
static int attr3ColNum;

/**
 * Initialise NdbRecord structures for table and index access *
 **/
static void init_ndbrecord_info(Ndb &myNdb)
{
 /* Here we create various NdbRecord structures for accessing
 * data using the tables and indexes on api_recattr_vs_record
 * We could use the default NdbRecord structures, but then
 * we wouldn't have the nice ability to read and write rows
 * to and from the RowData and IndexRow structs
 */
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 NdbDictionary::RecordSpecification recordSpec[3];

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 pattr1Col = myTable->getColumn("ATTR1");
 if (pattr1Col == NULL) APIERROR(myDict->getNdbError());
 pattr2Col = myTable->getColumn("ATTR2");
 if (pattr2Col == NULL) APIERROR(myDict->getNdbError());
 pattr3Col = myTable->getColumn("ATTR3");
 if (pattr3Col == NULL) APIERROR(myDict->getNdbError());

520

NDB API Example Comparing RecAttr and NdbRecord

 attr1ColNum = pattr1Col->getColumnNo();
 attr2ColNum = pattr2Col->getColumnNo();
 attr3ColNum = pattr3Col->getColumnNo();

 // ATTR 1
 recordSpec[0].column = pattr1Col;
 recordSpec[0].offset = offsetof(RowData, attr1);
 recordSpec[0].nullbit_byte_offset = 0; // Not nullable
 recordSpec[0].nullbit_bit_in_byte = 0;

 // ATTR 2
 recordSpec[1].column = pattr2Col;
 recordSpec[1].offset = offsetof(RowData, attr2);
 recordSpec[1].nullbit_byte_offset = 0; // Not nullable
 recordSpec[1].nullbit_bit_in_byte = 0;

 // ATTR 3
 recordSpec[2].column = pattr3Col;
 recordSpec[2].offset = offsetof(RowData, attr3);
 recordSpec[2].nullbit_byte_offset = 0; // Not nullable
 recordSpec[2].nullbit_bit_in_byte = 0;

 /* Create table record with just the primary key column */
 pkeyColumnRecord =
 myDict->createRecord(myTable, recordSpec, 1, sizeof(recordSpec[0]));

 if (pkeyColumnRecord == NULL) APIERROR(myDict->getNdbError());

 /* Create table record with all the columns */
 pallColsRecord =
 myDict->createRecord(myTable, recordSpec, 3, sizeof(recordSpec[0]));

 if (pallColsRecord == NULL) APIERROR(myDict->getNdbError());

 /* Create NdbRecord for primary index access */
 const NdbDictionary::Index *myPIndex=
 myDict->getIndex("PRIMARY", "api_recattr_vs_record");

 if (myPIndex == NULL)
 APIERROR(myDict->getNdbError());

 pkeyIndexRecord =
 myDict->createRecord(myPIndex, recordSpec, 1, sizeof(recordSpec[0]));

 if (pkeyIndexRecord == NULL) APIERROR(myDict->getNdbError());

 /* Create Index NdbRecord for secondary index access
 * Note that we use the columns from the table to define the index
 * access record
 */
 const NdbDictionary::Index *mySIndex=
 myDict->getIndex("MYINDEXNAME", "api_recattr_vs_record");

 recordSpec[0].column= pattr3Col;
 recordSpec[0].offset= offsetof(IndexRow, attr3);
 recordSpec[0].nullbit_byte_offset=0;
 recordSpec[0].nullbit_bit_in_byte=0;

 recordSpec[1].column= pattr2Col;
 recordSpec[1].offset= offsetof(IndexRow, attr2);
 recordSpec[1].nullbit_byte_offset=0;
 recordSpec[1].nullbit_bit_in_byte=1;

 /* Create NdbRecord for accessing via secondary index */
 psecondaryIndexRecord =
 myDict->createRecord(mySIndex,
 recordSpec,
 2,
 sizeof(recordSpec[0]));

521

NDB API Example Comparing RecAttr and NdbRecord

 if (psecondaryIndexRecord == NULL)
 APIERROR(myDict->getNdbError());

}

/**
 * Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *
 **/
static void do_insert(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 std::cout << "Running do_insert\n";

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 for (int i = 0; i < 5; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->insertTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i);
 myOperation->setValue("ATTR3", i);

 myOperation= myTransaction->getNdbOperation(myTable);

 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->insertTuple();
 myOperation->equal("ATTR1", i+5);
 myOperation->setValue("ATTR2", i+5);
 myOperation->setValue("ATTR3", i+5);
 break;
 }
 case api_record :
 {
 RowData row;

 row.attr1= row.attr2= row.attr3= i;

 const NdbOperation *pop1=
 myTransaction->insertTuple(pallColsRecord, (char *) &row);
 if (pop1 == NULL) APIERROR(myTransaction->getNdbError());

 row.attr1= row.attr2= row.attr3= i+5;

 const NdbOperation *pop2=
 myTransaction->insertTuple(pallColsRecord, (char *) &row);
 if (pop2 == NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

522

NDB API Example Comparing RecAttr and NdbRecord

 myNdb.closeTransaction(myTransaction);
 }

 std::cout << "-------\n";
}

/***
 * Update the second attribute in half of the tuples (adding 10) *
 ***/
static void do_update(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 std::cout << "Running do_update\n";

 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->updateTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i+10);
 myOperation->setValue("ATTR3", i+20);
 break;
 }
 case api_record :
 {
 RowData row;
 row.attr1=i;
 row.attr2=i+10;
 row.attr3=i+20;

 /* Since we're using an NdbRecord with all columns in it to
 * specify the updated columns, we need to create a mask to
 * indicate that we are only updating attr2 and attr3.
 */
 unsigned char attrMask=(1<<attr2ColNum) | (1<<attr3ColNum);

 const NdbOperation *pop =
 myTransaction->updateTuple(pkeyColumnRecord, (char*) &row,
 pallColsRecord, (char*) &row,
 &attrMask);

 if (pop==NULL) APIERROR(myTransaction->getNdbError());
 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
 }

 std::cout << "-------\n";
};

523

NDB API Example Comparing RecAttr and NdbRecord

/***
 * Delete one tuple (the one with primary key 3) *
 ***/
static void do_delete(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 std::cout << "Running do_delete\n";

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

 myOperation->deleteTuple();
 myOperation->equal("ATTR1", 3);
 break;
 }
 case api_record :
 {
 RowData keyInfo;
 keyInfo.attr1=3;

 const NdbOperation *pop=
 myTransaction->deleteTuple(pkeyColumnRecord,
 (char*) &keyInfo,
 pallColsRecord);

 if (pop==NULL) APIERROR(myTransaction->getNdbError());
 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/***
 * Update the second attribute in half of the tuples (adding 10) *
 ***/
static void do_mixed_update(Ndb &myNdb)
{
 /* This method performs an update using a mix of NdbRecord
 * supplied attributes, and extra setvalues provided by
 * the OperationOptions structure.
 */
 std::cout << "Running do_mixed_update (NdbRecord only)\n";

 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

524

NDB API Example Comparing RecAttr and NdbRecord

 RowData row;
 row.attr1=i;
 row.attr2=i+30;

 /* Only attr2 is updated vian NDBRecord */
 unsigned char attrMask= (1<<attr2ColNum);

 NdbOperation::SetValueSpec setvalspecs[1];

 /* Value to set attr3 to */
 Uint32 dataSource= i + 40;

 setvalspecs[0].column = pattr3Col;
 setvalspecs[0].value = &dataSource;

 NdbOperation::OperationOptions opts;
 opts.optionsPresent= NdbOperation::OperationOptions::OO_SETVALUE;
 opts.extraSetValues= &setvalspecs[0];
 opts.numExtraSetValues= 1;

 // Define mixed operation in one call to NDBAPI
 const NdbOperation *pop =
 myTransaction->updateTuple(pkeyColumnRecord, (char*) &row,
 pallColsRecord, (char*) &row,
 &attrMask,
 &opts);

 if (pop==NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
 }

 std::cout << "-------\n";
}

/***
 * Read and print all tuples using PK access *
 ***/
static void do_read(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 std::cout << "Running do_read\n";

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 RowData rowData;
 NdbRecAttr *myRecAttr;
 NdbRecAttr *myRecAttr2;

 switch (accessType)
 {
 case api_attr :
 {
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

525

NDB API Example Comparing RecAttr and NdbRecord

 myOperation->readTuple(NdbOperation::LM_Read);
 myOperation->equal("ATTR1", i);

 myRecAttr= myOperation->getValue("ATTR2", NULL);
 if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());

 myRecAttr2=myOperation->getValue("ATTR3", NULL);
 if (myRecAttr2 == NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 case api_record :
 {
 rowData.attr1=i;
 const NdbOperation *pop=
 myTransaction->readTuple(pkeyColumnRecord,
 (char*) &rowData,
 pallColsRecord, // Read PK+ATTR2+ATTR3
 (char*) &rowData);
 if (pop==NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->getNdbError().classification == NdbError::NoDataFound)
 if (i == 3)
 std::cout << "Deleted tuple does not exist." << std::endl;
 else
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 if (i != 3) {
 printf(" %2d %2d %2d\n",
 i,
 myRecAttr->u_32_value(),
 myRecAttr2->u_32_value());
 }
 break;
 }
 case api_record :
 {
 if (i !=3) {
 printf(" %2d %2d %2d\n",
 i,
 rowData.attr2,
 rowData.attr3);
 }
 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 myNdb.closeTransaction(myTransaction);
 }

 std::cout << "-------\n";

526

NDB API Example Comparing RecAttr and NdbRecord

}

/*****************************
 * Read and print all tuples *
 *****************************/
static void do_mixed_read(Ndb &myNdb)
{
 std::cout << "Running do_mixed_read (NdbRecord only)\n";

 std::cout << "ATTR1 ATTR2 ATTR3 COMMIT_COUNT" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 RowData rowData;
 NdbRecAttr *myRecAttr3, *myRecAttrCC;

 /* Start with NdbRecord read of ATTR2, and then add
 * getValue NdbRecAttr read of ATTR3 and Commit count
 */
 NdbOperation::GetValueSpec extraCols[2];

 extraCols[0].column=pattr3Col;
 extraCols[0].appStorage=NULL;
 extraCols[0].recAttr=NULL;

 extraCols[1].column=NdbDictionary::Column::COMMIT_COUNT;
 extraCols[1].appStorage=NULL;
 extraCols[1].recAttr=NULL;

 NdbOperation::OperationOptions opts;
 opts.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;

 opts.extraGetValues= &extraCols[0];
 opts.numExtraGetValues= 2;

 /* We only read attr2 using the normal NdbRecord access */
 unsigned char attrMask= (1<<attr2ColNum);

 // Set PK search criteria
 rowData.attr1= i;

 const NdbOperation *pop=
 myTransaction->readTuple(pkeyColumnRecord,
 (char*) &rowData,
 pallColsRecord, // Read all with mask
 (char*) &rowData,
 NdbOperation::LM_Read,
 &attrMask, // result_mask
 &opts);
 if (pop==NULL) APIERROR(myTransaction->getNdbError());

 myRecAttr3= extraCols[0].recAttr;
 myRecAttrCC= extraCols[1].recAttr;

 if (myRecAttr3 == NULL) APIERROR(myTransaction->getNdbError());
 if (myRecAttrCC == NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->getNdbError().classification == NdbError::NoDataFound)
 if (i == 3)
 std::cout << "Deleted tuple does not exist." << std::endl;
 else
 APIERROR(myTransaction->getNdbError());

 if (i !=3) {
 printf(" %2d %2d %2d %d\n",

527

NDB API Example Comparing RecAttr and NdbRecord

 rowData.attr1,
 rowData.attr2,
 myRecAttr3->u_32_value(),
 myRecAttrCC->u_32_value()
);
 }

 myNdb.closeTransaction(myTransaction);
 }

 std::cout << "-------\n";
}

/**
 * Read and print all tuples via table scan *
 **/
static void do_scan(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 std::cout << "Running do_scan\n";

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbScanOperation *psop;
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;

 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbScanOperation(myTable);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 if (psop->readTuples(NdbOperation::LM_Read) != 0)
 APIERROR (myTransaction->getNdbError());

 recAttrAttr1=psop->getValue("ATTR1");
 recAttrAttr2=psop->getValue("ATTR2");
 recAttrAttr3=psop->getValue("ATTR3");

 break;
 }
 case api_record :
 {
 /* Note that no row ptr is passed to the NdbRecord scan operation
 * The scan will fetch a batch and give the user a series of pointers
 * to rows in the batch in nextResult() below
 */
 psop=myTransaction->scanTable(pallColsRecord,
 NdbOperation::LM_Read);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }

528

NDB API Example Comparing RecAttr and NdbRecord

 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 while (psop->nextResult(true) == 0)
 {
 printf(" %2d %2d %2d\n",
 recAttrAttr1->u_32_value(),
 recAttrAttr2->u_32_value(),
 recAttrAttr3->u_32_value());
 }

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int rc=0;

 /* Ask nextResult to update out ptr to point to the next
 * row from the scan
 */
 while ((rc = psop->nextResult((const char**) &prowData,
 true,
 false)) == 0)
 {
 printf(" %2d %2d %2d\n",
 prowData->attr1,
 prowData->attr2,
 prowData->attr3);
 }

 if (rc != 1) APIERROR(myTransaction->getNdbError());

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/***
 * Read and print all tuples via table scan and mixed read *
 ***/
static void do_mixed_scan(Ndb &myNdb)
{
 std::cout << "Running do_mixed_scan(NdbRecord only)\n";

 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

529

NDB API Example Comparing RecAttr and NdbRecord

 NdbScanOperation *psop;
 NdbRecAttr *recAttrAttr3;

 /* Set mask so that NdbRecord scan reads attr1 and attr2 only */
 unsigned char attrMask=((1<<attr1ColNum) | (1<<attr2ColNum));

 /* Define extra get value to get attr3 */
 NdbOperation::GetValueSpec extraGets[1];
 extraGets[0].column = pattr3Col;
 extraGets[0].appStorage= 0;
 extraGets[0].recAttr= 0;

 NdbScanOperation::ScanOptions options;
 options.optionsPresent= NdbScanOperation::ScanOptions::SO_GETVALUE;
 options.extraGetValues= &extraGets[0];
 options.numExtraGetValues= 1;

 psop=myTransaction->scanTable(pallColsRecord,
 NdbOperation::LM_Read,
 &attrMask,
 &options,
 sizeof(NdbScanOperation::ScanOptions));
 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* RecAttr for the extra get has been set by the operation definition */
 recAttrAttr3 = extraGets[0].recAttr;

 if (recAttrAttr3 == NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 RowData *prowData; // Ptr to point to our data

 int rc=0;

 while ((rc = psop->nextResult((const char**) &prowData,
 true,
 false)) == 0)
 {
 printf(" %2d %2d %2d\n",
 prowData->attr1,
 prowData->attr2,
 recAttrAttr3->u_32_value());
 }

 if (rc != 1) APIERROR(myTransaction->getNdbError());

 psop->close(true);

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/**
 * Read and print all tuples via primary ordered index scan *
 **/
static void do_indexScan(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Index *myPIndex=
 myDict->getIndex("PRIMARY", "api_recattr_vs_record");

 std::cout << "Running do_indexScan\n";

530

NDB API Example Comparing RecAttr and NdbRecord

 if (myPIndex == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbIndexScanOperation *psop;

 /* RecAttrs for NdbRecAttr Api */
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;

 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbIndexScanOperation(myPIndex);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* Multi read range is not supported for the NdbRecAttr scan
 * API, so we just read one range.
 */
 Uint32 scanFlags=
 NdbScanOperation::SF_OrderBy |
 NdbScanOperation::SF_MultiRange |
 NdbScanOperation::SF_ReadRangeNo;

 if (psop->readTuples(NdbOperation::LM_Read,
 scanFlags,
 (Uint32) 0, // batch
 (Uint32) 0) != 0) // parallel
 APIERROR (myTransaction->getNdbError());

 /* Add a bound
 * Tuples where ATTR1 >=2 and < 4
 * 2,[3 deleted]
 */
 Uint32 low=2;
 Uint32 high=4;

 if (psop->setBound("ATTR1",
 NdbIndexScanOperation::BoundLE, (char*)&low))
 APIERROR(myTransaction->getNdbError());

 if (psop->setBound("ATTR1",
 NdbIndexScanOperation::BoundGT, (char*)&high))
 APIERROR(myTransaction->getNdbError());

 if (psop->end_of_bound(0))
 APIERROR(psop->getNdbError());

 /* Second bound
 * Tuples where ATTR1 > 5 and <=9
 * 6,7,8,9
 */
 low=5;
 high=9;
 if (psop->setBound("ATTR1",
 NdbIndexScanOperation::BoundLT, (char*)&low))
 APIERROR(myTransaction->getNdbError());

 if (psop->setBound("ATTR1",
 NdbIndexScanOperation::BoundGE, (char*)&high))
 APIERROR(myTransaction->getNdbError());

 if (psop->end_of_bound(1))
 APIERROR(psop->getNdbError());

531

NDB API Example Comparing RecAttr and NdbRecord

 /* Read all columns */
 recAttrAttr1=psop->getValue("ATTR1");
 recAttrAttr2=psop->getValue("ATTR2");
 recAttrAttr3=psop->getValue("ATTR3");

 break;
 }
 case api_record :
 {
 /* NdbRecord supports scanning multiple ranges using a
 * single index scan operation
 */
 Uint32 scanFlags =
 NdbScanOperation::SF_OrderBy |
 NdbScanOperation::SF_MultiRange |
 NdbScanOperation::SF_ReadRangeNo;

 NdbScanOperation::ScanOptions options;
 options.optionsPresent=NdbScanOperation::ScanOptions::SO_SCANFLAGS;
 options.scan_flags=scanFlags;

 psop=myTransaction->scanIndex(pkeyIndexRecord,
 pallColsRecord,
 NdbOperation::LM_Read,
 NULL, // no mask; read all columns
 // in result record
 NULL, // bound defined later
 &options,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* Add a bound
 * Tuples where ATTR1 >=2 and < 4
 * 2,[3 deleted]
 */
 Uint32 low=2;
 Uint32 high=4;

 NdbIndexScanOperation::IndexBound bound;
 bound.low_key=(char*)&low;
 bound.low_key_count=1;
 bound.low_inclusive=true;
 bound.high_key=(char*)&high;
 bound.high_key_count=1;
 bound.high_inclusive=false;
 bound.range_no=0;

 if (psop->setBound(pkeyIndexRecord, bound))
 APIERROR(myTransaction->getNdbError());

 /* Second bound
 * Tuples where ATTR1 > 5 and <=9
 * 6,7,8,9
 */
 low=5;
 high=9;

 bound.low_key=(char*)&low;
 bound.low_key_count=1;
 bound.low_inclusive=false;
 bound.high_key=(char*)&high;
 bound.high_key_count=1;
 bound.high_inclusive=true;
 bound.range_no=1;

 if (psop->setBound(pkeyIndexRecord, bound))
 APIERROR(myTransaction->getNdbError());

 break;
 }
 default :

532

NDB API Example Comparing RecAttr and NdbRecord

 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 if (myTransaction->getNdbError().code != 0)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 while (psop->nextResult(true) == 0)
 {
 printf(" %2d %2d %2d Range no : %2d\n",
 recAttrAttr1->u_32_value(),
 recAttrAttr2->u_32_value(),
 recAttrAttr3->u_32_value(),
 psop->get_range_no());
 }

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int rc=0;

 while ((rc = psop->nextResult((const char**) &prowData,
 true,
 false)) == 0)
 {
 // printf(" PTR : %d\n", (int) prowData);
 printf(" %2d %2d %2d Range no : %2d\n",
 prowData->attr1,
 prowData->attr2,
 prowData->attr3,
 psop->get_range_no());
 }

 if (rc != 1) APIERROR(myTransaction->getNdbError());

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/***
 * Read and print all tuples via index scan using mixed NdbRecord access *

533

NDB API Example Comparing RecAttr and NdbRecord

 ***/
static void do_mixed_indexScan(Ndb &myNdb)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Index *myPIndex=
 myDict->getIndex("PRIMARY", "api_recattr_vs_record");

 std::cout << "Running do_mixed_indexScan\n";

 if (myPIndex == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbIndexScanOperation *psop;
 NdbRecAttr *recAttrAttr3;

 Uint32 scanFlags =
 NdbScanOperation::SF_OrderBy |
 NdbScanOperation::SF_MultiRange |
 NdbScanOperation::SF_ReadRangeNo;

 /* We'll get Attr3 via ScanOptions */
 unsigned char attrMask=((1<<attr1ColNum) | (1<<attr2ColNum));

 NdbOperation::GetValueSpec extraGets[1];
 extraGets[0].column= pattr3Col;
 extraGets[0].appStorage= NULL;
 extraGets[0].recAttr= NULL;

 NdbScanOperation::ScanOptions options;
 options.optionsPresent=
 NdbScanOperation::ScanOptions::SO_SCANFLAGS |
 NdbScanOperation::ScanOptions::SO_GETVALUE;
 options.scan_flags= scanFlags;
 options.extraGetValues= &extraGets[0];
 options.numExtraGetValues= 1;

 psop=myTransaction->scanIndex(pkeyIndexRecord,
 pallColsRecord,
 NdbOperation::LM_Read,
 &attrMask, // mask
 NULL, // bound defined below
 &options,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* Grab RecAttr now */
 recAttrAttr3= extraGets[0].recAttr;

 /* Add a bound
 * ATTR1 >= 2, < 4
 * 2,[3 deleted]
 */
 Uint32 low=2;
 Uint32 high=4;

 NdbIndexScanOperation::IndexBound bound;
 bound.low_key=(char*)&low;
 bound.low_key_count=1;
 bound.low_inclusive=true;
 bound.high_key=(char*)&high;
 bound.high_key_count=1;
 bound.high_inclusive=false;
 bound.range_no=0;

 if (psop->setBound(pkeyIndexRecord, bound))
 APIERROR(myTransaction->getNdbError());

534

NDB API Example Comparing RecAttr and NdbRecord

 /* Second bound
 * ATTR1 > 5, <= 9
 * 6,7,8,9
 */
 low=5;
 high=9;

 bound.low_key=(char*)&low;
 bound.low_key_count=1;
 bound.low_inclusive=false;
 bound.high_key=(char*)&high;
 bound.high_key_count=1;
 bound.high_inclusive=true;
 bound.range_no=1;

 if (psop->setBound(pkeyIndexRecord, bound))
 APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 RowData *prowData; // Ptr to point to our data

 int rc=0;

 while ((rc = psop->nextResult((const char**) &prowData,
 true,
 false)) == 0)
 {
 printf(" %2d %2d %2d Range no : %2d\n",
 prowData->attr1,
 prowData->attr2,
 recAttrAttr3->u_32_value(),
 psop->get_range_no());
 }

 if (rc != 1) APIERROR(myTransaction->getNdbError());

 psop->close(true);

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/**
 * Read + Delete one tuple (the one with primary key 8) *
 **/
static void do_read_and_delete(Ndb &myNdb)
{
 /* This procedure performs a single operation, single round
 * trip read and then delete of a tuple, specified by
 * primary key
 */
 std::cout << "Running do_read_and_delete (NdbRecord only)\n";

 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 RowData row;
 row.attr1=8;
 row.attr2=0; // Don't care
 row.attr3=0; // Don't care

 /* We'll also read some extra columns while we're
 * reading + deleting

535

NDB API Example Comparing RecAttr and NdbRecord

 */
 NdbOperation::OperationOptions options;
 NdbOperation::GetValueSpec extraGets[2];
 extraGets[0].column = pattr3Col;
 extraGets[0].appStorage = NULL;
 extraGets[0].recAttr = NULL;
 extraGets[1].column = NdbDictionary::Column::COMMIT_COUNT;
 extraGets[1].appStorage = NULL;
 extraGets[1].recAttr = NULL;

 options.optionsPresent= NdbOperation::OperationOptions::OO_GETVALUE;
 options.extraGetValues= &extraGets[0];
 options.numExtraGetValues= 2;

 unsigned char attrMask = (1<<attr2ColNum); // Only read Col2 into row

 const NdbOperation *pop=
 myTransaction->deleteTuple(pkeyColumnRecord, // Spec of key used
 (char*) &row, // Key information
 pallColsRecord, // Spec of columns to read
 (char*) &row, // Row to read values into
 &attrMask, // Cols to read as part of delete
 &options,
 sizeof(NdbOperation::OperationOptions));

 if (pop==NULL) APIERROR(myTransaction->getNdbError());

 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 std::cout << "ATTR1 ATTR2 ATTR3 COMMITS" << std::endl;
 printf(" %2d %2d %2d %2d\n",
 row.attr1,
 row.attr2,
 extraGets[0].recAttr->u_32_value(),
 extraGets[1].recAttr->u_32_value());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/* Some handy consts for scan control */
static const int GOT_ROW= 0;
static const int NO_MORE_ROWS= 1;
static const int NEED_TO_FETCH_ROWS= 2;

/***
 * Read and update all tuples via table scan *
 ***/
static void do_scan_update(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "Running do_scan_update\n";

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbScanOperation *psop;
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;

 switch (accessType)
 {
 case api_attr :

536

NDB API Example Comparing RecAttr and NdbRecord

 {
 psop=myTransaction->getNdbScanOperation(myTable);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* When we want to operate on the tuples returned from a
 * scan, we need to request the tuple's keyinfo is
 * returned, with SF_KeyInfo
 */
 if (psop->readTuples(NdbOperation::LM_Read,
 NdbScanOperation::SF_KeyInfo) != 0)
 APIERROR (myTransaction->getNdbError());

 recAttrAttr1=psop->getValue("ATTR1");
 recAttrAttr2=psop->getValue("ATTR2");
 recAttrAttr3=psop->getValue("ATTR3");

 break;
 }
 case api_record :
 {
 NdbScanOperation::ScanOptions options;
 options.optionsPresent= NdbScanOperation::ScanOptions::SO_SCANFLAGS;
 options.scan_flags= NdbScanOperation::SF_KeyInfo;

 psop=myTransaction->scanTable(pallColsRecord,
 NdbOperation::LM_Read,
 NULL, // mask - read all columns
 &options,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {

 int result= NEED_TO_FETCH_ROWS;
 Uint32 processed= 0;

 while (result == NEED_TO_FETCH_ROWS)
 {
 bool fetch=true;
 while ((result = psop->nextResult(fetch)) == GOT_ROW)
 {
 fetch= false;
 Uint32 col2Value=recAttrAttr2->u_32_value();

 NdbOperation *op=psop->updateCurrentTuple();
 if (op==NULL)
 APIERROR(myTransaction->getNdbError());
 op->setValue("ATTR2", (10*col2Value));

 processed++;
 }
 if (result < 0)
 APIERROR(myTransaction->getNdbError());

537

NDB API Example Comparing RecAttr and NdbRecord

 if (processed !=0)
 {
 // Need to execute

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
 processed=0;
 }
 }

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int result= NEED_TO_FETCH_ROWS;
 Uint32 processed=0;

 while (result == NEED_TO_FETCH_ROWS)
 {
 bool fetch= true;
 while ((result = psop->nextResult((const char**) &prowData,
 fetch, false)) == GOT_ROW)
 {
 fetch= false;

 /* Copy row into a stack variable */
 RowData r= *prowData;

 /* Modify attr2 */
 r.attr2*= 10;

 /* Update it */
 const NdbOperation *op = psop->updateCurrentTuple(myTransaction,
 pallColsRecord,
 (char*) &r);

 if (op==NULL)
 APIERROR(myTransaction->getNdbError());

 processed ++;
 }

 if (result < 0)
 APIERROR(myTransaction->getNdbError());

 if (processed !=0)
 {
 /* To get here, there are no more cached scan results,
 * and some row updates that we've not sent yet.
 * Send them before we try to get another batch, or
 * finish.
 */
 if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
 processed=0;
 }
 }

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }

538

NDB API Example Comparing RecAttr and NdbRecord

 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/**
 * Read all and delete some tuples via table scan *
 **/
static void do_scan_delete(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "Running do_scan_delete\n";

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbScanOperation *psop;
 NdbRecAttr *recAttrAttr1;

 /* Scan, retrieving first column.
 * Delete particular records, based on first column
 * Read third column as part of delete
 */
 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbScanOperation(myTable);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* Need KeyInfo when performing scanning delete */
 if (psop->readTuples(NdbOperation::LM_Read,
 NdbScanOperation::SF_KeyInfo) != 0)
 APIERROR (myTransaction->getNdbError());

 recAttrAttr1=psop->getValue("ATTR1");

 break;
 }
 case api_record :
 {

 NdbScanOperation::ScanOptions options;
 options.optionsPresent=NdbScanOperation::ScanOptions::SO_SCANFLAGS;
 /* Need KeyInfo when performing scanning delete */
 options.scan_flags=NdbScanOperation::SF_KeyInfo;

 psop=myTransaction->scanTable(pkeyColumnRecord,
 NdbOperation::LM_Read,
 NULL, // mask
 &options,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {

539

NDB API Example Comparing RecAttr and NdbRecord

 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 int result= NEED_TO_FETCH_ROWS;
 Uint32 processed=0;

 while (result == NEED_TO_FETCH_ROWS)
 {
 bool fetch=true;
 while ((result = psop->nextResult(fetch)) == GOT_ROW)
 {
 fetch= false;
 Uint32 col1Value=recAttrAttr1->u_32_value();

 if (col1Value == 2)
 {
 /* Note : We cannot do a delete pre-read via
 * the NdbRecAttr interface. We can only
 * delete here.
 */
 if (psop->deleteCurrentTuple())
 APIERROR(myTransaction->getNdbError());
 processed++;
 }
 }
 if (result < 0)
 APIERROR(myTransaction->getNdbError());

 if (processed !=0)
 {
 /* To get here, there are no more cached scan results,
 * and some row deletes that we've not sent yet.
 * Send them before we try to get another batch, or
 * finish.
 */
 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
 processed=0;
 }
 }

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int result= NEED_TO_FETCH_ROWS;
 Uint32 processed=0;

 while (result == NEED_TO_FETCH_ROWS)
 {
 bool fetch=true;

 const NdbOperation* theDeleteOp;
 RowData readRow;
 NdbRecAttr* attr3;
 NdbRecAttr* commitCount;

 while ((result = psop->nextResult((const char**) &prowData,
 fetch,

540

NDB API Example Comparing RecAttr and NdbRecord

 false)) == GOT_ROW)
 {
 fetch = false;

 /* Copy latest row to a stack local */
 RowData r;
 r= *prowData;

 if (r.attr1 == 2)
 {
 /* We're going to perform a read+delete on this
 * row. We'll read attr1 and attr2 vian NDBRecord
 * and Attr3 and the commit count via extra
 * get values.
 */
 NdbOperation::OperationOptions options;
 NdbOperation::GetValueSpec extraGets[2];
 extraGets[0].column = pattr3Col;
 extraGets[0].appStorage = NULL;
 extraGets[0].recAttr = NULL;
 extraGets[1].column = NdbDictionary::Column::COMMIT_COUNT;
 extraGets[1].appStorage = NULL;
 extraGets[1].recAttr = NULL;

 options.optionsPresent= NdbOperation::OperationOptions::OO_GETVALUE;
 options.extraGetValues= &extraGets[0];
 options.numExtraGetValues= 2;

 // Read cols 1 + 2 vian NDBRecord
 unsigned char attrMask =
 (1<<attr1ColNum) | (1<<attr2ColNum);

 theDeleteOp =
 psop->deleteCurrentTuple(myTransaction,
 pallColsRecord,
 (char*) &readRow,
 &attrMask,
 &options,
 sizeof(NdbOperation::OperationOptions)
);

 if (theDeleteOp==NULL)
 APIERROR(myTransaction->getNdbError());

 /* Store extra Get RecAttrs */
 attr3= extraGets[0].recAttr;
 commitCount= extraGets[1].recAttr;

 processed ++;
 }
 }

 if (result < 0)
 APIERROR(myTransaction->getNdbError());

 if (processed !=0)
 {
 /* To get here, there are no more cached scan results,
 * and some row deletes that we've not sent yet.
 * Send them before we try to get another batch, or
 * finish.
 */
 if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
 processed=0;

 // Let's look at the data just read
 printf("Deleted data\n");
 printf("ATTR1 ATTR2 ATTR3 COMMITS\n");
 printf(" %2d %2d %2d %2d\n",
 readRow.attr1,

541

NDB API Example Comparing RecAttr and NdbRecord

 readRow.attr2,
 attr3->u_32_value(),
 commitCount->u_32_value());
 }
 }

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/***
 * Read all tuples via scan, reread one with lock takeover *
 ***/
static void do_scan_lock_reread(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "Running do_scan_lock_reread\n";

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbScanOperation *psop;
 NdbRecAttr *recAttrAttr1;

 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbScanOperation(myTable);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* Need KeyInfo for lock takeover */
 if (psop->readTuples(NdbOperation::LM_Read,
 NdbScanOperation::SF_KeyInfo) != 0)
 APIERROR (myTransaction->getNdbError());

 recAttrAttr1=psop->getValue("ATTR1");

 break;
 }
 case api_record :
 {
 NdbScanOperation::ScanOptions options;
 options.optionsPresent= NdbScanOperation::ScanOptions::SO_SCANFLAGS;
 /* Need KeyInfo for lock takeover */
 options.scan_flags= NdbScanOperation::SF_KeyInfo;

 psop=myTransaction->scanTable(pkeyColumnRecord,

542

NDB API Example Comparing RecAttr and NdbRecord

 NdbOperation::LM_Read,
 NULL, // mask
 &options,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 int result= NEED_TO_FETCH_ROWS;
 Uint32 processed=0;
 NdbRecAttr *attr1, *attr2, *attr3, *commitCount;

 while (result == NEED_TO_FETCH_ROWS)
 {
 bool fetch=true;
 while ((result = psop->nextResult(fetch)) == GOT_ROW)
 {
 fetch= false;
 Uint32 col1Value=recAttrAttr1->u_32_value();

 if (col1Value == 9)
 {
 /* Let's read the rest of the info for it with
 * a separate operation
 */
 NdbOperation *op= psop->lockCurrentTuple();

 if (op==NULL)
 APIERROR(myTransaction->getNdbError());
 attr1=op->getValue("ATTR1");
 attr2=op->getValue("ATTR2");
 attr3=op->getValue("ATTR3");
 commitCount=op->getValue(NdbDictionary::Column::COMMIT_COUNT);
 processed++;
 }
 }
 if (result < 0)
 APIERROR(myTransaction->getNdbError());

 if (processed !=0)
 {
 // Need to execute

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
 processed=0;

 // Let's look at the whole row...
 printf("Locked and re-read data:\n");
 printf("ATTR1 ATTR2 ATTR3 COMMITS\n");
 printf(" %2d %2d %2d %2d\n",
 attr1->u_32_value(),
 attr2->u_32_value(),
 attr3->u_32_value(),
 commitCount->u_32_value());
 }
 }

543

NDB API Example Comparing RecAttr and NdbRecord

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int result= NEED_TO_FETCH_ROWS;
 Uint32 processed=0;
 RowData rereadData;
 NdbRecAttr *attr3, *commitCount;

 while (result == NEED_TO_FETCH_ROWS)
 {
 bool fetch=true;
 while ((result = psop->nextResult((const char**) &prowData,
 fetch,
 false)) == GOT_ROW)
 {
 fetch = false;

 /* Copy row to stack local */
 RowData r;
 r=*prowData;

 if (r.attr1 == 9)
 {
 /* Perform extra read of this row via lockCurrentTuple
 * Read all columns using NdbRecord for attr1 + attr2,
 * and extra get values for attr3 and the commit count
 */
 NdbOperation::OperationOptions options;
 NdbOperation::GetValueSpec extraGets[2];
 extraGets[0].column = pattr3Col;
 extraGets[0].appStorage = NULL;
 extraGets[0].recAttr = NULL;
 extraGets[1].column = NdbDictionary::Column::COMMIT_COUNT;
 extraGets[1].appStorage = NULL;
 extraGets[1].recAttr = NULL;

 options.optionsPresent=NdbOperation::OperationOptions::OO_GETVALUE;
 options.extraGetValues=&extraGets[0];
 options.numExtraGetValues=2;

 // Read cols 1 + 2 vian NDBRecord
 unsigned char attrMask =
 (1<<attr1ColNum) | (1<<attr2ColNum);

 const NdbOperation *lockOp =
 psop->lockCurrentTuple(myTransaction,
 pallColsRecord,
 (char *) &rereadData,
 &attrMask,
 &options,
 sizeof(NdbOperation::OperationOptions)
);
 if (lockOp == NULL)
 APIERROR(myTransaction->getNdbError());

 attr3= extraGets[0].recAttr;
 commitCount= extraGets[1].recAttr;

 processed++;
 }
 }

 if (result < 0)
 APIERROR(myTransaction->getNdbError());

544

NDB API Example Comparing RecAttr and NdbRecord

 if (processed !=0)
 {
 // Need to execute

 if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
 processed=0;

 // Let's look at the whole row...
 printf("Locked and re-read data:\n");
 printf("ATTR1 ATTR2 ATTR3 COMMITS\n");
 printf(" %2d %2d %2d %2d\n",
 rereadData.attr1,
 rereadData.attr2,
 attr3->u_32_value(),
 commitCount->u_32_value());

 }
 }

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/***
 * Read all tuples via primary key, using only extra getValues *
 ***/
static void do_all_extras_read(Ndb &myNdb)
{
 std::cout << "Running do_all_extras_read(NdbRecord only)\n";
 std::cout << "ATTR1 ATTR2 ATTR3 COMMIT_COUNT" << std::endl;

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 RowData rowData;
 NdbRecAttr *myRecAttr1, *myRecAttr2, *myRecAttr3, *myRecAttrCC;

 /* We read nothing vian NDBRecord, and everything via
 * 'extra' reads
 */
 NdbOperation::GetValueSpec extraCols[4];

 extraCols[0].column=pattr1Col;
 extraCols[0].appStorage=NULL;
 extraCols[0].recAttr=NULL;

 extraCols[1].column=pattr2Col;
 extraCols[1].appStorage=NULL;
 extraCols[1].recAttr=NULL;

 extraCols[2].column=pattr3Col;
 extraCols[2].appStorage=NULL;
 extraCols[2].recAttr=NULL;

 extraCols[3].column=NdbDictionary::Column::COMMIT_COUNT;

545

NDB API Example Comparing RecAttr and NdbRecord

 extraCols[3].appStorage=NULL;
 extraCols[3].recAttr=NULL;

 NdbOperation::OperationOptions opts;
 opts.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;

 opts.extraGetValues=&extraCols[0];
 opts.numExtraGetValues=4;

 unsigned char attrMask= 0; // No row results required.

 // Set PK search criteria
 rowData.attr1= i;

 const NdbOperation *pop=
 myTransaction->readTuple(pkeyColumnRecord,
 (char*) &rowData,
 pkeyColumnRecord,
 NULL, // null result row
 NdbOperation::LM_Read,
 &attrMask,
 &opts);
 if (pop==NULL) APIERROR(myTransaction->getNdbError());

 myRecAttr1=extraCols[0].recAttr;
 myRecAttr2=extraCols[1].recAttr;
 myRecAttr3=extraCols[2].recAttr;
 myRecAttrCC=extraCols[3].recAttr;

 if (myRecAttr1 == NULL) APIERROR(myTransaction->getNdbError());
 if (myRecAttr2 == NULL) APIERROR(myTransaction->getNdbError());
 if (myRecAttr3 == NULL) APIERROR(myTransaction->getNdbError());
 if (myRecAttrCC == NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 bool deleted= (myTransaction->getNdbError().classification ==
 NdbError::NoDataFound);
 if (deleted)
 printf("Detected that deleted tuple %d doesn't exist!\n", i);
 else
 {
 printf(" %2d %2d %2d %d\n",
 myRecAttr1->u_32_value(),
 myRecAttr2->u_32_value(),
 myRecAttr3->u_32_value(),
 myRecAttrCC->u_32_value()
);
 }

 myNdb.closeTransaction(myTransaction);
 }

 std::cout << "-------\n";
}

/**
 * Read and print some tuples via bounded scan of secondary index *
 **/
static void do_secondary_indexScan(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Index *mySIndex=
 myDict->getIndex("MYINDEXNAME", "api_recattr_vs_record");

 std::cout << "Running do_secondary_indexScan\n";
 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

546

NDB API Example Comparing RecAttr and NdbRecord

 NdbIndexScanOperation *psop;
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;

 Uint32 scanFlags =
 NdbScanOperation::SF_OrderBy |
 NdbScanOperation::SF_Descending |
 NdbScanOperation::SF_MultiRange |
 NdbScanOperation::SF_ReadRangeNo;

 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbIndexScanOperation(mySIndex);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 if (psop->readTuples(NdbOperation::LM_Read,
 scanFlags,
 (Uint32) 0, // batch
 (Uint32) 0) != 0) // parallel
 APIERROR (myTransaction->getNdbError());

 /* Bounds :
 * > ATTR3=6
 * < ATTR3=42
 */
 Uint32 low=6;
 Uint32 high=42;

 if (psop->setBound("ATTR3",
 NdbIndexScanOperation::BoundLT, (char*)&low))
 APIERROR(psop->getNdbError());

 if (psop->setBound("ATTR3",
 NdbIndexScanOperation::BoundGT, (char*)&high))
 APIERROR(psop->getNdbError());

 recAttrAttr1=psop->getValue("ATTR1");
 recAttrAttr2=psop->getValue("ATTR2");
 recAttrAttr3=psop->getValue("ATTR3");

 break;
 }
 case api_record :
 {

 NdbScanOperation::ScanOptions options;
 options.optionsPresent=NdbScanOperation::ScanOptions::SO_SCANFLAGS;
 options.scan_flags=scanFlags;

 psop=myTransaction->scanIndex(psecondaryIndexRecord,
 pallColsRecord,
 NdbOperation::LM_Read,
 NULL, // mask
 NULL, // bound
 &options,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* Bounds :
 * > ATTR3=6
 * < ATTR3=42
 */
 Uint32 low=6;
 Uint32 high=42;

 NdbIndexScanOperation::IndexBound bound;

547

NDB API Example Comparing RecAttr and NdbRecord

 bound.low_key=(char*)&low;
 bound.low_key_count=1;
 bound.low_inclusive=false;
 bound.high_key=(char*)&high;
 bound.high_key_count=1;
 bound.high_inclusive=false;
 bound.range_no=0;

 if (psop->setBound(psecondaryIndexRecord, bound))
 APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 // Check rc anyway
 if (myTransaction->getNdbError().status != NdbError::Success)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 while (psop->nextResult(true) == 0)
 {
 printf(" %2d %2d %2d Range no : %2d\n",
 recAttrAttr1->u_32_value(),
 recAttrAttr2->u_32_value(),
 recAttrAttr3->u_32_value(),
 psop->get_range_no());
 }

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int rc=0;

 while ((rc = psop->nextResult((const char**) &prowData,
 true,
 false)) == 0)
 {
 // printf(" PTR : %d\n", (int) prowData);
 printf(" %2d %2d %2d Range no : %2d\n",
 prowData->attr1,
 prowData->attr2,
 prowData->attr3,
 psop->get_range_no());
 }

 if (rc != 1) APIERROR(myTransaction->getNdbError());

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);

548

NDB API Example Comparing RecAttr and NdbRecord

 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/***
 * Index scan to read tuples from secondary index using equality bound *
 ***/
static void do_secondary_indexScanEqual(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Index *mySIndex=
 myDict->getIndex("MYINDEXNAME", "api_recattr_vs_record");

 std::cout << "Running do_secondary_indexScanEqual\n";
 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbIndexScanOperation *psop;
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;

 Uint32 scanFlags = NdbScanOperation::SF_OrderBy;

 Uint32 attr3Eq= 44;

 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbIndexScanOperation(mySIndex);

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 if (psop->readTuples(NdbOperation::LM_Read,
 scanFlags,
 (Uint32) 0, // batch
 (Uint32) 0) != 0) // parallel
 APIERROR (myTransaction->getNdbError());

 if (psop->setBound("ATTR3",
 NdbIndexScanOperation::BoundEQ, (char*)&attr3Eq))
 APIERROR(myTransaction->getNdbError());

 recAttrAttr1=psop->getValue("ATTR1");
 recAttrAttr2=psop->getValue("ATTR2");
 recAttrAttr3=psop->getValue("ATTR3");

 break;
 }
 case api_record :
 {

 NdbScanOperation::ScanOptions options;
 options.optionsPresent= NdbScanOperation::ScanOptions::SO_SCANFLAGS;
 options.scan_flags=scanFlags;

 psop=myTransaction->scanIndex(psecondaryIndexRecord,
 pallColsRecord, // Read all table rows back
 NdbOperation::LM_Read,
 NULL, // mask
 NULL, // bound specified below

549

NDB API Example Comparing RecAttr and NdbRecord

 &options,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 /* Set equality bound via two inclusive bounds */
 NdbIndexScanOperation::IndexBound bound;
 bound.low_key= (char*)&attr3Eq;
 bound.low_key_count= 1;
 bound.low_inclusive= true;
 bound.high_key= (char*)&attr3Eq;
 bound.high_key_count= 1;
 bound.high_inclusive= true;
 bound.range_no= 0;

 if (psop->setBound(psecondaryIndexRecord, bound))
 APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 // Check rc anyway
 if (myTransaction->getNdbError().status != NdbError::Success)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 int res;

 while ((res= psop->nextResult(true)) == GOT_ROW)
 {
 printf(" %2d %2d %2d\n",
 recAttrAttr1->u_32_value(),
 recAttrAttr2->u_32_value(),
 recAttrAttr3->u_32_value());
 }

 if (res != NO_MORE_ROWS)
 APIERROR(psop->getNdbError());

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int rc=0;

 while ((rc = psop->nextResult((const char**) &prowData,
 true, // fetch
 false)) // forceSend
 == GOT_ROW)
 {
 printf(" %2d %2d %2d\n",
 prowData->attr1,
 prowData->attr2,
 prowData->attr3);
 }

550

NDB API Example Comparing RecAttr and NdbRecord

 if (rc != NO_MORE_ROWS)
 APIERROR(myTransaction->getNdbError());

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/**********************
 * Interpreted update *
 **********************/
static void do_interpreted_update(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();

 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 const NdbDictionary::Index *myPIndex=
 myDict->getIndex("PRIMARY", "api_recattr_vs_record");

 std::cout << "Running do_interpreted_update\n";

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 if (myPIndex == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;
 NdbRecAttr *recAttrAttr11;
 NdbRecAttr *recAttrAttr12;
 NdbRecAttr *recAttrAttr13;
 RowData rowData;
 RowData rowData2;

 /* Register aliases */
 const Uint32 R1=1, R2=2, R3=3, R4=4, R5=5, R6=6;

 switch (accessType)
 {
 case api_attr :
 {
 NdbOperation *pop;
 pop=myTransaction->getNdbOperation(myTable);

 if (pop == NULL) APIERROR(myTransaction->getNdbError());

 if (pop->interpretedUpdateTuple())
 APIERROR (pop->getNdbError());

551

NDB API Example Comparing RecAttr and NdbRecord

 /* Interpreted update on row where ATTR1 == 4 */
 if (pop->equal("ATTR1", 4) != 0)
 APIERROR (pop->getNdbError());

 /* First, read the values of all attributes in the normal way */
 recAttrAttr1=pop->getValue("ATTR1");
 recAttrAttr2=pop->getValue("ATTR2");
 recAttrAttr3=pop->getValue("ATTR3");

 /* Now define interpreted program which will run after the
 * values have been read
 * This program is rather tortuous and doesn't achieve much other
 * than demonstrating control flow, register and some column
 * operations
 */
 // R5= 3
 if (pop->load_const_u32(R5, 3) != 0)
 APIERROR (pop->getNdbError());

 // R1= *ATTR1; R2= *ATTR2; R3= *ATTR3
 if (pop->read_attr("ATTR1", R1) != 0)
 APIERROR (pop->getNdbError());
 if (pop->read_attr("ATTR2", R2) != 0)
 APIERROR (pop->getNdbError());
 if (pop->read_attr("ATTR3", R3) != 0)
 APIERROR (pop->getNdbError());

 // R3= R3-R5
 if (pop->sub_reg(R3, R5, R3) != 0)
 APIERROR (pop->getNdbError());

 // R2= R1+R2
 if (pop->add_reg(R1, R2, R2) != 0)
 APIERROR (pop->getNdbError());

 // *ATTR2= R2
 if (pop->write_attr("ATTR2", R2) != 0)
 APIERROR (pop->getNdbError());

 // *ATTR3= R3
 if (pop->write_attr("ATTR3", R3) != 0)
 APIERROR (pop->getNdbError());

 // *ATTR3 = *ATTR3 - 30
 if (pop->subValue("ATTR3", (Uint32)30) != 0)
 APIERROR (pop->getNdbError());

 Uint32 comparisonValue= 10;

 // if *ATTR3 > comparisonValue, goto Label 0
 if (pop->branch_col_lt(pattr3Col->getColumnNo(),
 &comparisonValue,
 sizeof(Uint32),
 false,
 0) != 0)
 APIERROR (pop->getNdbError());

 // assert(false)
 // Fail the operation with error 627 if we get here.
 if (pop->interpret_exit_nok(627) != 0)
 APIERROR (pop->getNdbError());

 // Label 0
 if (pop->def_label(0) != 0)
 APIERROR (pop->getNdbError());

 Uint32 comparisonValue2= 344;

 // if *ATTR2 == comparisonValue, goto Label 1
 if (pop->branch_col_eq(pattr2Col->getColumnNo(),
 &comparisonValue2,
 sizeof(Uint32),

552

NDB API Example Comparing RecAttr and NdbRecord

 false,
 1) != 0)
 APIERROR (pop->getNdbError());

 // assert(false)
 // Fail the operation with error 628 if we get here
 if (pop->interpret_exit_nok(628) != 0)
 APIERROR (pop->getNdbError());

 // Label 1
 if (pop->def_label(1) != 1)
 APIERROR (pop->getNdbError());

 // Optional infinite loop
 //if (pop->branch_label(0) != 0)
 // APIERROR (pop->getNdbError());

 // R1 = 10
 if (pop->load_const_u32(R1, 10) != 0)
 APIERROR (pop->getNdbError());

 // R3 = 2
 if (pop->load_const_u32(R3, 2) != 0)
 APIERROR (pop->getNdbError());

 // Now call subroutine 0
 if (pop->call_sub(0) != 0)
 APIERROR (pop->getNdbError());

 // *ATTR2= R2
 if (pop->write_attr("ATTR2", R2) != 0)
 APIERROR (pop->getNdbError());

 // Return ok, we'll move onto an update.
 if (pop->interpret_exit_ok() != 0)
 APIERROR (pop->getNdbError());

 /* Define a final read of the columns after the update */
 recAttrAttr11= pop->getValue("ATTR1");
 recAttrAttr12= pop->getValue("ATTR2");
 recAttrAttr13= pop->getValue("ATTR3");

 // Define any subroutines called by the 'main' program
 // Subroutine 0
 if (pop->def_subroutine(0) != 0)
 APIERROR (pop->getNdbError());

 // R4= 1
 if (pop->load_const_u32(R4, 1) != 0)
 APIERROR (pop->getNdbError());

 // Label 2
 if (pop->def_label(2) != 2)
 APIERROR (pop->getNdbError());

 // R3= R3-R4
 if (pop->sub_reg(R3, R4, R3) != 0)
 APIERROR (pop->getNdbError());

 // R2= R2 + R1
 if (pop->add_reg(R2, R1, R2) != 0)
 APIERROR (pop->getNdbError());

 // Optional infinite loop
 // if (pop->branch_label(2) != 0)
 // APIERROR (pop->getNdbError());

 // Loop, subtracting 1 from R4 until R4 < 1
 if (pop->branch_ge(R4, R3, 2) != 0)
 APIERROR (pop->getNdbError());

 // Jump to label 3

553

NDB API Example Comparing RecAttr and NdbRecord

 if (pop->branch_label(3) != 0)
 APIERROR (pop->getNdbError());

 // assert(false)
 // Fail operation with error 629
 if (pop->interpret_exit_nok(629) != 0)
 APIERROR (pop->getNdbError());

 // Label 3
 if (pop->def_label(3) != 3)
 APIERROR (pop->getNdbError());

 // Nested subroutine call to sub 2
 if (pop->call_sub(2) != 0)
 APIERROR (pop->getNdbError());

 // Return from subroutine 0
 if (pop->ret_sub() !=0)
 APIERROR (pop->getNdbError());

 // Subroutine 1
 if (pop->def_subroutine(1) != 1)
 APIERROR (pop->getNdbError());

 // R6= R1+R2
 if (pop->add_reg(R1, R2, R6) != 0)
 APIERROR (pop->getNdbError());

 // Return from subrouine 1
 if (pop->ret_sub() !=0)
 APIERROR (pop->getNdbError());

 // Subroutine 2
 if (pop->def_subroutine(2) != 2)
 APIERROR (pop->getNdbError());

 // Call backward to subroutine 1
 if (pop->call_sub(1) != 0)
 APIERROR (pop->getNdbError());

 // Return from subroutine 2
 if (pop->ret_sub() !=0)
 APIERROR (pop->getNdbError());

 break;
 }
 case api_record :
 {
 const NdbOperation *pop;
 rowData.attr1= 4;

 /* NdbRecord does not support an updateTuple pre-read or post-read, so
 * we use separate operations for these.
 * Note that this assumes that a operations are executed in
 * the order they are defined by NDBAPI, which is not guaranteed. To
 * ensure execution order, the application should perform a NoCommit
 * execute between operations.
 */

 const NdbOperation *op0= myTransaction->readTuple(pkeyColumnRecord,
 (char*) &rowData,
 pallColsRecord,
 (char*) &rowData);
 if (op0 == NULL)
 APIERROR (myTransaction->getNdbError());

 /* Allocate some space to define an Interpreted program */
 const Uint32 numWords= 64;
 Uint32 space[numWords];

 NdbInterpretedCode stackCode(myTable,
 &space[0],

554

NDB API Example Comparing RecAttr and NdbRecord

 numWords);

 NdbInterpretedCode *code= &stackCode;

 /* Similar program as above, with tortuous control flow and little
 * purpose. Note that for NdbInterpretedCode, some instruction
 * arguments are in different orders
 */

 // R5= 3
 if (code->load_const_u32(R5, 3) != 0)
 APIERROR(code->getNdbError());

 // R1= *ATTR1; R2= *ATTR2; R3= *ATTR3
 if (code->read_attr(R1, pattr1Col) != 0)
 APIERROR (code->getNdbError());
 if (code->read_attr(R2, pattr2Col) != 0)
 APIERROR (code->getNdbError());
 if (code->read_attr(R3, pattr3Col) != 0)
 APIERROR (code->getNdbError());

 // R3= R3-R5
 if (code->sub_reg(R3, R3, R5) != 0)
 APIERROR (code->getNdbError());

 // R2= R1+R2
 if (code->add_reg(R2, R1, R2) != 0)
 APIERROR (code->getNdbError());

 // *ATTR2= R2
 if (code->write_attr(pattr2Col, R2) != 0)
 APIERROR (code->getNdbError());

 // *ATTR3= R3
 if (code->write_attr(pattr3Col, R3) != 0)
 APIERROR (code->getNdbError());

 // *ATTR3 = *ATTR3 - 30
 if (code->sub_val(pattr3Col->getColumnNo(), (Uint32)30) != 0)
 APIERROR (code->getNdbError());

 Uint32 comparisonValue= 10;

 // if comparisonValue < *ATTR3, goto Label 0
 if (code->branch_col_lt(&comparisonValue,
 sizeof(Uint32),
 pattr3Col->getColumnNo(),
 0) != 0)
 APIERROR (code->getNdbError());

 // assert(false)
 // Fail operation with error 627
 if (code->interpret_exit_nok(627) != 0)
 APIERROR (code->getNdbError());

 // Label 0
 if (code->def_label(0) != 0)
 APIERROR (code->getNdbError());

 Uint32 comparisonValue2= 344;

 // if *ATTR2 == comparisonValue, goto Label 1
 if (code->branch_col_eq(&comparisonValue2,
 sizeof(Uint32),
 pattr2Col->getColumnNo(),
 1) != 0)
 APIERROR (code->getNdbError());

 // assert(false)
 // Fail operation with error 628
 if (code->interpret_exit_nok(628) != 0)
 APIERROR (code->getNdbError());

555

NDB API Example Comparing RecAttr and NdbRecord

 // Label 1
 if (code->def_label(1) != 0)
 APIERROR (code->getNdbError());

 // R1= 10
 if (code->load_const_u32(R1, 10) != 0)
 APIERROR (code->getNdbError());

 // R3= 2
 if (code->load_const_u32(R3, 2) != 0)
 APIERROR (code->getNdbError());

 // Call subroutine 0 to effect
 // R2 = R2 + (R1*R3)
 if (code->call_sub(0) != 0)
 APIERROR (code->getNdbError());

 // *ATTR2= R2
 if (code->write_attr(pattr2Col, R2) != 0)
 APIERROR (code->getNdbError());

 // Return ok
 if (code->interpret_exit_ok() != 0)
 APIERROR (code->getNdbError());

 // Subroutine 0
 if (code->def_sub(0) != 0)
 APIERROR (code->getNdbError());

 // R4= 1
 if (code->load_const_u32(R4, 1) != 0)
 APIERROR (code->getNdbError());

 // Label 2
 if (code->def_label(2) != 0)
 APIERROR (code->getNdbError());

 // R3= R3-R4
 if (code->sub_reg(R3, R3, R4) != 0)
 APIERROR (code->getNdbError());

 // R2= R2+R1
 if (code->add_reg(R2, R2, R1) != 0)
 APIERROR (code->getNdbError());

 // Loop, subtracting 1 from R4 until R4>1
 if (code->branch_ge(R3, R4, 2) != 0)
 APIERROR (code->getNdbError());

 // Jump to label 3
 if (code->branch_label(3) != 0)
 APIERROR (code->getNdbError());

 // Fail operation with error 629
 if (code->interpret_exit_nok(629) != 0)
 APIERROR (code->getNdbError());

 // Label 3
 if (code->def_label(3) != 0)
 APIERROR (code->getNdbError());

 // Call sub 2
 if (code->call_sub(2) != 0)
 APIERROR (code->getNdbError());

 // Return from sub 0
 if (code->ret_sub() != 0)
 APIERROR (code->getNdbError());

 // Subroutine 1
 if (code->def_sub(1) != 0)

556

NDB API Example Comparing RecAttr and NdbRecord

 APIERROR (code->getNdbError());

 // R6= R1+R2
 if (code->add_reg(R6, R1, R2) != 0)
 APIERROR (code->getNdbError());

 // Return from subroutine 1
 if (code->ret_sub() !=0)
 APIERROR (code->getNdbError());

 // Subroutine 2
 if (code->def_sub(2) != 0)
 APIERROR (code->getNdbError());

 // Call backward to subroutine 1
 if (code->call_sub(1) != 0)
 APIERROR (code->getNdbError());

 // Return from subroutine 2
 if (code->ret_sub() !=0)
 APIERROR (code->getNdbError());

 /* Finalise code object
 * This step is essential for NdbInterpretedCode objects
 * and must be done before they can be used.
 */
 if (code->finalise() !=0)
 APIERROR (code->getNdbError());

 /* Time to define the update operation to use the
 * InterpretedCode object. The same finalised object
 * could be used with multiple operations or even
 * multiple threads
 */
 NdbOperation::OperationOptions oo;
 oo.optionsPresent=
 NdbOperation::OperationOptions::OO_INTERPRETED;
 oo.interpretedCode= code;

 unsigned char mask= 0;

 pop= myTransaction->updateTuple(pkeyColumnRecord,
 (char*) &rowData,
 pallColsRecord,
 (char*) &rowData,
 (const unsigned char *) &mask,
 // mask - update nothing
 &oo,
 sizeof(NdbOperation::OperationOptions));
 if (pop == NULL)
 APIERROR (myTransaction->getNdbError());

 // NoCommit execute so we can read the 'after' data.
 if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 /* Second read op as we can't currently do a 'read after
 * 'interpreted code' read as part of NdbRecord.
 * We are assuming that the order of op definition == order
 * of execution on a single row, which is not guaranteed.
 */
 const NdbOperation *pop2=
 myTransaction->readTuple(pkeyColumnRecord,
 (char*) &rowData,
 pallColsRecord,
 (char*) &rowData2);
 if (pop2 == NULL)
 APIERROR (myTransaction->getNdbError());

 break;
 }
 default :

557

NDB API Example Comparing RecAttr and NdbRecord

 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 // Check return code
 if (myTransaction->getNdbError().status != NdbError::Success)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 printf(" %2d %2d %2d Before\n"
 " %2d %2d %2d After\n",
 recAttrAttr1->u_32_value(),
 recAttrAttr2->u_32_value(),
 recAttrAttr3->u_32_value(),
 recAttrAttr11->u_32_value(),
 recAttrAttr12->u_32_value(),
 recAttrAttr13->u_32_value());
 break;
 }

 case api_record :
 {
 printf(" %2d %2d %2d Before\n"
 " %2d %2d %2d After\n",
 rowData.attr1,
 rowData.attr2,
 rowData.attr3,
 rowData2.attr1,
 rowData2.attr2,
 rowData2.attr3);
 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

 std::cout << "-------\n";
}

/**
 * Read and print selected rows with interpreted code *
 **/
static void do_interpreted_scan(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 std::cout << "Running do_interpreted_scan\n";

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

558

NDB API Example Comparing RecAttr and NdbRecord

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbScanOperation *psop;
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;

 /* Create some space on the stack for the program */
 const Uint32 numWords= 64;
 Uint32 space[numWords];

 NdbInterpretedCode stackCode(myTable,
 &space[0],
 numWords);

 NdbInterpretedCode *code= &stackCode;

 /* RecAttr and NdbRecord scans both use NdbInterpretedCode
 * Let's define a small scan filter of sorts
 */
 Uint32 comparisonValue= 10;

 // Return rows where 10 > ATTR3 (ATTR3 <10)
 if (code->branch_col_gt(&comparisonValue,
 sizeof(Uint32),
 pattr3Col->getColumnNo(),
 0) != 0)
 APIERROR (myTransaction->getNdbError());

 /* If we get here then we don't return this row */
 if (code->interpret_exit_nok() != 0)
 APIERROR (myTransaction->getNdbError());

 /* Label 0 */
 if (code->def_label(0) != 0)
 APIERROR (myTransaction->getNdbError());

 /* Return this row */
 if (code->interpret_exit_ok() != 0)
 APIERROR (myTransaction->getNdbError());

 /* Finalise the Interpreted Program */
 if (code->finalise() != 0)
 APIERROR (myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbScanOperation(myTable);

 if (psop == NULL)
 APIERROR(myTransaction->getNdbError());

 if (psop->readTuples(NdbOperation::LM_Read) != 0)
 APIERROR (myTransaction->getNdbError());

 if (psop->setInterpretedCode(code) != 0)
 APIERROR (myTransaction->getNdbError());

 recAttrAttr1=psop->getValue("ATTR1");
 recAttrAttr2=psop->getValue("ATTR2");
 recAttrAttr3=psop->getValue("ATTR3");

 break;
 }
 case api_record :
 {
 NdbScanOperation::ScanOptions so;

 so.optionsPresent = NdbScanOperation::ScanOptions::SO_INTERPRETED;

559

NDB API Example Comparing RecAttr and NdbRecord

 so.interpretedCode= code;

 psop=myTransaction->scanTable(pallColsRecord,
 NdbOperation::LM_Read,
 NULL, // mask
 &so,
 sizeof(NdbScanOperation::ScanOptions));

 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());

 switch (accessType)
 {
 case api_attr :
 {
 while (psop->nextResult(true) == 0)
 {
 printf(" %2d %2d %2d\n",
 recAttrAttr1->u_32_value(),
 recAttrAttr2->u_32_value(),
 recAttrAttr3->u_32_value());
 }

 psop->close();

 break;
 }
 case api_record :
 {
 RowData *prowData; // Ptr to point to our data

 int rc=0;

 while ((rc = psop->nextResult((const char**) &prowData,
 true,
 false)) == GOT_ROW)
 {
 printf(" %2d %2d %2d\n",
 prowData->attr1,
 prowData->attr2,
 prowData->attr3);
 }

 if (rc != NO_MORE_ROWS) APIERROR(myTransaction->getNdbError());

 psop->close(true);

 break;
 }
 default :
 {
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
 }

 if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);

560

NDB API Example Comparing RecAttr and NdbRecord

 std::cout << "-------\n";
}

/**
 * Read some data using the default NdbRecord objects *
 **/
static void do_read_using_default(Ndb &myNdb)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();

 const NdbDictionary::Table *myTable=
 myDict->getTable("api_recattr_vs_record");

 const NdbRecord* tableRec= myTable->getDefaultRecord();

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 std::cout << "Running do_read_using_default_record (NdbRecord only)\n";
 std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

 /* Allocate some space for the rows to be read into */
 char* buffer= (char*)malloc(NdbDictionary::getRecordRowLength(tableRec));

 if (buffer== NULL)
 {
 printf("Allocation failed\n");
 exit(-1);
 }

 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 char* attr1= NdbDictionary::getValuePtr(tableRec,
 buffer,
 attr1ColNum);
 ((unsigned int)attr1)= i;

 const NdbOperation *pop=
 myTransaction->readTuple(tableRec,
 buffer,
 tableRec, // Read everything
 buffer);
 if (pop==NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 NdbError err= myTransaction->getNdbError();
 if (err.code != 0)
 {
 if (err.classification == NdbError::NoDataFound)
 std::cout << "Tuple " << i
 << " does not exist." << std::endl;
 else
 APIERROR(myTransaction->getNdbError());
 }
 else
 {
 printf(" %2d %2d %2d\n",
 i,
 ((unsigned int) NdbDictionary::getValuePtr(tableRec,
 buffer,
 attr2ColNum)),
 ((unsigned int) NdbDictionary::getValuePtr(tableRec,
 buffer,
 attr3ColNum)));
 }

 myNdb.closeTransaction(myTransaction);
 }

561

NDB API Event Handling Example

 free(buffer);

 std::cout << "-------\n";
}

2.5.9 NDB API Event Handling Example

This example demonstrates NDB API event handling.

The source code for this program may be found in the NDB Cluster source tree, in the file storage/
ndb/ndbapi-examples/ndbapi_event/ndbapi_event.cpp.

#include <NdbApi.hpp>

// Used for cout
#include <stdio.h>
#include <iostream>
#include <unistd.h>
#ifdef VM_TRACE
#include <my_global.h>
#endif
#ifndef assert
#include <assert.h>
#endif

/**
 * Assume that there is a table which is being updated by
 * another process (e.g. flexBench -l 0 -stdtables).
 * We want to monitor what happens with column values.
 *
 * Or using the mysql client:
 *
 * $> mysql -u root
 * mysql> create database ndb_examples;
 * mysql> use ndb_examples;
 * mysql> create table t0
 (c0 int, c1 int, c2 char(4), c3 char(4), c4 text,
 primary key(c0, c2)) engine ndb charset latin1;
 *
 * In another window start ndbapi_event, wait until properly started

 insert into t0 values (1, 2, 'a', 'b', null);
 insert into t0 values (3, 4, 'c', 'd', null);
 update t0 set c3 = 'e' where c0 = 1 and c2 = 'a'; -- use pk
 update t0 set c3 = 'f'; -- use scan
 update t0 set c3 = 'F'; -- use scan update to 'same'
 update t0 set c2 = 'g' where c0 = 1; -- update pk part
 update t0 set c2 = 'G' where c0 = 1; -- update pk part to 'same'
 update t0 set c0 = 5, c2 = 'H' where c0 = 3; -- update full PK
 delete from t0;

 insert ...; update ...; -- see events w/ same pk merged (if -m option)
 delete ...; insert ...; -- there are 5 combinations ID IU DI UD UU
 update ...; update ...;

 -- text requires -m flag
 set @a = repeat('a',256); -- inline size
 set @b = repeat('b',2000); -- part size
 set @c = repeat('c',2000*30); -- 30 parts

 -- update the text field using combinations of @a, @b, @c ...

 * you should see the data popping up in the example window
 *
 */

#define APIERROR(error) \
 { std::cout << "Error in " << __FILE__ << ", line:" << __LINE__ << ", code:" \
 << error.code << ", msg: " << error.message << "." << std::endl; \

562

NDB API Event Handling Example

 exit(-1); }

int myCreateEvent(Ndb* myNdb,
 const char *eventName,
 const char *eventTableName,
 const char **eventColumnName,
 const int noEventColumnName,
 bool merge_events);

int main(int argc, char** argv)
{
 if (argc < 3)
 {
 std::cout << "Arguments are <connect_string cluster> <timeout> [m(merge events)|d(debug)].\n";
 exit(-1);
 }
 const char *connection_string = argv[1];
 int timeout = atoi(argv[2]);
 ndb_init();
 bool merge_events = argc > 3 && strchr(argv[3], 'm') != 0;
#ifdef VM_TRACE
 bool dbug = argc > 3 && strchr(argv[3], 'd') != 0;
 if (dbug) DBUG_PUSH("d:t:");
 if (dbug) putenv("API_SIGNAL_LOG=-");
#endif

 Ndb_cluster_connection *cluster_connection=
 new Ndb_cluster_connection(connection_string); // Object representing the cluster

 int r= cluster_connection->connect(5 /* retries */,
 3 /* delay between retries */,
 1 /* verbose */);
 if (r > 0)
 {
 std::cout
 << "Cluster connect failed, possibly resolved with more retries.\n";
 exit(-1);
 }
 else if (r < 0)
 {
 std::cout
 << "Cluster connect failed.\n";
 exit(-1);
 }

 if (cluster_connection->wait_until_ready(30,30))
 {
 std::cout << "Cluster was not ready within 30 secs." << std::endl;
 exit(-1);
 }

 Ndb* myNdb= new Ndb(cluster_connection,
 "ndb_examples"); // Object representing the database

 if (myNdb->init() == -1) APIERROR(myNdb->getNdbError());

 const char *eventName= "CHNG_IN_t0";
 const char *eventTableName= "t0";
 const int noEventColumnName= 5;
 const char *eventColumnName[noEventColumnName]=
 {"c0",
 "c1",
 "c2",
 "c3",
 "c4"
 };

 // Create events
 myCreateEvent(myNdb,
 eventName,
 eventTableName,
 eventColumnName,

563

NDB API Event Handling Example

 noEventColumnName,
 merge_events);

 // Normal values and blobs are unfortunately handled differently..
 typedef union { NdbRecAttr* ra; NdbBlob* bh; } RA_BH;

 int i, j, k, l;
 j = 0;
 while (j < timeout) {

 // Start "transaction" for handling events
 NdbEventOperation* op;
 printf("create EventOperation\n");
 if ((op = myNdb->createEventOperation(eventName)) == NULL)
 APIERROR(myNdb->getNdbError());
 op->mergeEvents(merge_events);

 printf("get values\n");
 RA_BH recAttr[noEventColumnName];
 RA_BH recAttrPre[noEventColumnName];
 // primary keys should always be a part of the result
 for (i = 0; i < noEventColumnName; i++) {
 if (i < 4) {
 recAttr[i].ra = op->getValue(eventColumnName[i]);
 recAttrPre[i].ra = op->getPreValue(eventColumnName[i]);
 } else if (merge_events) {
 recAttr[i].bh = op->getBlobHandle(eventColumnName[i]);
 recAttrPre[i].bh = op->getPreBlobHandle(eventColumnName[i]);
 }
 }

 // set up the callbacks
 printf("execute\n");
 // This starts changes to "start flowing"
 if (op->execute())
 APIERROR(op->getNdbError());

 NdbEventOperation* the_op = op;

 i= 0;
 while (i < timeout) {
 // printf("now waiting for event...\n");
 int r = myNdb->pollEvents(1000); // wait for event or 1000 ms
 if (r > 0) {
 // printf("got data! %d\n", r);
 while ((op= myNdb->nextEvent())) {
 assert(the_op == op);
 i++;
 switch (op->getEventType()) {
 case NdbDictionary::Event::TE_INSERT:
 printf("%u INSERT", i);
 break;
 case NdbDictionary::Event::TE_DELETE:
 printf("%u DELETE", i);
 break;
 case NdbDictionary::Event::TE_UPDATE:
 printf("%u UPDATE", i);
 break;
 default:
 abort(); // should not happen
 }
 printf(" gci=%d\n", (int)op->getGCI());
 for (k = 0; k <= 1; k++) {
 printf(k == 0 ? "post: " : "pre : ");
 for (l = 0; l < noEventColumnName; l++) {
 if (l < 4) {
 NdbRecAttr* ra = k == 0 ? recAttr[l].ra : recAttrPre[l].ra;
 if (ra->isNULL() >= 0) { // we have a value
 if (ra->isNULL() == 0) { // we have a non-null value
 if (l < 2)
 printf("%-5u", ra->u_32_value());
 else

564

NDB API Event Handling Example

 printf("%-5.4s", ra->aRef());
 } else
 printf("%-5s", "NULL");
 } else
 printf("%-5s", "-"); // no value
 } else if (merge_events) {
 int isNull;
 NdbBlob* bh = k == 0 ? recAttr[l].bh : recAttrPre[l].bh;
 bh->getDefined(isNull);
 if (isNull >= 0) { // we have a value
 if (! isNull) { // we have a non-null value
 Uint64 length = 0;
 bh->getLength(length);
 // read into buffer
 unsigned char* buf = new unsigned char [length];
 memset(buf, 'X', length);
 Uint32 n = length;
 bh->readData(buf, n); // n is in/out
 assert(n == length);
 // pretty-print
 bool first = true;
 Uint32 i = 0;
 while (i < n) {
 unsigned char c = buf[i++];
 Uint32 m = 1;
 while (i < n && buf[i] == c)
 i++, m++;
 if (! first)
 printf("+");
 printf("%u%c", m, c);
 first = false;
 }
 printf("[%u]", n);
 delete [] buf;
 } else
 printf("%-5s", "NULL");
 } else
 printf("%-5s", "-"); // no value
 }
 }
 printf("\n");
 }
 }
 } // else printf("timed out (%i)\n", timeout);
 }
 // don't want to listen to events anymore
 if (myNdb->dropEventOperation(the_op)) APIERROR(myNdb->getNdbError());
 the_op = 0;

 j++;
 }

 {
 NdbDictionary::Dictionary *myDict = myNdb->getDictionary();
 if (!myDict) APIERROR(myNdb->getNdbError());
 // remove event from database
 if (myDict->dropEvent(eventName)) APIERROR(myDict->getNdbError());
 }

 delete myNdb;
 delete cluster_connection;
 ndb_end(0);
 return 0;
}

int myCreateEvent(Ndb* myNdb,
 const char *eventName,
 const char *eventTableName,
 const char **eventColumnNames,
 const int noEventColumnNames,
 bool merge_events)
{

565

NDB API Example: Basic BLOB Handling

 NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 if (!myDict) APIERROR(myNdb->getNdbError());

 const NdbDictionary::Table *table= myDict->getTable(eventTableName);
 if (!table) APIERROR(myDict->getNdbError());

 NdbDictionary::Event myEvent(eventName, *table);
 myEvent.addTableEvent(NdbDictionary::Event::TE_ALL);
 // myEvent.addTableEvent(NdbDictionary::Event::TE_INSERT);
 // myEvent.addTableEvent(NdbDictionary::Event::TE_UPDATE);
 // myEvent.addTableEvent(NdbDictionary::Event::TE_DELETE);

 myEvent.addEventColumns(noEventColumnNames, eventColumnNames);
 myEvent.mergeEvents(merge_events);

 // Add event to database
 if (myDict->createEvent(myEvent) == 0)
 myEvent.print();
 else if (myDict->getNdbError().classification ==
 NdbError::SchemaObjectExists) {
 printf("Event creation failed, event exists\n");
 printf("dropping Event...\n");
 if (myDict->dropEvent(eventName)) APIERROR(myDict->getNdbError());
 // try again
 // Add event to database
 if (myDict->createEvent(myEvent)) APIERROR(myDict->getNdbError());
 } else
 APIERROR(myDict->getNdbError());

 return 0;
}

2.5.10 NDB API Example: Basic BLOB Handling

This example illustrates the manipulation of a blob column in the NDB API. It demonstrates how to
perform insert, read, and update operations, using both inline value buffers as well as read and write
methods.

The source code can be found can be found in the file storage/ndb/ndbapi-examples/
ndbapi_blob/ndbapi_blob.cpp in the NDB Cluster source tree.

Note

While the MySQL data type used in the example is actually TEXT, the same
principles apply

/*
 ndbapi_blob.cpp:

 Illustrates the manipulation of BLOB (actually TEXT in this example).

 Shows insert, read, and update, using both inline value buffer and
 read/write methods.
 */

#ifdef _WIN32
#include <winsock2.h>
#endif
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>
#include <stdlib.h>
#include <string.h>
/* Used for cout. */
#include <iostream>
#include <stdio.h>
#include <ctype.h>

/**

566

NDB API Example: Basic BLOB Handling

 * Helper debugging macros
 */
#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

/* Quote taken from Project Gutenberg. */
const char *text_quote=
"Just at this moment, somehow or other, they began to run.\n"
"\n"
" Alice never could quite make out, in thinking it over\n"
"afterwards, how it was that they began: all she remembers is,\n"
"that they were running hand in hand, and the Queen went so fast\n"
"that it was all she could do to keep up with her: and still the\n"
"Queen kept crying 'Faster! Faster!' but Alice felt she COULD NOT\n"
"go faster, though she had not breath left to say so.\n"
"\n"
" The most curious part of the thing was, that the trees and the\n"
"other things round them never changed their places at all:\n"
"however fast they went, they never seemed to pass anything. 'I\n"
"wonder if all the things move along with us?' thought poor\n"
"puzzled Alice. And the Queen seemed to guess her thoughts, for\n"
"she cried, 'Faster! Don't try to talk!'\n"
"\n"
" Not that Alice had any idea of doing THAT. She felt as if she\n"
"would never be able to talk again, she was getting so much out of\n"
"breath: and still the Queen cried 'Faster! Faster!' and dragged\n"
"her along. 'Are we nearly there?' Alice managed to pant out at\n"
"last.\n"
"\n"
" 'Nearly there!' the Queen repeated. 'Why, we passed it ten\n"
"minutes ago! Faster!' And they ran on for a time in silence,\n"
"with the wind whistling in Alice's ears, and almost blowing her\n"
"hair off her head, she fancied.\n"
"\n"
" 'Now! Now!' cried the Queen. 'Faster! Faster!' And they\n"
"went so fast that at last they seemed to skim through the air,\n"
"hardly touching the ground with their feet, till suddenly, just\n"
"as Alice was getting quite exhausted, they stopped, and she found\n"
"herself sitting on the ground, breathless and giddy.\n"
"\n"
" The Queen propped her up against a tree, and said kindly, 'You\n"
"may rest a little now.'\n"
"\n"
" Alice looked round her in great surprise. 'Why, I do believe\n"
"we've been under this tree the whole time! Everything's just as\n"
"it was!'\n"
"\n"
" 'Of course it is,' said the Queen, 'what would you have it?'\n"
"\n"
" 'Well, in OUR country,' said Alice, still panting a little,\n"
"'you'd generally get to somewhere else--if you ran very fast\n"
"for a long time, as we've been doing.'\n"
"\n"
" 'A slow sort of country!' said the Queen. 'Now, HERE, you see,\n"
"it takes all the running YOU can do, to keep in the same place.\n"
"If you want to get somewhere else, you must run at least twice as\n"
"fast as that!'\n"
"\n"
" 'I'd rather not try, please!' said Alice. 'I'm quite content\n"
"to stay here--only I AM so hot and thirsty!'\n"
"\n"
" -- Lewis Carroll, 'Through the Looking-Glass'.";

/*

567

NDB API Example: Basic BLOB Handling

 Function to drop table.
*/
void drop_table(MYSQL &mysql)
{
 if (mysql_query(&mysql, "DROP TABLE api_blob"))
 MYSQLERROR(mysql);
}

/*
 Functions to create table.
*/
int try_create_table(MYSQL &mysql)
{
 return mysql_query(&mysql,
 "CREATE TABLE"
 " api_blob"
 " (my_id INT UNSIGNED NOT NULL,"
 " my_text TEXT NOT NULL,"
 " PRIMARY KEY USING HASH (my_id))"
 " ENGINE=NDB");
}

void create_table(MYSQL &mysql)
{
 if (try_create_table(mysql))
 {
 if (mysql_errno(&mysql) != ER_TABLE_EXISTS_ERROR)
 MYSQLERROR(mysql);
 std::cout << "NDB Cluster already has example table: api_blob. "
 << "Dropping it..." << std::endl;
 /******************
 * Recreate table *
 ******************/
 drop_table(mysql);
 if (try_create_table(mysql))
 MYSQLERROR(mysql);
 }
}

int populate(Ndb *myNdb)
{
 const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
 myNdbOperation->insertTuple();
 myNdbOperation->equal("my_id", 1);
 NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());
 myBlobHandle->setValue(text_quote, strlen(text_quote));

 int check= myTrans->execute(NdbTransaction::Commit);
 myTrans->close();
 return check != -1;
}

int update_key(Ndb *myNdb)
{
 /*
 Uppercase all characters in TEXT field, using primary key operation.
 Use piece-wise read/write to avoid loading entire data into memory

568

NDB API Example: Basic BLOB Handling

 at once.
 */
 const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
 myNdbOperation->updateTuple();
 myNdbOperation->equal("my_id", 1);
 NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());

 /* Execute NoCommit to make the blob handle active. */
 if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());

 Uint64 length= 0;
 if (-1 == myBlobHandle->getLength(length))
 APIERROR(myBlobHandle->getNdbError());

 /*
 A real application should use a much larger chunk size for
 efficiency, preferably much larger than the part size, which
 defaults to 2000. 64000 might be a good value.
 */
#define CHUNK_SIZE 100
 int chunk;
 char buffer[CHUNK_SIZE];
 for (chunk= (length-1)/CHUNK_SIZE; chunk >=0; chunk--)
 {
 Uint64 pos= chunk*CHUNK_SIZE;
 Uint32 chunk_length= CHUNK_SIZE;
 if (pos + chunk_length > length)
 chunk_length= length - pos;

 /* Read from the end back, to illustrate seeking. */
 if (-1 == myBlobHandle->setPos(pos))
 APIERROR(myBlobHandle->getNdbError());
 if (-1 == myBlobHandle->readData(buffer, chunk_length))
 APIERROR(myBlobHandle->getNdbError());
 int res= myTrans->execute(NdbTransaction::NoCommit);
 if (-1 == res)
 APIERROR(myTrans->getNdbError());

 /* Uppercase everything. */
 for (Uint64 j= 0; j < chunk_length; j++)
 buffer[j]= toupper(buffer[j]);

 if (-1 == myBlobHandle->setPos(pos))
 APIERROR(myBlobHandle->getNdbError());
 if (-1 == myBlobHandle->writeData(buffer, chunk_length))
 APIERROR(myBlobHandle->getNdbError());
 /* Commit on the final update. */
 if (-1 == myTrans->execute(chunk ?
 NdbTransaction::NoCommit :
 NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 }

 myNdb->closeTransaction(myTrans);

 return 1;
}

569

NDB API Example: Basic BLOB Handling

int update_scan(Ndb *myNdb)
{
 /*
 Lowercase all characters in TEXT field, using a scan with
 updateCurrentTuple().
 */
 char buffer[10000];

 const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbScanOperation *myScanOp= myTrans->getNdbScanOperation(myTable);
 if (myScanOp == NULL)
 APIERROR(myTrans->getNdbError());
 myScanOp->readTuples(NdbOperation::LM_Exclusive);
 NdbBlob *myBlobHandle= myScanOp->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myScanOp->getNdbError());
 if (myBlobHandle->getValue(buffer, sizeof(buffer)))
 APIERROR(myBlobHandle->getNdbError());

 /* Start the scan. */
 if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());

 int res;
 for (;;)
 {
 res= myScanOp->nextResult(true);
 if (res==1)
 break; // Scan done.
 else if (res)
 APIERROR(myScanOp->getNdbError());

 Uint64 length= 0;
 if (myBlobHandle->getLength(length) == -1)
 APIERROR(myBlobHandle->getNdbError());

 /* Lowercase everything. */
 for (Uint64 j= 0; j < length; j++)
 buffer[j]= tolower(buffer[j]);

 NdbOperation *myUpdateOp= myScanOp->updateCurrentTuple();
 if (myUpdateOp == NULL)
 APIERROR(myTrans->getNdbError());
 NdbBlob *myBlobHandle2= myUpdateOp->getBlobHandle("my_text");
 if (myBlobHandle2 == NULL)
 APIERROR(myUpdateOp->getNdbError());
 if (myBlobHandle2->setValue(buffer, length))
 APIERROR(myBlobHandle2->getNdbError());

 if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());
 }

 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());

 myNdb->closeTransaction(myTrans);

 return 1;
}

struct ActiveHookData {

570

NDB API Example: Basic BLOB Handling

 char buffer[10000];
 Uint32 readLength;
};

int myFetchHook(NdbBlob* myBlobHandle, void* arg)
{
 ActiveHookData *ahd= (ActiveHookData *)arg;

 ahd->readLength= sizeof(ahd->buffer) - 1;
 return myBlobHandle->readData(ahd->buffer, ahd->readLength);
}

int fetch_key(Ndb *myNdb)
{
 /*
 Fetch and show the blob field, using setActiveHook().
 */
 const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
 myNdbOperation->readTuple();
 myNdbOperation->equal("my_id", 1);
 NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());
 struct ActiveHookData ahd;
 if (myBlobHandle->setActiveHook(myFetchHook, &ahd) == -1)
 APIERROR(myBlobHandle->getNdbError());

 /*
 Execute Commit, but calling our callback set up in setActiveHook()
 before actually committing.
 */
 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 myNdb->closeTransaction(myTrans);

 /* Our fetch callback will have been called during the execute(). */

 ahd.buffer[ahd.readLength]= '\0';
 std::cout << "Fetched data:" << std::endl << ahd.buffer << std::endl;

 return 1;
}

int update2_key(Ndb *myNdb)
{
 char buffer[10000];

 /* Simple setValue() update. */
 const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());

571

NDB API Example: Basic BLOB Handling

 myNdbOperation->updateTuple();
 myNdbOperation->equal("my_id", 1);
 NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());
 memset(buffer, ' ', sizeof(buffer));
 if (myBlobHandle->setValue(buffer, sizeof(buffer)) == -1)
 APIERROR(myBlobHandle->getNdbError());

 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 myNdb->closeTransaction(myTrans);

 return 1;
}

int delete_key(Ndb *myNdb)
{
 /* Deletion of blob row. */
 const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
 myNdbOperation->deleteTuple();
 myNdbOperation->equal("my_id", 1);

 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 myNdb->closeTransaction(myTrans);

 return 1;
}

void mysql_connect_and_create(const char *socket)
{
 MYSQL mysql;
 bool ok;

 mysql_init(&mysql);

 ok = mysql_real_connect(&mysql, "localhost", "root", "", "", 0, socket, 0);
 if(ok) {
 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 ok = ! mysql_select_db(&mysql, "ndb_examples");
 }
 if(ok) {
 create_table(mysql);
 }
 mysql_close(&mysql);

 if(! ok) MYSQLERROR(mysql);
}

void ndb_run_blob_operations(const char *connectstring)
{
 /* Connect to ndb cluster. */
 Ndb_cluster_connection cluster_connection(connectstring);
 if (cluster_connection.connect(4, 5, 1))
 {
 std::cout << "Unable to connect to cluster within 30 secs." << std::endl;
 exit(-1);
 }
 /* Optionally connect and wait for the storage nodes (ndbd's). */

572

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

 if (cluster_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 Ndb myNdb(&cluster_connection,"ndb_examples");
 if (myNdb.init(1024) == -1) { // Set max 1024 parallel transactions
 APIERROR(myNdb.getNdbError());
 exit(-1);
 }

 if(populate(&myNdb) > 0)
 std::cout << "populate: Success!" << std::endl;

 if(update_key(&myNdb) > 0)
 std::cout << "update_key: Success!" << std::endl;

 if(update_scan(&myNdb) > 0)
 std::cout << "update_scan: Success!" << std::endl;

 if(fetch_key(&myNdb) > 0)
 std::cout << "fetch_key: Success!" << std::endl;

 if(update2_key(&myNdb) > 0)
 std::cout << "update2_key: Success!" << std::endl;

 if(delete_key(&myNdb) > 0)
 std::cout << "delete_key: Success!" << std::endl;
}

int main(int argc, char**argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";
 exit(-1);
 }
 char *mysqld_sock = argv[1];
 const char *connectstring = argv[2];

 mysql_connect_and_create(mysqld_sock);

 ndb_init();
 ndb_run_blob_operations(connectstring);
 ndb_end(0);

 return 0;
}

2.5.11 NDB API Example: Handling BLOB Columns and Values Using
NdbRecord

This example illustrates the manipulation of a blob column in the NDB API using the NdbRecord
interface. It demonstrates how to perform insert, read, and update operations, using both inline
value buffers as well as read and write methods. It can be found in the file storage/ndb/ndbapi-
examples/ndbapi_blob_ndbrecord/main.cpp in the NDB Cluster source trees.

Note

While the MySQL data type used in the example is actually TEXT, the same
principles apply

/*
 ndbapi_blob_ndbrecord

 Illustrates the manipulation of BLOB (actually TEXT in this example).
 This example uses the NdbRecord style way of accessing tuples.

573

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

 Shows insert, read, and update, using both inline value buffer and
 read/write methods.
 */

#ifdef _WIN32
#include <winsock2.h>
#endif
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>
/* Used for cout. */
#include <iostream>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>

/**
 * Helper debugging macros
 */
#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
 exit(-1); }
#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

/* Quote taken from Project Gutenberg. */
const char *text_quote=
"Just at this moment, somehow or other, they began to run.\n"
"\n"
" Alice never could quite make out, in thinking it over\n"
"afterwards, how it was that they began: all she remembers is,\n"
"that they were running hand in hand, and the Queen went so fast\n"
"that it was all she could do to keep up with her: and still the\n"
"Queen kept crying 'Faster! Faster!' but Alice felt she COULD NOT\n"
"go faster, though she had not breath left to say so.\n"
"\n"
" The most curious part of the thing was, that the trees and the\n"
"other things round them never changed their places at all:\n"
"however fast they went, they never seemed to pass anything. 'I\n"
"wonder if all the things move along with us?' thought poor\n"
"puzzled Alice. And the Queen seemed to guess her thoughts, for\n"
"she cried, 'Faster! Don't try to talk!'\n"
"\n"
" Not that Alice had any idea of doing THAT. She felt as if she\n"
"would never be able to talk again, she was getting so much out of\n"
"breath: and still the Queen cried 'Faster! Faster!' and dragged\n"
"her along. 'Are we nearly there?' Alice managed to pant out at\n"
"last.\n"
"\n"
" 'Nearly there!' the Queen repeated. 'Why, we passed it ten\n"
"minutes ago! Faster!' And they ran on for a time in silence,\n"
"with the wind whistling in Alice's ears, and almost blowing her\n"
"hair off her head, she fancied.\n"
"\n"
" 'Now! Now!' cried the Queen. 'Faster! Faster!' And they\n"
"went so fast that at last they seemed to skim through the air,\n"
"hardly touching the ground with their feet, till suddenly, just\n"
"as Alice was getting quite exhausted, they stopped, and she found\n"
"herself sitting on the ground, breathless and giddy.\n"
"\n"
" The Queen propped her up against a tree, and said kindly, 'You\n"
"may rest a little now.'\n"
"\n"
" Alice looked round her in great surprise. 'Why, I do believe\n"
"we've been under this tree the whole time! Everything's just as\n"

574

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

"it was!'\n"
"\n"
" 'Of course it is,' said the Queen, 'what would you have it?'\n"
"\n"
" 'Well, in OUR country,' said Alice, still panting a little,\n"
"'you'd generally get to somewhere else--if you ran very fast\n"
"for a long time, as we've been doing.'\n"
"\n"
" 'A slow sort of country!' said the Queen. 'Now, HERE, you see,\n"
"it takes all the running YOU can do, to keep in the same place.\n"
"If you want to get somewhere else, you must run at least twice as\n"
"fast as that!'\n"
"\n"
" 'I'd rather not try, please!' said Alice. 'I'm quite content\n"
"to stay here--only I AM so hot and thirsty!'\n"
"\n"
" -- Lewis Carroll, 'Through the Looking-Glass'.";

/* NdbRecord objects. */

const NdbRecord *key_record; // For specifying table key
const NdbRecord *blob_record; // For accessing blob
const NdbRecord *full_record; // All columns, for insert

/* C struct representing the row layout */
struct MyRow
{
 unsigned int myId;

 /* Pointer to Blob handle for operations on the blob column
 * Space must be left for it in the row, but a pointer to the
 * blob handle can also be obtained via calls to
 * NdbOperation::getBlobHandle()
 */
 NdbBlob* myText;
};

static void setup_records(Ndb *myNdb)
{
 NdbDictionary::RecordSpecification spec[2];

 NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob_ndbrecord");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 const NdbDictionary::Column *col1= myTable->getColumn("my_id");
 if (col1 == NULL)
 APIERROR(myDict->getNdbError());
 const NdbDictionary::Column *col2= myTable->getColumn("my_text");
 if (col2 == NULL)
 APIERROR(myDict->getNdbError());

 spec[0].column= col1;
 spec[0].offset= offsetof(MyRow, myId);
 spec[0].nullbit_byte_offset= 0;
 spec[0].nullbit_bit_in_byte= 0;
 spec[1].column= col2;
 spec[1].offset= offsetof(MyRow, myText);
 spec[1].nullbit_byte_offset= 0;
 spec[1].nullbit_bit_in_byte= 0;

 key_record= myDict->createRecord(myTable, &spec[0], 1, sizeof(spec[0]));
 if (key_record == NULL)
 APIERROR(myDict->getNdbError());
 blob_record= myDict->createRecord(myTable, &spec[1], 1, sizeof(spec[0]));
 if (blob_record == NULL)
 APIERROR(myDict->getNdbError());
 full_record= myDict->createRecord(myTable, &spec[0], 2, sizeof(spec[0]));
 if (full_record == NULL)
 APIERROR(myDict->getNdbError());
}

575

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

/*
 Function to drop table.
*/
void drop_table(MYSQL &mysql)
{
 if (mysql_query(&mysql, "DROP TABLE api_blob_ndbrecord"))
 MYSQLERROR(mysql);
}

/*
 Functions to create table.
*/
int try_create_table(MYSQL &mysql)
{
 return mysql_query(&mysql,
 "CREATE TABLE"
 " api_blob_ndbrecord"
 " (my_id INT UNSIGNED NOT NULL,"
 " my_text TEXT NOT NULL,"
 " PRIMARY KEY USING HASH (my_id))"
 " ENGINE=NDB");
}

void create_table(MYSQL &mysql)
{
 if (try_create_table(mysql))
 {
 if (mysql_errno(&mysql) != ER_TABLE_EXISTS_ERROR)
 MYSQLERROR(mysql);
 std::cout << "NDB Cluster already has example table: api_blob_ndbrecord. "
 << "Dropping it..." << std::endl;
 /******************
 * Recreate table *
 ******************/
 drop_table(mysql);
 if (try_create_table(mysql))
 MYSQLERROR(mysql);
 }
}

int populate(Ndb *myNdb)
{
 MyRow row;

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 row.myId= 1;
 const NdbOperation *myNdbOperation= myTrans->insertTuple(full_record, (const char*) &row);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());

 NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());
 myBlobHandle->setValue(text_quote, strlen(text_quote));

 int check= myTrans->execute(NdbTransaction::Commit);
 myTrans->close();
 return check != -1;
}

int update_key(Ndb *myNdb)
{
 MyRow row;

 /*
 Uppercase all characters in TEXT field, using primary key operation.
 Use piece-wise read/write to avoid loading entire data into memory

576

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

 at once.
 */

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 row.myId= 1;

 const NdbOperation *myNdbOperation=
 myTrans->updateTuple(key_record,
 (const char*) &row,
 blob_record,
 (const char*) &row);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());

 NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());

 /* Execute NoCommit to make the blob handle active so
 * that we can determine the actual Blob length
 */
 if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());

 Uint64 length= 0;
 if (-1 == myBlobHandle->getLength(length))
 APIERROR(myBlobHandle->getNdbError());

 /*
 A real application should use a much larger chunk size for
 efficiency, preferably much larger than the part size, which
 defaults to 2000. 64000 might be a good value.
 */
#define CHUNK_SIZE 100
 int chunk;
 char buffer[CHUNK_SIZE];
 for (chunk= (length-1)/CHUNK_SIZE; chunk >=0; chunk--)
 {
 Uint64 pos= chunk*CHUNK_SIZE;
 Uint32 chunk_length= CHUNK_SIZE;
 if (pos + chunk_length > length)
 chunk_length= length - pos;

 /* Read from the end back, to illustrate seeking. */
 if (-1 == myBlobHandle->setPos(pos))
 APIERROR(myBlobHandle->getNdbError());
 if (-1 == myBlobHandle->readData(buffer, chunk_length))
 APIERROR(myBlobHandle->getNdbError());
 int res= myTrans->execute(NdbTransaction::NoCommit);
 if (-1 == res)
 APIERROR(myTrans->getNdbError());

 /* Uppercase everything. */
 for (Uint64 j= 0; j < chunk_length; j++)
 buffer[j]= toupper(buffer[j]);

 if (-1 == myBlobHandle->setPos(pos))
 APIERROR(myBlobHandle->getNdbError());
 if (-1 == myBlobHandle->writeData(buffer, chunk_length))
 APIERROR(myBlobHandle->getNdbError());
 /* Commit on the final update. */
 if (-1 == myTrans->execute(chunk ?
 NdbTransaction::NoCommit :
 NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 }

 myNdb->closeTransaction(myTrans);

577

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

 return 1;
}

int update_scan(Ndb *myNdb)
{
 /*
 Lowercase all characters in TEXT field, using a scan with
 updateCurrentTuple().
 */
 char buffer[10000];

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbScanOperation *myScanOp=
 myTrans->scanTable(blob_record, NdbOperation::LM_Exclusive);
 if (myScanOp == NULL)
 APIERROR(myTrans->getNdbError());
 NdbBlob *myBlobHandle= myScanOp->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myScanOp->getNdbError());
 if (myBlobHandle->getValue(buffer, sizeof(buffer)))
 APIERROR(myBlobHandle->getNdbError());

 /* Start the scan. */
 if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());

 const MyRow *out_row;
 int res;
 for (;;)
 {
 res= myScanOp->nextResult((const char**)&out_row, true, false);
 if (res==1)
 break; // Scan done.
 else if (res)
 APIERROR(myScanOp->getNdbError());

 Uint64 length= 0;
 if (myBlobHandle->getLength(length) == -1)
 APIERROR(myBlobHandle->getNdbError());

 /* Lowercase everything. */
 for (Uint64 j= 0; j < length; j++)
 buffer[j]= tolower(buffer[j]);

 /* 'Take over' the row locks from the scan to a separate
 * operation for updating the tuple
 */
 const NdbOperation *myUpdateOp=
 myScanOp->updateCurrentTuple(myTrans,
 blob_record,
 (const char*)out_row);
 if (myUpdateOp == NULL)
 APIERROR(myTrans->getNdbError());
 NdbBlob *myBlobHandle2= myUpdateOp->getBlobHandle("my_text");
 if (myBlobHandle2 == NULL)
 APIERROR(myUpdateOp->getNdbError());
 if (myBlobHandle2->setValue(buffer, length))
 APIERROR(myBlobHandle2->getNdbError());

 if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());
 }

 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());

 myNdb->closeTransaction(myTrans);

578

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

 return 1;
}

struct ActiveHookData {
 char buffer[10000];
 Uint32 readLength;
};

int myFetchHook(NdbBlob* myBlobHandle, void* arg)
{
 ActiveHookData *ahd= (ActiveHookData *)arg;

 ahd->readLength= sizeof(ahd->buffer) - 1;
 return myBlobHandle->readData(ahd->buffer, ahd->readLength);
}

int fetch_key(Ndb *myNdb)
{
 /* Fetch a blob without specifying how many bytes
 * to read up front, in one execution using
 * the 'ActiveHook' mechanism.
 * The supplied ActiveHook procedure is called when
 * the Blob handle becomes 'active'. At that point
 * the length of the Blob can be obtained, and buffering
 * arranged, and the data read requested.
 */

 /* Separate rows used to specify key and hold result */
 MyRow key_row;
 MyRow out_row;

 /*
 Fetch and show the blob field, using setActiveHook().
 */

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 key_row.myId= 1;
 out_row.myText= NULL;
 const NdbOperation *myNdbOperation=
 myTrans->readTuple(key_record,
 (const char*) &key_row,
 blob_record,
 (char*) &out_row);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());

 /* This time, we'll get the blob handle from the row, because
 * we can. Alternatively, we could use the normal mechanism
 * of calling getBlobHandle().
 */
 NdbBlob *myBlobHandle= out_row.myText;
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());
 struct ActiveHookData ahd;
 if (myBlobHandle->setActiveHook(myFetchHook, &ahd) == -1)
 APIERROR(myBlobHandle->getNdbError());

 /*
 Execute Commit, but calling our callback set up in setActiveHook()
 before actually committing.
 */
 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 myNdb->closeTransaction(myTrans);

 /* Our fetch callback will have been called during the execute(). */

 ahd.buffer[ahd.readLength]= '\0';

579

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

 std::cout << "Fetched data:" << std::endl << ahd.buffer << std::endl;

 return 1;
}

int update2_key(Ndb *myNdb)
{
 char buffer[10000];
 MyRow row;

 /* Simple setValue() update specified before the
 * Blob handle is made active
 */

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 row.myId= 1;
 const NdbOperation *myNdbOperation=
 myTrans->updateTuple(key_record,
 (const char*)&row,
 blob_record,
 (char*) &row);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
 NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myNdbOperation->getNdbError());
 memset(buffer, ' ', sizeof(buffer));
 if (myBlobHandle->setValue(buffer, sizeof(buffer)) == -1)
 APIERROR(myBlobHandle->getNdbError());

 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 myNdb->closeTransaction(myTrans);

 return 1;
}

int delete_key(Ndb *myNdb)
{
 MyRow row;

 /* Deletion of row containing blob via primary key. */

 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 row.myId= 1;
 const NdbOperation *myNdbOperation= myTrans->deleteTuple(key_record,
 (const char*)&row,
 full_record);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());

 if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
 myNdb->closeTransaction(myTrans);

 return 1;
}

void mysql_connect_and_create(const char *socket)
{
 MYSQL mysql;
 bool ok;

 mysql_init(&mysql);

580

NDB API Example: Handling BLOB Columns and Values Using NdbRecord

 ok = mysql_real_connect(&mysql, "localhost", "root", "", "", 0, socket, 0);
 if(ok) {
 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 ok = ! mysql_select_db(&mysql, "ndb_examples");
 }
 if(ok) {
 create_table(mysql);
 }
 mysql_close(&mysql);

 if(! ok) MYSQLERROR(mysql);
}

void ndb_run_ndbrecord_blob_operations(const char * connectstring)
{
 /* Connect to ndb cluster. */

 Ndb_cluster_connection cluster_connection(connectstring);
 if (cluster_connection.connect(4, 5, 1))
 {
 std::cout << "Unable to connect to cluster within 30 secs." << std::endl;
 exit(-1);
 }
 /* Optionally connect and wait for the storage nodes (ndbd's). */
 if (cluster_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 Ndb myNdb(&cluster_connection,"ndb_examples");
 if (myNdb.init(1024) == -1) { // Set max 1024 parallel transactions
 APIERROR(myNdb.getNdbError());
 exit(-1);
 }

 setup_records(&myNdb);

 if(populate(&myNdb) > 0)
 std::cout << "populate: Success!" << std::endl;

 if(update_key(&myNdb) > 0)
 std::cout << "update_key: Success!" << std::endl;

 if(update_scan(&myNdb) > 0)
 std::cout << "update_scan: Success!" << std::endl;

 if(fetch_key(&myNdb) > 0)
 std::cout << "fetch_key: Success!" << std::endl;

 if(update2_key(&myNdb) > 0)
 std::cout << "update2_key: Success!" << std::endl;

 if(delete_key(&myNdb) > 0)
 std::cout << "delete_key: Success!" << std::endl;
}

int main(int argc, char**argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";
 exit(-1);
 }
 char *mysqld_sock = argv[1];
 const char *connectstring = argv[2];

 mysql_connect_and_create(mysqld_sock);

 ndb_init();
 ndb_run_ndbrecord_blob_operations(connectstring);

581

NDB API Simple Array Example

 ndb_end(0);

 return 0;
}

2.5.12 NDB API Simple Array Example

This program inserts CHAR, VARCHAR, and BINARY column data into a table by constructing aRef
objects using local functions. It then reads the columns back and extracts the data from them using
local functions.

This example assumes you have a table named api_array_simple, created as follows:

CREATE TABLE api_array_simple (
 ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,
 ATTR2 CHAR(20) NOT NULL,
 ATTR3 VARCHAR(20) NOT NULL,
 ATTR4 VARCHAR(500) NOT NULL,
 ATTR5 BINARY(20) NOT NULL,
 ATTR6 VARBINARY(20) NOT NULL,
 ATTR7 VARBINARY(500) NOT NULL
) ENGINE NDB CHARSET latin1;

Note

This program uses a number of utilities which can be found in storage/ndb/
ndbapi-examples/common/. See Section 2.5.15, “Common Files for NDB
API Array Examples”, for listings of these.

The example file can be found as ndbapi_array_simple/ndbapi_array_simple.cpp in the
NDB Cluster source distribution's storage/ndb/ndbapi-examples directory. (Bug #70550, Bug
#17592990)

#include <NdbApi.hpp>
#include <iostream>
#include <vector>
#include <cstdlib>
#include <cstring>

/*
 See Section 2.5.15, “Common Files for NDB API Array Examples”,
 for listings of these utilities.
*/
#include "../common/error_handling.hpp"
#include "../common/ndb_util.hpp"
#include "../common/util.hpp"

using namespace std;

/* structure to help in insertion */
struct RowData
{
 /* id */
 int attr1;
 /* CHAR(20)- fixed length, no additional length bytes */
 char attr2[20];
 /* VARCHAR(20) - requires one additional length byte (length < 256) */
 char attr3[1 + 20];
 /* VARCHAR(500) - requires two additional length bytes (length > 256) */
 char attr4[2 + 500];
 /* BINARY(20) - fixed length, requires no additional length byte */
 char attr5[20];
 /* VARBINARY(20) - requires one additional length byte (length < 256) */
 char attr6[1 + 20];
 /* VARBINARY(20) - requires one additional length byte (length > 256) */
 char attr7[2 + 500];
};

/* extracts the length and the start byte of the data stored */
static int get_byte_array(const NdbRecAttr* attr,

582

https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html

NDB API Simple Array Example

 const char*& first_byte,
 size_t& bytes)
{
 const NdbDictionary::Column::ArrayType array_type =
 attr->getColumn()->getArrayType();
 const size_t attr_bytes = attr->get_size_in_bytes();
 const char* aRef = attr->aRef();
 string result;

 switch (array_type) {
 case NdbDictionary::Column::ArrayTypeFixed:
 /*
 No prefix length is stored in aRef. Data starts from aRef's first byte
 data might be padded with blank or null bytes to fill the whole column
 */
 first_byte = aRef;
 bytes = attr_bytes;
 return 0;
 case NdbDictionary::Column::ArrayTypeShortVar:
 /*
 First byte of aRef has the length of data stored
 Data starts from second byte of aRef
 */
 first_byte = aRef + 1;
 bytes = (size_t)(aRef[0]);
 return 0;
 case NdbDictionary::Column::ArrayTypeMediumVar:
 /*
 First two bytes of aRef has the length of data stored
 Data starts from third byte of aRef
 */
 first_byte = aRef + 2;
 bytes = (size_t)(aRef[1]) * 256 + (size_t)(aRef[0]);
 return 0;
 default:
 first_byte = NULL;
 bytes = 0;
 return -1;
 }
}

/*
 Extracts the string from given NdbRecAttr
 Uses get_byte_array internally
 */
static int get_string(const NdbRecAttr* attr, string& str)
{
 size_t attr_bytes;
 const char* data_start_ptr = NULL;

 /* get stored length and data using get_byte_array */
 if(get_byte_array(attr, data_start_ptr, attr_bytes) == 0)
 {
 /* we have length of the string and start location */
 str= string(data_start_ptr, attr_bytes);
 if(attr->getType() == NdbDictionary::Column::Char)
 {
 /* Fixed Char : remove blank spaces at the end */
 size_t endpos = str.find_last_not_of(" ");
 if(string::npos != endpos)
 {
 str = str.substr(0, endpos+1);
 }
 }
 }
 return 0;
}

// Do a cleanup of all inserted tuples
static void do_cleanup(Ndb& ndb)
{
 const NdbDictionary::Dictionary* dict = ndb.getDictionary();

583

NDB API Simple Array Example

 const NdbDictionary::Table *table = dict->getTable("api_array_simple");
 if (table == nullptr) APIERROR(dict->getNdbError());

 NdbTransaction *transaction= ndb.startTransaction();
 if (transaction == nullptr) APIERROR(ndb.getNdbError());

 for (int i = 0; i <= 20; i++)
 {
 NdbOperation* myOperation = transaction->getNdbOperation(table);
 if (myOperation == nullptr) APIERROR(transaction->getNdbError());
 myOperation->deleteTuple();
 myOperation->equal("ATTR1", i);
 }

 if (transaction->execute(NdbTransaction::Commit) != 0)
 {
 APIERROR(transaction->getNdbError());
 }
 ndb.closeTransaction(transaction);
}

/***
 * Use one transaction and insert 21 rows in one batch *
 ***/
static void do_insert(Ndb& ndb)
{
 const NdbDictionary::Dictionary* dict = ndb.getDictionary();
 const NdbDictionary::Table *table = dict->getTable("api_array_simple");

 if (table == NULL) APIERROR(dict->getNdbError());

 NdbTransaction *transaction= ndb.startTransaction();
 if (transaction == NULL) APIERROR(ndb.getNdbError());

 /* Create and initialize sample data */
 const string meter = 50 * string("''''-,,,,|");
 const string space = 20 * string(" ");
 unsigned char binary_meter[500];
 for (unsigned i = 0; i < 500; i++)
 {
 binary_meter[i] = (unsigned char)(i % 256);
 }

 vector<NdbOperation*> operations;
 for (int i = 0; i <= 20; i++)
 {
 RowData data;
 NdbOperation* myOperation = transaction->getNdbOperation(table);
 if (myOperation == NULL) APIERROR(transaction->getNdbError());
 data.attr1 = i;

 // Fill CHAR(20) with 'i' chars from meter
 strncpy (data.attr2, meter.c_str(), i);
 // Pad it with space up to 20 chars
 strncpy (data.attr2 + i, space.c_str(), 20 - i);

 // Fill VARCHAR(20) with 'i' chars from meter. First byte is
 // reserved for length field. No padding is needed.
 strncpy (data.attr3 + 1, meter.c_str(), i);
 // Set the length byte
 data.attr3[0] = (char)i;

 // Fill VARCHAR(500) with 20*i chars from meter. First two bytes
 // are reserved for length field. No padding is needed.
 strncpy (data.attr4 + 2, meter.c_str(), 20*i);
 // Set the length bytes
 data.attr4[0] = (char)(20*i % 256);
 data.attr4[1] = (char)(20*i / 256);

 // Fill BINARY(20) with 'i' bytes from binary_meter.
 memcpy(data.attr5, binary_meter, i);

584

NDB API Simple Array Example

 // Pad with 0 up to 20 bytes.
 memset(data.attr5 + i, 0, 20 - i);

 // Fill VARBINARY(20) with 'i' bytes from binary_meter. First byte
 // is reserved for length field. No padding is needed.
 memcpy(data.attr6 + 1, binary_meter, i);
 // Set the length byte
 data.attr6[0] = (char)i;

 // Fill VARBINARY(500) with 'i' bytes from binary_meter. First two
 // bytes are reserved for length filed. No padding is needed.
 memcpy(data.attr7 + 2, binary_meter, 20*i);
 // Set the length bytes
 data.attr7[0] = (char)(20*i % 256);
 data.attr7[1] = (char)(20*i / 256);

 myOperation->insertTuple();
 myOperation->equal("ATTR1", data.attr1);
 myOperation->setValue("ATTR2", data.attr2);
 myOperation->setValue("ATTR3", data.attr3);
 myOperation->setValue("ATTR4", data.attr4);
 myOperation->setValue("ATTR5", data.attr5);
 myOperation->setValue("ATTR6", data.attr6);
 myOperation->setValue("ATTR7", data.attr7);

 operations.push_back(myOperation);
 }

 // Now execute all operations in one batch, and check for errors.
 if (transaction->execute(NdbTransaction::Commit) != 0)
 {
 for (size_t i = 0; i < operations.size(); i++)
 {
 const NdbError err= operations[i]->getNdbError();
 if(err.code != NdbError::Success)
 {
 cout << "Error inserting Row : " << i << endl;
 PRINT_ERROR(err.code, err.message);
 }
 }
 APIERROR(transaction->getNdbError());
 }
 ndb.closeTransaction(transaction);
}

/*
 Reads the row with id = 17
 Retrieves an prints value of the [VAR]CHAR/BINARY
 */
static void do_read(Ndb& ndb)
{
 const NdbDictionary::Dictionary* dict= ndb.getDictionary();
 const NdbDictionary::Table* table= dict->getTable("api_array_simple");

 if (table == NULL) APIERROR(dict->getNdbError());

 NdbTransaction *transaction= ndb.startTransaction();
 if (transaction == NULL) APIERROR(ndb.getNdbError());

 NdbOperation *operation= transaction->getNdbOperation(table);
 if (operation == NULL) APIERROR(transaction->getNdbError());

 /* create and execute a read operation */
 operation->readTuple(NdbOperation::LM_Read);
 operation->equal("ATTR1", 17);

 vector<NdbRecAttr*> attr;
 const int column_count= table->getNoOfColumns();
 attr.reserve(column_count);

 attr.push_back(nullptr);

585

NDB API Simple Array Example

 for (int i= 1; i < column_count; i++)
 {
 attr.push_back(operation->getValue(i, NULL));
 if (attr[i] == NULL) APIERROR(transaction->getNdbError());
 }

 if(transaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(transaction->getNdbError());

 /* print the fetched data */
 cout << "Row ID : 17\n";
 for (int i= 1; i < column_count; i++)
 {
 if (attr[i] != NULL)
 {
 NdbDictionary::Column::Type column_type = attr[i]->getType();
 cout << "Column id: " << i << ", name: " << attr[i]->getColumn()->getName()
 << ", size: " << attr[i]->get_size_in_bytes()
 << ", type: " << column_type_to_string(attr[i]->getType());
 switch (column_type) {
 case NdbDictionary::Column::Char:
 case NdbDictionary::Column::Varchar:
 case NdbDictionary::Column::Longvarchar:
 {
 /* for char columns the actual string is printed */
 string str;
 get_string(attr[i], str);
 cout << ", stored string length: " << str.length()
 << ", value: " << str << endl;
 }
 break;
 case NdbDictionary::Column::Binary:
 case NdbDictionary::Column::Varbinary:
 case NdbDictionary::Column::Longvarbinary:
 {
 /* for binary columns the sum of all stored bytes is printed */
 const char* first;
 size_t count;
 get_byte_array(attr[i], first, count);
 int sum = 0;
 for (const char* byte = first; byte < first + count; byte++)
 {
 sum += (int)(*byte);
 }
 cout << ", stored bytes length: " << count
 << ", sum of byte array: " << sum << endl;
 }
 break;
 default:
 cout << ", column type \"" << column_type_to_string(attr[i]->getType())
 << "\" not covered by this example" << endl;
 break;
 }
 }
 }

 ndb.closeTransaction(transaction);
}

static void run_application(Ndb_cluster_connection &cluster_connection,
 const char* database_name)
{
 /**
 * Connect to database via NdbApi *
 **/
 // Object representing the database
 Ndb ndb(&cluster_connection, database_name);
 if (ndb.init()) APIERROR(ndb.getNdbError());

 /*
 * Do different operations on database
 */

586

NDB API Simple Array Example Using Adapter

 do_insert(ndb);
 do_read(ndb);
 do_cleanup(ndb);
}

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <connect_string cluster> <database_name>.\n";
 exit(-1);
 }
 /* ndb_init must be called first */
 ndb_init();
 {
 /* connect to cluster */
 const char *connectstring = argv[1];
 Ndb_cluster_connection cluster_connection(connectstring);
 if (cluster_connection.connect(30 /* retries */,
 1 /* delay between retries */,
 0 /* verbose */))
 {
 std::cout << "Cluster management server was not ready within 30 secs.\n";
 exit(-1);
 }

 /* Connect and wait for the storage nodes */
 if (cluster_connection.wait_until_ready(30,10) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 /* run the application code */
 const char* dbname = argv[2];
 run_application(cluster_connection, dbname);
 }
 ndb_end(0);

 return 0;
}

Prior to NDB 8.0, this program could not be run more than once in succession during the same session
(Bug #27009386).

2.5.13 NDB API Simple Array Example Using Adapter

This program inserts CHAR, VARCHAR, and BINARY column data into a table by constructing
aRef objects using array adapters of the type defined in common/array_adapter.hpp (see
Section 2.5.15, “Common Files for NDB API Array Examples”). It then reads the columns back and
extracts the data, again using array adapters.

The example uses the table shown here:

CREATE TABLE api_array_using_adapter (
 ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,
 ATTR2 CHAR(20) NOT NULL,
 ATTR3 VARCHAR(20) NOT NULL,
 ATTR4 VARCHAR(500) NOT NULL,
 ATTR5 BINARY(20) NOT NULL,
 ATTR6 VARBINARY(20) NOT NULL,
 ATTR7 VARBINARY(500) NOT NULL
) ENGINE NDB CHARSET latin1;

The example file can be found as ndbapi_array_using_adapter/
ndbapi_array_using_adapter.cpp in the NDB Cluster source distribution's storage/ndb/
ndbapi-examples directory. (Bug #70550, Bug #17592990)

#include <NdbApi.hpp>
#include <iostream>

587

https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html

NDB API Simple Array Example Using Adapter

#include <vector>
#include <cstdlib>
#include <cstring>

using namespace std;

/*
 See Section 2.5.15, “Common Files for NDB API Array Examples”,
 for listings of these utilities.
*/
#include "../common/error_handling.hpp"
#include "../common/array_adapter.hpp"
#include "../common/ndb_util.hpp"
#include "../common/util.hpp"

// Do a cleanup of all inserted rows
static void do_cleanup(Ndb& ndb)
{
 const NdbDictionary::Dictionary* dict = ndb.getDictionary();

 const NdbDictionary::Table *table = dict->getTable("api_array_using_adapter");
 if (table == nullptr) APIERROR(dict->getNdbError());

 NdbTransaction *transaction= ndb.startTransaction();
 if (transaction == nullptr) APIERROR(ndb.getNdbError());

 // Delete all 21 rows using a single transaction
 for (int i = 0; i <= 20; i++)
 {
 NdbOperation* myOperation = transaction->getNdbOperation(table);
 if (myOperation == nullptr) APIERROR(transaction->getNdbError());
 myOperation->deleteTuple();
 myOperation->equal("ATTR1", i);
 }

 if (transaction->execute(NdbTransaction::Commit) != 0)
 {
 APIERROR(transaction->getNdbError());
 }
 ndb.closeTransaction(transaction);
}

// Use one transaction and insert 21 rows in one batch.
static void do_insert(Ndb& ndb)
{
 const NdbDictionary::Dictionary* dict = ndb.getDictionary();
 const NdbDictionary::Table *table = dict->getTable("api_array_using_adapter");

 if (table == NULL)
 {
 APIERROR(dict->getNdbError());
 }

 // Get a column object for each CHAR/VARCHAR/BINARY/VARBINARY column
 // to insert into.
 const NdbDictionary::Column *column2 = table->getColumn("ATTR2");
 if (column2 == NULL)
 {
 APIERROR(dict->getNdbError());
 }

 const NdbDictionary::Column *column3 = table->getColumn("ATTR3");
 if (column3 == NULL)
 {
 APIERROR(dict->getNdbError());
 }

 const NdbDictionary::Column *column4 = table->getColumn("ATTR4");
 if (column4 == NULL)
 {
 APIERROR(dict->getNdbError());

588

NDB API Simple Array Example Using Adapter

 }

 const NdbDictionary::Column *column5 = table->getColumn("ATTR5");
 if (column5 == NULL)
 {
 APIERROR(dict->getNdbError());
 }

 const NdbDictionary::Column *column6 = table->getColumn("ATTR6");
 if (column6 == NULL)
 {
 APIERROR(dict->getNdbError());
 }

 const NdbDictionary::Column *column7 = table->getColumn("ATTR7");
 if (column7 == NULL)
 {
 APIERROR(dict->getNdbError());
 }

 // Create a read/write attribute adapter to be used for all
 // CHAR/VARCHAR/BINARY/VARBINARY columns.
 ReadWriteArrayAdapter attr_adapter;

 // Create and initialize sample data.
 const string meter = 50 * string("''''-,,,,|");
 unsigned char binary_meter[500];
 for (unsigned i = 0; i < 500; i++)
 {
 binary_meter[i] = (unsigned char)(i % 256);
 }

 NdbTransaction *transaction= ndb.startTransaction();
 if (transaction == NULL) APIERROR(ndb.getNdbError());

 // Create 21 operations and put a reference to them in a vector to
 // be able to find failing operations.
 vector<NdbOperation*> operations;
 for (int i = 0; i <= 20; i++)
 {
 NdbOperation* operation = transaction->getNdbOperation(table);
 if (operation == NULL) APIERROR(transaction->getNdbError());
 operation->insertTuple();

 operation->equal("ATTR1", i);

 /* use ReadWrite Adapter to convert string to aRefs */
 ReadWriteArrayAdapter::ErrorType error;

 char *attr2_aRef;
 attr2_aRef= attr_adapter.make_aRef(column2, meter.substr(0,i), error);
 PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success,
 "make_aRef failed for ATTR2");
 operation->setValue("ATTR2", attr2_aRef);

 char *attr3_aRef;
 attr3_aRef= attr_adapter.make_aRef(column3, meter.substr(0,i), error);
 PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success,
 "make_aRef failed for ATTR3");
 operation->setValue("ATTR3", attr3_aRef);

 char *attr4_aRef;
 attr4_aRef= attr_adapter.make_aRef(column4, meter.substr(0,20*i), error);
 PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success,
 "make_aRef failed for ATTR4");
 operation->setValue("ATTR4", attr4_aRef);

 char* attr5_aRef;
 char* attr5_first;
 attr_adapter.allocate_in_bytes(column5, attr5_aRef, attr5_first, i, error);
 PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success,
 "allocate_in_bytes failed for ATTR5");

589

NDB API Simple Array Example Using Adapter

 memcpy(attr5_first, binary_meter, i);
 operation->setValue("ATTR5", attr5_aRef);

 char* attr6_aRef;
 char* attr6_first;
 attr_adapter.allocate_in_bytes(column6, attr6_aRef, attr6_first, i, error);
 PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success,
 "allocate_in_bytes failed for ATTR6");
 memcpy(attr6_first, binary_meter, i);
 operation->setValue("ATTR6", attr6_aRef);

 char* attr7_aRef;
 char* attr7_first;
 attr_adapter.allocate_in_bytes(column7, attr7_aRef, attr7_first, 20*i, error);
 PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success,
 "allocate_in_bytes failed for ATTR7");
 memcpy(attr7_first, binary_meter, 20*i);
 operation->setValue("ATTR7", attr7_aRef);

 operations.push_back(operation);
 }

 // Now execute all operations in one batch, and check for errors.
 if (transaction->execute(NdbTransaction::Commit) != 0)
 {
 for (size_t i = 0; i < operations.size(); i++)
 {
 const NdbError err= operations[i]->getNdbError();
 if(err.code != NdbError::Success)
 {
 cout << "Error inserting Row : " << i << endl;
 PRINT_ERROR(err.code, err.message);
 }
 }
 APIERROR(transaction->getNdbError());
 }
 ndb.closeTransaction(transaction);
}

/*
 Reads the row with id = 17
 Retrieves an prints value of the [VAR]CHAR/BINARY using array_adapter
 */
static void do_read(Ndb& ndb)
{
 const NdbDictionary::Dictionary* dict= ndb.getDictionary();
 const NdbDictionary::Table* table= dict->getTable("api_array_using_adapter");

 if (table == NULL) APIERROR(dict->getNdbError());

 NdbTransaction *transaction= ndb.startTransaction();
 if (transaction == NULL) APIERROR(ndb.getNdbError());

 NdbOperation *operation= transaction->getNdbOperation(table);
 if (operation == NULL) APIERROR(transaction->getNdbError());

 operation->readTuple(NdbOperation::LM_Read);
 operation->equal("ATTR1", 17);

 vector<NdbRecAttr*> attr;
 const int column_count= table->getNoOfColumns();
 attr.reserve(column_count);

 attr.push_back(nullptr);

 for (int i= 1; i < column_count; i++)
 {
 attr.push_back(operation->getValue(i, NULL));
 if (attr[i] == NULL) APIERROR(transaction->getNdbError());
 }

 if(transaction->execute(NdbTransaction::Commit) == -1)

590

NDB API Simple Array Example Using Adapter

 APIERROR(transaction->getNdbError());

 /* Now use an array adapter to read the data from columns */
 const ReadOnlyArrayAdapter attr_adapter;
 ReadOnlyArrayAdapter::ErrorType error;

 /* print the fetched data */
 cout << "Row ID : 17\n";
 for (int i= 1; i < column_count; i++)
 {
 if (attr[i] != NULL)
 {
 NdbDictionary::Column::Type column_type = attr[i]->getType();
 cout << "Column id: " << i
 << ", name: " << attr[i]->getColumn()->getName()
 << ", size: " << attr[i]->get_size_in_bytes()
 << ", type: " << column_type_to_string(attr[i]->getType());
 if(attr_adapter.is_binary_array_type(column_type))
 {
 /* if column is [VAR]BINARY, get the byte array and print their sum */
 const char* data_ptr;
 size_t data_length;
 attr_adapter.get_byte_array(attr[i], data_ptr,
 data_length, error);
 if(error == ReadOnlyArrayAdapter::Success)
 {
 int sum = 0;
 for (size_t j = 0; j < data_length; j++)
 sum += (int)(data_ptr[j]);
 cout << ", stored bytes length: " << data_length
 << ", sum of byte array: " << sum << endl;
 }
 else
 cout << ", error fetching value." << endl;
 }
 else
 {
 /* if the column is [VAR]CHAR, retrieve the string and print */
 std::string value= attr_adapter.get_string(attr[i], error);
 if(error == ReadOnlyArrayAdapter::Success)
 {
 cout << ", stored string length: " << value.length()
 << ", value: " << value
 << endl;
 }
 else
 cout << ", error fetching value." << endl;
 }
 }
 }

 ndb.closeTransaction(transaction);
}

static void run_application(Ndb_cluster_connection &cluster_connection,
 const char* database_name)
{
 /**
 * Connect to database via NdbApi *
 **/
 // Object representing the database
 Ndb ndb(&cluster_connection, database_name);
 if (ndb.init()) APIERROR(ndb.getNdbError());

 /*
 * Do different operations on database
 */
 do_insert(ndb);
 do_read(ndb);
 do_cleanup(ndb);
}

591

Timestamp2 Example

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <connect_string cluster> <database_name>.\n";
 exit(-1);
 }
 /* ndb_init must be called first */
 ndb_init();
 {
 /* connect to cluster */
 const char *connectstring = argv[1];
 Ndb_cluster_connection cluster_connection(connectstring);
 if (cluster_connection.connect(30 /* retries */,
 1 /* delay between retries */,
 0 /* verbose */))
 {
 std::cout << "Cluster management server was not ready within 30 secs.\n";
 exit(-1);
 }

 /* Connect and wait for the storage nodes */
 if (cluster_connection.wait_until_ready(30,10) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 /* run the application code */
 const char* dbname = argv[2];
 run_application(cluster_connection, dbname);
 }
 ndb_end(0);

 return 0;
}

Prior to NDB 8.0, this program could not be run more than once in succession during the same session
(Bug #27009386).

2.5.14 Timestamp2 Example

The file timestamp2.cpp reproduced in this section provides an example of working in NDB API
applications with the “new” MySQL temporal data types supporting fractional seconds.

For more information working with MySQL temporal and other data types in the NDB API, see
Section 2.1.3.2, “NDB API Handling of MySQL Data Types”.

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <NdbApi.hpp>
#include <string>
#include <unistd.h>

//no binlog value
#define NDB_ANYVALUE_FOR_NOLOGGING 0x8000007f

using namespace std;

int setTimestamp(NdbOperation* op,
 const NdbDictionary::Column* col,
 unsigned int value)
{
 if (col->getType() == NDB_TYPE_TIMESTAMP)
 {
 /* Set as 32-bit int in host layout */
 return op->setValue(col->getName(), value);
 }
 else if (col->getType() == NDB_TYPE_TIMESTAMP2)
 {

592

Timestamp2 Example

 /* Set as 64 bit big-endian value */
 //assert(col->getPrecision() == 0);
 Uint64 ts = 0;
 unsigned char* bytes = (unsigned char*) &ts;
 bytes[0] = value >> 24 & 0xff;
 bytes[1] = value >> 16 & 0xff;
 bytes[2] = value >> 8 & 0xff;
 bytes[3] = value & 0xff;
 return op->setValue(col->getName(), ts);
 }
 else
 {
 cout << "Bad type for column " << col->getType()
 << std::endl;
 exit(1);
 }
}

unsigned int readTimestamp(NdbRecAttr* recAttr)
{
 if (recAttr->getType() == NDB_TYPE_TIMESTAMP)
 {
 /* Timestamp is in native 32 bit layout */
 return recAttr->u_32_value();
 }
 else if (recAttr->getType() == NDB_TYPE_TIMESTAMP2)
 {
 /* Timestamp is in big-endian layout */
 //assert(recAttr->getColumn()->getPrecision() == 0);
 Uint64 ts2 = recAttr->u_64_value();
 const unsigned char* bytes = (const unsigned char*) &ts2;
 const unsigned int ts =
 (Uint64(bytes[0]) << 24) +
 (Uint64(bytes[1]) << 16) +
 (Uint64(bytes[2]) << 8) +
 (Uint64(bytes[3]));

 return ts;
 }
 else
 {
 cout << "Error with timestamp column type : "
 << recAttr->getType()
 << endl;
 exit(1);
 }
}

void insert(string connectString)
{
 Ndb_cluster_connection *cluster_connection = new Ndb_cluster_connection(connectString.c_str());
 if(cluster_connection->connect(5,5,1)) {
 cout << "Cannot connect to Cluster using connectstring: "<< connectString << endl;
 exit(1);
 }

 if(cluster_connection->wait_until_ready(30,0) < 0) {
 cout << "Cluster was not ready within 30 seconds" << endl;
 }

 Ndb *myNdb = new Ndb(cluster_connection, "myndb_user_data");

 if(myNdb->init(1024) == -1){
 cout << "Error: Cannot initialize NDB object" << endl;
 exit(-1);
 }

 const NdbDictionary::Dictionary *dict = myNdb->getDictionary();
 if (dict == NULL) {
 cout << "Error: Cannot fetch NndDictionary" << endl;
 exit(0);
 }

593

Timestamp2 Example

 const NdbDictionary::Table *timestampTable = dict->getTable("TIMESTAMP_TEST");
 if (timestampTable == NULL) {
 cout << "Error: Cannot fetch MYNDB table" << endl;
 exit(0);
 }

 NdbTransaction *trans = myNdb->startTransaction();
 if (trans == NULL) {
 cout << "Error: Cannot start new transaction" << endl;
 exit(1);
 }

 NdbOperation *myOperation = trans->getNdbOperation(timestampTable);
 if (myOperation == NULL) {
 cout << "Error: Cannot get new operation" << endl;
 exit(1);
 }

 myOperation->insertTuple();

 Uint64 value;
 myNdb->getAutoIncrementValue(timestampTable, value, (Uint32)32);
 myOperation->setValue("KEY_COL", value);

 time_t timestamp= time(NULL);
 setTimestamp(myOperation,
 timestampTable->getColumn("createTimestamp"),
 timestamp);
 setTimestamp(myOperation,
 timestampTable->getColumn("modifyTimestamp"),
 timestamp);
 //disable binlogging
 myOperation->setAnyValue(NDB_ANYVALUE_FOR_NOLOGGING);

 if(trans->execute(NdbTransaction::Commit) != 0) {
 cout << "Error: " << trans->getNdbError().message << endl;
 exit(1);
 }

 myNdb->closeTransaction(trans);

 delete myNdb;

 delete cluster_connection;
}

void fetch_from_database(string connectString)
{
 Ndb_cluster_connection *cluster_connection = new Ndb_cluster_connection(connectString.c_str());
 if(cluster_connection->connect(5,5,1)) {
 cout << "Cannot connect to Cluster using connectstring: "<< connectString << endl;
 exit(1);
 }

 if(cluster_connection->wait_until_ready(30,0) < 0) {
 cout << "Cluster was not ready within 30 seconds" << endl;
 }

 Ndb *myNdb = new Ndb(cluster_connection, "myndb_user_data");

 if(myNdb->init(1024) == -1){
 cout << "Error: Cannot initialize NDB object" << endl;
 exit(-1);
 }

 const NdbDictionary::Dictionary *dict = myNdb->getDictionary();
 if (dict == NULL) {
 cout << "Error: Cannot fetch NndDictionary" << endl;
 exit(0);

594

Timestamp2 Example

 }

 const NdbDictionary::Table *timestampTable = dict->getTable("TIMESTAMP_TEST");
 if (timestampTable == NULL) {
 cout << "Error: Cannot fetch MYNDB table" << endl;
 exit(0);
 }

 NdbTransaction *trans = myNdb->startTransaction();
 if (trans == NULL) {
 cout << "Error: Cannot start new transaction" << endl;
 exit(1);
 }

 NdbScanOperation *myOperation = trans->getNdbScanOperation(timestampTable);
 if (myOperation == NULL) {
 cout << "Error: Cannot get new operation" << endl;
 exit(1);
 }

 if (myOperation->readTuples(NdbOperation::LM_Exclusive) == -1){
 cout << "Error: " << trans->getNdbError().message << endl;
 exit(0);
 }

 NdbRecAttr *recAttrs[3];
 recAttrs[0] = myOperation->getValue("KEY_COL");
 recAttrs[1] = myOperation->getValue("createTimestamp");
 recAttrs[2] = myOperation->getValue("modifyTimestamp");

 if (recAttrs[0] == NULL || recAttrs[1] == NULL || recAttrs[2] == NULL) {
 cout << "Error: " << trans->getNdbError().message << endl;
 exit(0);
 }

 if(trans->execute(NdbTransaction::NoCommit) != 0) {
 cout << "Error: " << trans->getNdbError().message << endl;
 exit(1);
 }

 int check;

 while((check = myOperation->nextResult(true)) == 0){
 do {
 cout << recAttrs[0]->u_32_value() << "\t";
 cout << readTimestamp(recAttrs[1]) << "\t";
 cout << readTimestamp(recAttrs[2]) << std::endl;
 } while((check = myOperation->nextResult(false)) == 0);
 }

 myNdb->closeTransaction(trans);

 delete myNdb;

 delete cluster_connection;

}

int main(int argc, char **argv) {
 cout << "Timestamp test application!!!!" << endl;

 //fetch parameters
 string connectString;

 if (argc < 2) {
 cout<<"Please provide connect string for PLDB"<<endl;
 exit(1);
 }
 connectString = argv[1];

 ndb_init();

595

Common Files for NDB API Array Examples

 insert(connectString);

 fetch_from_database(connectString);

 ndb_end(0);

 return EXIT_SUCCESS;
}

2.5.15 Common Files for NDB API Array Examples

In the NDB Cluster source distribution, the storage/ndb/ndbapi-examples directory storage/
ndb/ndbapi-examples/common contains four header files with utilities for use in example NDB API
programs. (Bug #70550, Bug #17592990) The names of these files are listed here:

• array_adapter.hpp: Contains utility classes for converting between C++ style strings or byte
arrays and the format used by NDB internally for VARCHAR, CHAR, and VARBINARY types.

• error_handling.hpp: Contains error handling functions.

• ndb_util.hpp: Defines a column_type_to_string() function which handles NDB column
types.

• util.hpp: Provides a method for generating strings of arbitrary length.

Following in this section are source listings for each of the header files.

array_adapter.hpp

#ifndef ARRAY_ADAPTER_HPP
#define ARRAY_ADAPTER_HPP

#include <algorithm>
#include <assert.h>

/*
 Utility classes to convert between C++ strings/byte arrays and the
 internal format used for [VAR]CHAR/BINARY types.

 Base class that can be used for read operations. The column type is
 taken from the NdbRecAttr object, so only one object is needed to
 convert from different [VAR]CHAR/BINARY types. No additional memory
 is allocated.
 */
class ReadOnlyArrayAdapter {
public:
 ReadOnlyArrayAdapter() {}

 enum ErrorType {Success,
 InvalidColumnType,
 InvalidArrayType,
 InvalidNullColumn,
 InvalidNullAttribute,
 InvalidNullaRef,
 BytesOutOfRange,
 UnknownError};

 /*
 Return a C++ string from the aRef() value of attr. This value
 will use the column and column type from attr. The advantage is
 for reading; the same ArrayAdapter can be used for multiple
 columns. The disadvantage is; passing an attribute not of
 [VAR]CHAR/BINARY type will result in a traditional exit(-1)
 */
 std::string get_string(const NdbRecAttr* attr,
 ErrorType& error) const;

 /* Calculate the first_byte and number of bytes in aRef for attr */
 void get_byte_array(const NdbRecAttr* attr,
 const char*& first_byte,

596

https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html

Common Files for NDB API Array Examples

 size_t& bytes,
 ErrorType& error) const;

 /* Check if a column is of type [VAR]BINARY */
 bool is_binary_array_type(const NdbDictionary::Column::Type t) const;

 /* Check if a column is of type [VAR]BINARY or [VAR]CHAR */
 bool is_array_type(const NdbDictionary::Column::Type t) const;
private:
 /* Disable copy constructor */
 ReadOnlyArrayAdapter(const ReadOnlyArrayAdapter& a) {}
};

 /*
 Extension to ReadOnlyArrayAdapter to be used together with
 insert/write/update operations. Memory is allocated for each
 call to make_aRef or allocate_in_bytes. The memory allocated will
 be deallocated by the destructor. To save memory, the scope of an
 instance of this class should not be longer than the life time of
 the transaction. On the other hand, it must be long enough for the
 usage of all references created
 */
class ReadWriteArrayAdapter : public ReadOnlyArrayAdapter {
public:
 ReadWriteArrayAdapter() {}

 /* Destructor, the only place where memory is deallocated */
 ~ReadWriteArrayAdapter();

 /*
 Create a binary representation of the string 's' and return a
 pointer to it. This pointer can later be used as argument to for
 example setValue
 */
 char* make_aRef(const NdbDictionary::Column* column,
 std::string s,
 ErrorType& error);

 /*
 Allocate a number of bytes suitable for this column type. aRef
 can later be used as argument to for example setValue. first_byte
 is the first byte to store data to. bytes is the number of bytes
 to allocate
 */
 void allocate_in_bytes(const NdbDictionary::Column* column,
 char*& aRef,
 char*& first_byte,
 size_t bytes,
 ErrorType& error);

private:
 /* Disable copy constructor */
 ReadWriteArrayAdapter(const ReadWriteArrayAdapter& a)
 :ReadOnlyArrayAdapter() {}

 /* Record of allocated char arrays to delete by the destructor */
 std::vector<char*> aRef_created;
};

inline ReadWriteArrayAdapter::~ReadWriteArrayAdapter()
{
 for (std::vector<char*>::iterator i = aRef_created.begin();
 i != aRef_created.end();
 ++i) {
 delete [] *i;
 }
}

char*

597

Common Files for NDB API Array Examples

ReadWriteArrayAdapter::
make_aRef(const NdbDictionary::Column* column,
 std::string input,
 ErrorType& error)
{
 char* new_ref;
 char* data_start;

 /*
 Allocate bytes and push them into the aRef_created vector.
 After this operation, new_ref has a complete aRef to use in insertion
 and data_start has ptr from which data is to be written.
 The new_aref returned is padded completely with blank spaces.
 */
 allocate_in_bytes(column, new_ref, data_start, input.length(), error);

 if(error != Success)
 {
 return NULL;
 }

 /*
 Copy the input string into aRef's data pointer
 without affecting remaining blank spaces at end.
 */
 strncpy(data_start, input.c_str(), input.length());

 return new_ref;
}

void
ReadWriteArrayAdapter::
allocate_in_bytes(const NdbDictionary::Column* column,
 char*& aRef,
 char*& first_byte,
 size_t bytes,
 ErrorType& error)
{
 bool is_binary;
 char zero_char;
 NdbDictionary::Column::ArrayType array_type;
 size_t max_length;

 /* unless there is going to be any problem */
 error = Success;

 if (column == NULL)
 {
 error = InvalidNullColumn;
 aRef = NULL;
 first_byte = NULL;
 return;
 }

 if (!is_array_type(column->getType()))
 {
 error = InvalidColumnType;
 aRef = NULL;
 first_byte = NULL;
 return;
 }

 is_binary = is_binary_array_type(column->getType());
 zero_char = (is_binary ? 0 : ' ');
 array_type = column->getArrayType();
 max_length = column->getLength();

 if (bytes > max_length)
 {
 error = BytesOutOfRange;
 aRef = NULL;

598

Common Files for NDB API Array Examples

 first_byte = NULL;
 return;
 }

 switch (array_type) {
 case NdbDictionary::Column::ArrayTypeFixed:
 /* no need to store length bytes */
 aRef = new char[max_length];
 first_byte = aRef;
 /* pad the complete string with blank space (or) null bytes */
 for (size_t i=0; i < max_length; i++) {
 aRef[i] = zero_char;
 }
 break;
 case NdbDictionary::Column::ArrayTypeShortVar:
 /* byte length stored over first byte. no padding required */
 aRef = new char[1 + bytes];
 first_byte = aRef + 1;
 aRef[0] = (char)bytes;
 break;
 case NdbDictionary::Column::ArrayTypeMediumVar:
 /* byte length stored over first two bytes. no padding required */
 aRef = new char[2 + bytes];
 first_byte = aRef + 2;
 aRef[0] = (char)(bytes % 256);
 aRef[1] = (char)(bytes / 256);
 break;
 }
 aRef_created.push_back(aRef);
}

std::string ReadOnlyArrayAdapter::get_string(const NdbRecAttr* attr,
 ErrorType& error) const
{
 size_t attr_bytes= 0;
 const char* data_ptr= NULL;
 std::string result= "";

 /* get the beginning of data and its size.. */
 get_byte_array(attr, data_ptr, attr_bytes, error);

 if(error != Success)
 {
 return result;
 }

 /* ..and copy the value into result */
 result = string(data_ptr, attr_bytes);

 /* special treatment for FixedArrayType to eliminate padding characters */
 if(attr->getColumn()->getArrayType() == NdbDictionary::Column::ArrayTypeFixed)
 {
 char padding_char = ' ';
 std::size_t last = result.find_last_not_of(padding_char);
 result = result.substr(0, last+1);
 }

 return result;
}

void
ReadOnlyArrayAdapter::
get_byte_array(const NdbRecAttr* attr,
 const char*& data_ptr,
 size_t& bytes,
 ErrorType& error) const
{
 /* unless there is a problem */
 error= Success;

599

Common Files for NDB API Array Examples

 if (attr == NULL)
 {
 error = InvalidNullAttribute;
 return;
 }

 if (!is_array_type(attr->getType()))
 {
 error = InvalidColumnType;
 return;
 }

 const NdbDictionary::Column::ArrayType array_type =
 attr->getColumn()->getArrayType();
 const size_t attr_bytes = attr->get_size_in_bytes();
 const char* aRef = attr->aRef();

 if(aRef == NULL)
 {
 error= InvalidNullaRef;
 return;
 }

 switch (array_type) {
 case NdbDictionary::Column::ArrayTypeFixed:
 /* no length bytes stored with aRef */
 data_ptr = aRef;
 bytes = attr_bytes;
 break;
 case NdbDictionary::Column::ArrayTypeShortVar:
 /* first byte of aRef has length of the data */
 data_ptr = aRef + 1;
 bytes = (size_t)(aRef[0]);
 break;
 case NdbDictionary::Column::ArrayTypeMediumVar:
 /* first two bytes of aRef has length of the data */
 data_ptr = aRef + 2;
 bytes = (size_t)(aRef[1]) * 256 + (size_t)(aRef[0]);
 break;
 default:
 /* should never reach here */
 data_ptr = NULL;
 bytes = 0;
 error = InvalidArrayType;
 break;
 }
}

bool
ReadOnlyArrayAdapter::
is_binary_array_type(const NdbDictionary::Column::Type t) const
{
 bool is_binary;

 switch (t)
 {
 case NdbDictionary::Column::Binary:
 case NdbDictionary::Column::Varbinary:
 case NdbDictionary::Column::Longvarbinary:
 is_binary = true;
 break;
 default:
 is_binary = false;
 }
 return is_binary;
}

bool
ReadOnlyArrayAdapter::
is_array_type(const NdbDictionary::Column::Type t) const

600

Common Files for NDB API Array Examples

{
 bool is_array;

 switch (t)
 {
 case NdbDictionary::Column::Binary:
 case NdbDictionary::Column::Varbinary:
 case NdbDictionary::Column::Longvarbinary:
 case NdbDictionary::Column::Char:
 case NdbDictionary::Column::Varchar:
 case NdbDictionary::Column::Longvarchar:
 is_array = true;
 break;
 default:
 is_array = false;
 }
 return is_array;
}

#endif // #ifndef ARRAY_ADAPTER_HPP

error_handling.hpp

#ifndef ERROR_HANDLING_HPP
#define ERROR_HANDLING_HPP

template <typename T>
inline static void print_if_not_equal(T got,
 T expected,
 const char* msg,
 const char* file,
 int line)
{
 std::cout << "Got value " << got << " instead of expected value " << expected
 << " in " << file << ":" << line;
}

#define PRINT_IF_NOT_EQUAL(got, expected, msg) { \
 if (got != expected) { \
 print_if_not_equal(got, expected, msg, __FILE__, __LINE__); \
 exit(-1); \
 } \
 }

#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "." << std::endl

#define APIERROR(error) { \
 PRINT_ERROR(error.code,error.message); \
 exit(-1); }

#endif

ndb_util.hpp

#ifndef NDB_UTIL_HPP
#define NDB_UTIL_HPP

#include <NdbApi.hpp>
#include <string>
#include <sstream>

static const std::string column_type_to_string(NdbDictionary::Column::Type type)
{
 switch (type)
 {
 case NdbDictionary::Column::Undefined:
 return "Undefined";
 case NdbDictionary::Column::Tinyint:
 return "Tinyint";

601

Common Files for NDB API Array Examples

 case NdbDictionary::Column::Tinyunsigned:
 return "Tinyunsigned";
 case NdbDictionary::Column::Smallint:
 return "Smallint";
 case NdbDictionary::Column::Smallunsigned:
 return "Smallunsigned";
 case NdbDictionary::Column::Mediumint:
 return "Mediumint";
 case NdbDictionary::Column::Mediumunsigned:
 return "Mediumunsigned";
 case NdbDictionary::Column::Int:
 return "Int";
 case NdbDictionary::Column::Unsigned:
 return "Unsigned";
 case NdbDictionary::Column::Bigint:
 return "Bigint";
 case NdbDictionary::Column::Bigunsigned:
 return "Bigunsigned";
 case NdbDictionary::Column::Float:
 return "Float";
 case NdbDictionary::Column::Double:
 return "Double";
 case NdbDictionary::Column::Olddecimal:
 return "Olddecimal";
 case NdbDictionary::Column::Olddecimalunsigned:
 return "Olddecimalunsigned";
 case NdbDictionary::Column::Decimal:
 return "Decimal";
 case NdbDictionary::Column::Decimalunsigned:
 return "Decimalunsigned";
 case NdbDictionary::Column::Char:
 return "Char";
 case NdbDictionary::Column::Varchar:
 return "Varchar";
 case NdbDictionary::Column::Binary:
 return "Binary";
 case NdbDictionary::Column::Varbinary:
 return "Varbinary";
 case NdbDictionary::Column::Datetime:
 return "Datetime";
 case NdbDictionary::Column::Date:
 return "Date";
 case NdbDictionary::Column::Blob:
 return "Blob";
 case NdbDictionary::Column::Text:
 return "Text";
 case NdbDictionary::Column::Bit:
 return "Bit";
 case NdbDictionary::Column::Longvarchar:
 return "Longvarchar";
 case NdbDictionary::Column::Longvarbinary:
 return "Longvarbinary";
 case NdbDictionary::Column::Time:
 return "Time";
 case NdbDictionary::Column::Year:
 return "Year";
 case NdbDictionary::Column::Timestamp:
 return "Timestamp";
 case NdbDictionary::Column::Time2:
 return "Time2";
 case NdbDictionary::Column::Datetime2:
 return "Datetime2";
 case NdbDictionary::Column::Timestamp2:
 return "Timestamp2";
 default:
 {
 std::string str;
 std::stringstream s(str);
 s << "Unknown type: " << type;
 return s.str();
 }
 }

602

Common Files for NDB API Array Examples

}

#endif

util.hpp

#include <string>

/* Return a string containing 'n' copies of the string 's'. */
static std::string operator * (unsigned n, const std::string& s)
{
 std::string result;
 result.reserve(n * s.length());
 for (unsigned i = 0; i < n; i++)
 {
 result.append(s);
 }
 return result;
}

#endif // #ifndef UTIL_HPP

603

604

Chapter 3 The MGM API

Table of Contents
3.1 MGM API Concepts .. 605
3.2 MGM API Function Listings ... 607

3.2.1 Log Event Functions ... 607
3.2.2 MGM API Error Handling Functions ... 610
3.2.3 Management Server Handle Functions .. 612
3.2.4 Management Server Connection Functions .. 613
3.2.5 Cluster Status Functions ... 619
3.2.6 Functions for Starting & Stopping Nodes ... 621
3.2.7 Cluster Log Functions ... 627
3.2.8 Backup Functions ... 629
3.2.9 Single-User Mode Functions ... 632
3.2.10 TLS Functions .. 633

3.3 MGM API Data Types ... 637
3.4 MGM API Data Structures ... 646
3.5 MGM API Errors ... 653
3.6 MGM API Examples .. 655

3.6.1 Basic MGM API Event Logging Example ... 655
3.6.2 MGM API Event Handling with Multiple Clusters .. 657

This chapter discusses the NDB Cluster Management API, a C language API that is used for
administrative tasks such as starting and stopping Cluster nodes, backups, and logging. It also covers
MGM API concepts, programming constructs, and event types.

For information about general requirements for compiling MGM API applications, see Section 2.1.1.1,
“General Requirements”.

3.1 MGM API Concepts
This section describes concepts basic to the NDB Cluster MGM API.

• NdbMgmHandle

• Working with Log Events

• Structured Log Events

NdbMgmHandle

Each MGM API function needs a management server handle of type NdbMgmHandle. This
handle is created by calling the function ndb_mgm_create_handle() and freed by calling
ndb_mgm_destroy_handle().

See ndb_mgm_create_handle(), and ndb_mgm_destroy_handle(), for more information about these
two functions.

Important

You should not share an NdbMgmHandle between threads. While it is possible
to do so (if you implement your own locks), this is not recommended; each
thread should use its own management server handle.

A function can return any of the following:

• An integer value, with a value of -1 indicating an error.

605

Working with Log Events

• A nonconstant pointer value. A NULL value indicates an error; otherwise, the return value must be
freed by the programmer.

• A constant pointer value, with a NULL value indicating an error. The returned value should not be
freed.

Error conditions can be identified by using the appropriate error-reporting functions
ndb_mgm_get_latest_error() and ndb_mgm_error().

Here is an example using the MGM API (without error handling for brevity's sake):

NdbMgmHandle handle= ndb_mgm_create_handle();
ndb_mgm_connect(handle,0,0,0);
struct ndb_mgm_cluster_state *state= ndb_mgm_get_status(handle);
for(int i=0; i < state->no_of_nodes; i++)
{
 struct ndb_mgm_node_state *node_state= &state->node_states[i];
 printf("node with ID=%d ", node_state->node_id);

 if(node_state->version != 0)
 printf("connected\n");
 else
 printf("not connected\n");
}
free((void*)state);
ndb_mgm_destroy_handle(&handle);

Working with Log Events

Data nodes and management servers both regularly and on specific occasions report on various log
events that occur in the cluster. These log events are written to the cluster log. Optionally an MGM
API client may listen to these events using the method ndb_mgm_listen_event(). Each log event
belongs to a category ndb_mgm_event_category) and has a severity ndb_mgm_event_severity
associated with it. Each log event also has a level (0-15) associated with it.

Which log events that come out is controlled with ndb_mgm_listen_event(),
ndb_mgm_set_clusterlog_loglevel(), and
ndb_mgm_set_clusterlog_severity_filter().

This is an example showing how to listen to events related to backup:

int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP, 0 };
int fd = ndb_mgm_listen_event(handle, filter);

Structured Log Events

Handling of structured log events in the MGM API involves the following steps:

1. Create an NdbLogEventHandle using ndb_mgm_create_logevent_handle().

2. Wait for and store log events using ndb_logevent_get_next().

3. The log event data is available in the structure ndb_logevent. The data which is specific to a
particular event is stored in a union between structures; use ndb_logevent::type to decide
which structure is valid.

The following sample code demonstrates listening to events related to backups:

int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP, 0 };
NdbLogEventHandle le_handle= ndb_mgm_create_logevent_handle(handle, filter);
struct ndb_logevent le;
int r= ndb_logevent_get_next(le_handle, &le, 0);
if(r < 0)
 /* error */
else if(r == 0)
 /* no event */

606

MGM API Function Listings

switch(le.type)
{
 case NDB_LE_BackupStarted:
 ... le.BackupStarted.starting_node;
 ... le.BackupStarted.backup_id;
 break;
 case NDB_LE_BackupFailedToStart:
 ... le.BackupFailedToStart.error;
 break;
 case NDB_LE_BackupCompleted:
 ... le.BackupCompleted.stop_gci;
 break;
 case NDB_LE_BackupAborted:
 ... le.BackupStarted.backup_id;
 break;
 default:
 break;
}

For more information, see Section 3.2.1, “Log Event Functions”.

Available log event types are listed in The Ndb_logevent_type Type, as well as in the file /storage/
ndb/include/mgmapi/ndb_logevent.h in the NDB Cluster sources.

3.2 MGM API Function Listings
The next few sections provide information about the functions and data structures used by the MGM
API. These listings are grouped by purpose or use.

3.2.1 Log Event Functions

This section provides information about MGM API functions used for listening to log events.

• ndb_mgm_listen_event()

• ndb_mgm_create_logevent_handle()

• ndb_mgm_destroy_logevent_handle()

• ndb_logevent_get_fd()

• ndb_logevent_get_next()

• ndb_logevent_get_next2()

• ndb_logevent_get_latest_error()

• ndb_logevent_get_latest_error_msg()

ndb_mgm_listen_event()

Description This function is used to listen to log events, which are read from the
return file descriptor. Events use a text-based format, the same as in
the cluster log.

ndb_mgm_listen_event() does not support TLS. You can use
ndb_mgm_create_logevent_handle(), which does.

Signature int ndb_mgm_listen_event
 (
 NdbMgmHandle handle,
 const int filter[]
)

Parameters This function takes two arguments:

• An NdbMgmHandle handle.

607

Log Event Functions

• A filter which consists of a series of {level,
ndb_mgm_event_category} pairs (in a single array) that are
pushed to a file descriptor. Use 0 for the level to terminate the list.

Return value The file descriptor from which events are to be read.

ndb_mgm_create_logevent_handle()

Description This function is used to create a log event handle.

Signature NdbLogEventHandle ndb_mgm_create_logevent_handle
 (
 NdbMgmHandle handle,
 const int filter[]
)

Parameters This function takes two arguments:

• An NdbMgmHandle handle.

• A filter which consists of a series of {level,
ndb_mgm_event_category} pairs (in a single array) that are
pushed to a file descriptor. Use 0 for the level to terminate the list.

Return value A log event handle.

ndb_mgm_destroy_logevent_handle()

Description Use this function to destroy a log event handle when there is no
further need for it.

Signature void ndb_mgm_destroy_logevent_handle
 (
 NdbLogEventHandle* handle
)

Parameters A pointer to a log event handle.

Return value None.

ndb_logevent_get_fd()

Description This function retrieves a file descriptor from an
NdbMgmLogEventHandle; this descriptor can be used in (for
example) an application select() call.

Warning

Do not attempt to read from the file descriptor returned by this function; this can
cause the descriptor to become corrupted.

Signature int ndb_logevent_get_fd
 (
 const NdbLogEventHandle handle
)

Parameters A LogEventHandle.

Return value A file descriptor. In the event of failure, -1 is returned.

ndb_logevent_get_next()

Description This function is used to retrieve the next log event, using data from
the event to fill in the supplied ndb_logevent structure.

608

Log Event Functions

Signature int ndb_logevent_get_next
 (
 const NdbLogEventHandle handle,
 struct ndb_logevent* logevent,
 unsigned timeout
)

Important

The log event's ndb_mgm_event_category is cast to an enum
type. For an equivalent function that does not perform this cast, use
ndb_logevent_get_next2() instead.

Parameters Three parameters are expected by this function:

• An NdbLogEventHandle

• A pointer to an ndb_logevent data structure

• The number of milliseconds to wait for the event before timing out;
passing 0 for this parameter causes the function to block until the
next log event is received

Return value The value returned by this function is interpreted as follows: If the
return value is less than or equal to zero, then the logevent is not
altered or affected in any way.

• > 0: The event exists, and it data was retrieved into the
logevent

• 0: A timeout occurred while waiting for the event (more than
timeout milliseconds elapsed)

• < 0: An error occurred.

ndb_logevent_get_next2()

Description This function is used to retrieve the next log event, using data from
the event to fill in the supplied ndb_logevent structure.

ndb_logevent_get_next2() corrects the ndb_logevent_get_next() function's handling of the
structure's ndb_mgm_event_category, for applications which do not require backward compatibility.
It is otherwise identical to ndb_logevent_get_next().

Signature int ndb_logevent_get_next2
 (
 const NdbLogEventHandle handle,
 struct ndb_logevent* logevent,
 unsigned timeout
)

Parameters Three parameters are expected by this function:

• An NdbLogEventHandle

• A pointer to an ndb_logevent data structure

• The number of milliseconds to wait for the event before timing out;
passing 0 for this parameter causes the function to block until the
next log event is received

Return value The value returned by this function is interpreted as follows: If the
return value is less than or equal to zero, then the logevent is not
altered or affected in any way.

609

MGM API Error Handling Functions

• > 0: The event exists, and it data was retrieved into the
logevent

• 0: A timeout occurred while waiting for the event (more than
timeout milliseconds elapsed)

• < 0: An error occurred.

ndb_logevent_get_latest_error()

Description This function retrieves the error code from the most recent error.

Note

You may prefer to use ndb_logevent_get_latest_error_msg() instead.
See ndb_logevent_get_latest_error_msg()

Signature int ndb_logevent_get_latest_error
 (
 const NdbLogEventHandle handle
)

Parameters A log event handle.

Return value An error code.

ndb_logevent_get_latest_error_msg()

Description Retrieves the text of the most recent error obtained while trying to
read log events.

Signature const char* ndb_logevent_get_latest_error_msg
 (
 const NdbLogEventHandle handle
)

Parameters A log event handle.

Return value The text of the error message.

3.2.2 MGM API Error Handling Functions

This section provides information about MGM API functions used for error handling.

Each MGM API error is characterised by an error code and an error message. There may also be an
error description that provides additional information about the error. The MGM API includes functions
to obtain this information in the event of an error.

• ndb_mgm_get_latest_error()

• ndb_mgm_get_latest_error_msg()

• ndb_mgm_get_latest_error_desc()

• ndb_mgm_set_error_stream()

ndb_mgm_get_latest_error()

Description This function is used to get the latest error code associated with a
given management server handle.

Prior to NDB 7.4.8, this function was not safe for use with NULL. In later versions,
ndb_mgm_get_latest_error() is null-safe but returns an arbitrary value. (Bug #78130, Bug
#21651706)

610

MGM API Error Handling Functions

Signature int ndb_mgm_get_latest_error
 (
 const NdbMgmHandle handle
)

Parameters An NdbMgMHandle.

Return value An error code corresponding to an ndb_mgm_error
value. You can obtain the related error message using
ndb_mgm_get_latest_error_msg().

ndb_mgm_get_latest_error_msg()

Description This function is used to obtain the latest general error message
associated with an NdbMgmHandle.

Prior to NDB 7.4.8, this function was not safe for use with NULL. In later versions,
ndb_mgm_get_latest_error_msg() is null-safe but returns an arbitrary value. (Bug #78130, Bug
#21651706)

Signature const char* ndb_mgm_get_latest_error_msg
 (
 const NdbMgmHandle handle
)

Parameters An NdbMgmHandle.

Return value The error message text. More specific information can be obtained
using ndb_mgm_get_latest_error_desc()-

ndb_mgm_get_latest_error_desc()

Description Get the most recent error description associated with an
NdbMgmHandle; this description provides additional information
regarding the error message.

Prior to NDB 7.4.8, this function was not safe for use with NULL. In later versions,
ndb_mgm_get_latest_error_desc() is null-safe but returns an arbitrary value. (Bug #78130, Bug
#21651706)

Signature const char* ndb_mgm_get_latest_error_desc
 (
 const NdbMgmHandle handle
)

Parameters An NdbMgmHandle.

Return value The error description text.

ndb_mgm_set_error_stream()

Description The function can be used to set the error output stream.

Signature void ndb_mgm_set_error_stream
 (
 NdbMgmHandle handle,
 FILE* file
)

Parameters This function requires two parameters:

• An NdbMgmHandle

• A pointer to the file to which errors are to be sent.

Return value None.

611

Management Server Handle Functions

3.2.3 Management Server Handle Functions

This section provides information about MGM API functions used to create and destroy management
server handles (see NdbMgmHandle).

• ndb_mgm_create_handle()

• ndb_mgm_set_name()

• ndb_mgm_set_ignore_sigpipe()

• ndb_mgm_destroy_handle()

ndb_mgm_create_handle()

Description This function is used to create a handle to a management server.

Signature NdbMgmHandle ndb_mgm_create_handle
 (
 void
)

Parameters None.

Return value An NdbMgmHandle.

ndb_mgm_set_name()

Description This function can be used to set a name for the management server
handle, which is then reported in the Cluster log.

Signature void ndb_mgm_set_name
 (
 NdbMgmHandle handle,
 const char* name
)

Parameters This function takes two arguments:

• A management server handle.

• The desired name for the handle.

Return value None.

ndb_mgm_set_ignore_sigpipe()

Description The MGM API by default installs a signal handler that ignores all
SIGPIPE signals that might occur when writing to asocket that
has been closed or reset. An application that provides its own
handler for SIGPIPE should call this function after creating the
management server handle and before using the handle to connect
to the management server. (In other words, call this function
after using ndb_mgm_create_handle() but before calling
ndb_mgm_connect(), which causes the MGM API's SIGPIPE
handler to be installed unless overridden.)

Signature int ndb_mgm_set_ignore_sigpipe
 (
 NdbMgmHandle handle,
 int ignore = 1
)

Parameters This function takes two parameters:

612

Management Server Connection Functions

• A management server handle

• An integer value which determines whether to ignore SIGPIPE
errors. Set this to 1 (the default) to cause the MGM API to ignore
SIGPIPE; set to zero if you wish for SIGPIPE to propagate to
your MGM API application.

Return value None.

ndb_mgm_destroy_handle()

Description This function destroys a management server handle

Signature void ndb_mgm_destroy_handle
 (
 NdbMgmHandle* handle
)

Parameters A pointer to the NdbMgmHandle to be destroyed.

Return value None.

3.2.4 Management Server Connection Functions

This section provides information about MGM API functions that are used to initiate, configure, and
terminate connections to an NDB management server.

• ndb_mgm_get_connectstring()

• ndb_mgm_get_configuration_nodeid()

• ndb_mgm_get_connected_port()

• ndb_mgm_get_connected_host()

• ndb_mgm_get_version()

• ndb_mgm_is_connected()

• ndb_mgm_check_connection()

• ndb_mgm_number_of_mgmd_in_connect_string()

• ndb_mgm_set_bindaddress()

• ndb_mgm_set_connect_timeout()

• ndb_mgm_set_connectstring()

• ndb_mgm_set_configuration_nodeid()

• ndb_mgm_set_timeout()

• ndb_mgm_connect()

• ndb_mgm_disconnect()

ndb_mgm_get_connectstring()

Description This function retrieves the connection string used for a connection.

Note

This function returns the default connection string if no call to
ndb_mgm_set_connectstring() has been performed. In addition, the

613

Management Server Connection Functions

returned connection string may be formatted slightly differently than the original
in that it may contain specifiers not present in the original.

The connection string format is the same as that discussed for
ndb_mgm_set_connectstring().

Signature const char* ndb_mgm_get_connectstring
 (
 NdbMgmHandle handle,
 char* buffer,
 int size
)

Parameters This function takes three arguments:

• An NdbMgmHandle.

• A pointer to a buffer in which to place the result.

• The size of the buffer.

Return value The connection string—this is the same value that is pushed to the
buffer.

ndb_mgm_get_configuration_nodeid()

Description This function gets the ID of the node to which the connection is
being (or was) made.

Signature int ndb_mgm_get_configuration_nodeid
 (
 NdbMgmHandle handle
)

Parameters A management server handle.

Return value A node ID.

ndb_mgm_get_connected_port()

Description This function retrieves the number of the port used by the
connection.

Signature int ndb_mgm_get_connected_port
 (
 NdbMgmHandle handle
)

Parameters An NdbMgmHandle.

Return value A port number.

ndb_mgm_get_connected_host()

Description This function is used to obtain the name of the host to which the
connection is made.

Signature const char* ndb_mgm_get_connected_host
 (
 NdbMgmHandle handle
)

Parameters A management server handle.

Return value A host name.

ndb_mgm_get_version()

614

Management Server Connection Functions

Description Given a management server handle, this function gets NDB
engine and MySQL Server version information for the indicated
management server.

Signature int ndb_mgm_get_version
 (
 NdbMgmHandle handle,
 int* major,
 int* minor,
 int* build,
 int length,
 char* string
)

Parameters An NdbMgmHandle, and pointers to the NDB engine major, minor,
and build version values, as well as a pointer to the version
string (along with the strength's length).

The version string uses the format mysql-x.x.x ndb-y.y.y-status, where x.x.x is the three-
part MySQL Server version, and y.y.y is the three-part NDB storage engine version. The status
string indicates the release level or status; usually this is one of beta, rc, or ga, but other values are
sometimes possible.

Return value ndb_mgm_get_version() returns an integer: 0 on success; any
nonzero value indicates an error.

ndb_mgm_is_connected()

Description Used to determine whether a connection has been established.

Note

This function does not determine whether or not there is a “live”
management server at the other end of the connection. Use
ndb_mgm_check_connection() to accomplish that task.

Signature int ndb_mgm_is_connected
 (
 NdbMgmHandle handle
)

Parameters A management server handle.

Return value This function returns an integer, whose value is interpreted as
follows:

• 0: Not connected to the management node.

• Any nonzero value: A connection has been established with the
management node.

ndb_mgm_check_connection()

Description This function can be used to determine whether a management
server is running on a given connection from a management client.

Signature int ndb_mgm_check_connection
 (
 NdbMgmHandle handle
)

Parameters An NdbMgmHandle (see Section 3.1, “MGM API Concepts”).

Return value In NDB 7.5 and later, this function returns 0 on success, -1 when the
handle is null, and -2 when not connected.

615

Management Server Connection Functions

In NDB 7.4 and earlier, this function returned -1 in the event of an error; otherwise it returned 0, even
when the management server handle was NULL, or when the connection check failed (Bug #53242,
Bug #11760802).

ndb_mgm_number_of_mgmd_in_connect_string()

Description This is a convenience function which provides an easy way to
determine the number of management servers referenced in a
connection string as set using ndb_mgm_set_connectstring().

Signature int ndb_mgm_number_of_mgmd_in_connect_string
 (
 NdbMgmHandle handle
)

Parameters A management handle (NdbMgmHandle).

Return value On success, a nonnegative integer; a negative integer indicates
failure.

ndb_mgm_set_bindaddress()

Description This function makes it possible to set a local bind address for the
management server. If used, it must be called before connecting to
the management server.

Signature int ndb_mgm_set_bindaddress
 (
 NdbMgmHandle handle,
 const char* address
)

Parameters This function takes two parameters:

• A management handle (NdbMgmHandle).

• A string address of the form host[:port].

Return value Returns an integer:

• 0 indicates success

• Any nonzero value indicates failure (the address was not valid)

Important

Errors caused by binding an otherwise
valid local address are not reported until
the connection to the management is
actually attempted.

ndb_mgm_set_connect_timeout()

Description Sets the number of seconds for timeout of network operations; the
default is 3 seconds.

Supported in NDB 8.0.37 and later. Not supported by NDB 8.3.0.

Signature int ndb_mgm_set_connect_timeout
 (
 NdbMgmHandle handle,
 unsigned int seconds
)

Parameters ndb_mgm_set_connect_timeout() takes two parameters:

616

Management Server Connection Functions

• A management server handle.

• A timeout in seconds.

Return value This function returns 0 in the event of failure, otherwise indicates
success.

ndb_mgm_set_connectstring()

Description This function is used to set the connection string for a management
server connection to a node.

Signature int ndb_mgm_set_connectstring
 (
 NdbMgmHandle handle,
 const char* connection_string
)

Parameters ndb_mgm_set_connectstring() takes two parameters:

• A management server handle.

• A connection_string whose format is shown here:

connection_string :=
 [nodeid-specification,]host-specification[,host-specification]

ndb_mgm_get_connectstring() also uses this format for
connection strings.

It is possible to establish connections with multiple management
servers using a single connection string.

nodeid-specification := nodeid=id
host-specification := host[:port]

id, port, and host are defined as follows:

• id: An integer greater than 0 identifying a node in
config.ini.

• port: An integer referring to a standard Unix port.

• host: A string containing a valid network host address.

Return value This function returns -1 in the event of failure.

ndb_mgm_set_configuration_nodeid()

Description This function sets the connection node ID.

Signature int ndb_mgm_set_configuration_nodeid
 (
 NdbMgmHandle handle,
 int id
)

Parameters This function requires two parameters:

• An NdbMgmHandle.

• The id of the node to connect to.

Return value This function returns -1 in the event of failure.

617

Management Server Connection Functions

ndb_mgm_set_timeout()

Description Sets the number of milliseconds for timeout of network operations;
the default is 60 seconds.

Important

The timeout set by this function applies not only to establishing network
connections, but to every operation requiring communication using a network
connection. This includes each network read or write performed by any MGM
API function, NDB API method call, or ndb_mgm client command.

Signature int ndb_mgm_set_timeout
 (
 NdbMgmHandle handle,
 unsigned int timeout_ms
)

Parameters This function takes two parameters:

• A management server handle (NdbMgmHandle).

• The amount of time to wait before timing out, expressed in
milliseconds. Only multiples of 1000 are supported; no function is
guaranteed to return in a fraction of a second.

Return value Returns 0 on success, with any other value representing failure.

ndb_mgm_connect()

Description This function establishes a connection to a management
server specified by the connection string set by
ndb_mgm_set_connectstring().

Signature int ndb_mgm_connect
 (
 NdbMgmHandle handle,
 int retries,
 int delay,
 int verbose
)

Parameters This function takes 4 arguments:

• A management server handle.

• The number of retries to make when attempting to connect. 0
for this value means that one connection attempt is made.

• The number of seconds to delay between connection attempts.

NDB 8.0.37 and later : Uses the value specified by
ndb_mgm_set_connect_timeout() if unspecified.

• If verbose is 1, then a message is printed for each connection
attempt.

Return value This function returns -1 in the event of failure.

ndb_mgm_disconnect()

Description This function terminates a management server connection.

Signature int ndb_mgm_disconnect

618

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-mgm.html

Cluster Status Functions

 (
 NdbMgmHandle handle
)

Parameters An NdbMgmHandle.

Return value Returns -1 if unable to disconnect.

3.2.5 Cluster Status Functions

This section provides information about MGM API functions used to obtain status information from NDB
Cluster nodes.

• ndb_mgm_get_status()

• ndb_mgm_get_status2()

• ndb_mgm_get_status3()

• ndb_mgm_dump_state()

ndb_mgm_get_status()

Description This function is used to obtain the status of the nodes in an NDB
Cluster.

Note

The caller must free the pointer returned by this function.

Signature struct ndb_mgm_cluster_state* ndb_mgm_get_status
 (
 NdbMgmHandle handle
)

Parameters This function takes a single parameter, a management server
handle.

Return value A pointer to an ndb_mgm_cluster_state data structure.

ndb_mgm_get_status2()

Description This function is similar to ndb_mgm_get_status(), in that it is
used to obtain the status of the nodes in an NDB Cluster. However,
ndb_mgm_get_status2() allows one to specify the type or types
of nodes (ndb_mgm_node_type) to be checked.

Note

The caller must free the pointer returned by this function.

Signature struct ndb_mgm_cluster_state* ndb_mgm_get_status2
 (
 NdbMgmHandle handle,
 const enum ndb_mgm_node_type types[]
)

Parameters This function takes two parameters:

• A management server handle

• A pointer to array of the node types to be checked. These are
ndb_mgm_node_type values. The array should be terminated by
an element of type NDB_MGM_NODE_TYPE_UNKNOWN.

619

Cluster Status Functions

Return value A pointer to an ndb_mgm_cluster_state data structure.

ndb_mgm_get_status3()

Description This function is similar to ndb_mgm_get_status2(), and is used
to obtain the status of the nodes in an NDB Cluster by specify the
type or types of nodes (ndb_mgm_node_type) to be checked.
Unlike that function (as well as ndb_mgm_get_status()),
ndb_mgm_get_status3() works when the cluster uses IPv6
addressing.

Note

The caller must free the pointer returned by this function.

Signature struct ndb_mgm_cluster_state2 *ndb_mgm_get_status3
 (
 NdbMgmHandle handle,
 const enum ndb_mgm_node_type types[]
);

Parameters This function takes two parameters:

• A management server handle

• A pointer to array of the node types to be checked. These are
ndb_mgm_node_type values. The array should be terminated by
an element of type NDB_MGM_NODE_TYPE_UNKNOWN.

Return value A pointer to an ndb_mgm_cluster_state2 data structure.

ndb_mgm_dump_state()

Description This function can be used to dump debugging information to the
cluster log. The NDB Cluster management client DUMP command is
a wrapper for this function.

ndb_mgm_dump_state(), like the DUMP command, can cause a
running NDB Cluster to malfunction or even to fail completely if it
is used improperly. Be sure to consult the relevant documentation
before using this function. For more information on the DUMP
command, and for a listing of current DUMP codes and their effects,
see NDB Cluster Management Client DUMP Commands.

Signature int ndb_mgm_dump_state
 (
 NdbMgmHandle handle,
 int nodeId,
 const int* arguments,
 int numberOfArguments,
 struct ndb_mgm_reply* reply
)

Parameters This function takes the following pararemeters:

• A management server handle (NdbMgmHandle)

• The nodeId of a cluster data node.

• An array of arguments. The first of these is the DUMP code to be
executed. Subsequent arguments can be passed in this array if
needed by or desired for the corresponding DUMP command.

620

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html

Functions for Starting & Stopping Nodes

• The numberOfArguments to be passed.

• An ndb_mgm_reply, which contains a return code along with a
response or error message.

Return value 0 on success; otherwise, an error code.

Example. The following example has the same result as running 2 DUMP 1000 in the management
client:

// [...]
#include <mgmapi_debug.h>
// [...]
struct ndb_mgm_reply reply;
int args[1];
int stat, arg_count, node_id;

args[0] = 1000;
arg_count = 1;
node_id = 2;

stat = ndb_mgm_dump_state(h, node_id, args, arg_count, &reply);

3.2.6 Functions for Starting & Stopping Nodes

The MGM API provides several functions which can be used to start, stop, and restart one or more
Cluster data nodes. These functions are described in this section.

Starting, Stopping, and Restarting Nodes. You can start, stop, and restart Cluster nodes using
the following functions, which are described in more detail in the next few sections.

• Starting Nodes. Use ndb_mgm_start().

• Stopping Nodes. Use ndb_mgm_stop(), ndb_mgm_stop2(), ndb_mgm_stop3(), or
ndb_mgm_stop4().

Normally, you cannot use any of these functions to stop a node while other nodes are starting. You
can override this restriction using ndb_mgm_stop4() with the force parameter set to 1.

• Restarting Nodes. Use ndb_mgm_restart(), ndb_mgm_restart2(),
ndb_mgm_restart3(), or ndb_mgm_restart4().

Normally, you cannot use any of these functions to restart a node while other nodes are starting. You
can override this restriction using ndb_mgm_restart4() with the force parameter set to 1.

• ndb_mgm_start()

• ndb_mgm_stop()

• ndb_mgm_stop2()

• ndb_mgm_stop3()

• ndb_mgm_stop4()

• ndb_mgm_restart()

• ndb_mgm_restart2()

• ndb_mgm_restart3()

• ndb_mgm_restart4()

ndb_mgm_start()

621

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html

Functions for Starting & Stopping Nodes

Description This function can be used to start one or more Cluster nodes. The
nodes to be started must have been started with the no-start option
(-n), meaning that the data node binary was started and is waiting
for a START management command which actually enables the
node.

Signature int ndb_mgm_start
 (
 NdbMgmHandle handle,
 int number,
 const int* list
)

Parameters ndb_mgm_start() takes 3 parameters:

• An NdbMgmHandle.

• A number of nodes to be started. Use 0 to start all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be started.

Return value The number of nodes actually started; in the event of failure, -1 is
returned.

ndb_mgm_stop()

Description This function stops one or more data nodes.

Signature int ndb_mgm_stop
 (
 NdbMgmHandle handle,
 int number,
 const int* list
)

Parameters ndb_mgm_stop() takes 3 parameters: Calling this function is
equivalent to calling ndb_mgm_stop2(handle, number, list,
0).

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be stopped.

Return value The number of nodes actually stopped; in the event of failure, -1 is
returned.

ndb_mgm_stop2()

Description Like ndb_mgm_stop(), this function stops one or more data nodes.
However, it offers the ability to specify whether or not the nodes shut
down gracefully.

Signature int ndb_mgm_stop2
 (
 NdbMgmHandle handle,
 int number,
 const int* list,
 int abort
)

Parameters ndb_mgm_stop2() takes 4 parameters:

622

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-mgm-client-commands.html#ndbclient-start

Functions for Starting & Stopping Nodes

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be stopped.

• The value of abort determines how the nodes will be shut down.
1 indicates the nodes will shut down immediately; 0 indicates that
the nodes will stop gracefully.

Return value The number of nodes actually stopped; in the event of failure, -1 is
returned.

ndb_mgm_stop3()

Description Like ndb_mgm_stop() and ndb_mgm_stop2(), this function stops
one or more data nodes. Like ndb_mgm_stop2(), it offers the
ability to specify whether the nodes should shut down gracefully. In
addition, it provides for a way to check to see whether disconnection
is required prior to stopping a node.

Signature int ndb_mgm_stop3
 (
 NdbMgmHandle handle,
 int number,
 const int* list,
 int abort,
 int* disconnect
)

Parameters ndb_mgm_stop3() takes 5 parameters:

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be stopped.

• The value of abort determines how the nodes will be shut down.
1 indicates the nodes will shut down immediately; 0 indicates that
the nodes will stop gracefully.

• If disconnect returns 1 (true), this means the you must
disconnect before you can apply the command to stop.
For example, disconnecting is required when stopping the
management server to which the handle is connected.

Return value The number of nodes actually stopped; in the event of failure, -1 is
returned.

ndb_mgm_stop4()

Description Like the other ndb_mgm_stop*() functions, this function stops
one or more data nodes. Like ndb_mgm_stop2(), it offers the
ability to specify whether the nodes should shut down gracefully; like
ndb_mgm_stop3() it provides for a way to check to see whether
disconnection is required prior to stopping a node. In addition, it is
possible to force the node to shut down even if this would cause the
cluster to become nonviable.

623

Functions for Starting & Stopping Nodes

Signature int ndb_mgm_stop4
 (
 NdbMgmHandle handle,
 int number,
 const int* list,
 int abort,
 int force,
 int* disconnect
)

Parameters ndb_mgm_stop4() takes 6 parameters:

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be stopped.

• The value of abort determines how the nodes will be shut down.
1 indicates the nodes will shut down immediately; 0 indicates that
the nodes will stop gracefully.

• The value of force determines the action to be taken in the event
that the shutdown of a given node would cause an incomplete
cluster. 1 causes the node—and the entire cluster—to be shut
down in such cases, 0 means the node will not be shut down.

Setting force equal to 1 also makes it possible to stop a node
even while other nodes are starting. (Bug #58451)

• If disconnect returns 1 (true), this means the you must
disconnect before you can apply the command to stop.
For example, disconnecting is required when stopping the
management server to which the handle is connected.

Return value The number of nodes actually stopped; in the event of failure, -1 is
returned.

ndb_mgm_restart()

Description This function can be used to restart one or more Cluster data nodes.

Signature int ndb_mgm_restart
 (
 NdbMgmHandle handle,
 int number,
 const int* list
)

Parameters ndb_mgm_restart() takes 3 parameters:

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be stopped.

Calling this function is equivalent to calling

ndb_mgm_restart2(handle, number, list, 0, 0, 0);

See ndb_mgm_restart2(), for more information.

624

Functions for Starting & Stopping Nodes

Return value The number of nodes actually restarted; -1 on failure.

ndb_mgm_restart2()

Description Like ndb_mgm_restart(), this function can be used to restart
one or more Cluster data nodes. However, ndb_mgm_restart2()
provides additional restart options, including initial restart, waiting
start, and immediate (forced) restart.

Signature int ndb_mgm_restart2
 (
 NdbMgmHandle handle,
 int number,
 const int* list,
 int initial
 int nostart,
 int abort
)

Parameters ndb_mgm_restart2() takes 6 parameters:

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be stopped.

• If initial is true (1), then each node undergoes an initial restart
—that is, its file system is removed.

• If nostart is true, then the nodes are not actually started, but
instead are left ready for a start command.

• If abort is true, then the nodes are restarted immediately,
bypassing any graceful restart.

Return value The number of nodes actually restarted; -1 on failure.

ndb_mgm_restart3()

Description Like ndb_mgm_restart2(), this function can be used to cause
an initial restart, waiting restart, and immediate (forced) restart on
one or more Cluster data nodes. However, ndb_mgm_restart3()
provides the additional options of checking whether disconnection is
required prior to the restart.

Signature int ndb_mgm_restart3
 (
 NdbMgmHandle handle,
 int number,
 const int* list,
 int initial
 int nostart,
 int abort,
 int* disconnect
)

Parameters ndb_mgm_restart3() takes 7 parameters:

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

625

Functions for Starting & Stopping Nodes

• A list of the node IDs of the nodes to be stopped.

• If initial is true (1), then each node undergoes an initial restart
—that is, its file system is removed.

• If nostart is true, then the nodes are not actually started, but
instead are left ready for a start command.

• If abort is true, then the nodes are forced to restart immediately
without performing a graceful restart.

• If disconnect returns 1 (true), this means the you must
disconnect before you can apply the command to restart.
For example, disconnecting is required when stopping the
management server to which the handle is connected.

Return value The number of nodes actually restarted; -1 on failure.

ndb_mgm_restart4()

Description Like the other ndb_mgm_restart*() functions, this function
restarts one or more data nodes. Like ndb_mgm_restart2(),
it can be used to cause an initial restart, waiting restart, and
immediate (forced) restart on one or more NDB Cluster data nodes;
like ndb_mgm_stop3() it provides for a way to check to see
whether disconnection is required prior to stopping a node. In
addition, it is possible to force the node to restart even if this would
cause a restart of the cluster.

Signature int ndb_mgm_restart4
 (
 NdbMgmHandle handle,
 int number,
 const int* list,
 int initial
 int nostart,
 int abort,
 int force,
 int* disconnect
)

Parameters ndb_mgm_restart4() takes 7 parameters:

• An NdbMgmHandle.

• The number of nodes to be stopped. Use 0 to stop all of the data
nodes in the cluster.

• A list of the node IDs of the nodes to be stopped.

• If initial is true (1), then each node undergoes an initial restart
—that is, its file system is removed.

• If nostart is true, then the nodes are not actually started, but
instead are left ready for a start command.

• If abort is true, then the nodes are forced to restart immediately
without performing a graceful restart.

• The value of force determines the action to be taken in the event
that the loss of a given node due to restarting would cause an
incomplete cluster.

626

Cluster Log Functions

1 causes the node—and the entire cluster—to be restarted in
such cases, 0 means that the node will not be restarted.

Setting force equal to 1 also makes it possible to restart a node
even while other nodes are starting. (Bug #58451)

• If disconnect returns 1 (true), this means the you must
disconnect before you can apply the command to restart.
For example, disconnecting is required when stopping the
management server to which the handle is connected.

Return value The number of nodes actually restarted; -1 on failure.

3.2.7 Cluster Log Functions

This section provides information about the functions available in the MGM API for controlling the
output of the cluster log.

• ndb_mgm_get_clusterlog_severity_filter()

• ndb_mgm_set_clusterlog_severity_filter()

• ndb_mgm_get_clusterlog_loglevel()

• ndb_mgm_set_clusterlog_loglevel()

ndb_mgm_get_clusterlog_severity_filter()

Description This function is used to retrieve the cluster log severity filter
currently in force.

Signature int ndb_mgm_get_clusterlog_severity_filter
 (
 NdbMgmHandle handle,
 struct ndb_mgm_severity* severity,
 unsigned int size
)

Parameters • An NdbMgmHandle.

• A vector severity of seven
(NDB_MGM_EVENT_SEVERITY_ALL) elements, each
of which is an ndb_mgm_severity structure, where
each element contains 1 if a severity indicator is
enabled and 0 if not. A severity level is stored at position
ndb_mgm_clusterlog_level; for example the error level is
stored at position NDB_MGM_EVENT_SEVERITY_ERROR. The first
element (position NDB_MGM_EVENT_SEVERITY_ON) in the vector
signals whether the cluster log is disabled or enabled.

• The size of the vector (NDB_MGM_EVENT_SEVERITY_ALL).

Return value The number of returned severities, or -1 in the event of an error.

ndb_mgm_set_clusterlog_severity_filter()

Description This function is used to set a cluster log severity filter.

Signature int ndb_mgm_set_clusterlog_severity_filter
 (
 NdbMgmHandle handle,
 enum ndb_mgm_event_severity severity,
 int enable,

627

Cluster Log Functions

 struct ndb_mgm_reply* reply
)

Parameters This function takes 4 parameters:

• A management server handle.

• A cluster log severity to filter.

• A flag to enable or disable the filter; 1 enables and 0 disables
the filter.

• A pointer to an ndb_mgm_reply structure for a reply message.

Return value The function returns -1 in the event of failure.

ndb_mgm_get_clusterlog_loglevel()

Description This function is used to obtain log category and level information,
and is thread-safe.

Signature int ndb_mgm_get_clusterlog_loglevel
 (
 NdbMgmHandle handle,
 struct ndb_mgm_loglevel* loglevel,
 unsigned int size
)

Parameters ndb_mgm_get_clusterlog_loglevel() takes the following
parameters:

• A management handle (NdbMgmHandle).

• A loglevel (log level) vector consisting of twelve elements,
each of which is an ndb_mgm_loglevel structure and which
represents a log level of the corresponding category.

• The size of the vector (MGM_LOGLEVELS).

Return value This function returns the number of returned loglevels or -1 in the
event of an error.

ndb_mgm_set_clusterlog_loglevel()

Description This function is used to set the log category and levels for the
cluster log.

Signature int ndb_mgm_set_clusterlog_loglevel
 (
 NdbMgmHandle handle,
 int id,
 enum ndb_mgm_event_category category,
 int level,
 struct ndb_mgm_reply* reply)

Parameters This function takes 5 parameters:

• An NdbMgmHandle.

• The id of the node affected.

• An event categorymdash;this is one of the values listed in The
ndb_mgm_event_category Type .

• A logging level.

628

Backup Functions

• A pointer to an ndb_mgm_reply structure for the reply
message.

Return value In the event of an error, this function returns -1.

3.2.8 Backup Functions

This section provides information about the functions provided in the MGM API for starting and
stopping NDB Cluster backups.

• ndb_mgm_start_backup()

• ndb_mgm_start_backup2()

• ndb_mgm_start_backup3()

• ndb_mgm_start_backup4()

• ndb_mgm_abort_backup()

ndb_mgm_start_backup()

Description This function is used to initiate a backup of an NDB Cluster.

Signature int ndb_mgm_start_backup
 (
 NdbMgmHandle handle,
 int wait,
 unsigned int* id,
 struct ndb_mgm_reply* reply
)

Parameters This function requires the four parameters listed here:

• A management server handle (an NdbMgmHandle).

• A wait flag, with the following possible values:

• 0: Do not wait for confirmation of the backup.

• 1: Wait for the backup to be started.

• 2: Wait for the backup to be completed.

• Create the backup having backup ID id. (This is also the
function's return value.)

No backup id is returned if wait is set equal to 0.

• A pointer to an ndb_mgm_reply structure to accommodate a
reply.

Return value On success, the backup ID (id). In the event of failure, the function
returns -1.

ndb_mgm_start_backup2()

Description This function is used to initiate a backup of an NDB Cluster. It is the
same as ndb_mgm_start_backup(), except that it additionally
specifies a value to be used for the next backup taken.

Signature int ndb_mgm_start_backup
 (
 NdbMgmHandle handle,

629

Backup Functions

 int wait,
 unsigned int* id,
 struct ndb_mgm_reply* reply,
 unsigned int nextBackupId
)

Parameters This function requires the five parameters listed here:

• A management server handle (an NdbMgmHandle).

• A wait flag, with the following possible values:

• 0: Do not wait for confirmation of the backup.

• 1: Wait for the backup to be started.

• 2: Wait for the backup to be completed.

• Create the backup having backup ID id. (This is also the
function's return value.)

No backup id is returned if wait is set equal to 0.

• A pointer to an ndb_mgm_reply structure to accommodate a
reply.

• The ID of the next backup taken is set to the value of
nextBackupID + 1.

Return value On success, the backup ID passed as id. Otherwise, the function
returns -1.

ndb_mgm_start_backup3()

Description This function is used to initiate a backup of an NDB Cluster. It is the
same as ndb_mgm_start_backup2(), but adds an argument for
specifying whether the the state of the backup matches that of the
cluster when the backup is started, or when it is completed.

Signature int ndb_mgm_start_backup
 (
 NdbMgmHandle handle,
 int wait,
 unsigned int* id,
 struct ndb_mgm_reply* reply,
 unsigned int nextBackupId,
 unsigned int backupPoint
)

Parameters This function requires the six parameters listed here:

• A management server handle (an NdbMgmHandle).

• A wait flag, with the following possible values:

• 0: Do not wait for confirmation of the backup.

• 1: Wait for the backup to be started.

• 2: Wait for the backup to be completed.

• Create the backup having backup ID id. (This is also the
function's return value.)

No backup id is returned if wait is set equal to 0.

630

Backup Functions

• A pointer to an ndb_mgm_reply structure to accommodate a
reply.

• The ID of the next backup taken is set to the value of
nextBackupID + 1.

• backupPoint is 1 if the state of the backup should reflect that
of the cluster the time when the backup is started, or 0 if its state
should reflect that of the cluster when the backup is complete.
Using 1 is equivalent to invoking the ndb_mgm client START
BACKUP command with SNAPSHOTSTART; 0 is equivalent to
invoking the command with SNAPSHOTEND.

Return value On success, the backup ID passed as id. Otherwise, the function
returns -1.

ndb_mgm_start_backup4()

Description This function is used to initiate a backup of an NDB Cluster. It is the
same as ndb_mgm_start_backup3(), except that it produces
an encrypted backup using the password provided of the length
specified.

This function was added in NDB 8.0.22.

Signature int ndb_mgm_start_backup
 (
 NdbMgmHandle handle,
 int wait,
 unsigned int* id,
 struct ndb_mgm_reply* reply,
 unsigned int nextBackupId,
 unsigned int backupPoint,
 const char* password,
 unsigned int password_length
)

Parameters This function requires the eight parameters listed here:

• A management server handle (an NdbMgmHandle).

• A wait flag, with the following possible values:

• 0: Do not wait for confirmation of the backup.

• 1: Wait for the backup to be started.

• 2: Wait for the backup to be completed.

• Create the backup having backup ID id. (This is also the
function's return value.)

No backup id is returned if wait is set equal to 0.

• A pointer to an ndb_mgm_reply structure to accommodate a
reply.

• The ID of the next backup taken is set to the value of
nextBackupID + 1.

• backupPoint is 1 if the state of the backup should reflect that
of the cluster the time when the backup is started, or 0 if its state

631

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-backup-using-management-client.html

Single-User Mode Functions

should reflect that of the cluster when the backup is complete.
Using 1 is equivalent to invoking the ndb_mgm client START
BACKUP command with SNAPSHOTSTART; 0 is equivalent to
invoking the command with SNAPSHOTEND.

• A password used to protect the encrypted backup. This is a string
of up to 256 characters in length; any printable ASCII characters
can be used in the password string with the exception of !, ', ",
$, %, \, and ^.

• The length of the password.

It is possible to specify an empty password, but this is not
recommended.

Return value On success, the backup ID passed as id. Otherwise, the function
returns -1.

ndb_mgm_abort_backup()

Description This function is used to stop an NDB Cluster backup.

Signature int ndb_mgm_abort_backup
 (
 NdbMgmHandle handle,
 unsigned int id,
 struct ndb_mgm_reply* reply)

Parameters This function takes 3 parameters:

• An NdbMgmHandle.

• The id of the backup to be aborted.

• A pointer to an ndb_mgm_reply structure.

Return value In case of an error, this function returns -1.

3.2.9 Single-User Mode Functions

The MGM API makes it possible for the programmer to put the cluster into single-user mode—and to
return it to normal mode again—from within an application. This section covers the functions that are
used for these operations.

• ndb_mgm_enter_single_user()

• ndb_mgm_exit_single_user()

ndb_mgm_enter_single_user()

Description This function is used to enter single-user mode on a given node.

Signature int ndb_mgm_enter_single_user
 (
 NdbMgmHandle handle,
 unsigned int id,
 struct ndb_mgm_reply* reply
)

Parameters This function takes 3 parameters:

• An NdbMgmHandle.

• The id of the node to be used in single-user mode.

632

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-backup-using-management-client.html

TLS Functions

• A pointer to an ndb_mgm_reply structure, used for a reply
message.

Return value Returns -1 in the event of failure.

ndb_mgm_exit_single_user()

Description This function is used to exit single-user mode and to return to
normal operation.

Signature int ndb_mgm_exit_single_user
 (
 NdbMgmHandle handle,
 struct ndb_mgm_reply* reply
)

Parameters This function requires 2 arguments:

• An NdbMgmHandle.

• A pointer to an ndb_mgm_reply.

Return value Returns -1 in case of an error.

3.2.10 TLS Functions

The functions described in this section were added in NDB 8.3 to support Transport Layer Security for
communications between nodes. Also included in this section is information about two data structures
used by some of these functions.

For additional information about TLS support in NDB Cluster, see TLS Link Encryption for NDB Cluster.

• ndb_mgm_cert_table_free()

• ndb_mgm_connect_tls()

• ndb_mgm_get_tls_stats()

• ndb_mgm_has_tls()

• ndb_mgm_list_certs()

• ndb_mgm_set_ssl_ctx()

• ndb_mgm_start_tls()

• ndb_mgm_cert_table

• ndb_mgm_tls_stats

ndb_mgm_cert_table_free()

Description Frees a linked list of certificate descriptions.

Signature void ndb_mgm_cert_table_free
 (
 struct ndb_mgm_cert_table **list
)

Parameters list A linked list of
ndb_mgm_cert_table
certificate descriptions

633

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-tls.html

TLS Functions

Return value none

ndb_mgm_connect_tls()

Description Connects to a management server. This function wraps
a call to ndb_mgm_connect(), followed by a call to
ndb_mgm_start_tls(). The user must first have called
ndb_mgm_set_ssl_ctx() before invoking this function.

Unlike the case with ndb_mgm_connect(),
ndb_mgm_connect_tls() cannot be called on a handle
which is already connected; such an attempt fails with error
NDB_MGM_ALREADY_CONNECTED.

Signature int ndb_mgm_connect_tls
 (
 NdbMgmHandle handle,
 int no_retries,
 int retry_delay_in_seconds,
 int verbose,
 int tls_req_level
)

Parameters handle Management server handle
(NdbMgmHandle).

no_retries Number of times to make
connection attempts (0 means
connect once).

retry_delay_in_seconds How long to wait before
performing each retry for a
connection.

verbose Print out reports regarding
connect retries.

tls_req_level This parameter can take either of
the following two values:

1. CLIENT_TLS_RELAXED:
TLS authentication failures
still result in errors, but a
missing certificate or server
refusal results in a succesful
cleartext connection.

2. CLIENT_TLS_STRICT: Any
failure to establish TLS is
treated as an error, and the
connection is closed.

Return value none

ndb_mgm_get_tls_stats()

Description Get server TLS statistics

Signature int ndb_mgm_get_tls_stats
 (
 NdbMgmHandle handle,
 struct ndb_mgm_tls_stats *result
)

634

TLS Functions

Parameters handle Management server handle
(NdbMgmHandle).

result Pointer to ndb_mgm_tls_stats
structure holding result data

Return value 0 on success, -1 on error.

ndb_mgm_has_tls()

Description Checks whether a connected handle is using TLS.

Signature int ndb_mgm_has_tls
 (
 NdbMgmHandle handle
)

Parameters handle Management server handle
(NdbMgmHandle).

Return value 1 if the handle is using TLS; 0 if it is not.

ndb_mgm_list_certs()

Description Queries TLS certificates of connected MGM clients

Signature int ndb_mgm_list_certs
 (
 NdbMgmHandle handle,
 struct ndb_mgm_cert_table **list
)

Parameters handle Management server handle
(NdbMgmHandle).

list Address of a pointer to an
ndb_mgm_cert_table
structure.

Return value One of the following values:

• > 0: The total number of linked descriptions.

• 0: Success, but with no TLS connections to report.

• -1: Error.

ndb_mgm_set_ssl_ctx()

Description Set an SSL context structure (CTX) for a handle.

Signature int ndb_mgm_set_ssl_ctx
 (
 NdbMgmHandle handle,
 struct ssl_ctx_st *ctx
)

Parameters handle Management server handle
(NdbMgmHandle).

ctx SSL_ctx to be used for TLS and
HTTPS connections

Return value 0 on success, -1 if CTX has already been set

635

TLS Functions

ndb_mgm_start_tls()

Description Start TLS by upgrading an open, unencrypted connection to a
secure one.

Signature int ndb_mgm_start_tls
 (
 NdbMgmHandle handle
)

Parameters handle Management server handle
(NdbMgmHandle).

Return value 0 on success

ndb_mgm_cert_table

Description ndb_mgm_cert_table is a linked structure describing a TLS client
session.

Definition struct ndb_mgm_cert_table
 {
 Uint64 session_id;
 char *peer_address;
 char *cert_serial;
 char *cert_name;
 char *cert_expires;
 struct ndb_mgm_cert_table *next;
 }

Members session_id TLS session ID

peer_address Host making the connection

cert_serial Certificate serial number

cert_name Certificate name

cert_expires Certificate expiration date

next Pointer to the next
ndb_mgm_cert_table in the
list

ndb_mgm_tls_stats

Description The ndb_mgm_tls_stats struct stores server statistics relating to
TLS.

Definition struct ndb_mgm_tls_stats
 {
 Uint32 accepted;
 Uint32 upgraded;
 Uint32 current;
 Uint32 tls;
 Uint32 authfail;
 }

Members accepted Total number of client
connections accepted

upgraded Number of client connections
upgraded to TLS

current Total number of current open
client sessions

636

MGM API Data Types

tls Number of current open client
sessions using TLS

authfail Total number of authorization
failures

3.3 MGM API Data Types
This section provides information about the data types defined by the MGM API.

The types described in this section are all defined in the file /storage/ndb/include/
mgmapi/mgmapi.h, with the exception of Ndb_logevent_type, ndb_mgm_event_severity,
ndb_mgm_logevent_handle_error, and ndb_mgm_event_category, which are defined in /
storage/ndb/include/mgmapi/ndb_logevent.h.

• The ndb_mgm_node_type Type

• The ndb_mgm_node_status Type

• The ndb_mgm_error Type

• The Ndb_logevent_type Type

• The ndb_mgm_event_severity Type

• The ndb_logevent_handle_error Type

• The ndb_mgm_event_category Type

The ndb_mgm_node_type Type

Description This is used to classify the different types of nodes in an NDB
Cluster.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 3.1 Type ndb_mgm_node_type values and descriptions.

Value Description

NDB_MGM_NODE_TYPE_UNKNOWNUnknown

NDB_MGM_NODE_TYPE_APIAPI Node (SQL node)

NDB_MGM_NODE_TYPE_NDBData node

NDB_MGM_NODE_TYPE_MGMManagement node

The ndb_mgm_node_status Type

Description This type describes a Cluster node's status.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 3.2 Type ndb_mgm_node_status values and
descriptions.

Value Description

NDB_MGM_NODE_STATUS_UNKNOWNThe node's status is not known

NDB_MGM_NODE_STATUS_NO_CONTACTThe node cannot be contacted

637

The ndb_mgm_error Type

Value Description

NDB_MGM_NODE_STATUS_NOT_STARTEDThe node has not yet executed
the startup protocol

NDB_MGM_NODE_STATUS_STARTINGThe node is executing the
startup protocol

NDB_MGM_NODE_STATUS_STARTEDThe node is running

NDB_MGM_NODE_STATUS_SHUTTING_DOWNThe node is shutting down

NDB_MGM_NODE_STATUS_RESTARTINGThe node is restarting

NDB_MGM_NODE_STATUS_SINGLEUSERThe node is running in single-
user (maintenance) mode

NDB_MGM_NODE_STATUS_RESUMEThe node is in resume mode

NDB_MGM_NODE_STATUS_CONNECTEDThe node is connected

The ndb_mgm_error Type

Description The values for this type are the error codes that may be generated
by MGM API functions. These may be found in Section 3.5, “MGM
API Errors”.

See also ndb_mgm_get_latest_error(), for more information.

The Ndb_logevent_type Type

Description These are the types of log events available in the MGM API,
grouped by event category. (See The ndb_mgm_event_category
Type.)

Most of these log event types have one or more corresponding log
event messages; these are listed in NDB Cluster Log Messages.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 3.3 Type Ndb_logevent_type values, descriptions, and
event categories

Type Description Category

NDB_LE_Connected The node has
connected

NDB_MGM_EVENT_CATEGORY_CONNECTION

NDB_LE_DisconnectedThe node was
disconnected

NDB_MGM_EVENT_CATEGORY_CONNECTION

NDB_LE_CommunicationClosedCommunication
with the node has
been closed

NDB_MGM_EVENT_CATEGORY_CONNECTION

NDB_LE_CommunicationOpenedCommunication
with the node has
been started

NDB_MGM_EVENT_CATEGORY_CONNECTION

NDB_LE_ConnectedApiVersionThe API version
used by an API
node; in the case
of a MySQL server
(SQL node),
this is the same
as displayed

NDB_MGM_EVENT_CATEGORY_CONNECTION

638

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-logs-ndb-messages.html

The Ndb_logevent_type Type

Type Description Category
by SELECT
VERSION()

NDB_LE_GlobalCheckpointStartedA global
checkpoint has
been started

NDB_MGM_EVENT_CATEGORY_CHECKPOINT

NDB_LE_GlobalCheckpointCompletedA global
checkpoint has
been completed

NDB_MGM_EVENT_CATEGORY_CHECKPOINT

NDB_LE_LocalCheckpointStartedThe node has
begun a local
checkpoint

NDB_MGM_EVENT_CATEGORY_CHECKPOINT

NDB_LE_LocalCheckpointCompletedThe node has
completed a local
checkpoint

NDB_MGM_EVENT_CATEGORY_CHECKPOINT

NDB_LE_LCPStoppedInCalcKeepGciThe lcoal
checkpoint was
aborted, but
the last global
checkpoint was
preserved

NDB_MGM_EVENT_CATEGORY_CHECKPOINT

NDB_LE_LCPFragmentCompletedCopying of a table
fragment was
completed

NDB_MGM_EVENT_CATEGORY_CHECKPOINT

NDB_LE_NDBStartStartedThe node has
begun to start

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_NDBStartCompletedThe node has
completed the
startup process

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_STTORRYRecievedThe node received
an STTORRY
signal, indicating
that the reading
of configuration
data is underway;
see Configuration
Read Phase
(STTOR Phase
-1), and STTOR
Phase 0, for more
information

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_StartPhaseCompletedA node start
phase has been
completed

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_CM_REGCONF The node has
received a
CM_REGCONF
signal; see STTOR
Phase 1, for more
information

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_CM_REGREF The node has
received a
CM_REGREF

NDB_MGM_EVENT_CATEGORY_STARTUP

639

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-config-read.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-config-read.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-config-read.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-config-read.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-0.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-0.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-1.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-1.html

The Ndb_logevent_type Type

Type Description Category
signal; see STTOR
Phase 1, for more
information

NDB_LE_FIND_NEIGHBOURSThe node has
discovered its
neighboring nodes
in the cluster

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_NDBStopStartedThe node is
beginning to shut
down

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_NDBStopCompletedNode shutdown
completed

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_NDBStopForcedThe node is being
forced to shut
down (usually
indicates a severe
problem in the
cluster)

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_NDBStopAbortedThe started to
shut down, but
was forced to
continue running;
this happens, for
example, when a
STOP command
was issued in the
management client
for a node such
that the cluster
would no longer
be able to keep all
data available if
the node were shut
down

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_StartREDOLogRedo logging has
been started

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_StartLog Logging has
started

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_UNDORecordsExecutedThe node has read
and executed all
records from the
redo log

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_StartReportThe node is issuing
a start report

NDB_MGM_EVENT_CATEGORY_STARTUP

NDB_LE_NR_CopyDictThe node is
copying the data
dictionary

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_NR_CopyDistrThe node is
copying data
distribution
information

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

640

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-1.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases-sttor-1.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-mgm-client-commands.html#ndbclient-stop

The Ndb_logevent_type Type

Type Description Category

NDB_LE_NR_CopyFragsStartedThe node is
copying table
fragments

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_NR_CopyFragDoneThe node has
completed copying
a table fragment

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_NR_CopyFragsCompletedThe node has
completed copying
all necessary table
fragments

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_NodeFailCompletedAll (remaining)
nodes has been
notified of the
failure of a data
node

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_NODE_FAILREPA data node has
failed

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_ArbitState This event is used
to report on the
current state of
arbitration in the
cluster

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_ArbitResultThis event is used
to report on the
outcome of node
arbitration

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_GCP_TakeoverStartedThe node is
attempting to
become the master
node (to assume
responsibility for
GCPs)

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_GCP_TakeoverCompletedThe node has
become the master
(and assumed
responsibility for
GCPs)

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_LCP_TakeoverStartedThe node is
attempting to
become the master
node (to assume
responsibility for
LCPs)

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_LCP_TakeoverCompletedThe node has
become the master
(and assumed
responsibility for
LCPs)

NDB_MGM_EVENT_CATEGORY_NODE_RESTART

NDB_LE_TransReportCountersThis indicates
a report of
transaction activity,
which is given

NDB_MGM_EVENT_CATEGORY_STATISTIC

641

The Ndb_logevent_type Type

Type Description Category
approximately
once every 10
seconds

NDB_LE_OperationReportCountersIndicates a report
on the number
of operations
performed
by this node
(also provided
approximately
once every 10
seconds)

NDB_MGM_EVENT_CATEGORY_STATISTIC

NDB_LE_TableCreatedA new table has
been created

NDB_MGM_EVENT_CATEGORY_STATISTIC

NDB_LE_UndoLogBlockedUndo logging
is blocked
because the log
buffer is close to
overflowing

NDB_MGM_EVENT_CATEGORY_STATISTIC

NDB_LE_JobStatistic... NDB_MGM_EVENT_CATEGORY_STATISTIC

NDB_LE_SendBytesStatisticIndicates a report
of the average
number of bytes
transmitted per
send operation by
this node

NDB_MGM_EVENT_CATEGORY_STATISTIC

NDB_LE_ReceiveBytesStatisticIndicates a report
of the average
number of bytes
received per send
operation to this
node

NDB_MGM_EVENT_CATEGORY_STATISTIC

NDB_LE_MemoryUsageA DUMP 1000
command has
been issued to
this node, and
it is reporting its
memory usage in
turn

NDB_MGM_EVENT_CATEGORY_STATISTIC

NDB_LE_TransporterErrorA transporter error
has occurred; see
NDB Transporter
Errors, for
transporter
error codes and
messages

NDB_MGM_EVENT_CATEGORY_ERROR

NDB_LE_TransporterWarningA potential problem
is occurring in the
transporter; see
NDB Transporter
Errors, for
transporter

NDB_MGM_EVENT_CATEGORY_ERROR

642

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html

The Ndb_logevent_type Type

Type Description Category
error codes and
messages

NDB_LE_MissedHeartbeatIndicates a data
node has missed a
hreatbeat expected
from another data
node

NDB_MGM_EVENT_CATEGORY_ERROR

NDB_LE_DeadDueToHeartbeatA data node has
missed at least
3 heartbeats in
succssion from
another data
node, and is
reporting that it
can no longer
communicate with
that data node

NDB_MGM_EVENT_CATEGORY_ERROR

NDB_LE_WarningEventIndicates a warning
message

NDB_MGM_EVENT_CATEGORY_ERROR

NDB_LE_SentHeartbeatA node heartbeat
has been sent

NDB_MGM_EVENT_CATEGORY_INFO

NDB_LE_CreateLogBytes... NDB_MGM_EVENT_CATEGORY_INFO

NDB_LE_InfoEvent Indicates an
informational
message

NDB_MGM_EVENT_CATEGORY_INFO

NDB_LE_SingleUser The cluster has
entered or exited
single user mode

NDB_MGM_EVENT_CATEGORY_INFO

NDB_LE_EventBufferStatusThis type of
event indicates
potentially
excessive usage of
the event buffer

NDB_MGM_EVENT_CATEGORY_INFO

NDB_LE_EventBufferStatus2Extension of
NDB_LE_EventBufferStatus
providing improved
reporting of event
buffer status;
added in NDB 7.5

NDB_MGM_EVENT_CATEGORY_INFO

NDB_LE_EventBufferStatus3Extension of
NDB_LE_EventBufferStatus
which uses 64-bit
values for total,
maximum, and
allocated bytes;
added in NDB
7.5.23, 7.6.19, and
8.0.26

NDB_MGM_EVENT_CATEGORY_INFO

NDB_LE_BackupStartedA backup has been
started

NDB_MGM_EVENT_CATEGORY_BACKUP

NDB_LE_BackupFailedToStartA backup has
failed to start

NDB_MGM_EVENT_CATEGORY_BACKUP

643

The ndb_mgm_event_severity Type

Type Description Category

NDB_LE_BackupCompletedA backup has
been completed
successfully

NDB_MGM_EVENT_CATEGORY_BACKUP

NDB_LE_BackupAbortedA backup in
progress was
terminated by the
user

NDB_MGM_EVENT_CATEGORY_BACKUP

The ndb_mgm_event_severity Type

Description These are the log event severities used to filter the cluster log by
ndb_mgm_set_clusterlog_severity_filter(), and to filter
listening to events by ndb_mgm_listen_event().

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 3.4 Type ndb_mgm_event_severity values and
descriptions

Value Description

NDB_MGM_ILLEGAL_EVENT_SEVERITYInvalid event severity specified

NDB_MGM_EVENT_SEVERITY_ONCluster logging is enabled

NDB_MGM_EVENT_SEVERITY_DEBUGUsed for NDB Cluster
development only

NDB_MGM_EVENT_SEVERITY_INFOInformational messages

NDB_MGM_EVENT_SEVERITY_WARNINGConditions that are not errors
as such, but that might require
special handling

NDB_MGM_EVENT_SEVERITY_ERRORNonfatal error conditions that
should be corrected

NDB_MGM_EVENT_SEVERITY_CRITICALCritical conditions such as
device errors or out of memory
errors

NDB_MGM_EVENT_SEVERITY_ALERTConditions that require
immediate attention, such as
corruption of the cluster

NDB_MGM_EVENT_SEVERITY_ALLAll severity levels

See ndb_mgm_set_clusterlog_severity_filter(), and ndb_mgm_listen_event(), for information on how
this type is used by those functions.

The ndb_logevent_handle_error Type

Description This type is used to describe log event errors.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 3.5 Type ndb_logevent_handle_error values and
descriptions

Value Description

NDB_LEH_NO_ERROR No error

644

The ndb_mgm_event_category Type

Value Description

NDB_LEH_READ_ERROR Read error

NDB_LEH_MISSING_EVENT_SPECIFIERInvalid, incomplete, or missing
log event specification

NDB_LEH_UNKNOWN_EVENT_TYPEUnknown log event type

NDB_LEH_UNKNOWN_EVENT_VARIABLEUnknown log event variable

NDB_LEH_INTERNAL_ERROR Internal error

NDB_LEH_CONNECTION_ERROR Connection error, or lost
connection with management
server

NDB_LEH_CONNECTION_ERROR was added in NDB 7.4.13. (BUG #19474782)

The ndb_mgm_event_category Type

Description These are the log event categories referenced in The
Ndb_logevent_type Type. They are also used by the MGM API
functions ndb_mgm_set_clusterlog_loglevel() and
ndb_mgm_listen_event().

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 3.6 Type ndb_mgm_event_category values and
descriptions

Value Description

NDB_MGM_ILLEGAL_EVENT_CATEGORYInvalid log event category

NDB_MGM_EVENT_CATEGORY_STARTUPLog events occurring during
startup

NDB_MGM_EVENT_CATEGORY_SHUTDOWNLog events occurring during
shutdown

NDB_MGM_EVENT_CATEGORY_STATISTICStatistics log events

NDB_MGM_EVENT_CATEGORY_CHECKPOINTLog events related to
checkpoints

NDB_MGM_EVENT_CATEGORY_NODE_RESTARTLog events occurring during
node restart

NDB_MGM_EVENT_CATEGORY_CONNECTIONLog events relating to
connections between cluster
nodes

NDB_MGM_EVENT_CATEGORY_BACKUPLog events relating to
backups

NDB_MGM_EVENT_CATEGORY_CONGESTIONLog events relating to
congestion

NDB_MGM_EVENT_CATEGORY_INFO Uncategorised log events
(severity level INFO)

NDB_MGM_EVENT_CATEGORY_ERRORUncategorised log events
(severity level WARNING,
ERROR, CRITICAL, or
ALERT)

See ndb_mgm_set_clusterlog_loglevel(), and ndb_mgm_listen_event(), for more information.

645

MGM API Data Structures

3.4 MGM API Data Structures
This section provides information about the data structures defined by the MGM API.

• The ndb_logevent Structure

• The ndb_mgm_node_state Structure

• The ndb_mgm_node_state2 Structure

• The ndb_mgm_cluster_state Structure

• The ndb_mgm_cluster_state2 Structure

• The ndb_mgm_reply Structure

The ndb_logevent Structure

Description This structure models a Cluster log event, and is used for storing
and retrieving log event information.

Definition. ndb_logevent has 8 members, the first 7 of which are shown in the following list:

• void* handle: An NdbLogEventHandle, set by ndb_logevent_get_next(). This handle is
used only for purposes of comparison.

• type: Tells which type of event (Ndb_logevent_type) this is.

• unsigned time: The time at which the log event was registered with the management server.

• category: The log event category (ndb_mgm_event_category).

• severity: The log event severity (ndb_mgm_event_severity).

• unsigned level: The log event level. This is a value in the range of 0 to 15, inclusive.

• unsigned source_nodeid: The node ID of the node that reported this event.

The 8th member of this structure contains data specific to the log event, and is dependent on its type. It
is defined as the union of a number of data structures, each corresponding to a log event type. Which
structure to use is determined by the value of type, and is shown in the following table:

Table 3.7 Type Ndb_logevent_type values and structures used

Ndb_logevent_type Value Structure

NDB_LE_Connected Connected:

unsigned node

NDB_LE_Disconnected Disconnected:

unsigned node

NDB_LE_CommunicationClosed CommunicationClosed:

unsigned node

NDB_LE_CommunicationOpened CommunicationOpened:

unsigned node

NDB_LE_ConnectedApiVersion ConnectedApiVersion:

unsigned node
unsigned version

NDB_LE_GlobalCheckpointStarted GlobalCheckpointStarted:

unsigned gci

646

The ndb_logevent Structure

Ndb_logevent_type Value Structure

NDB_LE_GlobalCheckpointCompleted GlobalCheckpointCompleted:

unsigned gci

NDB_LE_LocalCheckpointStarted LocalCheckpointStarted:

unsigned lci
unsigned keep_gci
unsigned restore_gci

NDB_LE_LocalCheckpointCompleted LocalCheckpointCompleted:

unsigned lci

NDB_LE_LCPStoppedInCalcKeepGci LCPStoppedInCalcKeepGci:

unsigned data

NDB_LE_LCPFragmentCompleted LCPFragmentCompleted:

unsigned node
unsigned table_id
unsigned fragment_id

NDB_LE_UndoLogBlocked UndoLogBlocked:

unsigned acc_count
unsigned tup_count

NDB_LE_NDBStartStarted NDBStartStarted:

unsigned version

NDB_LE_NDBStartCompleted NDBStartCompleted:

unsigned version

NDB_LE_STTORRYRecieved STTORRYRecieved:

[NONE]

NDB_LE_StartPhaseCompleted StartPhaseCompleted:

unsigned phase
unsigned starttype

NDB_LE_CM_REGCONF CM_REGCONF:

unsigned own_id
unsigned president_id
unsigned dynamic_id

NDB_LE_CM_REGREF CM_REGREF:

unsigned own_id
unsigned other_id
unsigned cause

NDB_LE_FIND_NEIGHBOURS FIND_NEIGHBOURS:

unsigned own_id
unsigned left_id
unsigned right_id
unsigned dynamic_id

NDB_LE_NDBStopStarted NDBStopStarted:

unsigned stoptype

NDB_LE_NDBStopCompleted NDBStopCompleted:

unsigned action
unsigned signum

647

The ndb_logevent Structure

Ndb_logevent_type Value Structure

NDB_LE_NDBStopForced NDBStopForced:

unsigned action
unsigned signum
unsigned error
unsigned sphase
unsigned extra

NDB_LE_NDBStopAborted NDBStopAborted:

[NONE]

NDB_LE_StartREDOLog StartREDOLog:

unsigned node
unsigned keep_gci
unsigned completed_gci
unsigned restorable_gci

NDB_LE_StartLog StartLog:

unsigned log_part
unsigned start_mb
unsigned stop_mb
unsigned gci

NDB_LE_UNDORecordsExecuted UNDORecordsExecuted:

unsigned block
unsigned data1
unsigned data2
unsigned data3
unsigned data4
unsigned data5
unsigned data6
unsigned data7
unsigned data8
unsigned data9
unsigned data10

NDB_LE_NR_CopyDict NR_CopyDict:

[NONE]

NDB_LE_NR_CopyDistr NR_CopyDistr:

[NONE]

NDB_LE_NR_CopyFragsStarted NR_CopyFragsStarted:

unsigned dest_node

NDB_LE_NR_CopyFragDone NR_CopyFragDone:

unsigned dest_node
unsigned table_id
unsigned fragment_id

NDB_LE_NR_CopyFragsCompleted NR_CopyFragsCompleted:

unsigned dest_node

NDB_LE_NodeFailCompleted NodeFailCompleted:

unsigned block
unsigned failed_node
unsigned completing_node

(For block and completing_node, 0 is
interpreted as “all”.)

NDB_LE_NODE_FAILREP NODE_FAILREP:

648

The ndb_logevent Structure

Ndb_logevent_type Value Structure
unsigned failed_node
unsigned failure_state

NDB_LE_ArbitState ArbitState:

unsigned code
unsigned arbit_node
unsigned ticket_0
unsigned ticket_1

NDB_LE_ArbitResult ArbitResult:

unsigned code
unsigned arbit_node
unsigned ticket_0
unsigned ticket_1

NDB_LE_GCP_TakeoverStarted GCP_TakeoverStarted:

[NONE]

NDB_LE_GCP_TakeoverCompleted GCP_TakeoverCompleted:

[NONE]

NDB_LE_LCP_TakeoverStarted LCP_TakeoverStarted:

[NONE]

NDB_LE_TransReportCounters TransReportCounters:

unsigned trans_count
unsigned commit_count
unsigned read_count
unsigned simple_read_count
unsigned write_count
unsigned attrinfo_count
unsigned conc_op_count
unsigned abort_count
unsigned scan_count
unsigned range_scan_count

NDB_LE_OperationReportCounters OperationReportCounters:

unsigned ops

NDB_LE_TableCreated TableCreated:

unsigned table_id

NDB_LE_JobStatistic JobStatistic:

unsigned mean_loop_count

NDB_LE_SendBytesStatistic SendBytesStatistic:

unsigned to_node
unsigned mean_sent_bytes

NDB_LE_ReceiveBytesStatistic ReceiveBytesStatistic:

unsigned from_node
unsigned mean_received_bytes

NDB_LE_MemoryUsage MemoryUsage:

int gth
unsigned page_size_kb
unsigned pages_used
unsigned pages_total
unsigned block

NDB_LE_TransporterError TransporterError:

649

The ndb_logevent Structure

Ndb_logevent_type Value Structure
unsigned to_node
unsigned code

NDB_LE_TransporterWarning TransporterWarning:

unsigned to_node
unsigned code

NDB_LE_MissedHeartbeat MissedHeartbeat:

unsigned node
unsigned count

NDB_LE_DeadDueToHeartbeat DeadDueToHeartbeat:

unsigned node

NDB_LE_WarningEvent WarningEvent:

[NOT YET IMPLEMENTED]

NDB_LE_SentHeartbeat SentHeartbeat:

unsigned node

NDB_LE_CreateLogBytes CreateLogBytes:

unsigned node

NDB_LE_InfoEvent InfoEvent:

[NOT YET IMPLEMENTED]

NDB_LE_EventBufferStatus (Prior to NDB
7.5)

EventBufferStatus::

unsigned usage
unsigned alloc
unsigned max
unsigned apply_gci_l
unsigned apply_gci_h
unsigned latest_gci_l
unsigned latest_gci_h

NDB_LE_EventBufferStatus2 (NDB 7.5) EventBufferStatus2:

unsigned usage
unsigned alloc
unsigned max
unsigned latest_consumed_epoch_l
unsigned latest_consumed_epoch_h
unsigned latest_buffered_epoch_l
unsigned latest_buffered_epoch_h
unsigned ndb_reference
unsigned report_reason

report_reason is one of NO_REPORT,
COMPLETELY_BUFFERING,
PARTIALLY_DISCARDING,
COMPLETELY_DISCARDING,
PARTIALLY_BUFFERING,
BUFFERED_EPOCHS_OVER_THRESHOLD,
ENOUGH_FREE_EVENTBUFFER, or
LOW_FREE_EVENTBUFFER; see Event Buffer
Reporting in the Cluster Log, for descriptions of
these values

NDB_LE_BackupStarted BackupStarted:

unsigned starting_node
unsigned backup_id

650

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-logs-event-buffer.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-logs-event-buffer.html

The ndb_mgm_node_state Structure

Ndb_logevent_type Value Structure

NDB_LE_BackupFailedToStart BackupFailedToStart:

unsigned starting_node
unsigned error

NDB_LE_BackupCompleted BackupCompleted:

unsigned starting_node
unsigned backup_id
unsigned start_gci
unsigned stop_gci
unsigned n_records
unsigned n_log_records
unsigned n_bytes
unsigned n_log_bytes

NDB_LE_BackupAborted BackupAborted:

unsigned starting_node
unsigned backup_id
unsigned error

NDB_LE_SingleUser SingleUser:

unsigned type
unsigned node_id

NDB_LE_StartReport StartReport:

unsigned report_type
unsigned remaining_time
unsigned bitmask_size
unsigned bitmask_data[1]

The ndb_mgm_node_state Structure

Description Provides information on the status of a Cluster node.

Definition. This structure contains the following members:

• int node_id: The cluster node's node ID.

• enum ndb_mgm_node_type node_type: The node type.

See The ndb_mgm_node_type Type, for permitted values.

• enum ndb_mgm_node_status node_status: The node's status.

See The ndb_mgm_node_status Type, for permitted values.

• int start_phase: The start phase.

This is valid only if the node_type is NDB_MGM_NODE_TYPE_NDB and the node_status is
NDB_MGM_NODE_STATUS_STARTING.

• int dynamic_id: The ID for heartbeats and master takeover.

Valid only for data (ndbd) nodes.

• int node_group: The node group to which the node belongs.

Valid only for data (ndbd) nodes.

• int version: Internal version number.

• int connect_count: The number of times this node has connected to or disconnected from the
management server.

651

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html

The ndb_mgm_node_state2 Structure

• char connect_address[]: The IP address of this node as seen by the other nodes in the cluster.

• int mysql_version: The MySQL version number, expressed as an integer (for example: 80200).
Applies only to SQL nodes.

• int is_single_user: The node ID of the API or SQL node having exclusive access when the
cluster is in single user mode. Does not otherwise apply. Added in NDB 8.0.

The ndb_mgm_node_state2 Structure

Description Provides information on the status of a Cluster node.

Definition. This structure contains the following members:

• int node_id: The cluster node's node ID.

• enum ndb_mgm_node_type node_type: The node type.

See The ndb_mgm_node_type Type, for permitted values.

• enum ndb_mgm_node_status node_status: The node's status.

See The ndb_mgm_node_status Type, for permitted values.

• int start_phase: The start phase.

This is valid only if the node_type is NDB_MGM_NODE_TYPE_NDB and the node_status is
NDB_MGM_NODE_STATUS_STARTING.

• int dynamic_id: The ID for heartbeats and master takeover.

Valid only for data (ndbd) nodes.

• int node_group: The node group to which the node belongs.

Valid only for data (ndbd) nodes.

• int version: Internal version number.

• int connect_count: The number of times this node has connected to or disconnected from the
management server.

• int mysql_version: The MySQL version number, expressed as an integer (for example: 80200).
Applies only to SQL nodes.

• int is_single_user: The node ID of the API or SQL node having exclusive access when the
cluster is in single user mode. Does not otherwise apply.

• char connect_address[]: The IP address of this node as seen by the other nodes in the cluster.

The ndb_mgm_cluster_state Structure

Description Provides information on the status of all Cluster nodes. This
structure is returned by ndb_mgm_get_status().

Definition. This structure has the following two members:

• int no_of_nodes: The number of elements in the node_states array.

• struct ndb_mgm_node_state node_states[]: An array containing the states of the nodes.

Each element of this array is an ndb_mgm_node_state structure.

See ndb_mgm_get_status().

652

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html

The ndb_mgm_cluster_state2 Structure

The ndb_mgm_cluster_state2 Structure

Description Provides information on the status of all Cluster nodes. This
structure is returned by ndb_mgm_get_status3(), and was
added in NDB 8.0.

Definition. This structure has the following two members:

• int no_of_nodes: The number of elements in the node_states array.

• struct ndb_mgm_node_state2 node_states[]: An array containing the states of the nodes.

Each element of this array is an ndb_mgm_node_state2 structure.

See ndb_mgm_get_status3().

The ndb_mgm_reply Structure

Description Contains response information, consisting of a response code and a
corresponding message, from the management server.

Definition. This structure contains two members, as shown here:

• int return_code: For a successful operation, this value is 0; otherwise, it contains an error code.

For error codes, see The ndb_mgm_error Type.

• char message[256]: contains the text of the response or error message.

See ndb_mgm_get_latest_error(), and ndb_mgm_get_latest_error_msg().

3.5 MGM API Errors
This section provides information about each of the six types MGM errors, with the listings that follow
ordered by type.

• Request Errors

• Node ID Allocation Errors

• Service Errors

• Backup Errors

• Single User Mode Errors

• Configuration Errors

• General Usage Errors

Request Errors

These are errors generated by failures to connect to a management server.

Table 3.8 Request errors generated by management server connection failures.

Value Description

NDB_MGM_ILLEGAL_CONNECT_STRING Invalid connection string

NDB_MGM_ILLEGAL_SERVER_HANDLE Invalid management server handle

NDB_MGM_ILLEGAL_SERVER_REPLY Invalid response from management
server

NDB_MGM_ILLEGAL_NUMBER_OF_NODES Invalid number of nodes

653

Node ID Allocation Errors

Value Description

NDB_MGM_ILLEGAL_NODE_STATUS Invalid node status

NDB_MGM_OUT_OF_MEMORY Memory allocation error

NDB_MGM_SERVER_NOT_CONNECTED Management server not connected

NDB_MGM_COULD_NOT_CONNECT_TO_SOCKET Not able to connect to socket

NDB_MGM_BIND_ADDRESS Unable to bind local address...

NDB_MGM_ILLEGAL_BIND_ADDRESS Illegal bind address

Node ID Allocation Errors

These errors result from a failure to assign a node ID to a cluster node.

Table 3.9 Node ID allocation errors resulting from failure to assign a node ID

Value Description

NDB_MGM_ALLOCID_ERROR Generic error; may be possible to
retry and recover

NDB_MGM_ALLOCID_CONFIG_MISMATCH Non-recoverable generic error

NDB_MGM_ALLOCID_CONFIG_RETRY Mgmd failed to match hostname,
but AllowUnresolvedHostnames=true.
Connecting node should retry. (See
AllowUnresolvedHostnames.)

Service Errors

These errors result from the failure of a node or cluster to start, shut down, or restart.

Table 3.10 Service errors resulting from failure of a node or cluster to start, shut down, or
restart

Value Description

NDB_MGM_START_FAILED Startup failure

NDB_MGM_STOP_FAILED Shutdown failure

NDB_MGM_RESTART_FAILED Restart failure

Backup Errors

These are errors which result from problems with initiating or aborting backups.

Table 3.11 Backup errors resulting from problems initiating or aborting backups.

Value Description

NDB_MGM_COULD_NOT_START_BACKUP Unable to initiate backup

NDB_MGM_COULD_NOT_ABORT_BACKUP Unable to abort backup

Single User Mode Errors

These errors result from failures to enter or exit single user mode.

Table 3.12 Single user mode errors resulting from failure to enter or exit single user mode.

Value Description

NDB_MGM_COULD_NOT_ENTER_SINGLE_USER_MODEUnable to enter single-user mode

NDB_MGM_COULD_NOT_EXIT_SINGLE_USER_MODEUnable to exit single-user mode

654

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-allowunresolvedhostnames

Configuration Errors

Configuration Errors

These errors result when the management server is unable to obtain configuration data, or is unable to
perform a configuration change.

Table 3.13 Configuration errors resulting from failure to get or change configuration.

Value Description

NDB_MGM_CONFIG_CHANGE_FAILED Failed to complete configuration
change

NDB_MGM_GET_CONFIG_FAILED Failed to get configuration

General Usage Errors

This is a general error type for errors which are otherwise not classifiable. There is one general usage
error.

Table 3.14 General usage errors, otherwise not classified.

Value Description

NDB_MGM_USAGE_ERROR General usage error

3.6 MGM API Examples
This section provides MGM API coding examples.

3.6.1 Basic MGM API Event Logging Example

This example shows the basics of handling event logging using the MGM API.

The source code for this program may be found in the NDB Cluster source tree, in the file storage/
ndb/ndbapi-examples/mgmapi_logevent/main.cpp.

#include <mysql.h>
#include <ndbapi/NdbApi.hpp>
#include <mgmapi.h>
#include <stdio.h>
#include <stdlib.h>

/*
 * export LD_LIBRARY_PATH=../../../../libmysql_r/.libs:../../src/.libs
 */

#define MGMERROR(h) \
{ \
 fprintf(stderr, "code: %d msg: %s\n", \
 ndb_mgm_get_latest_error(h), \
 ndb_mgm_get_latest_error_msg(h)); \
 exit(-1); \
}

#define LOGEVENTERROR(h) \
{ \
 fprintf(stderr, "code: %d msg: %s\n", \
 ndb_logevent_get_latest_error(h), \
 ndb_logevent_get_latest_error_msg(h)); \
 exit(-1); \
}

#define make_uint64(a,b) (((Uint64)(a)) + (((Uint64)(b)) << 32))

int main(int argc, char** argv)
{
 NdbMgmHandle h;
 NdbLogEventHandle le;
 int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP,

655

Basic MGM API Event Logging Example

 15, NDB_MGM_EVENT_CATEGORY_CONNECTION,
 15, NDB_MGM_EVENT_CATEGORY_NODE_RESTART,
 15, NDB_MGM_EVENT_CATEGORY_STARTUP,
 15, NDB_MGM_EVENT_CATEGORY_ERROR,
 0 };
 struct ndb_logevent event;

 if (argc < 2)
 {
 printf("Arguments are <connect_string cluster> [<iterations>].\n");
 exit(-1);
 }
 const char *connectstring = argv[1];
 int iterations = -1;
 if (argc > 2)
 iterations = atoi(argv[2]);
 ndb_init();

 h= ndb_mgm_create_handle();
 if (h == 0)
 {
 printf("Unable to create handle\n");
 exit(-1);
 }
 if (ndb_mgm_set_connectstring(h, connectstring) == -1)
 {
 printf("Unable to set connection string\n");
 exit(-1);
 }
 if (ndb_mgm_connect(h,0,0,0)) MGMERROR(h);

 le= ndb_mgm_create_logevent_handle(h, filter);
 if (le == 0) MGMERROR(h);

 while (iterations-- != 0)
 {
 int timeout= 1000;
 int r= ndb_logevent_get_next(le,&event,timeout);
 if (r == 0)
 printf("No event within %d milliseconds\n", timeout);
 else if (r < 0)
 LOGEVENTERROR(le)
 else
 {
 switch (event.type) {
 case NDB_LE_BackupStarted:
 printf("Node %d: BackupStarted\n", event.source_nodeid);
 printf(" Starting node ID: %d\n", event.BackupStarted.starting_node);
 printf(" Backup ID: %d\n", event.BackupStarted.backup_id);
 break;
 case NDB_LE_BackupStatus:
 printf("Node %d: BackupStatus\n", event.source_nodeid);
 printf(" Starting node ID: %d\n", event.BackupStarted.starting_node);
 printf(" Backup ID: %d\n", event.BackupStarted.backup_id);
 printf(" Data written: %llu bytes (%llu records)\n",
 make_uint64(event.BackupStatus.n_bytes_lo,
 event.BackupStatus.n_bytes_hi),
 make_uint64(event.BackupStatus.n_records_lo,
 event.BackupStatus.n_records_hi));
 printf(" Log written: %llu bytes (%llu records)\n",
 make_uint64(event.BackupStatus.n_log_bytes_lo,
 event.BackupStatus.n_log_bytes_hi),
 make_uint64(event.BackupStatus.n_log_records_lo,
 event.BackupStatus.n_log_records_hi));
 break;
 case NDB_LE_BackupCompleted:
 printf("Node %d: BackupCompleted\n", event.source_nodeid);
 printf(" Backup ID: %d\n", event.BackupStarted.backup_id);
 printf(" Data written: %llu bytes (%llu records)\n",
 make_uint64(event.BackupCompleted.n_bytes,
 event.BackupCompleted.n_bytes_hi),
 make_uint64(event.BackupCompleted.n_records,

656

MGM API Event Handling with Multiple Clusters

 event.BackupCompleted.n_records_hi));
 printf(" Log written: %llu bytes (%llu records)\n",
 make_uint64(event.BackupCompleted.n_log_bytes,
 event.BackupCompleted.n_log_bytes_hi),
 make_uint64(event.BackupCompleted.n_log_records,
 event.BackupCompleted.n_log_records_hi));
 break;
 case NDB_LE_BackupAborted:
 printf("Node %d: BackupAborted\n", event.source_nodeid);
 break;
 case NDB_LE_BackupFailedToStart:
 printf("Node %d: BackupFailedToStart\n", event.source_nodeid);
 break;

 case NDB_LE_NodeFailCompleted:
 printf("Node %d: NodeFailCompleted\n", event.source_nodeid);
 break;
 case NDB_LE_ArbitResult:
 printf("Node %d: ArbitResult\n", event.source_nodeid);
 printf(" code %d, arbit_node %d\n",
 event.ArbitResult.code & 0xffff,
 event.ArbitResult.arbit_node);
 break;
 case NDB_LE_DeadDueToHeartbeat:
 printf("Node %d: DeadDueToHeartbeat\n", event.source_nodeid);
 printf(" node %d\n", event.DeadDueToHeartbeat.node);
 break;

 case NDB_LE_Connected:
 printf("Node %d: Connected\n", event.source_nodeid);
 printf(" node %d\n", event.Connected.node);
 break;
 case NDB_LE_Disconnected:
 printf("Node %d: Disconnected\n", event.source_nodeid);
 printf(" node %d\n", event.Disconnected.node);
 break;
 case NDB_LE_NDBStartCompleted:
 printf("Node %d: StartCompleted\n", event.source_nodeid);
 printf(" version %d.%d.%d\n",
 event.NDBStartCompleted.version >> 16 & 0xff,
 event.NDBStartCompleted.version >> 8 & 0xff,
 event.NDBStartCompleted.version >> 0 & 0xff);
 break;
 case NDB_LE_ArbitState:
 printf("Node %d: ArbitState\n", event.source_nodeid);
 printf(" code %d, arbit_node %d\n",
 event.ArbitState.code & 0xffff,
 event.ArbitResult.arbit_node);
 break;

 default:
 break;
 }
 }
 }

 ndb_mgm_destroy_logevent_handle(&le);
 ndb_mgm_destroy_handle(&h);
 ndb_end(0);
 return 0;
}

3.6.2 MGM API Event Handling with Multiple Clusters

This example shown in this section illustrates the handling of log events using the MGM API on multiple
clusters in a single application.

The source code for this program may be found in the NDB Cluster source tree, in the file storage/
ndb/ndbapi-examples/mgmapi_logevent2/main.cpp.

657

MGM API Event Handling with Multiple Clusters

Note

This file was previously named mgmapi_logevent2.cpp.

#include <mysql.h>
#include <ndbapi/NdbApi.hpp>
#include <mgmapi.h>
#include <stdio.h>
#include <stdlib.h>

/*
 * export LD_LIBRARY_PATH=../../../libmysql_r/.libs:../../../ndb/src/.libs
 */

#define MGMERROR(h) \
{ \
 fprintf(stderr, "code: %d msg: %s\n", \
 ndb_mgm_get_latest_error(h), \
 ndb_mgm_get_latest_error_msg(h)); \
 exit(-1); \
}

#define LOGEVENTERROR(h) \
{ \
 fprintf(stderr, "code: %d msg: %s\n", \
 ndb_logevent_get_latest_error(h), \
 ndb_logevent_get_latest_error_msg(h)); \
 exit(-1); \
}

int main(int argc, char** argv)
{
 NdbMgmHandle h1,h2;
 NdbLogEventHandle le1,le2;
 int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP,
 15, NDB_MGM_EVENT_CATEGORY_CONNECTION,
 15, NDB_MGM_EVENT_CATEGORY_NODE_RESTART,
 15, NDB_MGM_EVENT_CATEGORY_STARTUP,
 15, NDB_MGM_EVENT_CATEGORY_ERROR,
 0 };
 struct ndb_logevent event1, event2;

 if (argc < 3)
 {
 printf("Arguments are <connect_string cluster 1>",
 "<connect_string cluster 2> [<iterations>].\n");
 exit(-1);
 }
 const char *connectstring1 = argv[1];
 const char *connectstring2 = argv[2];
 int iterations = -1;
 if (argc > 3)
 iterations = atoi(argv[3]);
 ndb_init();

 h1= ndb_mgm_create_handle();
 h2= ndb_mgm_create_handle();
 if (h1 == 0 || h2 == 0)
 {
 printf("Unable to create handle\n");
 exit(-1);
 }
 if (ndb_mgm_set_connectstring(h1, connectstring1) == -1 ||
 ndb_mgm_set_connectstring(h2, connectstring1))
 {
 printf("Unable to set connection string\n");
 exit(-1);
 }
 if (ndb_mgm_connect(h1,0,0,0)) MGMERROR(h1);
 if (ndb_mgm_connect(h2,0,0,0)) MGMERROR(h2);

658

MGM API Event Handling with Multiple Clusters

 if ((le1= ndb_mgm_create_logevent_handle(h1, filter)) == 0) MGMERROR(h1);
 if ((le2= ndb_mgm_create_logevent_handle(h1, filter)) == 0) MGMERROR(h2);

 while (iterations-- != 0)
 {
 int timeout= 1000;
 int r1= ndb_logevent_get_next(le1,&event1,timeout);
 if (r1 == 0)
 printf("No event within %d milliseconds\n", timeout);
 else if (r1 < 0)
 LOGEVENTERROR(le1)
 else
 {
 switch (event1.type) {
 case NDB_LE_BackupStarted:
 printf("Node %d: BackupStarted\n", event1.source_nodeid);
 printf(" Starting node ID: %d\n", event1.BackupStarted.starting_node);
 printf(" Backup ID: %d\n", event1.BackupStarted.backup_id);
 break;
 case NDB_LE_BackupCompleted:
 printf("Node %d: BackupCompleted\n", event1.source_nodeid);
 printf(" Backup ID: %d\n", event1.BackupStarted.backup_id);
 break;
 case NDB_LE_BackupAborted:
 printf("Node %d: BackupAborted\n", event1.source_nodeid);
 break;
 case NDB_LE_BackupFailedToStart:
 printf("Node %d: BackupFailedToStart\n", event1.source_nodeid);
 break;

 case NDB_LE_NodeFailCompleted:
 printf("Node %d: NodeFailCompleted\n", event1.source_nodeid);
 break;
 case NDB_LE_ArbitResult:
 printf("Node %d: ArbitResult\n", event1.source_nodeid);
 printf(" code %d, arbit_node %d\n",
 event1.ArbitResult.code & 0xffff,
 event1.ArbitResult.arbit_node);
 break;
 case NDB_LE_DeadDueToHeartbeat:
 printf("Node %d: DeadDueToHeartbeat\n", event1.source_nodeid);
 printf(" node %d\n", event1.DeadDueToHeartbeat.node);
 break;

 case NDB_LE_Connected:
 printf("Node %d: Connected\n", event1.source_nodeid);
 printf(" node %d\n", event1.Connected.node);
 break;
 case NDB_LE_Disconnected:
 printf("Node %d: Disconnected\n", event1.source_nodeid);
 printf(" node %d\n", event1.Disconnected.node);
 break;
 case NDB_LE_NDBStartCompleted:
 printf("Node %d: StartCompleted\n", event1.source_nodeid);
 printf(" version %d.%d.%d\n",
 event1.NDBStartCompleted.version >> 16 & 0xff,
 event1.NDBStartCompleted.version >> 8 & 0xff,
 event1.NDBStartCompleted.version >> 0 & 0xff);
 break;
 case NDB_LE_ArbitState:
 printf("Node %d: ArbitState\n", event1.source_nodeid);
 printf(" code %d, arbit_node %d\n",
 event1.ArbitState.code & 0xffff,
 event1.ArbitResult.arbit_node);
 break;

 default:
 break;
 }
 }

 int r2= ndb_logevent_get_next(le1,&event2,timeout);

659

MGM API Event Handling with Multiple Clusters

 if (r2 == 0)
 printf("No event within %d milliseconds\n", timeout);
 else if (r2 < 0)
 LOGEVENTERROR(le2)
 else
 {
 switch (event2.type) {
 case NDB_LE_BackupStarted:
 printf("Node %d: BackupStarted\n", event2.source_nodeid);
 printf(" Starting node ID: %d\n", event2.BackupStarted.starting_node);
 printf(" Backup ID: %d\n", event2.BackupStarted.backup_id);
 break;
 case NDB_LE_BackupCompleted:
 printf("Node %d: BackupCompleted\n", event2.source_nodeid);
 printf(" Backup ID: %d\n", event2.BackupStarted.backup_id);
 break;
 case NDB_LE_BackupAborted:
 printf("Node %d: BackupAborted\n", event2.source_nodeid);
 break;
 case NDB_LE_BackupFailedToStart:
 printf("Node %d: BackupFailedToStart\n", event2.source_nodeid);
 break;

 case NDB_LE_NodeFailCompleted:
 printf("Node %d: NodeFailCompleted\n", event2.source_nodeid);
 break;
 case NDB_LE_ArbitResult:
 printf("Node %d: ArbitResult\n", event2.source_nodeid);
 printf(" code %d, arbit_node %d\n",
 event2.ArbitResult.code & 0xffff,
 event2.ArbitResult.arbit_node);
 break;
 case NDB_LE_DeadDueToHeartbeat:
 printf("Node %d: DeadDueToHeartbeat\n", event2.source_nodeid);
 printf(" node %d\n", event2.DeadDueToHeartbeat.node);
 break;

 case NDB_LE_Connected:
 printf("Node %d: Connected\n", event2.source_nodeid);
 printf(" node %d\n", event2.Connected.node);
 break;
 case NDB_LE_Disconnected:
 printf("Node %d: Disconnected\n", event2.source_nodeid);
 printf(" node %d\n", event2.Disconnected.node);
 break;
 case NDB_LE_NDBStartCompleted:
 printf("Node %d: StartCompleted\n", event2.source_nodeid);
 printf(" version %d.%d.%d\n",
 event2.NDBStartCompleted.version >> 16 & 0xff,
 event2.NDBStartCompleted.version >> 8 & 0xff,
 event2.NDBStartCompleted.version >> 0 & 0xff);
 break;
 case NDB_LE_ArbitState:
 printf("Node %d: ArbitState\n", event2.source_nodeid);
 printf(" code %d, arbit_node %d\n",
 event2.ArbitState.code & 0xffff,
 event2.ArbitResult.arbit_node);
 break;

 default:
 break;
 }
 }
 }

 ndb_mgm_destroy_logevent_handle(&le1);
 ndb_mgm_destroy_logevent_handle(&le2);
 ndb_mgm_destroy_handle(&h1);
 ndb_mgm_destroy_handle(&h2);
 ndb_end(0);
 return 0;
}

660

Chapter 4 MySQL NDB Cluster Connector for Java

Table of Contents
4.1 MySQL NDB Cluster Connector for Java: Overview .. 661

4.1.1 MySQL NDB Cluster Connector for Java Architecture ... 661
4.1.2 Java and NDB Cluster .. 661
4.1.3 The ClusterJ API and Data Object Model .. 662

4.2 Using MySQL NDB Cluster Connector for Java .. 664
4.2.1 Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java 664
4.2.2 Using ClusterJ .. 667
4.2.3 Using Connector/J with NDB Cluster ... 675

4.3 ClusterJ API Reference ... 675
4.3.1 com.mysql.clusterj .. 675
4.3.2 com.mysql.clusterj.annotation .. 721
4.3.3 com.mysql.clusterj.query ... 728
4.3.4 Constant field values .. 734

4.4 MySQL NDB Cluster Connector for Java: Limitations and Known Issues 735

This chapter discusses using NDB Cluster with MySQL NDB Cluster Connector for Java, also known
as ClusterJ.

ClusterJ is a high level database API that is similar in style and concept to object-relational mapping
persistence frameworks such as Hibernate and JPA. Because ClusterJ does not use the MySQL
Server to access data in NDB Cluster, it can perform some operations much more quickly than can be
done using JDBC. ClusterJ supports primary key and unique key operations and single-table queries; it
does not support multi-table operations, including joins.

4.1 MySQL NDB Cluster Connector for Java: Overview

This section provides a conceptual and architectural overview of the APIs available using the MySQL
NDB Cluster Connector for Java.

4.1.1 MySQL NDB Cluster Connector for Java Architecture

MySQL NDB Cluster Connector for Java, also known as ClusterJ, is a Java API for writing applications
against NDB Cluster. It is one among different access paths and styles of access to NDB Cluster data.
Section 4.1.2, “Java and NDB Cluster”, describes each of those APIs in more detail.

MySQL NDB Cluster Connector for Java is included with all NDB Cluster source and binary releases.
Building MySQL NDB Cluster Connector for Java from source can be done as part of building NDB
Cluster; however, it can also be built with Maven.

4.1.2 Java and NDB Cluster

A NDB Cluster is defined as one or more MySQL Servers providing access to an NDBCLUSTER storage
engine—that is, to a set of NDB Cluster data nodes (ndbd processes). There are three main access
paths from Java to NDBCLUSTER, listed here:

• JDBC and mysqld. JDBC works by sending SQL statements to the MySQL Server and returning
result sets. When using JDBC, you must write the SQL, manage the connection, and copy any data
from the result set that you want to use in your program as objects. The JDBC implementation most
often used with the MySQL Server is MySQL Connector/J.

661

http://maven.apache.org/
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-basics.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://dev.mysql.com/doc/connector-j/en/

The ClusterJ API and Data Object Model

• Java Persistence API (JPA) and JDBC. JPA uses JDBC to connect to the MySQL Server.
Unlike JDBC, JPA provides an object view of the data in the database.

• ClusterJ. ClusterJ uses a JNI bridge to the NDB API for direct access to NDBCLUSTER. It
employs a style of data access that is based on a domain object model, similar in many ways to that
employed by JPA. ClusterJ does not depend on the MySQL Server for data access.

These paths are shown in the following API stack diagram:

Figure 4.1 Java Access Paths To NDB

JDBC and mysqld. Connector/J provides standard access through the MySQL JDBC driver. Using
Connector/J, JDBC applications can be written to work with a MySQL server acting as an NDB Cluster
SQL node in much the same way that other Connector/J applications work with any other MySQL
Server instance.

For more information, see Section 4.2.3, “Using Connector/J with NDB Cluster”.

ClusterJ. ClusterJ is a native Java Connector for NDBCLUSTER (or NDB), the storage engine for
NDB Cluster, in the style of Hibernate, JPA, and JDO. Like other persistence frameworks, ClusterJ
uses the Data Mapper pattern, in which data is represented as domain objects, separate from business
logic, mapping Java classes to database tables stored in the NDBCLUSTER storage engine.

Note

The NDBCLUSTER storage engine is often referred to (in MySQL documentation
and elsewhere) simply as NDB. The terms NDB and NDBCLUSTER are
synonymous, and you can use either ENGINE=NDB or ENGINE=NDBCLUSTER in
a CREATE TABLE statement to create a clustered table.

ClusterJ does not need to connect to a mysqld process, having direct access to NDBCLUSTER using
a JNI bridge that is included in the dynamic library libnbdclient. However, unlike JDBC, ClusterJ
does not support table creation and other data definition operations; these must be performed by some
other means, such as JDBC or the mysql client. Also, ClusterJ is limited to queries on single tables,
and does not support relations or inheritance; you should use another kind of access paths if you need
support for those features in your applications.

4.1.3 The ClusterJ API and Data Object Model

This section discusses the ClusterJ API and the object model used to represent the data handled by
the application.

662

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://www.hibernate.org/
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://www.oracle.com/technetwork/java/jdo-137135.html
http://www.martinfowler.com/eaaCatalog/dataMapper.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/create-table.html
https://dev.mysql.com/doc/refman/8.4/en/mysqld.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html

The ClusterJ API and Data Object Model

Application Programming Interface. The ClusterJ API depends on 4 main interfaces: Session,
SessionFactory, Transaction, and QueryBuilder.

Session interface. All access to NDB Cluster data is done in the context of a session. The
Session interface represents a user's or application's individual connection to an NDB Cluster. It
contains methods for the following operations:

• Finding persistent instances by primary key

• Creating, updating, and deleting persistent instances

• Getting a query builder (see com.mysql.clusterj.query.QueryBuilder)

• Getting the current transaction (see com.mysql.clusterj.Transaction).

SessionFactory interface. Sessions are obtained from a SessionFactory, of which there
is typically a single instance for each NDB Cluster that you want to access from the Java VM.
SessionFactory stores configuration information about the cluster, such as the hostname and port
number of the NDB Cluster management server. It also stores parameters regarding how to connect to
the cluster, including connection delays and timeouts. For more information about SessionFactory and
its use in a ClusterJ application, see Getting the SessionFactory and getting a Session.

Transaction interface. Transactions are not managed by the Session interface; like other modern
application frameworks, ClusterJ separates transaction management from other persistence methods.
Transaction demarcation might be done automatically by a container or in a web server servlet filter.
Removing transaction completion methods from Session facilitates this separation of concerns.

The Transaction interface supports the standard begin, commit, and rollback behaviors required by
a transactional database. In addition, it enables the user to mark a transaction as being rollback-only,
which makes it possible for a component that is not responsible for completing a transaction to indicate
that—due to an application or database error—the transaction must not be permitted to complete
normally.

QueryBuilder interface. The QueryBuilder interface makes it possible to construct criteria
queries dynamically, using domain object model properties as query modeling elements. Comparisons
between parameters and database column values can be specified, including equal, greater and less
than, between, and in operations. These comparisons can be combined using methods corresponding
to the Boolean operators AND, OR, and NOT. Comparison of values to NULL is also supported.

Data model. ClusterJ provides access to data in NDB Cluster using domain objects, similar in many
ways to the way that JPA models data.

In ClusterJ, the domain object mapping has the following characteristics:

• All tables map to persistent interfaces. For every NDB table in the cluster, ClusterJ uses one or more
interfaces. In many cases, a single interface is used; but for cases where different columns are
needed by different parts of the application, multiple interfaces can be mapped to the same table.

However, the classes themselves are not persistent.

• Users map a subset of columns to persistent properties in interfaces. Thus, all properties map to
columns; however, not all columns necessarily map to properties.

All ClusterJ property names default to column names. The interface provides getter and setter
methods for each property, with predictable corresponding method names.

• Annotations on interfaces define mappings.

The user view of the application environment and domain objects is illustrated in the following diagram,
which shows the logical relationships among the modeling elements of the ClusterJ interfaces:

663

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

Using MySQL NDB Cluster Connector for Java

Figure 4.2 ClusterJ User View Of Application And Environment

The SessionFactory is configured by a properties object that might have been loaded from a file or
constructed dynamically by the application using some other means (see Section 4.2.2.1, “Executing
ClusterJ Applications and Sessions”).

The application obtains Session instances from the SessionFactory, with at most one thread
working with a Session at a time. A thread can manage multiple Session instances if there is some
application requirement for multiple connections to the database.

Each session has its own collection of domain objects, each of which represents the data from one row
in the database. The domain objects can represent data in any of the following states:

• New; not yet stored in the database

• Retrieved from the database; available to the application

• Updated; to be stored back in the database

• To be deleted from the database

4.2 Using MySQL NDB Cluster Connector for Java
This section provides basic information about building and running Java applications using MySQL
NDB Cluster Connector for Java (ClusterJ).

4.2.1 Getting, Installing, and Setting Up MySQL NDB Cluster Connector for
Java

This section discusses how to obtain ClusterJ sources and binaries, and how to compile, install, and
get started with ClusterJ.

Obtaining and Installing MySQL NDB Cluster Connector for Java. You can obtain the most
recent NDB Cluster release, which includes ClusterJ, from downloads.mysql.com. The installation
instructions given in NDB Cluster Installation also install ClusterJ.

Building and installing MySQL NDB Cluster Connector for Java from source. You can build
and install ClusterJ as part of building and installing NDB Cluster, which always requires you to
configure the build using the CMake option WITH_NDBCLUSTER_STORAGE_ENGINE (or its alias
WITH_NDBCLUSTER).

A typical CMake command for configuring a build for NDB Cluster that supports ClusterJ might look like
this:

664

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-installation.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-install-linux-source.html
https://dev.mysql.com/doc/refman/8.4/en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://dev.mysql.com/doc/refman/8.4/en/source-configuration-options.html#option_cmake_with_ndbcluster

Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java

cmake .. -DWITH_NDBCLUSTER=ON

The WITH_NDB_JAVA option is enabled by default, which means ClusterJ is be built together with
NDB Cluster by the above command. However, if CMake cannot find the location of Java on your
system, the configuration process is going to fail; use the WITH_CLASSPATH option to provide
the Java classpath if needed. For information about other CMake options that can be used, see
option_cmake_with_ndbcluster.

After configuring the build with CMake, run make and make install as you normally would to
compile and install the NDB Cluster software.

MySQL NDB Cluster Connector for Java jar files. Following the installation, these ClusterJ jar
files can be found in the folder share/java under the MySQL installation directory (which is /usr/
local/mysql by default for Linux platforms):

• clusterj-api-version.jar: This is the compile-time jar file, required for compiling ClusterJ
application code.

• clusterj-version.jar: This is the runtime library required for executing ClusterJ applications.

• clusterj-test-version.jar: This is the ClusterJ test suite, required for testing your ClusterJ
installation.

Building ClusterJ with Maven

The source files for ClusterJ are configured as Maven projects, allowing easy compilation and
installation using Maven. Assuming you have obtained the NDB Cluster source and already compiled
and installed NDB Cluster and ClusterJ following the instructions given above, these are the steps to
take:

1. Add the file path for the folder that contains the NDB client library (libndbclient.so) as a
property named ndbclient.lib to your local Maven settings.xml file (found in the local
Maven repository, which is usually /home/username/.m2 for Linux platforms). The client library
is to be found under the lib folder in the NDB Cluster's installation folder. If settings.xml does
not exist in your local Maven repository, create one. This is how a simple settings.xml file
containing the ndbclient.lib property looks like:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <profile>
 <id>jni-library</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <ndbclient.lib>/NDB_Cluster_installation_directory/lib/</ndbclient.lib>
 </properties>
 </profile>
 </profiles>

</settings>

2. Go to the build directory you created when compiling NDB Cluster (which is bld in the sample
steps in Build the Distribution), and then to the storage/ndb/clusterj folder under it. Run the
mvn_install_ndbjtie.sh script in the folder:

./mvn_install_ndbjtie.sh

It installs ndbjtie.jar, which provides the JNI layer for ClusterJ and is required for building
CluterJ.

665

https://dev.mysql.com/doc/refman/8.4/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/8.4/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/8.4/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.4/en/installing-source-distribution.html#installing-source-distribution-build-distribution

Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java

3. Install ClusterJ with Maven by running mvn install in the storage/ndb/clusterj directory:

mvn install

This causes ClusterJ to be built, with the resulting .jar files installed in the local Maven repository.

Note

You can skip the tests that takes place towards the end of the installation
process by adding the option skipTests to the command:

mvn install -DskipTests

This prevents your installation from failing because you have not yet set up
the testing environment.

Building ClusterJ with Maven in IDEs

Because the source files for ClusterJ are configured as Maven projects, you can easily import them into
your favorite Maven-enabled IDEs, customize them, and rebuild them as needed by following these
steps:

1. Make sure that your IDE's support for Maven is enabled. You might need to install a Maven plugin
for the purpose.

2. Follow step 1 and 2 in Building ClusterJ with Maven, which make the ClusterJ source ready to be
used with Maven.

3. Import ClusterJ as a Maven project. This is how to do it in some popular IDEs :

In NetBeans:

• In the main menu, choose File > Open Project. The Open Project dialogue box appears

• In the Open Project dialogue box, browse to the storage/ndb folder under the build directory
(see step 2 in Building ClusterJ with Maven); select the clusterj folder, which has the

Maven icon () beside it, and click Open Project. The ClusterJ Aggregate project is
imported, with ClusterJ API, ClusterJ Core, ClusterJ Test Suite, ClusterJ Tie,
and ClusterJ Unit Test Framework imported as subprojects under Modules.

• Work with the ClusterJ projects like you would with any other Maven projects in NetBeans. Any
changes to the source code go into the source tree from which you compiled NDB Cluster to
create the build directory.

In Eclipse:

• In the main menu, choose File > Import. The Import dialogue box appears

• In the Import dialogue box, select Maven > Existing Maven Projects for import wizard and click
Next. The Import Maven Projects dialogue box appears.

• In the Import Maven Projects dialogue box, browse to the storage/ndb folder under the build
directory (see step 2 in Building ClusterJ with Maven); select the clusterj folder and click
Select Folder. The clusterj-aggregate project, as well as its subprojects clusterj-api,
clusterj-core, clusterj-test, clusterj-tie and clusterj-unit, appear in the
Maven Projects dialogue box. Click Select All and then Finish. All the ClusterJ projects are
imported.

• Work with the ClusterJ projects like you would with any other Maven projects in Eclipse.

666

Using ClusterJ

4.2.2 Using ClusterJ

This section provides basic information for writing, compiling, and executing applications that use
ClusterJ. For the API documentation for ClusterJ, see Section 4.3, “ClusterJ API Reference”.

Requirements. ClusterJ requires Java 1.7 or 1.8. NDB Cluster must be compiled with ClusterJ
support; NDB Cluster binaries supplied by Oracle include ClusterJ support. If you are building NDB
Cluster from source, see Building and installing MySQL NDB Cluster Connector for Java from source,
for information on configuring the build to enable ClusterJ support.

To compile applications that use ClusterJ, you either need to have the clusterj-api jar file in your
classpath, or use a Maven dependency manager to install and configure the ClusterJ library in your
project.

To run applications that use ClusterJ, you need the clusterj runtime jar file; in addition,
libndbclient must be in the directory specified by java.library.path. Section 4.2.2.1,
“Executing ClusterJ Applications and Sessions”, provides more information about these requirements.

4.2.2.1 Executing ClusterJ Applications and Sessions

In this section, we discuss how to start ClusterJ applications and the ClusterJ application environment.

Executing a ClusterJ application. All of the ClusterJ jar files are normally found in share/mysql/
java/ in the MySQL installation directory. When executing a ClusterJ application, you must set the
classpath to point to these files. In addition, you must set java.library.path variable to point to the
directory containing the Cluster ndbclient library, normally found in lib/mysql (also in the MySQL
installation directory). Thus you might execute a ClusterJ program MyClusterJApp in a manner
similar to what is shown here:

$> java -classpath /usr/local/mysql/share/mysql/java/clusterj.jar \
 -Djava.library.path=/usr/local/mysql/lib MyClusterJApp

Note

The precise locations of the ClusterJ jar files and of libndbclient depend on
how the NDB Cluster software was installed. See Installation Layouts, for more
information.

ClusterJ encourages you to use different jar files at compile time and runtime. This is to remove
the ability of applications to access implementation artifacts accidentally. ClusterJ is intended to be
independent of the NDB Cluster software version, whereas the ndbclient layer is version-specific.
This makes it possible to maintain a stable API, so that applications written against it using a given
NDB Cluster version continue to run following an upgrade of the cluster to a new version.

Getting the SessionFactory and getting a Session. SessionFactory is the source of all
ClusterJ sessions that use a given NDB Cluster. Usually, there is only a single SessionFactory per
NDB Cluster, per Java Virtual Machine.

SessionFactory can be configured by setting one or more properties. The preferred way to do this is
by putting these in a properties file, like this:

com.mysql.clusterj.connectstring=localhost:1186
com.mysql.clusterj.database=mydb

The name of the properties file is arbitrary; however, by convention, such files are named
with a .properties extension. For ClusterJ applications, it is customary to name the file
clusterj.properties.

After editing and saving the file, you can load its contents into an instance of Properties, as shown
here:

667

https://dev.mysql.com/doc/refman/8.4/en/installation-layouts.html
http://java.sun.com/javase/6/docs/api/java/util/Properties

Using ClusterJ

File propsFile = new File("clusterj.properties");
InputStream inStream = new FileInputStream(propsFile);
Properties props = new Properties();
props.load(inStream);

It is also possible to set these properties directly, without the use of a properties file:

Properties props = new Properties();

props.put("com.mysql.clusterj.connectstring", "localhost:1186");
props.put("com.mysql.clusterj.database", "mydb");

Once the properties have been set and loaded (using either of the techniques just shown), you
can obtain a SessionFactory, and then from that a Session instance. For this, you use the
SessionFactory's getSession() method, as shown here:

SessionFactory factory = ClusterJHelper.getSessionFactory(props);

Session session = factory.getSession();

It is usually sufficient to set and load the com.mysql.clusterj.connectstring
and com.mysql.clusterj.database properties (and these properties, along with
com.mysql.clusterj.max.transactions, cannot be changed after starting the
SessionFactory). For a complete list of available SessionFactory properties and usual values,
see com.mysql.clusterj.Constants.

Note

Session instances must not be shared among threads. Each thread in your
application should use its own instance of Session.

For com.mysql.clusterj.connectstring, we use the default NDB Cluster connection string
localhost:1186 (see NDB Cluster Connection Strings, for more information). For the value of
com.mysql.clusterj.database, we use mydb in this example, but this value can be the name of
any database containing NDB tables. For a listing of all SessionFactory properties that can be set in
this manner, see com.mysql.clusterj.Constants.

Error Handling and Reconnection. Errors that occur while using ClusterJ should be handled by
the application with a common error handler. The handler needs to be able to detect and distinguish
among three types of errors, and handle them accordingly:

• Normal errors: These are errors at the application level (for example, those to deal with duplicate
key, foreign key constraint, or timeout). They should be handled in application-specific ways, and, if
resolved, the application can continue with the transaction.

• Unexpected errors: These are failures to work with the cluster that cannot be accounted for by the
conditions of the application, but are nonfatal. The application should close the ClusterJ session and
reopen a new one.

• Connectivity errors: These are errors like error 4009 and 4010, which indicate a network outage.
There are two possible scenarios, depending on whether the automatic reconnection feature
(available for NDB Cluster 7.5.7 and later) has been enabled:

• Automatic reconnection is enabled : The feature is enabled when the connection property
com.mysql.clusterj.connection.reconnect.timeout has been set to a positive
number, which specifies a reconnection timeout in seconds.

When ClusterJ detects a disconnect with the NDB Cluster, it changes the State of the
SessionFactory from OPEN to RECONNECTING; the SessionFactory then waits for the
application to close all the sessions, and then attempts to reconnect the application to the NDB
Cluster by closing all connections in the connection pool and recreating the pool using the original

668

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-connection-strings.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

Using ClusterJ

pool properties. After reestablishing all the connections, the State of the SessionFactory
becomes OPEN again, and the application can now obtain sessions.

The SessionFactory.getState() method returns the State of the SessionFactory, which
is one of OPEN, RECONNECTING, or CLOSED. Trying to obtain a session when the State is not
OPEN results in a ClusterJUserException, with the message Session factory is not
open.

If the application does not close all sessions by the end of the timeout period specified with
com.mysql.clusterj.connection.reconnect.timeout, the SessionFactory
closes any open sessions forcibly (which might result in loss of resources), and then attempts
reconnection.

• Automatic reconnection is not enabled: This is when the connection property
com.mysql.clusterj.connection.reconnect.timeout has not been set, or it has been
set to zero (this is also the case for older NDB Cluster releases that do not support the automatic
reconnection feature).

ClusterJ does not attempt to reconnect to the NDB Cluster once the connection is lost. The
application should close all sessions and then restart the SessionFactory. The restarting of
the SessionFactory can be an automatic application function or a manual intervention. In
either case, the code should wait until all sessions have been closed (that is, the public method
getConnectionPoolSessionCounts() in the SessionFactory interface returns zeros for all pooled
connections). Then the SessionFactory can be closed and reopened, and the application can
obtain sessions again.

Instead of enabling the feature and waiting for ClusterJ to detect a disconnection and attempt a
reconnection, you can also have the application itself initiate the reconnection process upon the
detection of a connection error by calling the SessionFactory.reconnect(int timeout)
method: that triggers the reconnection process described above, but uses the timeout argument of
the reconnect() method as the time limit for having all open sessions closed.

Logging. ClusterJ uses Java logging. Here are some default settings for the ClusterJ logging, which
are specified in the logging.properties file and can be modified there:

• Logging level is set at INFO for all classes.

• Using java.util.logging.FileHandler as the handler.

• Default level for java.util.logging.FileHandler is set at FINEST

• Using java.util.logging.SimpleFormatter as the formatter for the handler.

• Log files are put inside the target directory under the current working directory, and file names are,
generally, in the pattern of logNum, where Num is a unique number for resolving file name conflicts
(see the Java documentation for java.util.logging.FileHandler for details).

The logging.properties file is located by default in the current working directory, but the location
can be changed by specifying the system property java.util.logging.config.file when you
start Java.

4.2.2.2 Creating tables

ClusterJ's main purpose is to read, write, and update row data in an existing database, rather than
to perform DDL. You can create the employee table that matches this interface, using the following
CREATE TABLE statement, in a MySQL client application such as mysql.

CREATE TABLE employee (
 id INT NOT NULL PRIMARY KEY,
 first VARCHAR(64) DEFAULT NULL,
 last VARCHAR(64) DEFAULT NULL,
 municipality VARCHAR(64) DEFAULT NULL,

669

http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html
https://dev.mysql.com/doc/refman/8.4/en/create-table.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html

Using ClusterJ

 started DATE DEFAULT NULL,
 ended DATE DEFAULT NULL,
 department INT NOT NULL DEFAULT 1,
 UNIQUE KEY idx_u_hash (last,first USING HASH),
 KEY idx_municipality (municipality)
) ENGINE=NDBCLUSTER;

Now that the table has been created in NDB Cluster, you can map a ClusterJ interface to it using
annotations. We show you how to do this in the next section.

4.2.2.3 Annotations

In ClusterJ (as in JPA), annotations are used to describe how the interface is mapped to tables in a
database. An annotated interface looks like this:

@PersistenceCapable(table="employee")
@Index(name="idx_uhash")
public interface Employee {

 @PrimaryKey
 int getId();
 void setId(int id);

 String getFirst();
 void setFirst(String first);
 String getLast();
 void setLast(String last);

 @Column(name="municipality")
 @Index(name="idx_municipality")
 String getCity();
 void setCity(String city);

 Date getStarted();
 void setStarted(Date date);

 Date getEnded();
 void setEnded(Date date);

 Integer getDepartment();
 void setDepartment(Integer department);
}

This interface maps seven columns: id, first, last, municipality started, ended, and
department. The annotation @PersistenceCapable(table="employee") is used to let ClusterJ
know which database table to map the Employee to (in this case, the employee table). The @Column
annotation is used because the city property name implied by the getCity() and setCity()
methods is different from the mapped column name municipality. The annotations @PrimaryKey
and @Index inform ClusterJ about indexes in the database table.

The implementation of this interface is created dynamically by ClusterJ at runtime. When the
newInstance() method is called, ClusterJ creates an implementation class for the Employee
interface; this class stores the values in an internal object array.

ClusterJ does not require an annotation for every attribute. ClusterJ automatically detects the primary
keys of tables; while there is an annotation in ClusterJ to permit the user to describe the primary keys
of a table (see previous example), when specified, it is currently ignored. (The intended use of this
annotation is for the generation of schemas from the domain object model interfaces, but this is not yet
supported.)

The annotations themselves must be imported from the ClusterJ API. They can be found in package
com.mysql.clusterj.annotation, and can be imported like this:

import com.mysql.clusterj.annotation.Column;
import com.mysql.clusterj.annotation.Index;
import com.mysql.clusterj.annotation.PersistenceCapable;
import com.mysql.clusterj.annotation.PrimaryKey;

670

Using ClusterJ

4.2.2.4 ClusterJ Basic Operations

In this section, we describe how to perform operations basic to ClusterJ applications, including the
following:

• Creating new instances, setting their properties, and saving them to the database

• Performing primary key lookups (reads)

• Updating existing rows and saving the changes to the database

• Deleting rows from the database

• Constructing and executing queries to fetch a set of rows meeting certain criteria from the database

Creating new rows. To insert a new row into the table, first create a new instance of Employee.
This can be accomplished by calling the Session method newInstance(), as shown here:

Employee newEmployee = session.newInstance(Employee.class);

Set the Employee instance properties corresponding with the desired employee table columns. For
example, the following sets the id, firstName, lastName, and started properties.

emp.setId(988);

newEmployee.setFirstName("John");
newEmployee.setLastName("Jones");

newEmployee.setStarted(new Date());

Once you are satisfied with the changes, you can persist the Employee instance, causing a new row
containing the desired values to be inserted into the employee table, like this:

session.persist(newEmployee);

If autocommit is on, and a row with the same id as this instance of Employee already exists in
the database, the persist() method fails. If autocommit is off and a row with the same id as
this Employee instance already exists in the database, the persist() method succeeds but a
subsequent commit() fails.

If you want the data to be saved even though the row already exists, use the savePersistent()
method instead of the persist() method. The savePersistent() method updates an existing
instance or creates a new instance as needed, without throwing an exception.

Values that you have not specified are stored with their Java default values (0 for integral types, 0.0
for numeric types, and null for reference types).

Primary key lookups. You can find an existing row in an NDB table using the Session's find()
method, like this:

Employee theEmployee = session.find(Employee.class, 988);

This is equivalent to the primary key lookup query SELECT * FROM employee WHERE id = 988.

ClusterJ also supports compound primary keys. The find() method can take an object array as a
key, where the components of the object array are used to represent the primary key columns in the
order they were declared. In addition, queries are optimized to detect whether columns of the primary
key are specified as part of the query criteria, and if so, a primary key lookup or scan is executed as a
strategy to implement the query.

Note

ClusterJ also supports multiple column ordered btree and unique hash indexes.
As with primary keys, if a query specifies values for ordered or unique index
fields, ClusterJ optimizes the query to use the index for scanning the table.

671

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

Using ClusterJ

NDB Cluster automatically spreads table data across multiple data nodes.
For some operations—find, insert, delete, and update—it is more efficient to
tell the cluster on which data node the data is physically located, and to have
the transaction execute on that data node. ClusterJ automatically detects the
partition key; if the operation can be optimized for a specific data node, ClusterJ
automatically starts the transaction on that node.

Update and save a row. To update the value of a given column in the row that we just obtained
as theEmployee, use the set*() method whose name corresponds to the name of that column.
For example, to update the started date for this Employee, use the Employee's setStarted()
method, as shown here:

theEmployee.setStarted(new Date(getMillisFor(2010, 01, 04)));

Note

For convenience, we use in this example a method getMillisFor(), which
is defined as shown here, in the file AbstractClusterJModelTest.java
(found in the storage/ndb/clusterj/clusterj-test/src/main/java/
testsuite/clusterj directory of the NDB Cluster source tree):

/** Convert year, month, day into milliseconds after the Epoch, UTC.
* Set hours, minutes, seconds, and milliseconds to zero.
* @param year the year
* @param month the month (0 for January)
* @param day the day of the month
* @return
*/

protected static long getMillisFor(int year, int month, int day) {
 Calendar calendar = Calendar.getInstance();
 calendar.clear();
 calendar.set(Calendar.YEAR, year);
 calendar.set(Calendar.MONTH, month);
 calendar.set(Calendar.DATE, day);
 calendar.set(Calendar.HOUR, 0);
 calendar.set(Calendar.MINUTE, 0);
 calendar.set(Calendar.SECOND, 0);
 calendar.set(Calendar.MILLISECOND, 0);
 long result = calendar.getTimeInMillis();
 return result;
}

See the indicated file for further information.

You can update additional columns by invoking other Employee setter methods, like this:

theEmployee.setDepartment(3);

To save the changed row back to the NDB Cluster database, use the Session's
updatePersistent() method, like this:

session.updatePersistent(theEmployee);

Deleting rows. You can delete a single row easily using the deletePersistent() method
of Session. In this example, we find the employee whose ID is 13, then delete this row from the
employee table:

Employee exEmployee = session.find(Employee.class, 13);

session.deletePersistent(exEmployee);'

System.out.println("Deleted employee named " + exEmployee.getFirst()
 + " " + exEmployee.getLast() + ".");

672

Using ClusterJ

There also exists a method for deleting multiple rows, which provides two options:

1. Delete all rows from a table.

2. Delete an arbitrary collection of rows.

Both kinds of multi-row delete can be performed using the deletePersistentAll() method. The
first variant of this method acts on a Class. For example, the following statement deletes all rows from
the employee table and returns the number of rows deleted, as shown here:

int numberDeleted = session.deletePersistentAll(Employee);

System.out.println("There used to be " + numberDeleted + " employees, but now there are none.");

The call to deletePersistentAll() just shown is equivalent to issuing the SQL statement DELETE
FROM employee in the mysql client.

deletePersistentAll() can also be used to delete a collection of rows, as shown in this example:

// Assemble the collection of rows to be deleted...

List<Employee> redundancies = new ArrayList<Employee>();

for (int i = 1000; i < 2000; i += 100) {
 Employee redundant = session.newInstance(Employee.class);
 redundant.setId(i);
 redundancies.add(redundant);
}

numberDeleted = session.deletePersistentAll(redundancies);

System.out.println("Deleted " + numberDeleted + " rows.");

It is not necessary to find the instances in the database before deleting them.

Writing queries. The ClusterJ QueryBuilder interface is used to instantiate queries. The process
begins with obtaining an instance of QueryBuilder, which is supplied by the current Session; we
can then obtain a QueryDefinition, as shown here:

QueryBuilder builder = session.getQueryBuilder();

QueryDomainType<Employee> domain = builder.createQueryDefinition(Employee.class);

This is then used to set a column for comparison by the query. Here, we show how to prepare a query
that compares the value of the employee table's department column with the constant value 8.

domain.where(domain.get("department").equal(domain.param("department"));

Query<Employee> query = session.createQuery(domain);

query.setParameter("department", 8);

To obtain the results from the query, invoke the Query's getResultList() method, as shown here;

List<Employee> results = query.getResultList();

The return value is a List that you can iterate over to retrieve and process the rows in the usual
manner.

Transactions. The Transaction interface can optionally be used to bound transactions, via the
following methods:

• begin(): Begin a transaction.

• commit(): Commit a transaction.

673

https://dev.mysql.com/doc/refman/8.4/en/delete.html
https://dev.mysql.com/doc/refman/8.4/en/delete.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html
http://java.sun.com/javase/6/docs/api/java/util/List.html

Using ClusterJ

• rollback(): Roll back a transaction.

It is also possible using Transaction to check whether the transaction is active (via the
isActive() method, and to get and set a rollback-only flag (using getRollbackOnly() and
setRollbackOnly(), respectively).

If you do not use the Transaction interface, methods in Session that affect the database—such
as persist(), deletePersistent(), updatePersistent(), and so on—are automatically
enclosed in a database transaction.

4.2.2.5 ClusterJ Mappings Between MySQL and Java Data Types

ClusterJ provides mappings for all of the common MySQL database types to Java types. Java object
wrappers of primitive types should be mapped to nullable database columns.

Note

Since Java does not have native unsigned data types, UNSIGNED columns
should be avoided in table schemas if possible.

Compatibility with JDBC mappings. ClusterJ is implemented so as to be bug-compatible with the
JDBC driver in terms of mapping from Java types to the database. That is, if you use ClusterJ to store
or retrieve data, you obtain the same value as if you used the JDBC driver directly or through JPA.

The following tables show the mappings used by ClusterJ between common Java data types and
MySQL column types. Separate tables are provided for numeric, floating-point, and variable-width
types.

Numeric types. This table shows the ClusterJ mappings between Java numeric data types and
MySQL column types:

Table 4.1 ClusterJ mappings between Java numeric data types and MySQL column types

Java Data Type MySQL Column Type

boolean, Boolean BIT(1)

byte, Byte BIT(1) to BIT(8), TINYINT

short, Short BIT(1) to BIT(16), SMALLINT, YEAR

int, Integer BIT(1) to BIT(32), INT

long, Long BIT(1) to BIT(64), BIGINT, BIGINT
UNSIGNED

float, Float FLOAT

double, Double DOUBLE

java.math.BigDecimal NUMERIC, DECIMAL

java.math.BigInteger NUMERIC (precision = 0), DECIMAL (precision = 0)

Date and time types. The following table shows the ClusterJ mappings between Java date and
time data types and MySQL column types:

Table 4.2 ClusterJ mappings between Java date and time data types and MySQL column types

Java Data Type MySQL Column Type

Java.util.Date DATETIME, TIMESTAMP, TIME, DATE

Java.sql.Date DATE

Java.sql.Time TIME

Java.sql.Timestamp DATETIME, TIMESTAMP

674

http://java.sun.com/javase/6/docs/api/java/lang/Boolean.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
http://java.sun.com/javase/6/docs/api/java/lang/Byte.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/year.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
http://java.sun.com/javase/6/docs/api/java/lang/Long.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/bit-type.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
http://java.sun.com/javase/6/docs/api/java/lang/Float.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
http://java.sun.com/javase/6/docs/api/java/lang/Double.html
https://dev.mysql.com/doc/refman/8.4/en/floating-point-types.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html
https://dev.mysql.com/doc/refman/8.4/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/fixed-point-types.html
http://java.sun.com/javase/6/docs/api/java/math/BigInteger.html
https://dev.mysql.com/doc/refman/8.4/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/fixed-point-types.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
https://dev.mysql.com/doc/refman/8.4/en/time.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
http://java.sun.com/javase/6/docs/api/java/sql/Date.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
http://java.sun.com/javase/6/docs/api/java/sql/Time.html
https://dev.mysql.com/doc/refman/8.4/en/time.html
http://java.sun.com/javase/6/docs/api/java/sql/Timestamp.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html
https://dev.mysql.com/doc/refman/8.4/en/datetime.html

Using Connector/J with NDB Cluster

Note

ClusterJ maps the MySQL YEAR type to a Java short (or
java.lang.Short), as shown in the first table in this section.

java.util.Date represents date and time similar to the way in which Unix
does so, but with more precision and a larger range. Where Unix represents a
point in time as a 32-bit signed number of seconds since the Unix Epoch (01
January 1970), Java uses a 64-bit signed number of milliseconds since the
Epoch.

Variable-width types. The following table shows the ClusterJ mappings between Java data types
and MySQL variable-width column types:

Table 4.3 This table shows the ClusterJ mappings between Java data types and MySQL
variable-width column types.

Java Data Type MySQL Column Type

String CHAR, VARCHAR, TEXT

byte[] BINARY, VARBINARY, BLOB

Note

No translation binary data is performed when mapping from MySQL BINARY,
VARBINARY, or BLOB column values to Java byte arrays. Data is presented to
the application exactly as it is stored.

4.2.3 Using Connector/J with NDB Cluster

JDBC clients of an NDB Cluster data source, and using Connector/J 5.0.6 (or later), accept
jdbc:mysql:loadbalance:// URLs (see Configuration Properties), with which you can take
advantage of the ability to connect with multiple MySQL servers to achieve load balancing and failover.

However, while Connector/J does not depend on the MySQL client libraries, it does require a
connection to a MySQL Server, which ClusterJ does not. JDBC also does not provide any object
mappings for database objects, properties, or operations, or any way to persist objects.

See MySQL Connector/J Developer Guide, for general information about using Connector/J.

4.3 ClusterJ API Reference
The following sections contain specifications for ClusterJ packages, interfaces, classes, and methods.

4.3.1 com.mysql.clusterj

Provides classes and interfaces for using NDB Cluster directly from Java.

• A class for bootstrapping

• Interfaces for use in application programs

• Classes to define exceptions

This package contains three main groups of classes and interfaces:

4.3.1.1 Major Interfaces

ClusterJ provides these major interfaces for use by application programs:
com.mysql.clusterj.SessionFactory, com.mysql.clusterj.Session,
com.mysql.clusterj.Transaction, com.mysql.clusterj.query.QueryBuilder,

675

https://dev.mysql.com/doc/refman/8.4/en/year.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://java.sun.com/javase/6/docs/api/java/lang/String.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/char.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.4/en/blob.html
https://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
https://dev.mysql.com/doc/connector-j/en/

com.mysql.clusterj

and com.mysql.clusterj.Query. Bootstrapping The helper class
com.mysql.clusterj.ClusterJHelper contains methods for creating the
com.mysql.clusterj.SessionFactory. Bootstrapping is the process of identifying an NDB
Cluster and obtaining the SessionFactory for use with the cluster. There is one SessionFactory per
cluster per Java VM.

SessionFactory

The com.mysql.clusterj.SessionFactory is configured via properties, which identify the NDB
Cluster that the application connects to:

• com.mysql.clusterj.connectstring identifies the ndb_mgmd host name and port

• com.mysql.clusterj.connect.retries is the number of retries when connecting

• com.mysql.clusterj.connect.delay is the delay in seconds between connection retries

• com.mysql.clusterj.connect.verbose tells whether to display a message to System.out while
connecting

• com.mysql.clusterj.connect.timeout.before is the number of seconds to wait until the first node
responds to a connect request

• com.mysql.clusterj.connect.timeout.after is the number of seconds to wait until the last node
responds to a connect request

• com.mysql.clusterj.connect.database is the name of the database to use

 File propsFile = new File("clusterj.properties");
 InputStream inStream = new FileInputStream(propsFile);
 Properties props = new Properties();
 props.load(inStream);
 SessionFactory sessionFactory = ClusterJHelper.getSessionFactory(props);

Session The com.mysql.clusterj.Session represents the user's individual connection to the
cluster. It contains methods for:

• finding persistent instances by primary key

• persistent instance factory (newInstance)

• persistent instance life cycle management (persist, remove)

• getting the QueryBuilder

• getting the Transaction (currentTransaction)

 Session session = sessionFactory.getSession();
 Employee existing = session.find(Employee.class, 1);
 if (existing != null) {
 session.remove(existing);
 }
 Employee newemp = session.newInstance(Employee.class);
 newemp.initialize(2, "Craig", 15, 146000.00);
 session.persist(newemp);

Transaction The com.mysql.clusterj.Transaction allows users to combine multiple operations
into a single database transaction. It contains methods to:

• begin a unit of work

• commit changes from a unit of work

• roll back all changes made since the unit of work was begun

676

com.mysql.clusterj

• mark a unit of work for rollback only

• get the rollback status of the current unit of work

 Transaction tx = session.currentTransaction();
 tx.begin();
 Employee existing = session.find(Employee.class, 1);
 Employee newemp = session.newInstance(Employee.class);
 newemp.initialize(2, "Craig", 146000.00);
 session.persist(newemp);
 tx.commit();

QueryBuilder The com.mysql.clusterj.query.QueryBuilder allows users to build queries. It
contains methods to:

• define the Domain Object Model to query

• compare properties with parameters using:

• equal

• lessThan

• greaterThan

• lessEqual

• greaterEqual

• between

• in

• combine comparisons using "and", "or", and "not" operators

 QueryBuilder builder = session.getQueryBuilder();
 QueryDomainType<Employee> qemp = builder.createQueryDefinition(Employee.class);
 Predicate service = qemp.get("yearsOfService").greaterThan(qemp.param("service"));
 Predicate salary = qemp.get("salary").lessEqual(qemp.param("salaryCap"));
 qemp.where(service.and(salary));
 Query<Employee> query = session.createQuery(qemp);
 query.setParameter("service", 10);
 query.setParameter("salaryCap", 180000.00);
 List<Employee> results = query.getResultList();

4.3.1.2 ClusterJDatastoreException

ClusterJUserException represents a database error. The underlying cause of the exception is
contained in the "cause".

Synopsis

public class ClusterJDatastoreException,
 extends ClusterJException {
// Public Constructors

 public ClusterJDatastoreException(
 String message);

 public ClusterJDatastoreException(
 String msg,
 int code,
 int mysqlCode,
 int status,
 int classification);

 public ClusterJDatastoreException(

677

com.mysql.clusterj

 String message,
 Throwable t);

 public ClusterJDatastoreException(
 Throwable t);

// Public Methods

 public int getClassification();

 public int getCode();

 public int getMysqlCode();

 public int getStatus();

}

Methods inherited from com.mysql.clusterj.ClusterJException: printStackTrace

Methods inherited from java.lang.Throwable: addSuppressed , fillInStackTrace , getCause
, getLocalizedMessage , getMessage , getStackTrace , getSuppressed , initCause ,
setStackTrace , toString

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll
, wait

getClassification()

 public int getClassification();

Get the classification

getCode()

 public int getCode();

Get the code

Since 7.3.15, 7.4.13, 7.5.4

getMysqlCode()

 public int getMysqlCode();

Get the mysql code

Since 7.3.15, 7.4.13, 7.5.4

getStatus()

 public int getStatus();

Get the status

4.3.1.3 ClusterJDatastoreException.Classification

Helper class for getClassification(). import
com.mysql.clusterj.ClusterJDatastoreException.Classification; Classification
c = Classification.lookup(datastoreException.getClassification());
System.out.println("exceptionClassification " + c + " with value " + c.value);

Synopsis

public static final class ClusterJDatastoreException.Classification,

678

com.mysql.clusterj

 extends Enum<Classification> {
// Public Static Fields

 public static final Classification
 ApplicationError ;

 public static final Classification
 ConstraintViolation ;

 public static final Classification
 FunctionNotImplemented ;

 public static final Classification
 InsufficientSpace ;

 public static final Classification
 InternalError ;

 public static final Classification
 InternalTemporary ;

 public static final Classification
 NoDataFound ;

 public static final Classification
 NoError ;

 public static final Classification
 NodeRecoveryError ;

 public static final Classification
 NodeShutdown ;

 public static final Classification
 OverloadError ;

 public static final Classification
 SchemaError ;

 public static final Classification
 SchemaObjectExists ;

 public static final Classification
 TemporaryResourceError ;

 public static final Classification
 TimeoutExpired ;

 public static final Classification
 UnknownErrorCode ;

 public static final Classification
 UnknownResultError ;

 public static final Classification
 UserDefinedError ;

// Public Static Methods

 public static Classification lookup(
 int value);

 public static Classification valueOf(
 String name);

 public static Classification[] values();

}

Methods inherited from java.lang.Enum: compareTo , equals , getDeclaringClass ,
hashCode , name , ordinal , toString , valueOf

679

com.mysql.clusterj

Methods inherited from java.lang.Object: getClass , notify , notifyAll , wait

Since 7.3.15, 7.4.13, 7.5.4

lookup(int)

 public static Classification lookup(
 int value);

Get the Classification enum for a value returned by ClusterJDatastoreException.getClassification().

Table 4.4 lookup(int)

Parameter Description

value the classification returned by getClassification()

return the Classification for the error

4.3.1.4 ClusterJException

ClusterJException is the base for all ClusterJ exceptions. Applications can catch ClusterJException to
be notified of all ClusterJ reported issues.

• User exceptions are caused by user error, for example providing a connect string that refers to an
unavailable host or port.

• If a user exception is detected during bootstrapping (acquiring a SessionFactory), it is thrown as a
fatal exception. com.mysql.clusterj.ClusterJFatalUserException

• If an exception is detected during initialization of a persistent interface, for example
annotating a column that doesn't exist in the mapped table, it is reported as a user exception.
com.mysql.clusterj.ClusterJUserException

• Datastore exceptions report conditions that result from datastore operations after
bootstrapping. For example, duplicate keys on insert, or record does not exist on delete.
com.mysql.clusterj.ClusterJDatastoreException

• Internal exceptions report conditions that are caused by errors in implementation. These exceptions
should be reported as bugs. com.mysql.clusterj.ClusterJFatalInternalException

Exceptions are in three general categories: User exceptions, Datastore exceptions, and Internal
exceptions.

Synopsis

public class ClusterJException,
 extends RuntimeException {
// Public Constructors

 public ClusterJException(
 String message);

 public ClusterJException(
 String message,
 Throwable t);

 public ClusterJException(
 Throwable t);

// Public Methods

 public synchronized void printStackTrace(
 PrintStream s);

}

680

com.mysql.clusterj

Direct known subclasses: com.mysql.clusterj.ClusterJDatastoreException
, com.mysql.clusterj.ClusterJFatalException ,
com.mysql.clusterj.ClusterJUserException

Methods inherited from java.lang.Throwable: addSuppressed , fillInStackTrace , getCause
, getLocalizedMessage , getMessage , getStackTrace , getSuppressed , initCause ,
printStackTrace , setStackTrace , toString

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll
, wait

4.3.1.5 ClusterJFatalException

ClusterJFatalException represents an exception that is not recoverable.

Synopsis

public class ClusterJFatalException,
 extends ClusterJException {
// Public Constructors

 public ClusterJFatalException(
 String string);

 public ClusterJFatalException(
 String string,
 Throwable t);

 public ClusterJFatalException(
 Throwable t);

}

Direct known subclasses: com.mysql.clusterj.ClusterJFatalInternalException ,
com.mysql.clusterj.ClusterJFatalUserException

Methods inherited from com.mysql.clusterj.ClusterJException: printStackTrace

Methods inherited from java.lang.Throwable: addSuppressed , fillInStackTrace , getCause
, getLocalizedMessage , getMessage , getStackTrace , getSuppressed , initCause ,
setStackTrace , toString

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll
, wait

4.3.1.6 ClusterJFatalInternalException

ClusterJFatalInternalException represents an implementation error that the user cannot recover from.

Synopsis

public class ClusterJFatalInternalException,
 extends ClusterJFatalException {
// Public Constructors

 public ClusterJFatalInternalException(
 String string);

 public ClusterJFatalInternalException(
 String string,
 Throwable t);

 public ClusterJFatalInternalException(
 Throwable t);

}

681

com.mysql.clusterj

Methods inherited from com.mysql.clusterj.ClusterJException: printStackTrace

Methods inherited from java.lang.Throwable: addSuppressed , fillInStackTrace , getCause
, getLocalizedMessage , getMessage , getStackTrace , getSuppressed , initCause ,
setStackTrace , toString

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll
, wait

4.3.1.7 ClusterJFatalUserException

ClusterJFatalUserException represents a user error that is unrecoverable, such as programming errors
in persistent classes or missing resources in the execution environment.

Synopsis

public class ClusterJFatalUserException,
 extends ClusterJFatalException {
// Public Constructors

 public ClusterJFatalUserException(
 String string);

 public ClusterJFatalUserException(
 String string,
 Throwable t);

 public ClusterJFatalUserException(
 Throwable t);

}

Methods inherited from com.mysql.clusterj.ClusterJException: printStackTrace

Methods inherited from java.lang.Throwable: addSuppressed , fillInStackTrace , getCause
, getLocalizedMessage , getMessage , getStackTrace , getSuppressed , initCause ,
setStackTrace , toString

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll
, wait

4.3.1.8 ClusterJHelper

ClusterJHelper provides helper methods to bridge between the API and the implementation.

Synopsis

public class ClusterJHelper {
// Public Constructors

 public ClusterJHelper();

// Public Static Methods

 public static boolean getBooleanProperty(
 String propertyName,
 String def);

 public static T getServiceInstance(
 Class<T> cls);

 public static T getServiceInstance(
 Class<T> cls,
 ClassLoader loader);

 public static T getServiceInstance(
 Class<T> cls,
 String implementationClassName);

682

com.mysql.clusterj

 public static T getServiceInstance(
 Class<T> cls,
 String implementationClassName,
 ClassLoader loader);

 public static List<T> getServiceInstances(
 Class<T> cls,
 ClassLoader loader,
 StringBuffer errorMessages);

 public static SessionFactory getSessionFactory(
 Map props);

 public static SessionFactory getSessionFactory(
 Map props,
 ClassLoader loader);

 public static String getStringProperty(
 String propertyName,
 String def);

 public static Dbug newDbug();

}

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll ,
toString , wait

getBooleanProperty(String, String)

 public static boolean getBooleanProperty(
 String propertyName,
 String def);

Get the named boolean property from either the environment or system properties. If the property is not
'true' then return false.

Table 4.5 getBooleanProperty(String, String)

Parameter Description

propertyName the name of the property

def the default if the property is not set

return the system property if it is set via -D or the system environment

getServiceInstance(Class<T>)

 public static T getServiceInstance(
 Class<T> cls);

Locate a service implementation by services lookup of the context class loader.

Table 4.6 getServiceInstance(Class<T>)

Parameter Description

cls the class of the factory

return the service instance

getServiceInstance(Class<T>, ClassLoader)

 public static T getServiceInstance(
 Class<T> cls,
 ClassLoader loader);

Locate a service implementation for a service by services lookup of a specific class loader. The first
service instance found is returned.

683

com.mysql.clusterj

Table 4.7 getServiceInstance(Class<T>, ClassLoader)

Parameter Description

cls the class of the factory

loader the class loader for the factory implementation

return the service instance

getServiceInstance(Class<T>, String)

 public static T getServiceInstance(
 Class<T> cls,
 String implementationClassName);

Locate a service implementation for a service. If the implementation name is not null, use it instead of
looking up. If the implementation class is not loadable or does not implement the interface, throw an
exception. Use the ClusterJHelper class loader to find the service.

Table 4.8 getServiceInstance(Class<T>, String)

Parameter Description

cls

implementationClassName

return the implementation instance for a service

getServiceInstance(Class<T>, String, ClassLoader)

 public static T getServiceInstance(
 Class<T> cls,
 String implementationClassName,
 ClassLoader loader);

Locate a service implementation for a service. If the implementation name is not null, use it instead of
looking up. If the implementation class is not loadable or does not implement the interface, throw an
exception.

Table 4.9 getServiceInstance(Class<T>, String, ClassLoader)

Parameter Description

cls

implementationClassNamename of implementation class to load

loader the ClassLoader to use to find the service

return the implementation instance for a service

getServiceInstances(Class<T>, ClassLoader, StringBuffer)

 public static List<T> getServiceInstances(
 Class<T> cls,
 ClassLoader loader,
 StringBuffer errorMessages);

Locate all service implementations by services lookup of a specific class loader. Implementations in the
services file are instantiated and returned. Failed instantiations are remembered in the errorMessages
buffer.

Table 4.10 getServiceInstances(Class<T>, ClassLoader, StringBuffer)

Parameter Description

cls the class of the factory

684

com.mysql.clusterj

Parameter Description

loader the class loader for the factory implementation

errorMessages a buffer used to hold the error messages

return the service instance

getSessionFactory(Map)

 public static SessionFactory getSessionFactory(
 Map props);

Locate a SessionFactory implementation by services lookup. The class loader used is the thread's
context class loader.

Table 4.11 getSessionFactory(Map)

Parameter Description

props properties of the session factory

return the session factory

Exceptions

ClusterFatalUserException if the connection to the cluster cannot be made

getSessionFactory(Map, ClassLoader)

 public static SessionFactory getSessionFactory(
 Map props,
 ClassLoader loader);

Locate a SessionFactory implementation by services lookup of a specific class loader. The properties
are a Map that might contain implementation-specific properties plus standard properties.

Table 4.12 getSessionFactory(Map, ClassLoader)

Parameter Description

props the properties for the factory

loader the class loader for the factory implementation

return the session factory

Exceptions

ClusterFatalUserException if the connection to the cluster cannot be made

getStringProperty(String, String)

 public static String getStringProperty(
 String propertyName,
 String def);

Get the named String property from either the environment or system properties.

Table 4.13 getStringProperty(String, String)

Parameter Description

propertyName the name of the property

def the default if the property is not set

return the system property if it is set via -D or the system environment

685

com.mysql.clusterj

newDbug()

 public static Dbug newDbug();

Return a new Dbug instance.

Table 4.14 newDbug()

Parameter Description

return a new Dbug instance

4.3.1.9 ClusterJUserException

ClusterJUserException represents a user programming error.

Synopsis

public class ClusterJUserException,
 extends ClusterJException {
// Public Constructors

 public ClusterJUserException(
 String message);

 public ClusterJUserException(
 String message,
 Throwable t);

 public ClusterJUserException(
 Throwable t);

}

Methods inherited from com.mysql.clusterj.ClusterJException: printStackTrace

Methods inherited from java.lang.Throwable: addSuppressed , fillInStackTrace , getCause
, getLocalizedMessage , getMessage , getStackTrace , getSuppressed , initCause ,
setStackTrace , toString

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll
, wait

4.3.1.10 ColumnMetadata

public interface ColumnMetadata {
// Public Methods

 public abstract String charsetName();

 public abstract ColumnType columnType();

 public abstract boolean isPartitionKey();

 public abstract boolean isPrimaryKey();

 public abstract Class<?> javaType();

 public abstract int maximumLength();

 public abstract String name();

 public abstract boolean nullable();

 public abstract int number();

 public abstract int precision();

 public abstract int scale();

686

com.mysql.clusterj

}

charsetName()

 public abstract String charsetName();

Return the charset name.

Table 4.15 charsetName()

Parameter Description

return the charset name

columnType()

 public abstract ColumnType columnType();

Return the type of the column.

Table 4.16 columnType()

Parameter Description

return the type of the column

isPartitionKey()

 public abstract boolean isPartitionKey();

Return whether this column is a partition key column.

Table 4.17 isPartitionKey()

Parameter Description

return true if this column is a partition key column

isPrimaryKey()

 public abstract boolean isPrimaryKey();

Return whether this column is a primary key column.

Table 4.18 isPrimaryKey()

Parameter Description

return true if this column is a primary key column

javaType()

 public abstract Class<?> javaType();

Return the java type of the column.

Table 4.19 javaType()

Parameter Description

return the java type of the column

maximumLength()

 public abstract int maximumLength();

Return the maximum number of bytes that can be stored in the column after translating the characters
using the character set.

687

com.mysql.clusterj

Table 4.20 maximumLength()

Parameter Description

return the maximum number of bytes that can be stored in the column

name()

 public abstract String name();

Return the name of the column.

Table 4.21 name()

Parameter Description

return the name of the column

nullable()

 public abstract boolean nullable();

Return whether this column is nullable.

Table 4.22 nullable()

Parameter Description

return whether this column is nullable

number()

 public abstract int number();

Return the column number. This number is used as the first parameter in the get and set methods of
DynamicColumn.

Table 4.23 number()

Parameter Description

return the column number.

precision()

 public abstract int precision();

Return the precision of the column.

Table 4.24 precision()

Parameter Description

return the precision of the column

scale()

 public abstract int scale();

Return the scale of the column.

Table 4.25 scale()

Parameter Description

return the scale of the column

4.3.1.11 ColumnType

688

com.mysql.clusterj

This class enumerates the column types for columns in ndb.

Synopsis

public final class ColumnType,
 extends Enum<ColumnType> {
// Public Static Fields

 public static final ColumnType
 Bigint ;

 public static final ColumnType
 Bigunsigned ;

 public static final ColumnType
 Binary ;

 public static final ColumnType
 Bit ;

 public static final ColumnType
 Blob ;

 public static final ColumnType
 Char ;

 public static final ColumnType
 Date ;

 public static final ColumnType
 Datetime ;

 public static final ColumnType
 Datetime2 ;

 public static final ColumnType
 Decimal ;

 public static final ColumnType
 Decimalunsigned ;

 public static final ColumnType
 Double ;

 public static final ColumnType
 Float ;

 public static final ColumnType
 Int ;

 public static final ColumnType
 Longvarbinary ;

 public static final ColumnType
 Longvarchar ;

 public static final ColumnType
 Mediumint ;

 public static final ColumnType
 Mediumunsigned ;

 public static final ColumnType
 Olddecimal ;

 public static final ColumnType
 Olddecimalunsigned ;

 public static final ColumnType
 Smallint ;

 public static final ColumnType

689

com.mysql.clusterj

 Smallunsigned ;

 public static final ColumnType
 Text ;

 public static final ColumnType
 Time ;

 public static final ColumnType
 Time2 ;

 public static final ColumnType
 Timestamp ;

 public static final ColumnType
 Timestamp2 ;

 public static final ColumnType
 Tinyint ;

 public static final ColumnType
 Tinyunsigned ;

 public static final ColumnType
 Undefined ;

 public static final ColumnType
 Unsigned ;

 public static final ColumnType
 Varbinary ;

 public static final ColumnType
 Varchar ;

 public static final ColumnType
 Year ;

// Public Static Methods

 public static ColumnType valueOf(
 String name);

 public static ColumnType[] values();

}

Methods inherited from java.lang.Enum: compareTo , equals , getDeclaringClass ,
hashCode , name , ordinal , toString , valueOf

Methods inherited from java.lang.Object: getClass , notify , notifyAll , wait

4.3.1.12 Constants

Constants used in the ClusterJ project.

Synopsis

public interface Constants {
// Public Static Fields

 public static final String
 DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
 = "256, 10240, 102400, 1048576";

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
 = 10;

 public static final long
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START

690

com.mysql.clusterj

 = 1L;

 public static final long
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
 = 1L;

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY
 = 5;

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES
 = 4;

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
 = 20;

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
 = 30;

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
 = 30000;

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE
 = 0;

 public static final String
 DEFAULT_PROPERTY_CLUSTER_DATABASE
 = "test";

 public static final int
 DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS
 = 4;

 public static final int
 DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
 = 8;

 public static final int
 DEFAULT_PROPERTY_CONNECTION_POOL_SIZE
 = 1;

 public static final int
 DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT
 = 0;

 public static final String
 ENV_CLUSTERJ_LOGGER_FACTORY_NAME
 = "CLUSTERJ_LOGGER_FACTORY";

 public static final String
 PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
 = "com.mysql.clusterj.byte.buffer.pool.sizes";

 public static final String
 PROPERTY_CLUSTER_CONNECTION_SERVICE
 = "com.mysql.clusterj.connection.service";

 public static final String
 PROPERTY_CLUSTER_CONNECTSTRING
 = "com.mysql.clusterj.connectstring";

 public static final String
 PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
 = "com.mysql.clusterj.connect.autoincrement.batchsize";

 public static final String
 PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START

691

com.mysql.clusterj

 = "com.mysql.clusterj.connect.autoincrement.offset";

 public static final String
 PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
 = "com.mysql.clusterj.connect.autoincrement.increment";

 public static final String
 PROPERTY_CLUSTER_CONNECT_DELAY
 = "com.mysql.clusterj.connect.delay";

 public static final String
 PROPERTY_CLUSTER_CONNECT_RETRIES
 = "com.mysql.clusterj.connect.retries";

 public static final String
 PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
 = "com.mysql.clusterj.connect.timeout.after";

 public static final String
 PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
 = "com.mysql.clusterj.connect.timeout.before";

 public static final String
 PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
 = "com.mysql.clusterj.connect.timeout.mgm";

 public static final String
 PROPERTY_CLUSTER_CONNECT_VERBOSE
 = "com.mysql.clusterj.connect.verbose";

 public static final String
 PROPERTY_CLUSTER_DATABASE
 = "com.mysql.clusterj.database";

 public static final String
 PROPERTY_CLUSTER_MAX_TRANSACTIONS
 = "com.mysql.clusterj.max.transactions";

 public static final String
 PROPERTY_CONNECTION_POOL_NODEIDS
 = "com.mysql.clusterj.connection.pool.nodeids";

 public static final String
 PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
 = "com.mysql.clusterj.connection.pool.recv.thread.activation.threshold";

 public static final String
 PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS
 = "com.mysql.clusterj.connection.pool.recv.thread.cpuids";

 public static final String
 PROPERTY_CONNECTION_POOL_SIZE
 = "com.mysql.clusterj.connection.pool.size";

 public static final String
 PROPERTY_CONNECTION_RECONNECT_TIMEOUT
 = "com.mysql.clusterj.connection.reconnect.timeout";

 public static final String
 PROPERTY_DEFER_CHANGES
 = "com.mysql.clusterj.defer.changes";

 public static final String
 PROPERTY_JDBC_DRIVER_NAME
 = "com.mysql.clusterj.jdbc.driver";

 public static final String
 PROPERTY_JDBC_PASSWORD
 = "com.mysql.clusterj.jdbc.password";

 public static final String
 PROPERTY_JDBC_URL

692

com.mysql.clusterj

 = "com.mysql.clusterj.jdbc.url";

 public static final String
 PROPERTY_JDBC_USERNAME
 = "com.mysql.clusterj.jdbc.username";

 public static final String
 SESSION_FACTORY_SERVICE_CLASS_NAME
 = "com.mysql.clusterj.SessionFactoryService";

 public static final String
 SESSION_FACTORY_SERVICE_FILE_NAME
 = "META-INF/services/com.mysql.clusterj.SessionFactoryService";

}

DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES

 public static final String
 DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
 = "256, 10240, 102400, 1048576";

The default value of the byte buffer pool sizes property: 256, 10K, 100K, 1M

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
 = 10;

The default value of the connection autoincrement batch size property

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START

 public static final long
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START
 = 1L;

The default value of the connection autoincrement start property

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP

 public static final long
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
 = 1L;

The default value of the connection autoincrement step property

DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY
 = 5;

The default value of the connection delay property

DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES
 = 4;

The default value of the connection retries property

DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER

693

com.mysql.clusterj

 = 20;

The default value of the connection timeout after property

DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
 = 30;

The default value of the connection timeout before property

DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
 = 30000;

The default value of the connection timeout mgm property

DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE

 public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE
 = 0;

The default value of the connection verbose property

DEFAULT_PROPERTY_CLUSTER_DATABASE

 public static final String
 DEFAULT_PROPERTY_CLUSTER_DATABASE
 = "test";

The default value of the database property

DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS

 public static final int
 DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS
 = 4;

The default value of the maximum number of transactions property

DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD

 public static final int
 DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
 = 8;

The default value of the receive thread activation threshold

DEFAULT_PROPERTY_CONNECTION_POOL_SIZE

 public static final int
 DEFAULT_PROPERTY_CONNECTION_POOL_SIZE
 = 1;

The default value of the connection pool size property

DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT

 public static final int
 DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT
 = 0;

Since 7.5.7

694

com.mysql.clusterj

The default value of the connection reconnect timeout property. The default means that the automatic
reconnection due to network failures is disabled.

ENV_CLUSTERJ_LOGGER_FACTORY_NAME

 public static final String
 ENV_CLUSTERJ_LOGGER_FACTORY_NAME
 = "CLUSTERJ_LOGGER_FACTORY";

The name of the environment variable to set the logger factory

PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES

 public static final String
 PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
 = "com.mysql.clusterj.byte.buffer.pool.sizes";

The name of the byte buffer pool sizes property. To disable buffer pooling for blob objects, set the
value of this property to "1". With this setting, buffers will be allocated and freed (and cleaned if
possible) immediately after being used for blob data transfer.

PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE

 public static final String
 PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
 = "com.mysql.clusterj.connect.autoincrement.batchsize";

The name of the connection autoincrement batch size property.

PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START

 public static final String
 PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START
 = "com.mysql.clusterj.connect.autoincrement.offset";

The name of the connection autoincrement start property.

PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP

 public static final String
 PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
 = "com.mysql.clusterj.connect.autoincrement.increment";

The name of the connection autoincrement step property.

PROPERTY_CLUSTER_CONNECT_DELAY

 public static final String
 PROPERTY_CLUSTER_CONNECT_DELAY
 = "com.mysql.clusterj.connect.delay";

The name of the connection delay property. For details, see Ndb_cluster_connection::connect()

PROPERTY_CLUSTER_CONNECT_RETRIES

 public static final String
 PROPERTY_CLUSTER_CONNECT_RETRIES
 = "com.mysql.clusterj.connect.retries";

The name of the connection retries property. For details, see Ndb_cluster_connection::connect()

PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER

 public static final String
 PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
 = "com.mysql.clusterj.connect.timeout.after";

695

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-connect
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-connect

com.mysql.clusterj

The name of the connection timeout after property. For details, see
Ndb_cluster_connection::wait_until_ready()

PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE

 public static final String
 PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
 = "com.mysql.clusterj.connect.timeout.before";

The name of the connection timeout before property. For details, see
Ndb_cluster_connection::wait_until_ready()

PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM

 public static final String
 PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
 = "com.mysql.clusterj.connect.timeout.mgm";

The name of the initial timeout for cluster connection to connect to MGM before connecting to data
nodes Ndb_cluster_connection::set_timeout()

PROPERTY_CLUSTER_CONNECT_VERBOSE

 public static final String
 PROPERTY_CLUSTER_CONNECT_VERBOSE
 = "com.mysql.clusterj.connect.verbose";

The name of the connection verbose property. For details, see Ndb_cluster_connection::connect()

PROPERTY_CLUSTER_CONNECTION_SERVICE

 public static final String
 PROPERTY_CLUSTER_CONNECTION_SERVICE
 = "com.mysql.clusterj.connection.service";

The name of the connection service property

PROPERTY_CLUSTER_CONNECTSTRING

 public static final String
 PROPERTY_CLUSTER_CONNECTSTRING
 = "com.mysql.clusterj.connectstring";

The name of the connection string property. For details, see Ndb_cluster_connection constructor

PROPERTY_CLUSTER_DATABASE

 public static final String
 PROPERTY_CLUSTER_DATABASE
 = "com.mysql.clusterj.database";

The name of the database property. For details, see the catalogName parameter in the Ndb
constructor. Ndb constructor

PROPERTY_CLUSTER_MAX_TRANSACTIONS

 public static final String
 PROPERTY_CLUSTER_MAX_TRANSACTIONS
 = "com.mysql.clusterj.max.transactions";

The name of the maximum number of transactions property. For details, see Ndb::init()

PROPERTY_CONNECTION_POOL_NODEIDS

 public static final String
 PROPERTY_CONNECTION_POOL_NODEIDS

696

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-wait-until-ready
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-wait-until-ready
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-timeout
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-connect
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-constructor
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-constructor
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-init

com.mysql.clusterj

 = "com.mysql.clusterj.connection.pool.nodeids";

The name of the connection pool node ids property. There is no default. This is the list of node ids to
force the connections to be assigned to specific node ids. If this property is specified and connection
pool size is not the default, the number of node ids of the list must match the connection pool size,
or the number of node ids must be 1 and node ids will be assigned to connections starting with the
specified node id.

PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD

 public static final String
 PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
 = "com.mysql.clusterj.connection.pool.recv.thread.activation.threshold";

The receive thread activation threshold for all connections in the connection pool. The default is no
activation threshold.

PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS

 public static final String
 PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS
 = "com.mysql.clusterj.connection.pool.recv.thread.cpuids";

The cpu binding of the receive threads for the connections in the connection pool. The default is no cpu
binding for receive threads. If this property is specified, the number of cpu ids in the list must be equal
to : a) the connection pool size if the connection pooling is not disabled (i.e. connection pool size > 0)
(or) b) 1 if the connection pooling is disabled.

PROPERTY_CONNECTION_POOL_SIZE

 public static final String
 PROPERTY_CONNECTION_POOL_SIZE
 = "com.mysql.clusterj.connection.pool.size";

The name of the connection pool size property. This is the number of connections to create in
the connection pool. The default is 1 (all sessions share the same connection; all requests for a
SessionFactory with the same connect string and database will share a single SessionFactory).
A setting of 0 disables pooling; each request for a SessionFactory will receive its own unique
SessionFactory.

PROPERTY_CONNECTION_RECONNECT_TIMEOUT

 public static final String
 PROPERTY_CONNECTION_RECONNECT_TIMEOUT
 = "com.mysql.clusterj.connection.reconnect.timeout";

Since 7.5.7

The number of seconds to wait for all sessions to be closed when reconnecting a SessionFactory
due to network failures. The default, 0, indicates that the automatic reconnection to the
cluster due to network failures is disabled. Reconnection can be enabled by using the method
SessionFactory.reconnect(int timeout) and specifying a new timeout value.

PROPERTY_DEFER_CHANGES

 public static final String
 PROPERTY_DEFER_CHANGES
 = "com.mysql.clusterj.defer.changes";

The flag for deferred inserts, deletes, and updates

PROPERTY_JDBC_DRIVER_NAME

 public static final String
 PROPERTY_JDBC_DRIVER_NAME

697

com.mysql.clusterj

 = "com.mysql.clusterj.jdbc.driver";

The name of the jdbc driver

PROPERTY_JDBC_PASSWORD

 public static final String
 PROPERTY_JDBC_PASSWORD
 = "com.mysql.clusterj.jdbc.password";

The jdbc password

PROPERTY_JDBC_URL

 public static final String
 PROPERTY_JDBC_URL
 = "com.mysql.clusterj.jdbc.url";

The jdbc url

PROPERTY_JDBC_USERNAME

 public static final String
 PROPERTY_JDBC_USERNAME
 = "com.mysql.clusterj.jdbc.username";

The jdbc username

SESSION_FACTORY_SERVICE_CLASS_NAME

 public static final String
 SESSION_FACTORY_SERVICE_CLASS_NAME
 = "com.mysql.clusterj.SessionFactoryService";

The name of the session factory service interface

SESSION_FACTORY_SERVICE_FILE_NAME

 public static final String
 SESSION_FACTORY_SERVICE_FILE_NAME
 = "META-INF/services/com.mysql.clusterj.SessionFactoryService";

The name of the files with names of implementation classes for session factory service

4.3.1.13 Dbug

Dbug allows clusterj applications to enable the DBUG functionality in cluster ndbapi library. The dbug
state is a control string that consists of flags separated by colons. Flags are:

• d set the debug flag

• a[,filename] append debug output to the file

• A[,filename] like a[,filename] but flush the output after each operation

• d[,keyword[,keyword...]] enable output from macros with specified keywords

• D[,tenths] delay for specified tenths of a second after each operation

• f[,function[,function...]] limit output to the specified list of functions

• F mark each output with the file name of the source file

• i mark each output with the process id of the current process

• g[,function[,function...]] profile specified list of functions

698

com.mysql.clusterj

• L mark each output with the line number of the source file

• n mark each output with the current function nesting depth

• N mark each output with a sequential number

• o[,filename] overwrite debug output to the file

• O[,filename] like o[,filename] but flush the output after each operation

• p[,pid[,pid...]] limit output to specified list of process ids

• P mark each output with the process name

• r reset the indentation level to zero

• t[,depth] limit function nesting to the specified depth

• T mark each output with the current timestamp

For example, the control string to trace calls and output debug information only for "jointx" and
overwrite the contents of file "/tmp/dbug/jointx", use "t:d,jointx:o,/tmp/dbug/jointx". The above can be
written as ClusterJHelper.newDbug().trace().debug("jointx").output("/tmp/dbug/jointx").set();

Synopsis

public interface Dbug {
// Public Methods

 public abstract Dbug append(
 String fileName);

 public abstract Dbug debug(
 String string);

 public abstract Dbug debug(
 String[] strings);

 public abstract Dbug flush();

 public abstract String get();

 public abstract Dbug output(
 String fileName);

 public abstract void pop();

 public abstract void print(
 String keyword,
 String message);

 public abstract void push();

 public abstract void push(
 String state);

 public abstract void set();

 public abstract void set(
 String state);

 public abstract Dbug trace();

}

append(String)

 public abstract Dbug append(

699

com.mysql.clusterj

 String fileName);

Specify the file name for debug output (append).

Table 4.26 append(String)

Parameter Description

fileName the name of the file

return this

debug(String)

 public abstract Dbug debug(
 String string);

Set the list of debug keywords.

Table 4.27 debug(String)

Parameter Description

string the comma separated debug keywords

return this

debug(String[])

 public abstract Dbug debug(
 String[] strings);

Set the list of debug keywords.

Table 4.28 debug(String[])

Parameter Description

strings the debug keywords

return this

flush()

 public abstract Dbug flush();

Force flush after each output operation.

Table 4.29 flush()

Parameter Description

return this

get()

 public abstract String get();

Return the current state.

Table 4.30 get()

Parameter Description

return the current state

output(String)

 public abstract Dbug output(

700

com.mysql.clusterj

 String fileName);

Specify the file name for debug output (overwrite).

Table 4.31 output(String)

Parameter Description

fileName the name of the file

return this

pop()

 public abstract void pop();

Pop the current state. The new state will be the previously pushed state.

print(String, String)

 public abstract void print(
 String keyword,
 String message);

Print debug message.

push()

 public abstract void push();

Push the current state as defined by the methods.

push(String)

 public abstract void push(
 String state);

Push the current state and set the parameter as the new state.

Table 4.32 push(String)

Parameter Description

state the new state

set()

 public abstract void set();

Set the current state as defined by the methods.

set(String)

 public abstract void set(
 String state);

Set the current state from the parameter.

Table 4.33 set(String)

Parameter Description

state the new state

trace()

 public abstract Dbug trace();

701

com.mysql.clusterj

Set the trace flag.

Table 4.34 trace()

Parameter Description

return this

4.3.1.14 DynamicObject

public abstract class DynamicObject {
// Public Constructors

 public DynamicObject();

// Public Methods

 public final ColumnMetadata[] columnMetadata();

 public final DynamicObjectDelegate delegate();

 public final void delegate(
 DynamicObjectDelegate delegate);

 public Boolean found();

 public final Object get(
 int columnNumber);

 public final void set(
 int columnNumber,
 Object value);

 public String table();

}

Methods inherited from java.lang.Object: equals , getClass , hashCode , notify , notifyAll ,
toString , wait

4.3.1.15 DynamicObjectDelegate

public interface DynamicObjectDelegate {
// Public Methods

 public abstract ColumnMetadata[] columnMetadata();

 public abstract Boolean found();

 public abstract void found(
 Boolean found);

 public abstract Object get(
 int columnNumber);

 public abstract void release();

 public abstract void set(
 int columnNumber,
 Object value);

 public abstract boolean wasReleased();

}

4.3.1.16 LockMode

Lock modes for read operations.

• SHARED: Set a shared lock on rows

702

com.mysql.clusterj

• EXCLUSIVE: Set an exclusive lock on rows

• READ_COMMITTED: Set no locks but read the most recent committed values

Synopsis

public final class LockMode,
 extends Enum<LockMode> {
// Public Static Fields

 public static final LockMode
 EXCLUSIVE ;

 public static final LockMode
 READ_COMMITTED ;

 public static final LockMode
 SHARED ;

// Public Static Methods

 public static LockMode valueOf(
 String name);

 public static LockMode[] values();

}

Methods inherited from java.lang.Enum: compareTo , equals , getDeclaringClass ,
hashCode , name , ordinal , toString , valueOf

Methods inherited from java.lang.Object: getClass , notify , notifyAll , wait

4.3.1.17 Query

A Query instance represents a specific query with bound parameters. The instance is created by the
method
com.mysql.clusterj.Session.<T>createQuery(com.mysql.clusterj.query.QueryDefinition<T>).

Synopsis

public interface Query<E> {
// Public Static Fields

 public static final String
 INDEX_USED
 = "IndexUsed";

 public static final String
 SCAN_TYPE
 = "ScanType";

 public static final String
 SCAN_TYPE_INDEX_SCAN
 = "INDEX_SCAN";

 public static final String
 SCAN_TYPE_PRIMARY_KEY
 = "PRIMARY_KEY";

 public static final String
 SCAN_TYPE_TABLE_SCAN
 = "TABLE_SCAN";

 public static final String
 SCAN_TYPE_UNIQUE_KEY
 = "UNIQUE_KEY";

// Public Methods

703

com.mysql.clusterj

 public abstract int deletePersistentAll();

 public abstract Results<E> execute(
 Object parameter);

 public abstract Results<E> execute(
 Object[] parameters);

 public abstract Results<E> execute(
 Map<String, ?> parameters);

 public abstract Map<String, Object> explain();

 public abstract List<E> getResultList();

 public abstract void setLimits(
 long skip,
 long limit);

 public abstract void setOrdering(
 Ordering ordering,
 String[] orderingFields);

 public abstract void setParameter(
 String parameterName,
 Object value);

}

INDEX_USED

 public static final String
 INDEX_USED
 = "IndexUsed";

The query explain index used key

SCAN_TYPE

 public static final String
 SCAN_TYPE
 = "ScanType";

The query explain scan type key

SCAN_TYPE_INDEX_SCAN

 public static final String
 SCAN_TYPE_INDEX_SCAN
 = "INDEX_SCAN";

The query explain scan type value for index scan

SCAN_TYPE_PRIMARY_KEY

 public static final String
 SCAN_TYPE_PRIMARY_KEY
 = "PRIMARY_KEY";

The query explain scan type value for primary key

SCAN_TYPE_TABLE_SCAN

 public static final String
 SCAN_TYPE_TABLE_SCAN
 = "TABLE_SCAN";

The query explain scan type value for table scan

704

com.mysql.clusterj

SCAN_TYPE_UNIQUE_KEY

 public static final String
 SCAN_TYPE_UNIQUE_KEY
 = "UNIQUE_KEY";

The query explain scan type value for unique key

deletePersistentAll()

 public abstract int deletePersistentAll();

Delete the instances that satisfy the query criteria.

Table 4.35 deletePersistentAll()

Parameter Description

return the number of instances deleted

execute(Map<String, ?>)

 public abstract Results<E> execute(
 Map<String, ?> parameters);

Execute the query with one or more named parameters. Parameters are resolved by name.

Table 4.36 execute(Map<String, ?>)

Parameter Description

parameters the parameters

return the result

execute(Object...)

 public abstract Results<E> execute(
 Object[] parameters);

Execute the query with one or more parameters. Parameters are resolved in the order they were
declared in the query.

Table 4.37 execute(Object...)

Parameter Description

parameters the parameters

return the result

execute(Object)

 public abstract Results<E> execute(
 Object parameter);

Execute the query with exactly one parameter.

Table 4.38 execute(Object)

Parameter Description

parameter the parameter

return the result

explain()

 public abstract Map<String, Object> explain();

705

com.mysql.clusterj

Explain how this query will be or was executed. If called before binding all parameters, throws
ClusterJUserException. Return a map of key:value pairs that explain how the query will be or was
executed. Details can be obtained by calling toString on the value. The following keys are returned:

• ScanType: the type of scan, with values:

• PRIMARY_KEY: the query used key lookup with the primary key

• UNIQUE_KEY: the query used key lookup with a unique key

• INDEX_SCAN: the query used a range scan with a non-unique key

• TABLE_SCAN: the query used a table scan

• IndexUsed: the name of the index used, if any

Table 4.39 explain()

Parameter Description

return the data about the execution of this query

Exceptions

ClusterJUserException if not all parameters are bound

getResultList()

 public abstract List<E> getResultList();

Get the results as a list.

Table 4.40 getResultList()

Parameter Description

return the result

Exceptions

ClusterJUserException if not all parameters are bound

ClusterJDatastoreExceptionif an exception is reported by the datastore

setLimits(long, long)

 public abstract void setLimits(
 long skip,
 long limit);

Set limits on results to return. The execution of the query is modified to return only a subset of results.
If the filter would normally return 100 instances, skip is set to 50, and limit is set to 40, then the first 50
results that would have been returned are skipped, the next 40 results are returned and the remaining
10 results are ignored.

The parameter skip must be greater than or equal to 0 (see an exception below) and limit must be
greater than or equal to 0.

When used with deletePersistentAll, skip must be 0, and the instances should be deleted iteratively
until the count of deleted instances is less than the batch size. For example:

/* Delete in batches */
query.setLimits(0, DeleteBatchSize);
int result = 0;
do { result = query.deletePersistentAll();

706

com.mysql.clusterj

 System.out.println("Batch result: " + result);
 } while(result == DeleteBatchSize);

Table 4.41 setLimits(long, long)

Parameter Description

skip the number of results to skip

limit the number of results to return after skipping; use Long.MAX_VALUE for no
limit.

setOrdering(Query.Ordering, String...)

 public abstract void setOrdering(
 Ordering ordering,
 String[] orderingFields);

Set ordering for the results of this query. The execution of the query is modified to use an index
previously defined.

• There must be an index defined on the columns mapped to the ordering fields, in the order of the
ordering fields.

• There must be no gaps in the ordering fields relative to the index.

• All ordering fields must be in the index, but not all fields in the index need be in the ordering fields.

• If an "in" predicate is used in the filter on a field in the ordering, it can only be used with the first field.

• If any of these conditions is violated, ClusterJUserException is thrown when the query is executed.

If an "in" predicate is used, each element in the parameter defines a separate range, and ordering
is performed within that range. There may be a better (more efficient) index based on the filter, but
specifying the ordering will force the query to use an index that contains the ordering fields.

Table 4.42 setOrdering(Query.Ordering, String...)

Parameter Description

ordering either Ordering.ASCENDING or Ordering.DESCENDING

orderingFields the fields to order by

setParameter(String, Object)

 public abstract void setParameter(
 String parameterName,
 Object value);

Set the value of a parameter. If called multiple times for the same parameter, silently replace the value.

Table 4.43 setParameter(String, Object)

Parameter Description

parameterName the name of the parameter

value the value for the parameter

4.3.1.18 Query.Ordering

Ordering

Synopsis

public static final class Query.Ordering,

707

com.mysql.clusterj

 extends Enum<Ordering> {
// Public Static Fields

 public static final Ordering
 ASCENDING ;

 public static final Ordering
 DESCENDING ;

// Public Static Methods

 public static Ordering valueOf(
 String name);

 public static Ordering[] values();

}

Methods inherited from java.lang.Enum: compareTo , equals , getDeclaringClass ,
hashCode , name , ordinal , toString , valueOf

Methods inherited from java.lang.Object: getClass , notify , notifyAll , wait

4.3.1.19 Results

Results of a query.

Synopsis

public interface Results<E>,
 extends Iterable<E> {
// Public Methods

 public abstract Iterator<E> iterator();

}

iterator()

 public abstract Iterator<E> iterator();

Specified by: Method iterator in interface Iterable

Get an iterator over the results of a query.

Table 4.44 iterator()

Parameter Description

return the iterator

4.3.1.20 Session

Session is the primary user interface to the cluster. Session extends AutoCloseable so it can be used
in the try-with-resources pattern. This pattern allows the application to create a session in the try
declaration and regardless of the outcome of the try/catch/finally block, clusterj will clean up and close
the session. If the try block exits with an open transaction, the transaction will be rolled back before the
session is closed.

Synopsis

public interface Session,
 extends AutoCloseable {
// Public Methods

 public abstract void close();

 public abstract Query<T> createQuery(

708

com.mysql.clusterj

 QueryDefinition<T> qd);

 public abstract Transaction currentTransaction();

 public abstract void deletePersistent(
 Class<T> cls,
 Object key);

 public abstract void deletePersistent(
 Object instance);

 public abstract int deletePersistentAll(
 Class<T> cls);

 public abstract void deletePersistentAll(
 Iterable<?> instances);

 public abstract T find(
 Class<T> cls,
 Object key);

 public abstract void flush();

 public abstract Boolean found(
 Object instance);

 public abstract QueryBuilder getQueryBuilder();

 public abstract boolean isClosed();

 public abstract T load(
 T instance);

 public abstract T makePersistent(
 T instance);

 public abstract Iterable<?> makePersistentAll(
 Iterable<?> instances);

 public abstract void markModified(
 Object instance,
 String fieldName);

 public abstract T newInstance(
 Class<T> cls);

 public abstract T newInstance(
 Class<T> cls,
 Object key);

 public abstract void persist(
 Object instance);

 public abstract T release(
 T obj);

 public abstract void remove(
 Object instance);

 public abstract T savePersistent(
 T instance);

 public abstract Iterable<?> savePersistentAll(
 Iterable<?> instances);

 public abstract void setLockMode(
 LockMode lockmode);

 public abstract void setPartitionKey(
 Class<?> cls,
 Object key);

709

com.mysql.clusterj

 public abstract String unloadSchema(
 Class<?> cls);

 public abstract void updatePersistent(
 Object instance);

 public abstract void updatePersistentAll(
 Iterable<?> instances);

}

close()

 public abstract void close();

Specified by: Method close in interface AutoCloseable

Close this session.

createQuery(QueryDefinition<T>)

 public abstract Query<T> createQuery(
 QueryDefinition<T> qd);

Create a Query from a QueryDefinition.

Table 4.45 createQuery(QueryDefinition<T>)

Parameter Description

qd the query definition

return the query instance

currentTransaction()

 public abstract Transaction currentTransaction();

Get the current com.mysql.clusterj.Transaction.

Table 4.46 currentTransaction()

Parameter Description

return the transaction

deletePersistent(Class<T>, Object)

 public abstract void deletePersistent(
 Class<T> cls,
 Object key);

Delete an instance of a class from the database given its primary key. For single-column keys, the key
parameter is a wrapper (e.g. Integer). For multi-column keys, the key parameter is an Object[] in which
elements correspond to the primary keys in order as defined in the schema.

Table 4.47 deletePersistent(Class<T>, Object)

Parameter Description

cls the interface or dynamic class

key the primary key

deletePersistent(Object)

 public abstract void deletePersistent(

710

com.mysql.clusterj

 Object instance);

Delete the instance from the database. Only the id field is used to determine which instance is to be
deleted. If the instance does not exist in the database, an exception is thrown.

Table 4.48 deletePersistent(Object)

Parameter Description

instance the instance to delete

deletePersistentAll(Class<T>)

 public abstract int deletePersistentAll(
 Class<T> cls);

Delete all instances of this class from the database. No exception is thrown even if there are no
instances in the database.

Table 4.49 deletePersistentAll(Class<T>)

Parameter Description

cls the interface or dynamic class

return the number of instances deleted

deletePersistentAll(Iterable<?>)

 public abstract void deletePersistentAll(
 Iterable<?> instances);

Delete all parameter instances from the database.

Table 4.50 deletePersistentAll(Iterable<?>)

Parameter Description

instances the instances to delete

find(Class<T>, Object)

 public abstract T find(
 Class<T> cls,
 Object key);

Find a specific instance by its primary key. The key must be of the same type as the primary key
defined by the table corresponding to the cls parameter. The key parameter is the wrapped version
of the primitive type of the key, e.g. Integer for INT key types, Long for BIGINT key types, or String
for char and varchar types. For multi-column primary keys, the key parameter is an Object[], each
element of which is a component of the primary key. The elements must be in the order of declaration
of the columns (not necessarily the order defined in the CONSTRAINT ... PRIMARY KEY clause) of the
CREATE TABLE statement.

Table 4.51 find(Class<T>, Object)

Parameter Description

cls the interface or dynamic class to find an instance of

key the key of the instance to find

return the instance of the interface or dynamic class with the specified key

flush()

 public abstract void flush();

711

com.mysql.clusterj

Flush deferred changes to the back end. Inserts, deletes, loads, and updates are sent to the back end.

found(Object)

 public abstract Boolean found(
 Object instance);

Was the row corresponding to this instance found in the database?

Table 4.52 found(Object)

Parameter Description

instance the instance corresponding to the row in the database

return • null if the instance is null or was created via newInstance and never
loaded;

• true if the instance was returned from a find or query or created via
newInstance and successfully loaded;

• false if the instance was created via newInstance and not found.

See Also load(T) , newInstance(java.lang.Class<T>, java.lang.Object)

getQueryBuilder()

 public abstract QueryBuilder getQueryBuilder();

Get a QueryBuilder.

Table 4.53 getQueryBuilder()

Parameter Description

return the query builder

isClosed()

 public abstract boolean isClosed();

Is this session closed?

Table 4.54 isClosed()

Parameter Description

return true if the session is closed

load(T)

 public abstract T load(
 T instance);

Load the instance from the database into memory. Loading is asynchronous and will be executed when
an operation requiring database access is executed: find, flush, or query. The instance must have been
returned from find or query; or created via session.newInstance and its primary key initialized.

Table 4.55 load(T)

Parameter Description

instance the instance to load

return the instance

See Also found(java.lang.Object)

712

com.mysql.clusterj

makePersistent(T)

 public abstract T makePersistent(
 T instance);

Insert the instance into the database. If the instance already exists in the database, an exception is
thrown.

Table 4.56 makePersistent(T)

Parameter Description

instance the instance to insert

return the instance

See Also savePersistent(T)

makePersistentAll(Iterable<?>)

 public abstract Iterable<?> makePersistentAll(
 Iterable<?> instances);

Insert the instances into the database.

Table 4.57 makePersistentAll(Iterable<?>)

Parameter Description

instances the instances to insert.

return the instances

markModified(Object, String)

 public abstract void markModified(
 Object instance,
 String fieldName);

Mark the field in the object as modified so it is flushed.

Table 4.58 markModified(Object, String)

Parameter Description

instance the persistent instance

fieldName the field to mark as modified

newInstance(Class<T>)

 public abstract T newInstance(
 Class<T> cls);

Create an instance of an interface or dynamic class that maps to a table.

Table 4.59 newInstance(Class<T>)

Parameter Description

cls the interface for which to create an instance

return an instance that implements the interface

newInstance(Class<T>, Object)

 public abstract T newInstance(
 Class<T> cls,
 Object key);

713

com.mysql.clusterj

Create an instance of an interface or dynamic class that maps to a table and set the primary key of the
new instance. The new instance can be used to create, delete, or update a record in the database.

Table 4.60 newInstance(Class<T>, Object)

Parameter Description

cls the interface for which to create an instance

return an instance that implements the interface

persist(Object)

 public abstract void persist(
 Object instance);

Insert the instance into the database. This method has identical semantics to makePersistent.

Table 4.61 persist(Object)

Parameter Description

instance the instance to insert

release(T)

 public abstract T release(
 T obj);

Release resources associated with an instance. The instance must be a domain object obtained via
session.newInstance(T.class), find(T.class), or query; or Iterable, or array T[]. Resources released can
include direct buffers used to hold instance data. Released resources may be returned to a pool.

Table 4.62 release(T)

Parameter Description

obj a domain object of type T, an Iterable, or array T[]

return the input parameter

Exceptions

ClusterJUserException if the instance is not a domain object T, Iterable, or array T[], or if the
object is used after calling this method.

remove(Object)

 public abstract void remove(
 Object instance);

Delete the instance from the database. This method has identical semantics to deletePersistent.

Table 4.63 remove(Object)

Parameter Description

instance the instance to delete

savePersistent(T)

 public abstract T savePersistent(
 T instance);

Save the instance in the database without checking for existence. The id field is used to determine
which instance is to be saved. If the instance exists in the database it will be updated. If the instance
does not exist, it will be created.

714

com.mysql.clusterj

Table 4.64 savePersistent(T)

Parameter Description

instance the instance to update

savePersistentAll(Iterable<?>)

 public abstract Iterable<?> savePersistentAll(
 Iterable<?> instances);

Update all parameter instances in the database.

Table 4.65 savePersistentAll(Iterable<?>)

Parameter Description

instances the instances to update

setLockMode(LockMode)

 public abstract void setLockMode(
 LockMode lockmode);

Set the lock mode for read operations. This will take effect immediately and will remain in effect until
this session is closed or this method is called again.

Table 4.66 setLockMode(LockMode)

Parameter Description

lockmode the LockMode

setPartitionKey(Class<?>, Object)

 public abstract void setPartitionKey(
 Class<?> cls,
 Object key);

Set the partition key for the next transaction. The key must be of the same type as the primary key
defined by the table corresponding to the cls parameter. The key parameter is the wrapped version
of the primitive type of the key, e.g. Integer for INT key types, Long for BIGINT key types, or String
for char and varchar types. For multi-column primary keys, the key parameter is an Object[], each
element of which is a component of the primary key. The elements must be in the order of declaration
of the columns (not necessarily the order defined in the CONSTRAINT ... PRIMARY KEY clause) of the
CREATE TABLE statement.

Table 4.67 setPartitionKey(Class<?>, Object)

Parameter Description

key the primary key of the mapped table

Exceptions

ClusterJUserException if a transaction is enlisted

ClusterJUserException if a partition key is null

ClusterJUserException if called twice in the same transaction

ClusterJUserException if a partition key is the wrong type

unloadSchema(Class<?>)

 public abstract String unloadSchema(
 Class<?> cls);

715

com.mysql.clusterj

Unload the schema definition for a class. This must be done after the schema definition has changed
in the database due to an alter table command. The next time the class is used the schema will be
reloaded.

Table 4.68 unloadSchema(Class<?>)

Parameter Description

cls the class for which the schema is unloaded

return the name of the schema that was unloaded

updatePersistent(Object)

 public abstract void updatePersistent(
 Object instance);

Update the instance in the database without necessarily retrieving it. The id field is used to determine
which instance is to be updated. If the instance does not exist in the database, an exception is thrown.
This method cannot be used to change the primary key.

Table 4.69 updatePersistent(Object)

Parameter Description

instance the instance to update

updatePersistentAll(Iterable<?>)

 public abstract void updatePersistentAll(
 Iterable<?> instances);

Update all parameter instances in the database.

Table 4.70 updatePersistentAll(Iterable<?>)

Parameter Description

instances the instances to update

4.3.1.21 SessionFactory

SessionFactory represents a cluster.

Synopsis

public interface SessionFactory {
// Public Methods

 public abstract void close();

 public abstract State currentState();

 public abstract List<Integer> getConnectionPoolSessionCounts();

 public abstract int getRecvThreadActivationThreshold();

 public abstract short[] getRecvThreadCPUids();

 public abstract Session getSession();

 public abstract Session getSession(
 Map properties);

 public abstract void reconnect();

 public abstract void reconnect(
 int timeout);

716

com.mysql.clusterj

 public abstract void setRecvThreadActivationThreshold(
 int threshold);

 public abstract void setRecvThreadCPUids(
 short[] cpuids);

}

close()

 public abstract void close();

Close this session factory. Release all resources. Set the current state to Closed. When closed, calls to
getSession will throw ClusterJUserException.

currentState()

 public abstract State currentState();

Get the current state of this session factory.

Since 7.5.7

See Also com.mysql.clusterj.SessionFactory.State

getConnectionPoolSessionCounts()

 public abstract List<Integer> getConnectionPoolSessionCounts();

Get a list containing the number of open sessions for each connection in the connection pool.

Since 7.3.14, 7.4.12, 7.5.2

getRecvThreadActivationThreshold()

 public abstract int getRecvThreadActivationThreshold();

Get the receive thread activation threshold for all connections in the connection pool. 16 or higher
means that receive threads are never used as receivers. 0 means that the receive thread is always
active, and that retains poll rights for its own exclusive use, effectively blocking all user threads from
becoming receivers. In such cases care should be taken to ensure that the receive thread does not
compete with the user thread for CPU resources; it is preferable for it to be locked to a CPU for its own
exclusive use. The default is 8.

Since 7.5.7

getRecvThreadCPUids()

 public abstract short[] getRecvThreadCPUids();

Get receive thread bindings to cpus for all connections in the connection pool. If a receive thread is not
bound to a cpu, the corresponding value will be -1.

Since 7.5.7

getSession()

 public abstract Session getSession();

Create a Session to use with the cluster, using all the properties of the SessionFactory.

Table 4.71 getSession()

Parameter Description

return the session

717

com.mysql.clusterj

getSession(Map)

 public abstract Session getSession(
 Map properties);

Create a session to use with the cluster, overriding some properties. Properties
PROPERTY_CLUSTER_CONNECTSTRING, PROPERTY_CLUSTER_DATABASE, and
PROPERTY_CLUSTER_MAX_TRANSACTIONS may not be overridden.

Table 4.72 getSession(Map)

Parameter Description

properties overriding some properties for this session

return the session

reconnect()

 public abstract void reconnect();

Reconnect this session factory using the most recent timeout value specified. The timeout may have
been specified in the original session factory properties or may have been changed by an application
call to reconnect(int timeout).

See Also reconnect(int)

Since 7.5.7

reconnect(int)

 public abstract void reconnect(
 int timeout);

Disconnect and reconnect this session factory using the specified timeout value and change the
saved timeout value. This is a heavyweight method and should be used rarely. It is intended for
cases where the process in which clusterj is running has lost connectivity to the cluster and is not
able to function normally. Reconnection is done in several phases. First, the session factory is set to
state Reconnecting and a reconnect thread is started to manage the reconnection procedure. In the
Reconnecting state, the getSession methods throw ClusterJUserException and the connection pool
is quiesced until all sessions have closed. If sessions fail to close normally after timeout seconds, the
sessions are forced to close. Next, all connections in the connection pool are closed, which frees their
connection slots in the cluster. Finally, the connection pool is recreated using the original connection
pool properties and the state is set to Open. The reconnection procedure is asynchronous. To observe
the progress of the procedure, use the methods currentState and getConnectionPoolSessionCounts. If
the timeout value is non-zero, automatic reconnection will be done by the clusterj implementation upon
recognizing that a network failure has occurred. If the timeout value is 0, automatic reconnection is
disabled. If the current state of this session factory is Reconnecting, this method silently does nothing.

Table 4.73 reconnect(int)

Parameter Description

timeout the timeout value in seconds; 0 to disable automatic reconnection

Since 7.5.7

setRecvThreadActivationThreshold(int)

 public abstract void setRecvThreadActivationThreshold(
 int threshold);

Set the receive thread activation threshold for all connections in the connection pool. 16 or higher
means that receive threads are never used as receivers. 0 means that the receive thread is always

718

com.mysql.clusterj

active, and that retains poll rights for its own exclusive use, effectively blocking all user threads from
becoming receivers. In such cases care should be taken to ensure that the receive thread does not
compete with the user thread for CPU resources; it is preferable for it to be locked to a CPU for its own
exclusive use. The default is 8.

Exceptions

ClusterJUserException if the value is negative

ClusterJFatalInternalExceptionif the method fails due to some internal reason.

Since 7.5.7

setRecvThreadCPUids(short[])

 public abstract void setRecvThreadCPUids(
 short[] cpuids);

Bind receive threads to cpuids for all connections in the connection pool. Specify -1 to unset receive
thread cpu binding for a connection. The cpuid must be between 0 and the number of cpus in the
machine.

Exceptions

ClusterJUserException if the cpuid is illegal or if the number of elements in cpuids is not
equal to the number of connections in the connection pool.

ClusterJFatalInternalExceptionif the binding fails due to some internal reason.

Since 7.5.7

4.3.1.22 SessionFactory.State

State of this session factory

Synopsis

public static final class SessionFactory.State,
 extends Enum<State> {
// Public Static Fields

 public static final State
 Closed ;

 public static final State
 Open ;

 public static final State
 Reconnecting ;

// Public Static Methods

 public static State valueOf(
 String name);

 public static State[] values();

}

Methods inherited from java.lang.Enum: compareTo , equals , getDeclaringClass ,
hashCode , name , ordinal , toString , valueOf

Methods inherited from java.lang.Object: getClass , notify , notifyAll , wait

Since 7.5.7

4.3.1.23 SessionFactoryService

719

com.mysql.clusterj

This interface defines the service to create a SessionFactory from a Map<String, String> of properties.

Synopsis

public interface SessionFactoryService {
// Public Methods

 public abstract SessionFactory getSessionFactory(
 Map<String, String> props);

}

getSessionFactory(Map<String, String>)

 public abstract SessionFactory getSessionFactory(
 Map<String, String> props);

Create or get a session factory. If a session factory with the same value for
PROPERTY_CLUSTER_CONNECTSTRING has already been created in the VM, the existing factory
is returned, regardless of whether other properties of the factory are the same as specified in the Map.

Table 4.74 getSessionFactory(Map<String, String>)

Parameter Description

props the properties for the session factory, in which the keys are defined in
Constants and the values describe the environment

return the session factory

See Also com.mysql.clusterj.Constants

4.3.1.24 Transaction

Transaction represents a user transaction active in the cluster.

Synopsis

public interface Transaction {
// Public Methods

 public abstract void begin();

 public abstract void commit();

 public abstract boolean getRollbackOnly();

 public abstract boolean isActive();

 public abstract void rollback();

 public abstract void setRollbackOnly();

}

begin()

 public abstract void begin();

Begin a transaction.

commit()

 public abstract void commit();

Commit a transaction.

720

com.mysql.clusterj.annotation

getRollbackOnly()

 public abstract boolean getRollbackOnly();

Has this transaction been marked for rollback only?

Table 4.75 getRollbackOnly()

Parameter Description

return true if the transaction has been marked for rollback only

isActive()

 public abstract boolean isActive();

Is there a transaction currently active?

Table 4.76 isActive()

Parameter Description

return true if a transaction is active

rollback()

 public abstract void rollback();

Roll back a transaction.

setRollbackOnly()

 public abstract void setRollbackOnly();

Mark this transaction as rollback only. After this method is called, commit() will roll back the transaction
and throw an exception; rollback() will roll back the transaction and not throw an exception.

4.3.2 com.mysql.clusterj.annotation

This package provides annotations for domain object model interfaces mapped to database tables.

4.3.2.1 Column

Annotation for a column in the database.

Synopsis

@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Column {

 public String
 name ;

 public String
 allowsNull ;

 public String
 defaultValue ;

}

allowsNull

Whether the column allows null values to be inserted. This overrides the database definition and
requires that the application provide non-null values for the database column.

721

com.mysql.clusterj.annotation

Table 4.77 allowsNull

Parameter Description

return whether the column allows null values to be inserted

defaultValue

Default value for this column.

Table 4.78 defaultValue

Parameter Description

return the default value for this column

name

Name of the column.

Table 4.79 name

Parameter Description

return the name of the column

4.3.2.2 Columns

Annotation for a group of columns. This annotation is used for multi-column structures such as indexes
and keys.

Synopsis

@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD, java.lang.annotation.ElementType.TYPE}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Columns {

 public Column[]
 value ;

}

value

The columns annotation information.

Table 4.80 value

Parameter Description

return the columns

4.3.2.3 Extension

Annotation for a non-standard extension.

Synopsis

@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Extension {

 public String
 vendorName ;

 public String
 key ;

 public String
 value ;

722

com.mysql.clusterj.annotation

}

key

The key for the extension (required).

Table 4.81 key

Parameter Description

return the key

value

The value for the extension (required).

Table 4.82 value

Parameter Description

return the value

vendorName

Vendor that the extension applies to (required to make the key unique).

Table 4.83 vendorName

Parameter Description

return the vendor

4.3.2.4 Extensions

Annotation for a group of extensions.

Synopsis

@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Extensions {

 public Extension[]
 value ;

}

value

The extensions.

Table 4.84 value

Parameter Description

return the extensions

4.3.2.5 Index

Annotation for a database index.

Synopsis

@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Index {

 public String
 name ;

723

com.mysql.clusterj.annotation

 public String
 unique ;

 public Column[]
 columns ;

}

columns

Columns that compose this index.

Table 4.85 columns

Parameter Description

return columns that compose this index

name

Name of the index

Table 4.86 name

Parameter Description

return the name of the index

unique

Whether this index is unique

Table 4.87 unique

Parameter Description

return whether this index is unique

4.3.2.6 Indices

Annotation for a group of indices. This is used on a class where there are multiple indices defined.

Synopsis

@Target(value=java.lang.annotation.ElementType.TYPE) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Indices {

 public Index[]
 value ;

}

value

The indices.

Table 4.88 value

Parameter Description

return The indices

4.3.2.7 Lob

Annotation for a Large Object (lob). This annotation can be used with byte[] and InputStream types for
binary columns; and with String and InputStream types for character columns.

724

com.mysql.clusterj.annotation

Synopsis

@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Lob {
}

4.3.2.8 NotPersistent

Annotation to specify that the member is not persistent. If used, this is the only annotation allowed on a
member.

Synopsis

@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface NotPersistent {
}

4.3.2.9 NullValue

Enumeration of the "null-value" behavior values. This behavior is specified in the @Persistent
annotation.

Synopsis

public final class NullValue,
 extends Enum<NullValue> {
// Public Static Fields

 public static final NullValue
 DEFAULT ;

 public static final NullValue
 EXCEPTION ;

 public static final NullValue
 NONE ;

// Public Static Methods

 public static NullValue valueOf(
 String name);

 public static NullValue[] values();

}

Methods inherited from java.lang.Enum: compareTo , equals , getDeclaringClass ,
hashCode , name , ordinal , toString , valueOf

Methods inherited from java.lang.Object: getClass , notify , notifyAll , wait

4.3.2.10 PartitionKey

Annotation on a class or member to define the partition key. If annotating a class or interface, either
a single column or multiple columns can be specified. If annotating a member, neither column nor
columns should be specified.

Synopsis

@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface PartitionKey {

 public String
 column ;

 public Column[]
 columns ;

}

725

com.mysql.clusterj.annotation

column

Name of the column to use for the partition key

Table 4.89 column

Parameter Description

return the name of the column to use for the partition key

columns

The column(s) for the partition key

Table 4.90 columns

Parameter Description

return the column(s) for the partition key

4.3.2.11 PersistenceCapable

Annotation for whether the class or interface is persistence-capable.

Synopsis

@Target(value=java.lang.annotation.ElementType.TYPE) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface PersistenceCapable {

 public String
 table ;

 public String
 database ;

 public String
 schema ;

}

4.3.2.12 PersistenceModifier

Enumeration of the persistence-modifier values for a member.

Synopsis

public final class PersistenceModifier,
 extends Enum<PersistenceModifier> {
// Public Static Fields

 public static final PersistenceModifier
 NONE ;

 public static final PersistenceModifier
 PERSISTENT ;

 public static final PersistenceModifier
 UNSPECIFIED ;

// Public Static Methods

 public static PersistenceModifier valueOf(
 String name);

 public static PersistenceModifier[] values();

}

Methods inherited from java.lang.Enum: compareTo , equals , getDeclaringClass ,
hashCode , name , ordinal , toString , valueOf

726

com.mysql.clusterj.annotation

Methods inherited from java.lang.Object: getClass , notify , notifyAll , wait

4.3.2.13 Persistent

Annotation for defining the persistence of a member.

Synopsis

@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Persistent {

 public NullValue
 nullValue ;

 public String
 primaryKey ;

 public String
 column ;

 public Extension[]
 extensions ;

}

column

Column name where the values are stored for this member.

Table 4.91 column

Parameter Description

return the name of the column

extensions

Non-standard extensions for this member.

Table 4.92 extensions

Parameter Description

return the non-standard extensions

nullValue

Behavior when this member contains a null value.

Table 4.93 nullValue

Parameter Description

return the behavior when this member contains a null value

primaryKey

Whether this member is part of the primary key for the table. This is equivalent to specifying
@PrimaryKey as a separate annotation on the member.

Table 4.94 primaryKey

Parameter Description

return whether this member is part of the primary key

4.3.2.14 PrimaryKey

727

com.mysql.clusterj.query

Annotation on a member to define it as a primary key member of a class or persistent interface.

Synopsis

@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface PrimaryKey {

 public String
 name ;

 public String
 column ;

 public Column[]
 columns ;

}

column

Name of the column to use for the primary key

Table 4.95 column

Parameter Description

return the name of the column to use for the primary key

columns

The column(s) for the primary key

Table 4.96 columns

Parameter Description

return the column(s) for the primary key

name

Name of the primary key constraint

Table 4.97 name

Parameter Description

return the name of the primary key constraint

4.3.2.15 Projection

Annotation on a type to define it as a projection of a table. Only the columns mapped to persistent
fields/methods will be used when performing operations on the table.

Synopsis

@Target(value=java.lang.annotation.ElementType.TYPE) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Projection {
}

4.3.3 com.mysql.clusterj.query

Provides interfaces for building queries for ClusterJ.

4.3.3.1 Predicate

Used to combine multiple predicates with boolean operations.

728

com.mysql.clusterj.query

Synopsis

public interface Predicate {
// Public Methods

 public abstract Predicate and(
 Predicate predicate);

 public abstract Predicate not();

 public abstract Predicate or(
 Predicate predicate);

}

and(Predicate)

 public abstract Predicate and(
 Predicate predicate);

Combine this Predicate with another, using the "and" semantic.

Table 4.98 and(Predicate)

Parameter Description

predicate the other predicate

return a new Predicate combining both Predicates

not()

 public abstract Predicate not();

Negate this Predicate.

Table 4.99 not()

Parameter Description

return this predicate

or(Predicate)

 public abstract Predicate or(
 Predicate predicate);

Combine this Predicate with another, using the "or" semantic.

Table 4.100 or(Predicate)

Parameter Description

predicate the other predicate

return a new Predicate combining both Predicates

4.3.3.2 PredicateOperand

PredicateOperand represents a column or parameter that can be compared to another

Synopsis

public interface PredicateOperand {
// Public Methods

 public abstract Predicate between(

729

com.mysql.clusterj.query

 PredicateOperand lower,
 PredicateOperand upper);

 public abstract Predicate equal(
 PredicateOperand other);

 public abstract Predicate greaterEqual(
 PredicateOperand other);

 public abstract Predicate greaterThan(
 PredicateOperand other);

 public abstract Predicate in(
 PredicateOperand other);

 public abstract Predicate isNotNull();

 public abstract Predicate isNull();

 public abstract Predicate lessEqual(
 PredicateOperand other);

 public abstract Predicate lessThan(
 PredicateOperand other);

 public abstract Predicate like(
 PredicateOperand other);

}

between(PredicateOperand, PredicateOperand)

 public abstract Predicate between(
 PredicateOperand lower,
 PredicateOperand upper);

Return a Predicate representing comparing this to another using "between" semantics.

Table 4.101 between(PredicateOperand, PredicateOperand)

Parameter Description

lower another PredicateOperand

upper another PredicateOperand

return a new Predicate

equal(PredicateOperand)

 public abstract Predicate equal(
 PredicateOperand other);

Return a Predicate representing comparing this to another using "equal to" semantics.

Table 4.102 equal(PredicateOperand)

Parameter Description

other the other PredicateOperand

return a new Predicate

greaterEqual(PredicateOperand)

 public abstract Predicate greaterEqual(
 PredicateOperand other);

Return a Predicate representing comparing this to another using "greater than or equal to" semantics.

730

com.mysql.clusterj.query

Table 4.103 greaterEqual(PredicateOperand)

Parameter Description

other the other PredicateOperand

return a new Predicate

greaterThan(PredicateOperand)

 public abstract Predicate greaterThan(
 PredicateOperand other);

Return a Predicate representing comparing this to another using "greater than" semantics.

Table 4.104 greaterThan(PredicateOperand)

Parameter Description

other the other PredicateOperand

return a new Predicate

in(PredicateOperand)

 public abstract Predicate in(
 PredicateOperand other);

Return a Predicate representing comparing this to a collection of values using "in" semantics.

Table 4.105 in(PredicateOperand)

Parameter Description

other another PredicateOperand

return a new Predicate

isNotNull()

 public abstract Predicate isNotNull();

Return a Predicate representing comparing this to not null.

Table 4.106 isNotNull()

Parameter Description

return a new Predicate

isNull()

 public abstract Predicate isNull();

Return a Predicate representing comparing this to null.

Table 4.107 isNull()

Parameter Description

return a new Predicate

lessEqual(PredicateOperand)

 public abstract Predicate lessEqual(
 PredicateOperand other);

Return a Predicate representing comparing this to another using "less than or equal to" semantics.

731

com.mysql.clusterj.query

Table 4.108 lessEqual(PredicateOperand)

Parameter Description

other the other PredicateOperand

return a new Predicate

lessThan(PredicateOperand)

 public abstract Predicate lessThan(
 PredicateOperand other);

Return a Predicate representing comparing this to another using "less than" semantics.

Table 4.109 lessThan(PredicateOperand)

Parameter Description

other the other PredicateOperand

return a new Predicate

like(PredicateOperand)

 public abstract Predicate like(
 PredicateOperand other);

Return a Predicate representing comparing this to another using "like" semantics.

Table 4.110 like(PredicateOperand)

Parameter Description

other another PredicateOperand

return a new Predicate

4.3.3.3 QueryBuilder

QueryBuilder represents a factory for queries.

Synopsis

public interface QueryBuilder {
// Public Methods

 public abstract QueryDomainType<T> createQueryDefinition(
 Class<T> cls);

}

See Also getQueryBuilder()

createQueryDefinition(Class<T>)

 public abstract QueryDomainType<T> createQueryDefinition(
 Class<T> cls);

Create a QueryDefinition to define queries.

Table 4.111 createQueryDefinition(Class<T>)

Parameter Description

cls the class of the type to be queried

return the QueryDomainType to define the query

732

com.mysql.clusterj.query

4.3.3.4 QueryDefinition

QueryDefinition allows users to define queries.

Synopsis

public interface QueryDefinition<E> {
// Public Methods

 public abstract Predicate not(
 Predicate predicate);

 public abstract PredicateOperand param(
 String parameterName);

 public abstract QueryDefinition<E> where(
 Predicate predicate);

}

not(Predicate)

 public abstract Predicate not(
 Predicate predicate);

Convenience method to negate a predicate.

Table 4.112 not(Predicate)

Parameter Description

predicate the predicate to negate

return the inverted predicate

param(String)

 public abstract PredicateOperand param(
 String parameterName);

Specify a parameter for the query.

Table 4.113 param(String)

Parameter Description

parameterName the name of the parameter

return the PredicateOperand representing the parameter

where(Predicate)

 public abstract QueryDefinition<E> where(
 Predicate predicate);

Specify the predicate to satisfy the query.

Table 4.114 where(Predicate)

Parameter Description

predicate the Predicate

return this query definition

4.3.3.5 QueryDomainType

QueryDomainType represents the domain type of a query. The domain type validates property names
that are used to filter results.

733

Constant field values

Synopsis

public interface QueryDomainType<E>,
 extends QueryDefinition<E> {
// Public Methods

 public abstract PredicateOperand get(
 String propertyName);

 public abstract Class<E> getType();

}

get(String)

 public abstract PredicateOperand get(
 String propertyName);

Get a PredicateOperand representing a property of the domain type.

Table 4.115 get(String)

Parameter Description

propertyName the name of the property

return a representation the value of the property

getType()

 public abstract Class<E> getType();

Get the domain type of the query.

Table 4.116 getType()

Parameter Description

return the domain type of the query

4.3.4 Constant field values

4.3.4.1 com.mysql.clusterj.*

Table 4.117 com.mysql.clusterj.*

Name Description

DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES"256, 10240, 102400, 1048576"

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE10

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START1

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP1

DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY5

DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES4

DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER20

DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE30

DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM30000

DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE0

DEFAULT_PROPERTY_CLUSTER_DATABASE "test"

DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS4

DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD8

734

MySQL NDB Cluster Connector for Java: Limitations and Known Issues

Name Description

DEFAULT_PROPERTY_CONNECTION_POOL_SIZE1

DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT0

ENV_CLUSTERJ_LOGGER_FACTORY_NAME "CLUSTERJ_LOGGER_FACTORY"

PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES"com.mysql.clusterj.byte.buffer.pool.sizes"

PROPERTY_CLUSTER_CONNECTION_SERVICE"com.mysql.clusterj.connection.service"

PROPERTY_CLUSTER_CONNECTSTRING "com.mysql.clusterj.connectstring"

PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE"com.mysql.clusterj.connect.autoincrement.batchsize"

PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START"com.mysql.clusterj.connect.autoincrement.offset"

PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP"com.mysql.clusterj.connect.autoincrement.increment"

PROPERTY_CLUSTER_CONNECT_DELAY "com.mysql.clusterj.connect.delay"

PROPERTY_CLUSTER_CONNECT_RETRIES "com.mysql.clusterj.connect.retries"

PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER"com.mysql.clusterj.connect.timeout.after"

PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE"com.mysql.clusterj.connect.timeout.before"

PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM"com.mysql.clusterj.connect.timeout.mgm"

PROPERTY_CLUSTER_CONNECT_VERBOSE "com.mysql.clusterj.connect.verbose"

PROPERTY_CLUSTER_DATABASE "com.mysql.clusterj.database"

PROPERTY_CLUSTER_MAX_TRANSACTIONS "com.mysql.clusterj.max.transactions"

PROPERTY_CONNECTION_POOL_NODEIDS "com.mysql.clusterj.connection.pool.nodeids"

PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD"com.mysql.clusterj.connection.pool.recv.thread.activation.threshold"

PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS"com.mysql.clusterj.connection.pool.recv.thread.cpuids"

PROPERTY_CONNECTION_POOL_SIZE "com.mysql.clusterj.connection.pool.size"

PROPERTY_CONNECTION_RECONNECT_TIMEOUT"com.mysql.clusterj.connection.reconnect.timeout"

PROPERTY_DEFER_CHANGES "com.mysql.clusterj.defer.changes"

PROPERTY_JDBC_DRIVER_NAME "com.mysql.clusterj.jdbc.driver"

PROPERTY_JDBC_PASSWORD "com.mysql.clusterj.jdbc.password"

PROPERTY_JDBC_URL "com.mysql.clusterj.jdbc.url"

PROPERTY_JDBC_USERNAME "com.mysql.clusterj.jdbc.username"

SESSION_FACTORY_SERVICE_CLASS_NAME "com.mysql.clusterj.SessionFactoryService"

SESSION_FACTORY_SERVICE_FILE_NAME "META-INF/services/
com.mysql.clusterj.SessionFactoryService"

Table 4.118 com.mysql.clusterj.*

Name Description

INDEX_USED "IndexUsed"

SCAN_TYPE "ScanType"

SCAN_TYPE_INDEX_SCAN "INDEX_SCAN"

SCAN_TYPE_PRIMARY_KEY "PRIMARY_KEY"

SCAN_TYPE_TABLE_SCAN "TABLE_SCAN"

SCAN_TYPE_UNIQUE_KEY "UNIQUE_KEY"

4.4 MySQL NDB Cluster Connector for Java: Limitations and
Known Issues

735

MySQL NDB Cluster Connector for Java: Limitations and Known Issues

This section discusses the limitations and known issues in the MySQL NDB Cluster Connector for Java
APIs.

 Known issues in ClusterJ:

• Joins: With ClusterJ, queries are limited to single tables. This is not a problem with JPA or JDBC,
both of which support joins.

• Database views: Because MySQL database views do not use the NDB storage engine, ClusterJ
applications cannot “see” views, and thus cannot access them. To work with views using Java, you
should use JPA or JDBC.

• Relations and inheritance: ClusterJ does not support relations or inheritance. Tables are mapped
one-to-one onto domain classes, and only single-table operations are supported. NDB tables support
foreign keys, and foreign key constraints are enforced when using ClusterJ for inserts, updates, and
deletes.

• TIMESTAMP: Currently, ClusterJ does not support the TIMESTAMP data type for a primary key
field.

 Known issues in JDBC and Connector/J: For information about limitations and known issues with
JDBC and Connector/J, see JDBC API Implementation Notes, and Troubleshooting Connector/J
Applications.

Known issues in NDB Cluster: For information about limitations and other known issues with NDB
Cluster, see Known Limitations of NDB Cluster.

736

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/connector-j/en/connector-j-reference-implementation-notes.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-troubleshooting.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-troubleshooting.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-limitations.html

Chapter 5 MySQL NoSQL Connector for JavaScript

Table of Contents
5.1 MySQL NoSQL Connector for JavaScript Overview .. 737
5.2 Installing the JavaScript Connector .. 737
5.3 Connector for JavaScript API Documentation ... 739

5.3.1 Batch ... 739
5.3.2 Context .. 739
5.3.3 Converter ... 741
5.3.4 Errors ... 742
5.3.5 Mynode .. 742
5.3.6 Session .. 745
5.3.7 SessionFactory ... 746
5.3.8 TableMapping and FieldMapping ... 746
5.3.9 TableMetadata ... 747
5.3.10 Transaction .. 748

5.4 Using the MySQL JavaScript Connector: Examples .. 749
5.4.1 Requirements for the Examples .. 749
5.4.2 Example: Finding Rows .. 753
5.4.3 Inserting Rows ... 754
5.4.4 Deleting Rows .. 756

This section provides information about the MySQL NoSQL Connector for JavaScript, a set of Node.js
adapters for NDB Cluster and MySQL Server, which make it possible to write JavaScript applications
for Node.js using MySQL data.

Important

Node.js support in NDB Cluster releases is deprecated in NDB 9.0, and
removed in NDB 9.1.

Node.js support was removed from previous versions of NDB Cluster as of the
following releases:

• NDB 7.5 series: NDB 7.5.20

• NDB 7.6 series: NDB 7.6.16

5.1 MySQL NoSQL Connector for JavaScript Overview

This connector differs in a number of key respects from most other MySQL Connectors and APIs. The
interface is asynchronous, following the built-in Node.js event model. In addition, it employs a domain
object model for data storage. Applications retrieve data in the form of fully-instantiated objects, rather
than as rows and columns.

The MySQL Node.js adapter includes 2 drivers. The ndb driver accesses the NDB storage engine
directly, using the NDB API (see Chapter 2, The NDB API). No MySQL Server is required for the ndb
driver. The mysql driver uses a MySQL Server for its data source, and depends on the node-mysql
Node.js module from https://github.com/felixge/node-mysql/. Regardless of the driver in use, no SQL
statements are required; when using the Connector for JavaScript, Node.js applications employ data
objects for all requests made to the database.

5.2 Installing the JavaScript Connector

737

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://github.com/felixge/node-mysql/

Installing the JavaScript Connector

This section covers basic installation and setup of the MySQL JavaScript Connector and its
prerequites. The Connector requires both Node.js and NDB Cluster to be installed first; you can install
these in either order. In addition, the mysql-js adapter requires the node-mysql driver. Building
the Connector also requires that your system have a working C++ compiler such as gcc or Microsoft
Visual Studio.

 To install all of the prerequisites for the JavaScript Connector, including node-mysql, you should
perform the following steps:

1. Node.js. If you do not already have Node.js installed on your system, you can obtain it from
http://nodejs.org/download/. In addition to source code, prebuilt binaries and installers are available
for a number of platforms. Many Linux distributions also have Node.js in their repositories (you may
need to add an alternative repository in your package manager).

NDB uses node-gyp for compiling add-on Node.js modules; for more information about this tool,
see https://npmjs.org/package/node-gyp.

Beginning with NDB 8.0.22, NDBCLUSTER requires Node.js version 12.18.3 or later. Beginning with
NDB 8.0.33, the minimum required Node.js version is 18.12.1.

Regardless of the method by which you obtain Node.js, keep in mind that the architecture of the
version you install must match that of the NDB Cluster binaries you intend to use; you cannot, for
example, install the JavaScript Connector using 64-bit Node.js and 32-bit NDB Cluster. If you do
not know the architecture of your existing Node.js installation, you can determine this by checking
the value of global.process.arch.

2. NDB Cluster. If NDB Cluster, including all header and library files, is not already installed on the
system, install it (see NDB Cluster Installation).

 As mentioned previously, you must make sure that the architecture (32-bit or 64-bit) is the same
for both NDB Cluster and Node.js. You can check the architecture of an existing NDB Cluster
installation in the output of ndb_mgm -V.

3. node-mysql driver. The mysql-js adapter also requires a working installation of the node-
mysql driver from https://github.com/felixge/node-mysql/. You can install the driver using the
Node.js npm install command; see the project website for the recommended version and
package identifier.

Once the requirements just listed are met, you can find the files needed to install the MySQL Connector
for JavaScript in share/nodejs in the NDB Cluster installation directory. (If you installed NDB Cluster
as an RPM, this is /usr/share/mysql/nodejs.) To use the Node.js npm tool to perform a “best-
guess” installation without any user intervention, change to the share/nodejs directory, then use npm
as shown here:

$> npm install .

The final period (.) character is required. Note that you must run this command in share/node.js in
the NDB Cluster installation directory.

 You can test your installation using the supplied test program. This requires a running NDB Cluster,
including a MySQL Server with a database named test. The mysql client executable must be in the
path.

To run the test suite, change to the test directory, then execute command shown here:

$> node driver

By default, all servers are run on the local machine using default ports; this can be changed by
editing the file test/test_connection.js, which is generated by running the test suite. If
this file is not already present (see Bug #16967624), you can copy share/nodejs/test/lib/
test_connection_js to the test directory for this purpose.

738

http://nodejs.org/download/
https://npmjs.org/package/node-gyp
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-installation.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster-programs-ndb-mgm.html
https://github.com/felixge/node-mysql/
https://dev.mysql.com/doc/refman/8.4/en/mysql.html

Connector for JavaScript API Documentation

If you istalled NDB Cluster to a nondefault location, you may need to export the LD_LIBRARY_PATH to
enable the test suite. The test suite also requires that the test database be available on the MySQL
server.

5.3 Connector for JavaScript API Documentation

This section contains prototype descriptions and other information for the MySQL Connector for
JavaScript.

5.3.1 Batch

This class represents a batch of operations.

Batch extends Context

execute(Function(Object error) callback);

Execute this batch. When a batch is executed, all operations are executed; the callback for each
operation is called when that operation is executed (operations are not performed in any particular
order). The execute() function's callback is also called.

A batch is executed in the context of the session's current state: this is autocommit if a transaction has
not been started; this also includes the default lock mode and the partition key.

clear();

Clear this batch without affecting the transaction state. After being cleared, the batch is still valid, but all
operations previously defined are removed; this restores the batch to a clean state.

The callbacks for any operations that are defined for this batch are called with an error indicating that
the batch has been cleared.

This function requires no arguments.

getSession();

Get the session from which this batch was created.

This function requires no arguments.

5.3.2 Context

Context is the supertype of Session and Batch. It contains functions that are executed immediately
if called from a session, or when the batch is executed.

The Mynode implementation does have any concept of a user and does not define any such property.

find(Function constructor, Object keys, Function(Object error, Object instance[, ...]) callback[, ...]);

find(String tableName, Object keys, Function(Object error, Object instance[, ...]) callback[, ...]);

Find a specific instance based on a primary key or unique key value.

You can use either of two versions of this function. In the first version, the constructor parameter
is the constructor function of a mapped domain object. Alternatively, you can use the tableName
instead, in the second variant of the function.

For both versions of find(), the keys may be of any type. A key must uniquely identify a single
row in the database. If keys is a simple type (number or string), then the parameter type must be the
same type as or compatible with the primary key type of the mapped object. Otherwise, properties are
taken from the parameter and matched against property names in the mapping. Primary key properties

739

Context

are used if all are present, and other properties ignored. If keys cannot be used identify the primary
key, property names corresponding to unique key columns are used instead. If no complete primary
or unique key properties are found, an error is reported. The returned object is loaded based on the
mapping and the current values in the database.

For multi-column primary or unique keys, all key fields must be set.

load(Object instance, Function(Object error) callback);

Load a specific instance by matching its primary or unique key with a database row, without creating a
new domain object. (This is unlike find(), which creates a new, mapped domain object.)

The instance must have its primary or unique key value or values set. The mapped values in the
object are loaded based on the current values in the database. Unmapped properties in the object are
not changed.

Primary key properties are used if all are present, and all other properties are ignored; otherwise,
property names corresponding to unique key columns are used. If no complete primary or unique key
properties can be found, an error is reported.

The callback function is called with the parameters provided when the operation has completed. The
error is the Node.js Error object; see Section 5.3.4, “Errors”, for more information.

persist(Object instance, Function(Object error) callback);

persist(Function constructor, Object values, Function(Object error) callback);

persist(String tableName, Object values, Function(Object error) callback);

Insert an instance into the database, unless the instance already exists in the database, in which case
an exception is reported to a callback function. Autogenerated values are present in the instance
when the callback is executed.

The role of an instance to be persisted can be fulfilled in any of three ways: by an instance object; by a
constructor, with parameters, for a mapped domain object; or by table name and values to be inserted.

In all three cases, the callback function is called with the parameters provided, if any, when the
operation has completed. The error is the Node.js Error object; see Section 5.3.4, “Errors”, for more
information.

remove(Object instance, Function(Object error) callback);

remove(Function constructor, Object keys, Function(Object error) callback);

remove(String tableName, Object keys, Function(Object error) callback);

Delete an instance of a class from the database by a primary or unique key.

There are three versions of remove(); these allow you to delete an instance by referring to the
instance object, to a constructor function, or by name of the table. The instance object
must contain key values that uniquely identify a single row in the database. Otherwise, if the keys
supplied with the function constructor or table name is a simple type (Number or String), then the
parameter type must be of either the same type as or a type compatible with the primary key type of
the mapped object. If keys is not a simple type, properties are taken from the parameter and matched
against property names in the mapping. Primary key properties are used if all are present, and other
properties ignored. If keys does not identify the primary key, property names corresponding to unique
key columnsare used instead. If no complete primary or unique key properties are found, an error is
reported to the callback.

All three versions of remove() call the callback function with the parameters provided, if any, when
the operation is complete. The error object is a Node.js Error; see Section 5.3.4, “Errors”, for error
codes.

740

Converter

update(Object instance, Function(Object error) callback);

update(Function constructor, keys, values, Function(Object error) callback);

update(String tableName, keys, values, Function(Object error) callback);

Update an instance in the database with the supplied values without retrieving it. The primary key
is used to determine which instance is updated. If the instance does not exist in the database, an
exception is reported in the callback.

As with the methods previously shown for persisting instances in and removing them from the
database, update() exists in three variations, which allow you to use the instance as an object, an
object constructor with keys, or by tableName and keys.

Unique key fields of the keys object determine which instance is to be updated. The values object
provides values to be updated. If the keys object contains all fields corresponding to the primary key,
the primary key identifies the instance. If not, unique keys are chosen is a nondeterministic manner.

Note

update() cannot be used to change the primary key.

save(Object instance, Function(Object error) callback);

save(Function constructor, Object values, Function(Object error) callback);

save(String tableName, Object values, Function(Object error) callback);

Save an instance in the database without checking for its existence. If the instance already exists, it
is updated (as if you had used update()); otherwise, it is created (as if persist() had been used).
The instance id property is used to determine which instance should be saved. As with update(),
persist(), and remove(), this method allows you to specify the instance using an object, object
constructor, or table name.

All three versions of the save() method call the callback function with any parameters provided
when the operation has been completed. The error is a Node.js Error object; see Section 5.3.4,
“Errors”, for error codes and messages.

Boolean isBatch()

Context also exposes an isBatch() instance method, which returns true if this Context is a
Batch, and false if it is a Session. isBatch() takes no arguments.

5.3.3 Converter

Converter classes convert between JavaScript types and MySQL types. If the user supplies a
JavaScript converter, it used to read and write to the database.

Converters have several purposes, including the following:

• To convert between MySQL DECIMAL types and a user's preferred JavaScript fixed-precision utility
library

• To convert between MySQL BIGINT types and a user's preferred JavaScript big number utility
library

• To serialize arbitrary application objects into character or binary columns

The ndb back end also uses converters to support SET and ENUM columns. (The mysql back end does
not use these.)

741

https://dev.mysql.com/doc/refman/8.4/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.4/en/integer-types.html
https://dev.mysql.com/doc/refman/8.4/en/set.html
https://dev.mysql.com/doc/refman/8.4/en/enum.html

Errors

A Converter class has the interface defined here:

function Converter() {}:

Converter.prototype = {
 "toDB" : function(obj) { },
 "fromDB" : function(val) { }
};

The Converter must implement the following two functions:

1. toDB(obj): Convert an application object obj into a form that can be stored in the database.

2. fromDB(val): Convert a value val read from the database into application object format.

Each function returns the result of the conversion.

Converter invocations are chained in the following ways:

• When writing to the database, first the registered FieldConverter, if any, is invoked. Later, any
registered TypeConverter is invoked.

• When reading from the database, first the registered TypeConverter, if any, is invoked. Later, any
registered FieldConverter is invoked.

5.3.4 Errors

The Errors object contains the error codes and message exposed by the MySQL Node.js adapters.

var Errors;

Errors = {
 /* Standard-defined classes, SQL-99 */
 "02000" : "No Data",

 // connection errors
 "08000" : "Connection error",
 "08001" : "Unable to connect to server",
 "08004" : "Connection refused",

 // data errors
 "22000" : "Data error",
 "22001" : "String too long",
 "22003" : "Numeric value out of range",
 "22008" : "Invalid datetime",

 // Constraint violations
 // 23000 includes both duplicate primary key and duplicate unique key
 "23000" : "Integrity Constraint Violation",

 // misc. errors
 "25000" : "Invalid Transaction State",
 "2C000" : "Invalid character set name",
 "42S02" : "Table not found",
 "IM001" : "Driver does not support this function",

 /* Implementation-defined classes (NDB) */
 "NDB00" : "Refer to ndb_error for details"
};

5.3.5 Mynode

This class is used to generate and obtain information about sessions (Session objects). To create an
instance, use the Node.js require() function with the driver name, like this:

var nosql = require("mysql-js");

742

Mynode

ConnectionProperties can be used to retrieve or set the connection properties for a given session.
You can obtain a complete set of of default connection properties for a given adapter using the
ConnectionProperties constructor, shown here, with the name of the adapter (a string) used as
the value of nameOrProperties:

ConnectionProperties(nameOrProperties);

You can also create your own ConnectionProperties object by supplying a list of property names
and values to a new ConnectionProperties object in place of the adapter name. Then you can use
this object to set the connection properties for a new session, as shown here:

var NdbConnectionProperties = {
 "implementation" : "ndb",

 "ndb_connectstring" : "localhost:1186",
 "database" : "test",
 "mysql_user" : "root",

 "ndb_connect_retries" : 4,
 "ndb_connect_delay" : 5,
 "ndb_connect_verbose" : 0,

 "linger_on_close_msec": 500,
 "use_ndb_async_api" : false,

 "ndb_session_pool_min" : 4,
 "ndb_session_pool_max" : 100,
};

var sharePath = '/usr/local/mysql/share/nodejs'; // path to share/nodejs
var nosql = require(sharePath);
var dbProperties = nosql.ConnectionProperties(NdbConnectionProperties);

It is also possible to obtain an object with the adapter's default connection properties, after which you
can update a selected number of these properties, then use the modified object to set connection
properties for the session, as shown here:

var sharePath = '/usr/local/mysql/share/nodejs'; // path to share/nodejs
var spi = require(sharePath + "/Adapter/impl/SPI"); // under share/nodejs

var serviceProvider = spi.getDBServiceProvider('ndb');
var NdbConnectionProperties = serviceProvider.getDefaultConnectionProperties();

NdbConnectionProperties.mysql_user = 'nodejs_user';
NdbConnectionProperties.database = 'my_nodejs_db';

var dbProperties = nosql.ConnectionProperties(NdbConnectionProperties);

The ConnectionProperties object includes the following properties:

• implementation: For Node.js applications using NDB Cluster, this is always “ndb”.

• ndb_connectstring: NDB Cluster connection string used to connect to the management server.

• database: Name of the MySQL database to use.

• mysql_user: MySQL user name.

• ndb_connect_retries: Number of times to retry a failed connection before timing out; use a
number less than 0 for this to keep trying the connection without ever stopping.

• ndb_connect_delay: Interval in seconds between connection retries.

• ndb_connect_verbose: 1 or 0; 1 enables extra console output during connection.

• linger_on_close_msec: When a client closes a DBConnectionPool, the underlying connection
is kept open for this many milliseconds in case another client tries to reuse it.

743

Mynode

• use_ndb_async_api: If true, some operations are executed using asynchronous calls for improved
concurrency. If false, the number of operations in transit is limited to one per worker thread.

• ndb_session_pool_min: Minimum number of DBSession objects per NdbConnectionPool.

• ndb_session_pool_max: Maximum number of DBSession objects per NdbConnectionPool.

Each NdbConnectionPool maintains a pool of DBSession objects, along with their underlying
Ndb objects. This parameter, together with ndb_session_pool_min, sets guidelines for the size of
that pool.

The TableMapping constructor is also visible as a top-level function. You can get the mapping either
by name, or by using an existing mapping:

TableMapping(tableName);

TableMapping(tableMapping);

openSession(properties, mappings, Function(err, Session) callback);

Connect to the data source and get a Session in the callback function. This is equivalent to calling
connect() (see later in this section), and then calling getSession() on the SessionFactory that
is returned in the callback function.

Note

Executing this method could result in connections being made to many other
nodes on the network, waiting for them to become ready, and making multiple
requests to them. You should avoid opening new sessions unnecessarily for this
reason.

The implementation member of the properties object determines the implementation of the
Session.

If mappings is undefined, null, or an empty array, no mappings are loaded or validated. In this case,
any required mappings are loaded and validated when needed during execution. If mappings contains
a string or a constructor function, the metadata for the table (or mapped table) is loaded from the
database and validated against the requirements of the mapping.

Multiple tables and constructors may be passed to openSession() as elements in an array.

connect(properties, mappings, Function(err, SessionFactory) callback);

Connect to the data source to obtain a SessionFactory in the callback function. In order to obtain
a Session, you must then call getSession() on this SessionFactory, whose implementation is
determined by the implementation member of the properties object.

If mappings is undefined, null, or an empty array, no mappings are loaded or validated. In this case,
any required mappings are loaded and validated when needed. If mappings contains a string or a
constructor function, the metadata for the table (or mapped table) is loaded from the database and
validated against the requirements of the mapping.

Multiple tables and constructors may be passed as elements in an array.

Array getOpenSessionFactories()

Get an array of all the SessionFactory objects that have been created by this module.

Note

The following functions are part of the public API but are not intended
for application use. They form part of the contract between Mynode and
SessionFactory.

744

Session

• Connection()

• getConnectionKey()

• getConnection()

• newConnection()

• deleteFactory()

5.3.6 Session

A session is the main user access path to the database. The Session class models such a session.

Session extends Context

getMapping(Object parameter, Function(Object err, Object mapping) callback);

Get the mappings for a table or class.

The parameter may be a table name, a mapped constructor function, or a domain object. This
function returns a fully resolved TableMapping object.

Batch createBatch()

Creates a new, empty batch for collecting multiple operations to be executed together. In an
application, you can invoke this function similarly to what is shown here:

var nosql = require("mysql-js");

var myBatch = nosql.createBatch();

Array listBatches():

Return an array whose elements consist of all current batches belonging to this session.

Transaction currentTransaction();

Get the current Transaction.

void close(Function(Object error) callback);

Close this session. Must be called when the session is no longer needed.

boolean isClosed();

Returns true if this session is closed.

void setLockMode(String lockMode);

Set the lock mode for read operations. This takes effect immediately and remains in effect until the
session is closed or this method is called again. lockMode must be one of 'EXCLUSIVE', 'SHARED',
OR 'NONE'.

Array listTables(databaseName, callback);

List all tables in database databaseName.

TableMetadata getTableMetadata(String databaseName, String tableName, callback);

Fetch metadata for table tableName in database databaseName.

745

SessionFactory

5.3.7 SessionFactory

This class is used to generate and manage sessions. A Session provides a context for database
transactions and operations. Each independent user should have its own session.

openSession(Object mappings, Function(Object error, Session session) callback);

Open a database session object. Table mappings are validated at the beginning of the session.
Resources required for sessions are allocated in advance; if those resources are not available, the
method returns an error in the callback.

Array getOpenSessions();

Get all open sessions that have been created by this SessionFactory.

close(Function(Error err));

Close the connection to the database. This ensures proper disconnection. The function passed in is
called when the close operation is complete.

5.3.8 TableMapping and FieldMapping

A TableMapping describes the mapping of a domain object in the application to a table stored in the
database. A default table mapping is one which maps each column in a table to a field of the same
name.

TableMapping = {
 String table : "" ,
 String database : "" ,
 boolean mapAllColumns : true,
 Array fields : null
};

The table and data members are the names of the table and database, respectively.
mapAllColumns, if true, creates a default FieldMapping for all columns not listed in fields, such
that that all columns not explicitly mapped are given a default mapping to a field of the same name.
fields holds an array of FieldMapping objects;this can also be a single FieldMapping.

 A FieldMapping describes a single field in a domain object. There is no public constructor for
this object; you can create a FieldMapping using TableMapping.mapField(), or you can use
FieldMapping literals can be used directly in the TableMapping constructor.

FieldMapping = {
 String fieldName : "" ,
 String columnName : "" ,
 Boolean persistent : true,
 Converter converter : null
};

fieldName and columnName are the names of the field and the column where this field are stored,
respectively, in the domain object. If persistent is true (the default), the field is stored in the
database. converter specifies a Converter class, if any, to use with this field (defaults to null). };

The TableMapping constructor can take either the name of a table (possibly qualified with the
database name) or a TableMapping literal.

TableMapping mapField(String fieldName, [String columnName], [Converter converter], [Boolean persistent])

Create a field mapping for a named field of a mapped object. The only mandatory parmeter is
fieldName, which provides the name a field in a JavaScript application object. The remaining
parameters are optional, and may appear in any order. The cyrrent TableMapping object is returned.

746

TableMetadata

columnName specifies the name of the database column that maps to this object field. If omitted,
columnName defaults to the same value as fieldName. A converter can be used to supply a
Converter class that performs custom conversion between JavaScript and database data types. The
default is null. persistent specifies whether the field is persisted to the database, and defaults to
true.

Important

If persistent is false, then the columnName and converter parameters
may not be used.

TableMapping applyToClass(Function constuctor)

Attach a TableMapping to a constructor for mapped objects. After this is done, any object created
from the constructor will qualify as a mapped instance, which several forms of the relevant Session
and Batch methods can be used.

For example, an application can construct an instance that is only partly complete, then use
Session.load() to populate it with all mapped fields from the database. After the application
modifies the instance, Session.save() saves it back. Similarly, Session.find() can take the
mapped constructor, retrieve an object based on keys, and then use the constructor to create a fully-
fledged domain object.

5.3.9 TableMetadata

A TableMetadata object represents a table. This is the object returned in the getTable() callback.
indexes[0] represents the table's intrinsic primary key.

TableMetadata = {
 database : "" , // Database name
 name : "" , // Table Name
 columns : {} , // ordered array of ColumnMetadata objects
 indexes : {} , // array of IndexMetadata objects
 partitionKey : {} , // ordered array of column numbers in the partition key
};

ColumnMetadata object represents a table column.

ColumnMetadata = {
 /* Required Properties */
 name : "" , // column name
 columnNumber : -1 , // position of column in table, and in columns array
 columnType : "" , // a ColumnTypes value
 isIntegral : false , // true if column is some variety of INTEGER type
 isNullable : false , // true if NULLABLE
 isInPrimaryKey : false , // true if column is part of PK
 isInPartitionKey : false , // true if column is part of partition key
 columnSpace : 0 , // buffer space required for encoded stored value
 defaultValue : null , // default value for column: null for default NULL;
 // undefined for no default; or a type-appropriate
 // value for column

 /* Optional Properties, depending on columnType */
 /* Group A: Numeric */
 isUnsigned : false , // true for UNSIGNED
 intSize : null , // 1,2,3,4, or 8 if column type is INT
 scale : 0 , // DECIMAL scale
 precision : 0 , // DECIMAL precision
 isAutoincrement : false , // true for AUTO_INCREMENT columns

 /* Group B: Non-numeric */
 length : 0 , // CHAR or VARCHAR length in characters
 isBinary : false , // true for BLOB/BINARY/VARBINARY

747

Transaction

 charsetNumber : 0 , // internal number of charset
 charsetName : "" , // name of charset
};

An IndexMetadata object represents a table index. The indexes array of TableMetadata contains
one IndexMetadata object per table index.

NDB implements a primary key as both an ordered index and a unique index, and might be viewed
through the NDB API adapter as two indexes, but through a MySQL adapter as a single index that is
both unique and ordered. We tolerate this discrepancy and note that the implementation in Adapter/
api must treat the two descriptions as equivalent.

IndexMetadata = {
 name : "" , // Index name; undefined for PK
 isPrimaryKey : true , // true for PK; otherwise undefined
 isUnique : true , // true or false
 isOrdered : true , // true or false; can scan if true
 columns : null , // an ordered array of column numbers
};

The ColumnMetaData object's columnType must be a valid ColumnTypes value, as shown in this
object's definition here:

ColumnTypes = [
 "TINYINT",
 "SMALLINT",
 "MEDIUMINT",
 "INT",
 "BIGINT",
 "FLOAT",
 "DOUBLE",
 "DECIMAL",
 "CHAR",
 "VARCHAR",
 "BLOB",
 "TEXT",
 "DATE",
 "TIME",
 "DATETIME",
 "YEAR",
 "TIMESTAMP",
 "BIT",
 "BINARY",
 "VARBINARY"
];

5.3.10 Transaction

A transaction is always either automatic or explicit. If it is automatic, (autocommit), every operation is
performed as part of a new transaction that is automatically committed.

Beginning, committing, and rolling back a transaction

begin();

Begin a transaction. No arguments are required. If a transaction is already active, an exception is
thrown.

commit(Function(Object error) callback);

Commit a transaction.

This method takes as its sole argument a callback function that returns an error object.

rollback(Function(Object error) callback);

748

https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html

Using the MySQL JavaScript Connector: Examples

Roll back a transaction. Errors are reported in the callback function.

Transaction information methods

Boolean isActive();

Determine whether or not a given transaction is currently active. Returns true if a transaction is active,
and false otherwise.

isActive() requires no arguments.

setRollbackOnly();

Mark the transaction as rollback-only. Once this is done, commit() rolls back the transaction and
throws an exception; rollback() rolls the transaction back, but does not throw an exception. To
mark a transaction as rollback-only, call the setRollbackOnly() method, as shown here.

This method is one-way; a transaction marked as rollback-only cannot be unmarked. Invoking
setRollbackOnly() while in autocommit mode throws an exception. This method requires no
arguments.

boolean getRollbackOnly();

Determine whether a transaction has been marked as rollback-only. Returns true if the transaction has
been so marked. setRollbackOnly() takes no arguments.

5.4 Using the MySQL JavaScript Connector: Examples

This section contains a number of examples performing basic database operations such as retrieving,
inserting, or deleting rows from a table. The source for these files ca also be found in share/nodejs/
samples, under the NDB Cluster installation directory.

5.4.1 Requirements for the Examples

The software requirements for running the examples found in the next few sections are as follows:

• A working Node.js installation

• Working installations of the ndb and mysql-js adapters

• The mysql-js adapter also requires a working installation of the node-mysql driver from https://
github.com/felixge/node-mysql/.

Section 5.2, “Installing the JavaScript Connector”, describes the installation process for all three of
these requirements.

Sample database, table, and data. All of the examples use a sample table named tweet, in the
test database. This table is defined as in the following CREATE TABLE statement:

CREATE TABLE IF NOT EXISTS tweet (
 id CHAR(36) NOT NULL PRIMARY KEY,
 author VARCHAR(20),
 message VARCHAR(140),
 date_created TIMESTAMP,

 KEY idx_btree_date_created (date_created),
 KEY idx_btree_author(author)
)
ENGINE=NDB;

The tweet table can be created by running the included SQL script create.sql in the mysql client.
You can do this by invoking mysql in your system shell, as shown here:

749

https://github.com/felixge/node-mysql/
https://github.com/felixge/node-mysql/
https://dev.mysql.com/doc/refman/8.4/en/create-table.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html
https://dev.mysql.com/doc/refman/8.4/en/mysql.html

Requirements for the Examples

$> mysql < create.sql

All of the examples also make use of two modules defined in the file lib.js, whose contents are
reproduced here:

FILE: lib.js

"use strict";

var udebug = unified_debug.getLogger("samples/lib.js");
var exec = require("child_process").exec;
var SQL = {};

/* Pseudo random UUID generator */

var randomUUID = function() {
 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g, function(c) {
 var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
 return v.toString(16);
 });
};

/* Tweet domain object model */

var Tweet = function(author, message) {
 this.id = randomUUID();
 this.date_created = new Date();
 this.author = author;
 this.message = message;
};

/* SQL DDL Utilities */

var runSQL = function(sqlPath, source, callback) {

 function childProcess(error, stdout, stderr) {
 udebug.log('harness runSQL process completed.');
 udebug.log(source + ' stdout: ' + stdout);
 udebug.log(source + ' stderr: ' + stderr);
 if (error !== null) {
 console.log(source + 'exec error: ' + error);
 } else {
 udebug.log(source + ' exec OK');
 }
 if(callback) {
 callback(error);
 }
 }

 var p = mysql_conn_properties;
 var cmd = 'mysql';
 if(p) {
 if(p.mysql_socket) { cmd += " --socket=" + p.mysql_socket; }
 else if(p.mysql_port) { cmd += " --port=" + p.mysql_port; }
 if(p.mysql_host) { cmd += " -h " + p.mysql_host; }
 if(p.mysql_user) { cmd += " -u " + p.mysql_user; }
 if(p.mysql_password) { cmd += " --password=" + p.mysql_password; }
 }
 cmd += ' <' + sqlPath;
 udebug.log('harness runSQL forking process...');
 var child = exec(cmd, childProcess);
};

SQL.create = function(suite, callback) {
 var sqlPath = path.join(suite.path, 'create.sql');
 udebug.log_detail("createSQL path: " + sqlPath);
 runSQL(sqlPath, 'createSQL', callback);
};

SQL.drop = function(suite, callback) {
 var sqlPath = path.join(suite.path, 'drop.sql');
 udebug.log_detail("dropSQL path: " + sqlPath);

750

Requirements for the Examples

 runSQL(sqlPath, 'dropSQL', callback);
};

/* Exports from this module */
exports.SQL = SQL;
exports.Tweet = Tweet;

Finally, a module used for random data generation is included in the file ndb_loader/lib/
RandomData.js, shown here:

FILE: RandomData.js

var assert = require("assert");

function RandomIntGenerator(min, max) {
 assert(max > min);
 var range = max - min;
 this.next = function() {
 var x = Math.floor(Math.random() * range);
 return min + x;
 };
}

function SequentialIntGenerator(startSeq) {
 var seq = startSeq - 1;
 this.next = function() {
 seq += 1;
 return seq;
 };
}

function RandomFloatGenerator(min, max, prec, scale) {
 assert(max > min);
 this.next = function() {
 var x = Math.random();
 /* fixme! */
 return 100 * x;
 };
}

function RandomCharacterGenerator() {
 var intGenerator = new RandomIntGenerator(32, 126);
 this.next = function() {
 return String.fromCharCode(intGenerator.next());
 };
}

function RandomVarcharGenerator(length) {
 var lengthGenerator = new RandomIntGenerator(0, length),
 characterGenerator = new RandomCharacterGenerator();
 this.next = function() {
 var i = 0,
 str = "",
 len = lengthGenerator.next();
 for(; i < len ; i++) str += characterGenerator.next();
 return str;
 }
}

function RandomCharGenerator(length) {
 var characterGenerator = new RandomCharacterGenerator();
 this.next = function() {
 var i = 0,
 str = "";
 for(; i < length ; i++) str += characterGenerator.next();

751

Requirements for the Examples

 return str;
 };
}

function RandomDateGenerator() {
 var generator = new RandomIntGenerator(0, Date.now());
 this.next = function() {
 return new Date(generator.next());
 };
}

function RandomGeneratorForColumn(column) {
 var g = {},
 min, max, bits;

 switch(column.columnType.toLocaleUpperCase()) {
 case "TINYINT":
 case "SMALLINT":
 case "MEDIUMINT":
 case "INT":
 case "BIGINT":
 if(column.isInPrimaryKey) {
 g = new SequentialIntGenerator(0);
 }
 else {
 bits = column.intSize * 8;
 max = column.isUnsigned ? Math.pow(2,bits)-1 : Math.pow(2, bits-1);
 min = column.isUnsigned ? 0 : 1 - max;
 g = new RandomIntGenerator(min, max);
 }
 break;
 case "FLOAT":
 case "DOUBLE":
 case "DECIMAL":
 g = new RandomFloatGenerator(0, 100000); // fixme
 break;
 case "CHAR":
 g = new RandomCharGenerator(column.length);
 break;
 case "VARCHAR":
 g = new RandomVarcharGenerator(column.length);
 break;
 case "TIMESTAMP":
 g = new RandomIntGenerator(0, Math.pow(2,32)-1);
 break;
 case "YEAR":
 g = new RandomIntGenerator(1900, 2155);
 break;
 case "DATE":
 case "TIME":
 case "DATETIME":
 g = new RandomDateGenerator();
 break;
 case "BLOB":
 case "TEXT":
 case "BIT":
 case "BINARY":
 case "VARBINARY":
 default:
 throw("UNSUPPORTED COLUMN TYPE " + column.columnType);
 break;
 }

 return g;
}

function RandomRowGenerator(table) {
 var i = 0,
 generators = [];

752

Example: Finding Rows

 for(; i < table.columns.length ; i++) {
 generators[i] = RandomGeneratorForColumn(table.columns[i]);
 }

 this.newRow = function() {
 var n, col, row = {};
 for(n = 0; n < table.columns.length ; n++) {
 col = table.columns[n];
 row[col.name] = generators[n].next();
 }
 return row;
 };
}

exports.RandomRowGenerator = RandomRowGenerator;
exports.RandomGeneratorForColumn = RandomGeneratorForColumn;

5.4.2 Example: Finding Rows
FILE: find.js

var nosql = require('..');
var lib = require('./lib.js');
var adapter = 'ndb';
global.mysql_conn_properties = {};

var user_args = [];

// *** program starts here ***

// analyze command line

var usageMessage =
 "Usage: node find key\n" +
 " -h or --help: print this message\n" +
 " -d or --debug: set the debug flag\n" +
 " --mysql_socket=value: set the mysql socket\n" +
 " --mysql_port=value: set the mysql port\n" +
 " --mysql_host=value: set the mysql host\n" +
 " --mysql_user=value: set the mysql user\n" +
 "--mysql_password=value: set the mysql password\n" +
 " --detail: set the detail debug flag\n" +
 " --adapter=<adapter>: run on the named adapter (e.g. ndb or mysql)\n"
 ;

// handle command line arguments
var i, exit, val, values;

for(i = 2; i < process.argv.length ; i++) {
 val = process.argv[i];
 switch (val) {
 case '--debug':
 case '-d':
 unified_debug.on();
 unified_debug.level_debug();
 break;
 case '--detail':
 unified_debug.on();
 unified_debug.level_detail();
 break;
 case '--help':
 case '-h':
 exit = true;
 break;
 default:
 values = val.split('=');
 if (values.length === 2) {
 switch (values[0]) {
 case '--adapter':
 adapter = values[1];
 break;
 case '--mysql_socket':

753

Inserting Rows

 mysql_conn_properties.mysql_socket = values[1];
 break;
 case '--mysql_port':
 mysql_conn_properties.mysql_port = values[1];
 break;
 case '--mysql_host':
 mysql_conn_properties.mysql_host = values[1];
 break;
 case '--mysql_user':
 mysql_conn_properties.mysql_user = values[1];
 break;
 case '--mysql_password':
 mysql_conn_properties.mysql_password = values[1];
 break;
 default:
 console.log('Invalid option ' + val);
 exit = true;
 }
 } else {
 user_args.push(val);
 }
 }
}

if (user_args.length !== 1) {
 console.log(usageMessage);
 process.exit(0);
};

if (exit) {
 console.log(usageMessage);
 process.exit(0);
}

console.log('Running find with adapter', adapter, user_args);
//create a database properties object

var dbProperties = nosql.ConnectionProperties(adapter);

// create a basic mapping
var annotations = new nosql.TableMapping('tweet').applyToClass(lib.Tweet);

//check results of find
var onFind = function(err, object) {
 console.log('onFind.');
 if (err) {
 console.log(err);
 } else {
 console.log('Found: ' + JSON.stringify(object));
 }
 process.exit(0);
};

// find an object
var onSession = function(err, session) {
 if (err) {
 console.log('Error onSession.');
 console.log(err);
 process.exit(0);
 } else {
 session.find(lib.Tweet, user_args[0], onFind);
 }
};

// connect to the database
nosql.openSession(dbProperties, annotations, onSession);

5.4.3 Inserting Rows
FILE: insert.js

754

Inserting Rows

var nosql = require('..');
var lib = require('./lib.js');
var adapter = 'ndb';
global.mysql_conn_properties = {};

var user_args = [];
// *** program starts here ***

// analyze command line

var usageMessage =
 "Usage: node insert author message\n" +
 " -h or --help: print this message\n" +
 " -d or --debug: set the debug flag\n" +
 " --mysql_socket=value: set the mysql socket\n" +
 " --mysql_port=value: set the mysql port\n" +
 " --mysql_host=value: set the mysql host\n" +
 " --mysql_user=value: set the mysql user\n" +
 "--mysql_password=value: set the mysql password\n" +
 " --detail: set the detail debug flag\n" +
 " --adapter=<adapter>: run on the named adapter (e.g. ndb or mysql)\n"
 ;

// handle command line arguments
var i, exit, val, values;

for(i = 2; i < process.argv.length ; i++) {
 val = process.argv[i];
 switch (val) {
 case '--debug':
 case '-d':
 unified_debug.on();
 unified_debug.level_debug();
 break;
 case '--detail':
 unified_debug.on();
 unified_debug.level_detail();
 break;
 case '--help':
 case '-h':
 exit = true;
 break;
 default:
 values = val.split('=');
 if (values.length === 2) {
 switch (values[0]) {
 case '--adapter':
 adapter = values[1];
 break;
 case '--mysql_socket':
 mysql_conn_properties.mysql_socket = values[1];
 break;
 case '--mysql_port':
 mysql_conn_properties.mysql_port = values[1];
 break;
 case '--mysql_host':
 mysql_conn_properties.mysql_host = values[1];
 break;
 case '--mysql_user':
 mysql_conn_properties.mysql_user = values[1];
 break;
 case '--mysql_password':
 mysql_conn_properties.mysql_password = values[1];
 break;
 default:
 console.log('Invalid option ' + val);
 exit = true;
 }
 } else {
 user_args.push(val);
 }
 }

755

Deleting Rows

}

if (user_args.length !== 2) {
 console.log(usageMessage);
 process.exit(0);
};

if (exit) {
 console.log(usageMessage);
 process.exit(0);
}

console.log('Running insert with adapter', adapter, user_args);
//create a database properties object

var dbProperties = nosql.ConnectionProperties(adapter);

// create a basic mapping
var annotations = new nosql.TableMapping('tweet').applyToClass(lib.Tweet);

//check results of insert
var onInsert = function(err, object) {
 console.log('onInsert.');
 if (err) {
 console.log(err);
 } else {
 console.log('Inserted: ' + JSON.stringify(object));
 }
 process.exit(0);
};

// insert an object
var onSession = function(err, session) {
 if (err) {
 console.log('Error onSession.');
 console.log(err);
 process.exit(0);
 } else {
 var data = new lib.Tweet(user_args[0], user_args[1]);
 session.persist(data, onInsert, data);
 }
};

// connect to the database
nosql.openSession(dbProperties, annotations, onSession);

5.4.4 Deleting Rows
FILE: delete.js

var nosql = require('..');
var lib = require('./lib.js');
var adapter = 'ndb';
global.mysql_conn_properties = {};

var user_args = [];
// *** program starts here ***

// analyze command line

var usageMessage =
 "Usage: node delete message-id\n" +
 " -h or --help: print this message\n" +
 " -d or --debug: set the debug flag\n" +
 " --mysql_socket=value: set the mysql socket\n" +
 " --mysql_port=value: set the mysql port\n" +
 " --mysql_host=value: set the mysql host\n" +
 " --mysql_user=value: set the mysql user\n" +
 "--mysql_password=value: set the mysql password\n" +
 " --detail: set the detail debug flag\n" +
 " --adapter=<adapter>: run on the named adapter (e.g. ndb or mysql)\n"

756

Deleting Rows

 ;

// handle command line arguments
var i, exit, val, values;

for(i = 2; i < process.argv.length ; i++) {
 val = process.argv[i];
 switch (val) {
 case '--debug':
 case '-d':
 unified_debug.on();
 unified_debug.level_debug();
 break;
 case '--detail':
 unified_debug.on();
 unified_debug.level_detail();
 break;
 case '--help':
 case '-h':
 exit = true;
 break;
 default:
 values = val.split('=');
 if (values.length === 2) {
 switch (values[0]) {
 case '--adapter':
 adapter = values[1];
 break;
 case '--mysql_socket':
 mysql_conn_properties.mysql_socket = values[1];
 break;
 case '--mysql_port':
 mysql_conn_properties.mysql_port = values[1];
 break;
 case '--mysql_host':
 mysql_conn_properties.mysql_host = values[1];
 break;
 case '--mysql_user':
 mysql_conn_properties.mysql_user = values[1];
 break;
 case '--mysql_password':
 mysql_conn_properties.mysql_password = values[1];
 break;
 default:
 console.log('Invalid option ' + val);
 exit = true;
 }
 } else {
 user_args.push(val);
 }
 }
}

if (user_args.length !== 1) {
 console.log(usageMessage);
 process.exit(0);
};

if (exit) {
 console.log(usageMessage);
 process.exit(0);
}

console.log('Running delete with adapter', adapter, user_args);
//create a database properties object

var dbProperties = nosql.ConnectionProperties(adapter);

// create a basic mapping
var annotations = new nosql.TableMapping('tweet').applyToClass(lib.Tweet);

// check results of delete

757

Deleting Rows

var onDelete = function(err, object) {
 console.log('onDelete.');
 if (err) {
 console.log(err);
 } else {
 console.log('Deleted: ' + JSON.stringify(object));
 }
 process.exit(0);
};

// delete an object
var onSession = function(err, session) {
 if (err) {
 console.log('Error onSession.');
 console.log(err);
 process.exit(0);
 } else {
 var tweet = new lib.Tweet();
 tweet.id = user_args[0];
 session.remove(tweet, onDelete, user_args[0]);
 }
};

// connect to the database
nosql.openSession(dbProperties, annotations, onSession);

758

Index

A
AbortOption (NdbOperation data type), 210
ACC

and NDB Kernel, 13
defined, 4

Access Manager
defined, 4

ActiveHook (NdbBlob data type), 144
addColumn() (method of Index), 97
addColumn() (method of Table), 301
addColumnName() (method of Index), 98
addColumnNames() (method of Index), 98
addEventColumn() (method of Event), 77
addEventColumns() (method of Event), 78
addTableEvent() (method of Event), 78
add_reg() (method of NdbInterpretedCode), 183
add_reg() (method of NdbOperation), 210
add_val() (method of NdbInterpretedCode), 183
aggregate() (method of Table), 301
allowsNull (ClusterJ), 721
and (ClusterJ), 729
Annotations (ClusterJ)

Column, 721
Columns, 722
Extension, 722
Extensions, 723
Index, 723
Indices, 724
Lob, 724
NotPersistent, 725
PartitionKey, 725
PersistenceCapable, 726
Persistent, 727
PrimaryKey, 728
Projection, 728

API documentation
JavaScript, 739

API node
defined, 3

append (ClusterJ), 699
application-level partitioning, 15
applications

structure, 5
applyToClass() (method of TableMapping), 747
aRef() (method of NdbRecAttr), 244
ArrayType (Column data type), 38
AutoGrowSpecification

NDB API structure, 152

B
backup

defined, 3
Batch class (Connector for JavaScript), 739
Batch.clear(), 739
Batch.execute(), 739

Batch.getSession(), 739
begin (ClusterJ), 720
begin() (method of NdbScanFilter), 252
begin() (method of Transaction), 748
beginSchemaTrans() (method of Dictionary), 60
between (ClusterJ), 730
BinaryCondition (NdbScanFilter data type), 252
BLOB handling

example, 566
example (using NdbRecord), 573

blobsFirstBlob() (method of NdbBlob), 144
blobsNextBlob() (method of NdbBlob), 144
BoundType (NdbIndexScanOperation data type), 173
branch_col_and_mask_eq_mask() (method of
NdbInterpretedCode), 184
branch_col_and_mask_eq_mask() (method of
NdbOperation), 216
branch_col_and_mask_eq_zero() (method of
NdbInterpretedCode), 184
branch_col_and_mask_eq_zero() (method of
NdbOperation), 217
branch_col_and_mask_ne_mask() (method of
NdbInterpretedCode), 185
branch_col_and_mask_ne_mask() (method of
NdbOperation), 216
branch_col_and_mask_ne_zero() (method of
NdbInterpretedCode), 185
branch_col_and_mask_ne_zero() (method of
NdbOperation), 217
branch_col_eq() (method of NdbInterpretedCode), 186
branch_col_eq() (method of NdbOperation), 211
branch_col_eq_null() (method of NdbInterpretedCode),
187
branch_col_eq_null() (method of NdbOperation), 211
branch_col_eq_param() (method of
NdbInterpretedCode), 187
branch_col_ge() (method of NdbInterpretedCode), 187
branch_col_ge() (method of NdbOperation), 214
branch_col_gt() (method of NdbInterpretedCode), 189
branch_col_gt() (method of NdbOperation), 213
branch_col_le() (method of NdbInterpretedCode), 190
branch_col_le() (method of NdbOperation), 213
branch_col_le_param() (method of
NdbInterpretedCode), 188, 191
branch_col_lg_param() (method of
NdbInterpretedCode), 190
branch_col_like() (method of NdbInterpretedCode), 191
branch_col_like() (method of NdbOperation), 215
branch_col_lt() (method of NdbInterpretedCode), 192
branch_col_lt() (method of NdbOperation), 212
branch_col_lt_param() (method of
NdbInterpretedCode), 193
branch_col_ne() (method of NdbInterpretedCode), 193
branch_col_ne() (method of NdbOperation), 212
branch_col_ne_null() (method of NdbInterpretedCode),
194
branch_col_ne_null() (method of NdbOperation), 211

759

branch_col_ne_param() (method of
NdbInterpretedCode), 194
branch_col_notlike() (method of NdbInterpretedCode),
195
branch_col_notlike() (method of NdbOperation), 215
branch_eq() (method of NdbInterpretedCode), 195
branch_eq() (method of NdbOperation), 220
branch_eq_null() (method of NdbInterpretedCode), 195
branch_eq_null() (method of NdbOperation), 221
branch_ge() (method of NdbInterpretedCode), 196
branch_ge() (method of NdbOperation), 218
branch_gt() (method of NdbInterpretedCode), 196
branch_gt() (method of NdbOperation), 218
branch_label() (method of NdbInterpretedCode), 196
branch_label() (method of NdbOperation), 221
branch_le() (method of NdbInterpretedCode), 197
branch_le() (method of NdbOperation), 219
branch_lt() (method of NdbInterpretedCode), 197
branch_lt() (method of NdbOperation), 219
branch_ne() (method of NdbInterpretedCode), 197
branch_ne() (method of NdbOperation), 220
branch_ne_null() (method of NdbInterpretedCode), 197
branch_ne_null() (method of NdbOperation), 221

C
call_sub() (method of NdbInterpretedCode), 198
call_sub() (method of NdbOperation), 221
charsetName (ClusterJ), 687
char_value() (method of NdbRecAttr), 244
checkpoint

defined, 3
Classes (ClusterJ)

ClusterJDatastoreException.Classification, 678
ClusterJHelper, 682
ColumnType, 688
DynamicObject, 702
LockMode, 702
NullValue, 725
PersistenceModifier, 726
Query.Ordering, 707
SessionFactory.State, 719

Classification (NdbError data type), 159
clear() (method of Batch), 739
clearError() (method of NdbEventOperation)
(DEPRECATED), 163
clone() (method of NdbRecAttr), 245
close (ClusterJ), 710, 717
close() (method of NdbBlob), 144
close() (method of NdbScanOperation), 262
close() (method of NdbTransaction), 275
close() (method of Session), 745
close() (method of SessionFactory), 746
closeTransaction() (method of Ndb), 111
ClusterJ

defined, 661
ClusterJDatastoreException (ClusterJ), 677
ClusterJDatastoreException.Classification (ClusterJ),
678

ClusterJException (ClusterJ), 680
ClusterJFatalException (ClusterJ), 681
ClusterJFatalInternalException (ClusterJ), 681
ClusterJFatalUserException (ClusterJ), 682
ClusterJHelper (ClusterJ), 682
ClusterJUserException (ClusterJ), 686
cmp() (method of NdbScanFilter), 253
cmp_param() (method of NdbScanFilter), 254
coding examples

MGM API, 655
NDB API, 474

Column
and NDB Cluster replication, 38
NDB API class, 34

Column (ClusterJ), 721
column (ClusterJ), 726, 727, 728
Column::ArrayType, 38
Column::equal(), 39
Column::getArrayType(), 39
Column::getAutoIncrement(), 39
Column::getCharset(), 39
Column::getColumnNo(), 40
Column::getDefaultValue(), 40
Column::getInlineSize(), 40
Column::getLength(), 41
Column::getName(), 41
Column::getNullable(), 41
Column::getPartitionKey(), 41
Column::getPartSize(), 42
Column::getPrecision(), 42
Column::getPrimaryKey(), 43
Column::getSizeInBytesForRecord(), 43
Column::getStorageType(), 44
Column::getStripeSize(), 44
Column::getType(), 44
Column::setArrayType(), 44
Column::setAutoIncrement(), 44
Column::setAutoIncrementInitialValue(), 45
Column::setCharset(), 45
Column::setDefaultValue(), 45
Column::setLength(), 46
Column::setName(), 46
Column::setNullable(), 46
Column::setPartitionKey(), 47
Column::setPartSize(), 47
Column::setPrecision(), 48
Column::setPrimaryKey(), 48
Column::setScale(), 48
Column::setStorageType(), 49
Column::setStripeSize(), 48
Column::setType(), 49
Column::StorageType, 49
Column::Type, 50
ColumnMetadata (ClusterJ), 686
ColumnMetadata class (Connector for JavaScript), 747
Columns (ClusterJ), 722
columns (ClusterJ), 724, 726, 728
columnType (ClusterJ), 687

760

ColumnType (ClusterJ), 688
Commit

defined, 6
commit (ClusterJ), 720
commit() (method of Transaction), 748
commitStatus() (method of NdbTransaction), 275
CommitStatusType (NdbTransaction data type), 276
computeHash() (method of Ndb), 111
concurrency control, 14
configure_tls() (method of Ndb_cluster_connection),
132
connect() (method of Mynode), 744
connect() (method of Ndb_cluster_connection), 132
connecting to multiple clusters

example, 486, 657
ConnectionProperties() object (Node.js), 742
Connector for JavaScript, 737

Batch class, 739
ColumnMetadata class, 747
concepts, 737
Context class, 739
Converter class, 741
CPU architecture, 738
Errors, 742
examples, 749
FieldMapping class, 746
installing, 737
Mynode, 742
prerequisites, 738
Session class, 745
SessionFactory class, 746
TableMapping class, 746
TableMetadata class, 747
test program, 738
Transaction class, 748

Connector/J
known issues, 736

Constants (ClusterJ), 690
Context class (Connector for JavaScript), 739
Context.find(), 739
Context.isBatch(), 741
Context.load(), 740
Context.persist(), 740
Context.remove(), 740
Context.save(), 741
Context.update(), 741
Converter class (Connector for JavaScript), 741
copy() (method of NdbInterpretedCode), 198
CPU architecture

Connector for JavaScript, 738
createBatch() (method of Session), 745
createDatafile() (method of Dictionary), 60
createEvent() (method of Dictionary), 61
createForeignKey() (method of Dictionary), 61
createHashMap() (method of Dictionary), 61
createIndex() (method of Dictionary), 61
createLogfileGroup() (method of Dictionary), 62
createQuery (ClusterJ), 710

createQueryDefinition (ClusterJ), 732
createRecord() (method of Dictionary), 62
createTable() (method of Dictionary), 63
createTablespace() (method of Dictionary), 63
createUndofile() (method of Dictionary), 63
currentState (ClusterJ), 717
currentTransaction (ClusterJ), 710
currentTransaction() (method of Session), 745

D
data node

defined, 3
Datafile

NDB API class, 51
Datafile::getFileNo(), 53
Datafile::getFree(), 53
Datafile::getNode(), 53
Datafile::getObjectId(), 54
Datafile::getObjectStatus(), 54
Datafile::getObjectVersion(), 54
Datafile::getPath(), 54
Datafile::getSize(), 54
Datafile::getTablespace(), 55
Datafile::getTablespaceId(), 55
Datafile::setNode(), 55
Datafile::setPath(), 55
Datafile::setSize(), 56
Datafile::setTablespace(), 56
Dbug (ClusterJ), 698
debug (ClusterJ), 700, 700
defaultValue (ClusterJ), 722
DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
(ClusterJ), 693
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
(ClusterJ), 693
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START
(ClusterJ), 693
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
(ClusterJ), 693
DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY
(ClusterJ), 693
DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES
(ClusterJ), 693
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
(ClusterJ), 693
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
(ClusterJ), 694
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
(ClusterJ), 694
DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE
(ClusterJ), 694
DEFAULT_PROPERTY_CLUSTER_DATABASE
(ClusterJ), 694
DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS
(ClusterJ), 694
DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
(ClusterJ), 694

761

DEFAULT_PROPERTY_CONNECTION_POOL_SIZE
(ClusterJ), 694
DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT
(ClusterJ), 694
def_label() (method of NdbInterpretedCode), 198
def_label() (method of NdbOperation), 222
def_sub() (method of NdbInterpretedCode), 198
def_subroutine() (method of NdbOperation), 222
deleteCurrentTuple() (method of NdbScanOperation),
262
deletePersistent (ClusterJ), 710, 710
deletePersistentAll (ClusterJ), 705, 711, 711
deleteTuple() (method of NdbIndexOperation), 171
deleteTuple() (method of NdbOperation), 222
deleteTuple() (method of NdbTransaction), 276
Dictionary

NDB API class, 56
Dictionary::beginSchemaTrans(), 60
Dictionary::create*() methods

and NDB Cluster replication, 59
Dictionary::createDatafile(), 60
Dictionary::createEvent(), 61
Dictionary::createForeignKey(), 61
Dictionary::createHashMap(), 61
Dictionary::createIndex(), 61
Dictionary::createLogfileGroup(), 62
Dictionary::createRecord(), 62
Dictionary::createTable(), 63
Dictionary::createTablespace(), 63
Dictionary::createUndofile(), 63
Dictionary::dropDatafile(), 64
Dictionary::dropEvent(), 64
Dictionary::dropForeignKey(), 64
Dictionary::dropIndex(), 64
Dictionary::dropLogfileGroup(), 65
Dictionary::dropTable(), 65
Dictionary::dropTablespace(), 65
Dictionary::dropUndofile(), 66
Dictionary::endSchemaTrans(), 66
Dictionary::getDatafile(), 66
Dictionary::getDefaultHashMap(), 67
Dictionary::getEvent(), 67
Dictionary::getForeignKey(), 67
Dictionary::getHashMap(), 68
Dictionary::getIndex(), 68
Dictionary::getLogfileGroup(), 68
Dictionary::getNdbError(), 69
Dictionary::getTable(), 69
Dictionary::getTablespace(), 69
Dictionary::getUndofile(), 69
Dictionary::hasSchemaTrans(), 70
Dictionary::initDefaultHashMap(), 70
Dictionary::invalidateIndex(), 70
Dictionary::invalidateTable(), 71
Dictionary::List

NDB API class, 106
Dictionary::List::Element

NDB API structure, 74

Dictionary::listIndexes(), 71
Dictionary::listObjects(), 72
Dictionary::prepareHashMap(), 72
Dictionary::releaseEvent(), 73
Dictionary::releaseRecord(), 73
Dictionary::removeCachedIndex(), 73
Dictionary::removeCachedTable(), 73
Dictionary::SchemaTransFlag, 66
distribution awareness, 127
double_value() (method of NdbRecAttr), 245
dropDatafile() (method of Dictionary), 64
dropEvent() (method of Dictionary), 64
dropEventOperation() (method of Ndb), 112
dropForeignKey() (method of Dictionary), 64
dropIndex() (method of Dictionary), 64
dropLogfileGroup() (method of Dictionary), 65
dropTable() (method of Dictionary), 65
dropTablespace() (method of Dictionary), 65
dropUndofile() (method of Dictionary), 66
DynamicObject (ClusterJ), 702
DynamicObjectDelegate (ClusterJ), 702

E
Element

NDB API structure, 74
Elements (ClusterJ)

allowsNull, 721
column, 726, 727, 728
columns, 724, 726, 728
defaultValue, 722
extensions, 727
key, 723
name, 722, 724, 728
nullValue, 727
primaryKey, 727
unique, 724
value, 722, 723, 723, 724
vendorName, 723

end() (method of NdbScanFilter), 255
endSchemaTrans() (method of Dictionary), 66
end_of_bound() (method of NdbIndexScanOperation),
173
ENV_CLUSTERJ_LOGGER_FACTORY_NAME
(ClusterJ), 695
eq() (method of NdbScanFilter), 255
equal (ClusterJ), 730
equal() (method of Column), 39
equal() (method of HashMap), 95
equal() (method of NdbOperation), 222
equal() (method of Table), 302
error classification (defined), 157
error classifications, 473
error code (defined), 158
Error code types, 334
Error codes, 334
error detail message (defined), 158
error handling

example, 491

762

overview, 11
error message (defined), 158
Error status, 157
error types

in applications, 491
errors

classifying, 473
MGM API, 653
NDB API, 330

Errors (Connector for JavaScript), 742
ER_DDL, 84
Event

NDB API class, 74
event reporting

DDL, 84
event subscriptions

lifetime, 112
Event::addEventColumn(), 77
Event::addEventColumns(), 78
Event::addTableEvent(), 78
Event::EventDurability, 79
Event::EventReport, 80
Event::getDurability(), 81
Event::getEventColumn(), 81
Event::getName(), 81
Event::getNoOfEventColumns(), 81
Event::getObjectId(), 82
Event::getObjectStatus(), 81
Event::getObjectVersion(), 82
Event::getReport(), 82
Event::getTable(), 82
Event::getTableEvent(), 83
Event::getTableName(), 83
Event::mergeEvents(), 83
Event::setDurability(), 83
Event::setName(), 84
Event::setReport(), 84
Event::setTable(), 84
Event::TableEvent, 85
EventBufferMemoryUsage

NDB API structure, 112
EventDurability (Event data type), 79
EventReport (Event data type), 80
events

example, 657
handling

example, 562
examples

Connector for JavaScript, 749
Exceptions (ClusterJ)

ClusterJDatastoreException, 677
ClusterJException, 680
ClusterJFatalException, 681
ClusterJFatalInternalException, 681
ClusterJFatalUserException, 682
ClusterJUserException, 686

ExecType (NdbTransaction data type), 277
execute (ClusterJ), 705, 705, 705

execute() (method of Batch), 739
execute() (method of NdbEventOperation), 163
execute() (method of NdbTransaction), 277
executePendingBlobOps() (method of
NdbTransaction), 278
explain (ClusterJ), 705
Extension (ClusterJ), 722
Extensions (ClusterJ), 723
extensions (ClusterJ), 727

F
FieldMapping class (Connector for JavaScript), 746
Fields (ClusterJ)

DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES,
693
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE,
693
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START,
693
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP,
693
DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY,
693
DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES,
693
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER,
693
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE,
694
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM,
694
DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE,
694
DEFAULT_PROPERTY_CLUSTER_DATABASE,
694
DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS,
694
DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD,
694
DEFAULT_PROPERTY_CONNECTION_POOL_SIZE,
694
DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT,
694
ENV_CLUSTERJ_LOGGER_FACTORY_NAME,
695
INDEX_USED, 704
PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES,
695
PROPERTY_CLUSTER_CONNECTION_SERVICE,
696
PROPERTY_CLUSTER_CONNECTSTRING, 696
PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE,
695
PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START,
695
PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP,
695
PROPERTY_CLUSTER_CONNECT_DELAY, 695

763

PROPERTY_CLUSTER_CONNECT_RETRIES, 695
PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER,
695
PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE,
696
PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM,
696
PROPERTY_CLUSTER_CONNECT_VERBOSE,
696
PROPERTY_CLUSTER_DATABASE, 696
PROPERTY_CLUSTER_MAX_TRANSACTIONS,
696
PROPERTY_CONNECTION_POOL_NODEIDS, 696
PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD,
697
PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS,
697
PROPERTY_CONNECTION_POOL_SIZE, 697
PROPERTY_CONNECTION_RECONNECT_TIMEOUT,
697
PROPERTY_DEFER_CHANGES, 697
PROPERTY_JDBC_DRIVER_NAME, 697
PROPERTY_JDBC_PASSWORD, 698
PROPERTY_JDBC_URL, 698
PROPERTY_JDBC_USERNAME, 698
SCAN_TYPE, 704
SCAN_TYPE_INDEX_SCAN, 704
SCAN_TYPE_PRIMARY_KEY, 704
SCAN_TYPE_TABLE_SCAN, 704
SCAN_TYPE_UNIQUE_KEY, 705
SESSION_FACTORY_SERVICE_CLASS_NAME,
698
SESSION_FACTORY_SERVICE_FILE_NAME, 698

finalise() (method of NdbInterpretedCode), 199
find (ClusterJ), 711
find() (method of Context), 739
float_value() (method of NdbRecAttr), 245
flush (ClusterJ), 700, 711
ForeignKey

NDB API class, 85
ForeignKey(), 87
ForeignKey() (ForeignKey constructor), 87
ForeignKey::getChildColumnCount(), 89
ForeignKey::getChildColumnNo(), 90
ForeignKey::getChildIndex(), 89
ForeignKey::getChildTable(), 88
ForeignKey::getName(), 88
ForeignKey::getObjectId(), 92
ForeignKey::getObjectStatus(), 92
ForeignKey::getObjectVersion(), 92
ForeignKey::getOnDeleteAction(), 90
ForeignKey::getOnUpdateAction(), 90
ForeignKey::getParentColumnCount(), 89
ForeignKey::getParentColumnNo(), 89
ForeignKey::getParentIndex(), 89
ForeignKey::getParentTable(), 88
ForeignKey::setChild(), 91
ForeignKey::setName(), 90

ForeignKey::setOnDeleteAction(), 91
ForeignKey::setOnUpdateAction(), 91
ForeignKey::setParent(), 91
found (ClusterJ), 712
fragment

defined, 4
fragment replica

defined, 4
FragmentType (Object data type), 292

G
GCP (Global Checkpoint)

defined, 3
ge() (method of NdbScanFilter), 257
get (ClusterJ), 700, 734
getArrayType() (method of Column), 39
getAutoGrowSpecification() (method of LogfileGroup),
103
getAutoGrowSpecification() (method of Tablespace),
323
getAutoIncrement() (method of Column), 39
getBlobEventName() (method of NdbBlob), 145
getBlobHandle() (method of NdbEventOperation), 164
getBlobHandle() (method of NdbOperation), 224
getBlobTableName() (method of NdbBlob), 145
getBooleanProperty (ClusterJ), 683
getCharset() (method of Column), 39
getChildColumnCount() (method of ForeignKey), 89
getChildColumnNo() (method of ForeignKey), 90
getChildIndex() (method of ForeignKey), 89
getChildTable() (method of ForeignKey), 88
getClassification (ClusterJ), 678
getCode (ClusterJ), 678
getColumn() (method of Index), 98
getColumn() (method of NdbBlob), 146
getColumn() (method of NdbRecAttr), 246
getColumn() (method of Table), 302
getColumnNo() (method of Column), 40
getConnectionPoolSessionCounts (ClusterJ), 717
getDatabaseName() (method of Ndb), 113
getDatabaseSchemaName() (method of Ndb), 113
getDatafile() (method of Dictionary), 66
getDefaultHashMap() (method of Dictionary), 67
getDefaultLogfileGroup() (method of Tablespace), 323
getDefaultLogfileGroupId() (method of Tablespace),
323
getDefaultNoPartitionsFlag() (method of Table), 303
getDefaultValue() (method of Column), 40
getDescending() (method of NdbIndexScanOperation),
174
getDictionary() (method of Ndb), 113
getDurability() (method of Event), 81
getEmptyBitmask() (method of NdbDictionary), 153
getEpoch() (method of NdbEventOperation), 164
getEvent() (method of Dictionary), 67
getEventColumn() (method of Event), 81
getEventType() (method of NdbEventOperation)
(DEPRECATED), 164

764

getEventType2() (method of NdbEventOperation), 165
getExtentSize() (method of Tablespace), 324
getExtraMetadata() (method of Table), 303
getFileNo() (method of Datafile), 53
getFileNo() (method of Undofile) (OBSOLETE), 327
getFirstAttrId() (method of NdbDictionary), 153
getForceVarPart() (method of Table), 303
getForeignKey() (method of Dictionary), 67
getFragmentCount() (method of Table), 304
getFragmentData() (method of Table), 304
getFragmentDataLen() (method of Table), 304
getFragmentNodes() (method of Table), 304
getFragmentType() (method of Table), 305
getFree() (method of Datafile), 53
getFrmData() (method of Table), 305
getFrmLength() (method of Table), 305
getGCI() (method of NdbEventOperation)
(DEPRECATED), 165
getGCI() (method of NdbTransaction), 279
getGCIEventOperations() (method of Ndb)
(DEPRECATED), 114
getHashMap() (method of Dictionary), 68
getHashMap() (method of Table), 306
getHighestQueuedEpoch() (method of Ndb), 115
getIndex() (method of Dictionary), 68
getIndex() (method of NdbIndexOperation), 171
getInlineSize() (method of Column), 40
getKValue() (method of Table), 306
getLatestGCI() (method of Ndb), 115
getLatestGCI() (method of NdbEventOperation)
(DEPRECATED), 165
getLength() (method of Column), 41
getLength() (method of NdbBlob), 146
getLinearFlag() (method of Table), 306
getLockHandle() (method of NdbOperation), 224
getLockMode() (method of NdbOperation), 225
getLogfileGroup() (method of Dictionary), 68
getLogfileGroup() (method of Undofile), 328
getLogfileGroupId() (method of Undofile), 328
getLogging() (method of Index), 98
getLogging() (method of Table), 306
getMapLen() (method of HashMap), 94
getMapping() (method of Session), 745
getMapValues() (method of HashMap), 94
getMaxLoadFactor() (method of Table), 307
getMaxPendingBlobReadBytes() (method of
NdbTransaction), 279
getMaxPendingBlobWriteBytes() (method of
NdbTransaction), 279
getMaxRows() (method of Table), 307
getMinLoadFactor() (method of Table), 307
getMinRows() (method of Table), 307
getMysqlCode (ClusterJ), 678
getName() (method of Column), 41
getName() (method of Event), 81
getName() (method of ForeignKey), 88
getName() (method of HashMap), 94
getName() (method of Index), 99

getName() (method of LogfileGroup), 104
getName() (method of Tablespace), 324
getNdbError() (method of Dictionary), 69
getNdbError() (method of Ndb), 116
getNdbError() (method of NdbBlob), 146
getNdbError() (method of NdbEventOperation), 165
getNdbError() (method of NdbInterpretedCode), 199
getNdbError() (method of NdbOperation), 226
getNdbError() (method of NdbScanFilter), 257
getNdbError() (method of NdbTransaction), 280
getNdbErrorDetail() (method of Ndb), 116
getNdbErrorLine() (method of NdbOperation), 226
getNdbErrorLine() (method of NdbTransaction), 280
getNdbErrorOperation() (method of NdbTransaction),
280
getNdbIndexOperation() (method of NdbTransaction),
280
getNdbIndexScanOperation() (method of
NdbTransaction), 281
getNdbObjectName() (method of Ndb), 117
getNdbOperation() (method of NdbBlob), 147
getNdbOperation() (method of NdbScanFilter), 257
getNdbOperation() (method of NdbTransaction), 281
getNdbScanOperation() (method of NdbTransaction),
281
getNdbTransaction() (method of NdbOperation), 226
getNdbTransaction() (method of NdbScanOperation),
263
getNextAttrId() (method of NdbDictionary), 153
getNextCompletedOperation() (method of
NdbTransaction), 281
getNode() (method of Datafile), 53
getNode() (method of Undofile) (OBSOLETE), 328
getNoOfAutoIncrementColumns() (method of Table),
308
getNoOfColumns() (method of Index), 99
getNoOfColumns() (method of Table), 308
getNoOfEventColumns() (method of Event), 81
getNoOfPrimaryKeys() (method of Table), 308
getNull() (method of NdbBlob), 146
getNullable() (method of Column), 41
getNullBitOffset() (method of NdbDictionary), 154
getObjectId() (method of Datafile), 54
getObjectId() (method of Event), 82
getObjectId() (method of ForeignKey), 92
getObjectId() (method of HashMap), 95
getObjectId() (method of Index), 100
getObjectId() (method of LogfileGroup), 104
getObjectId() (method of Object), 292
getObjectId() (method of Table), 308
getObjectId() (method of Tablespace), 324
getObjectId() (method of Undofile), 328
getObjectStatus() (method of Datafile), 54
getObjectStatus() (method of Event), 81
getObjectStatus() (method of ForeignKey), 92
getObjectStatus() (method of HashMap), 95
getObjectStatus() (method of Index), 99
getObjectStatus() (method of LogfileGroup), 104

765

getObjectStatus() (method of Object), 292
getObjectStatus() (method of Table), 309
getObjectStatus() (method of Tablespace), 324
getObjectStatus() (method of Undofile), 329
getObjectType() (method of Table) (OBSOLETE), 309
getObjectVersion() (method of Datafile), 54
getObjectVersion() (method of Event), 82
getObjectVersion() (method of ForeignKey), 92
getObjectVersion() (method of HashMap), 95
getObjectVersion() (method of Index), 99
getObjectVersion() (method of LogfileGroup), 104
getObjectVersion() (method of Object), 293
getObjectVersion() (method of Table), 309
getObjectVersion() (method of Tablespace), 324
getObjectVersion() (method of Undofile), 329
getOffset() (method of NdbDictionary), 154
getOnDeleteAction() (method of ForeignKey), 90
getOnUpdateAction() (method of ForeignKey), 90
getOpenSessionFactories() (method of Mynode), 744
getOpenSessions() (method of SessionFactory), 746
getParentColumnCount() (method of ForeignKey), 89
getParentColumnNo() (method of ForeignKey), 89
getParentIndex() (method of ForeignKey), 89
getParentTable() (method of ForeignKey), 88
getPartitionBalance() (method of Table), 309
getPartitionBalanceString() (method of Table), 310
getPartitionId() (method of Table), 310
getPartitionKey() (method of Column), 41
getPartSize() (method of Column), 42
getPath() (method of Datafile), 54
getPath() (method of Undofile), 329
getPos() (method of NdbBlob), 147
getPreBlobHandle() (method of NdbEventOperation),
166
getPrecision() (method of Column), 42
getPreValue() (method of NdbEventOperation), 166
getPrimaryKey() (method of Column), 43
getPrimaryKey() (method of Table), 310
getPruned() (method of NdbScanOperation), 263
getQueryBuilder (ClusterJ), 712
getRangeListData() (method of Table), 310
getRangeListDataLen() (method of Table), 310
getRecordIndexName() (method of NdbDictionary), 154
getRecordRowLength() (method of NdbDictionary), 154
getRecordTableName() (method of NdbDictionary), 154
getRecordType() (method of NdbDictionary), 155
getRecvThreadActivationThreshold (ClusterJ), 717
getRecvThreadCPUids (ClusterJ), 717
getReport() (method of Event), 82
getResultList (ClusterJ), 706
getRollbackOnly (ClusterJ), 721
getRollbackOnly() (method of Transaction), 749
getRowChecksumIndicator() (method of Table), 311
getRowGCIIndicator() (method of Table), 311
getRowSizeInBytes() (method of Table), 311
getServiceInstance (ClusterJ), 683, 683, 684, 684
getServiceInstances (ClusterJ), 684
getSession (ClusterJ), 717, 718

getSession() (method of Batch), 739
getSessionFactory (ClusterJ), 685, 685, 720
getSingleUserMode() (method of Table), 311
getSize() (method of Datafile), 54
getSize() (method of Undofile), 329
getSizeInBytesForRecord() (method of Column), 43
getSorted() (method of NdbIndexScanOperation), 174
getState() (method of NdbBlob), 147
getState() (method of NdbEventOperation), 166
getStatus (ClusterJ), 678
getStorageType() (method of Column), 44
getStringProperty (ClusterJ), 685
getStripeSize() (method of Column), 44
getTable() (method of Dictionary), 69
getTable() (method of Event), 82
getTable() (method of Index), 100
getTable() (method of NdbInterpretedCode), 199
getTable() (method of NdbOperation), 226
getTableEvent() (method of Event), 83
getTableId() (method of Table), 311
getTableMetadata() (method of Session), 745
getTableName() (method of Event), 83
getTableName() (method of NdbOperation), 226
getTablespace() (method of Datafile), 55
getTablespace() (method of Dictionary), 69
getTablespace() (method of Table), 312
getTablespaceData() (method of Table), 312
getTablespaceDataLen() (method of Table), 313
getTablespaceId() (method of Datafile), 55
getTablespaceNames() (method of Table), 313
getTablespaceNamesLen() (method of Table), 313
getTransactionId() (method of NdbTransaction), 282
getType (ClusterJ), 734
getType() (method of Column), 44
getType() (method of Index), 100
getType() (method of NdbOperation), 227
getType() (method of NdbRecAttr), 246
getUndoBufferSize() (method of LogfileGroup), 104
getUndofile() (method of Dictionary), 69
getUndoFreeWords() (method of LogfileGroup), 105
getValue() (method of NdbBlob), 147
getValue() (method of NdbEventOperation), 167
getValue() (method of NdbOperation), 227
getValuePtr() (method of NdbDictionary), 155
GetValueSpec

NDB API structure, 228
getVersion() (method of NdbBlob), 148
getWordsUsed() (method of NdbInterpretedCode), 199
get_auto_reconnect() (method of
Ndb_cluster_connection), 133
get_eventbuffer_free_percent() (method of Ndb), 114
get_eventbuf_max_alloc()() (method of Ndb), 114
get_event_buffer_memory_usage() (method of Ndb),
115
get_latest_error() (method of Ndb_cluster_connection),
133
get_latest_error_msg() (method of
Ndb_cluster_connection), 134

766

get_max_adaptive_send_time() (method of
Ndb_cluster_connection), 134
get_next_ndb_object() (method of
Ndb_cluster_connection), 134
get_num_recv_threads() (method of
Ndb_cluster_connection), 135
get_range_no() (method of NdbIndexScanOperation),
174
get_size_in_bytes() (method of NdbRecAttr), 245
get_system_name() (method of
Ndb_cluster_connection), 135
get_tls_certificate_path() (method of
Ndb_cluster_connection), 135
grant tables

and NDB API applications, 2
greaterEqual (ClusterJ), 730
greaterThan (ClusterJ), 731
Group (NdbScanFilter data type), 258
gt() (method of NdbScanFilter), 258

H
hasDefaultValues() (method of Table), 313
hasError() (method of NdbEventOperation)
(DEPRECATED), 167
HashMap

NDB API class, 92
HashMap constructor, 93
HashMap::equal(), 95
HashMap::getMapLen(), 94
HashMap::getMapValues(), 94
HashMap::getName(), 94
HashMap::getObjectId(), 95
HashMap::getObjectStatus(), 95
HashMap::getObjectVersion(), 95
HashMap::setMap(), 94
HashMap::setName(), 94
hasSchemaTrans() (method of Dictionary), 70

I
in (ClusterJ), 731
incValue() (method of NdbOperation), 230
Index

NDB API class, 95
Index (ClusterJ), 723
Index::addColumn(), 97
Index::addColumnName(), 98
Index::addColumnNames(), 98
Index::getColumn(), 98
Index::getLogging(), 98
Index::getName(), 99
Index::getNoOfColumns(), 99
Index::getObjectId(), 100
Index::getObjectStatus(), 99
Index::getObjectVersion(), 99
Index::getTable(), 100
Index::getType(), 100
Index::setName(), 101

Index::setTable(), 101
Index::setType(), 101
Index::Type, 101
IndexBound

NDB API structure, 174
INDEX_USED (ClusterJ), 704
Indices (ClusterJ), 724
init() (method of Ndb), 118
initDefaultHashMap() (method of Dictionary), 70
initial node restart

defined, 4
insertTuple() (method of NdbOperation), 230
insertTuple() (method of NdbTransaction), 282
int32_value() (method of NdbRecAttr), 246
int64_value() (method of NdbRecAttr), 246
int8_value() (method of NdbRecAttr), 246
integer comparison methods (of NdbScanFilter class),
251
Interfaces (ClusterJ)

ColumnMetadata, 686
Constants, 690
Dbug, 698
DynamicObjectDelegate, 702
Predicate, 728
PredicateOperand, 729
Query, 703
QueryBuilder, 732
QueryDefinition, 733
QueryDomainType, 733
Results, 708
Session, 708
SessionFactory, 716
SessionFactoryService, 720
Transaction, 720

interpretedDeleteTuple() (method of NdbOperation),
231
interpretedUpdateTuple() (method of NdbOperation),
232
interpretedWriteTuple() (method of NdbOperation), 232
interpret_exit_last_row() (method of
NdbInterpretedCode), 200
interpret_exit_last_row() (method of NdbOperation),
231
interpret_exit_nok() (method of NdbInterpretedCode),
200
interpret_exit_nok() (method of NdbOperation), 231
interpret_exit_ok() (method of NdbInterpretedCode),
200
interpret_exit_ok() (method of NdbOperation), 231
invalidateIndex() (method of Dictionary), 70
invalidateTable() (method of Dictionary), 71
isActive (ClusterJ), 721
isActive() (method of Transaction), 749
isBatch() (method of Context), 741
isClosed (ClusterJ), 712
isClosed() (method of Session), 745
isConsistent() (method of Ndb) (DEPRECATED), 118

767

isConsistent() (method of NdbEventOperation)
(DEPRECATED), 168
isConsistentGCI() (method of Ndb) (DEPRECATED),
119
isEmptyEpoch() (method of NdbEventOperation), 168
isErrorEpoch() (method of NdbEventOperation), 168
isExpectingHigherQueuedEpochs() (method of Ndb),
119
isfalse() (method of NdbScanFilter), 256
isNotNull (ClusterJ), 731
isnotnull() (method of NdbScanFilter), 256
isNull (ClusterJ), 731
isNull() (method of NdbDictionary), 155
isNULL() (method of NdbRecAttr), 247
isnull() (method of NdbScanFilter), 256
isOverrun() (method of NdbEventOperation), 168
isPartitionKey (ClusterJ), 687
isPrimaryKey (ClusterJ), 687
istrue() (method of NdbScanFilter), 256
iteration

Ndb objects, 134
iterator (ClusterJ), 708

J
Java, 661
JavaScript, 737

API documentation, 739
javaType (ClusterJ), 687
JDBC

known issues, 736

K
key (ClusterJ), 723
Key_part_ptr

NDB API structure, 120

L
LCP (Local Checkpoint)

defined, 3
le() (method of NdbScanFilter), 258
lessEqual (ClusterJ), 731
lessThan (ClusterJ), 732
like (ClusterJ), 732
List

NDB API class, 105
listBatches() (method of Session), 745
listIndexes() (method of Dictionary), 71
listObjects() (method of Dictionary), 72
listTables() (method of Session), 745
load (ClusterJ), 712
load() (method of Context), 740
load_const_null() (method of NdbInterpretedCode), 200
load_const_null() (method of NdbOperation), 233
load_const_u16() (method of NdbInterpretedCode),
201
load_const_u32() (method of NdbInterpretedCode),
201

load_const_u32() (method of NdbOperation), 232
load_const_u64() (method of NdbInterpretedCode),
201
load_const_u64() (method of NdbOperation), 232
Lob (ClusterJ), 724
lock handles

NDB API, 225, 288
lock handling

and scan operations, 11
lockCurrentTuple() (method of NdbScanOperation),
264
locking and transactions

NDB API, 224
LockMode (ClusterJ), 702
LockMode (NdbOperation data type), 233
lock_ndb_objects() (method of
ndb_cluster_connection), 136
LogfileGroup

NDB API class, 102
LogfileGroup::getAutoGrowSpecification(), 103
LogfileGroup::getName(), 104
LogfileGroup::getObjectId(), 104
LogfileGroup::getObjectStatus(), 104
LogfileGroup::getObjectVersion(), 104
LogfileGroup::getUndoBufferSize(), 104
LogfileGroup::getUndoFreeWords(), 105
LogfileGroup::setAutoGrowSpecification(), 105
LogfileGroup::setName(), 105
LogfileGroup::setUndoBufferSize(), 105
lookup (ClusterJ), 680
lt() (method of NdbScanFilter), 259

M
makePersistent (ClusterJ), 713
makePersistentAll (ClusterJ), 713
management (MGM) node

defined, 3
mapField() (method of TableMapping), 746
markModified (ClusterJ), 713
maximumLength (ClusterJ), 687
medium_value() (method of NdbRecAttr), 247
mergeEvents() (method of Event), 83
mergeEvents() (method of NdbEventOperation), 169
Methods (ClusterJ)

and, 729
append, 699
begin, 720
between, 730
charsetName, 687
close, 710, 717
columnType, 687
commit, 720
createQuery, 710
createQueryDefinition, 732
currentState, 717
currentTransaction, 710
debug, 700, 700
deletePersistent, 710, 710

768

deletePersistentAll, 705, 711, 711
equal, 730
execute, 705, 705, 705
explain, 705
find, 711
flush, 700, 711
found, 712
get, 700, 734
getBooleanProperty, 683
getClassification, 678
getCode, 678
getConnectionPoolSessionCounts, 717
getMysqlCode, 678
getQueryBuilder, 712
getRecvThreadActivationThreshold, 717
getRecvThreadCPUids, 717
getResultList, 706
getRollbackOnly, 721
getServiceInstance, 683, 683, 684, 684
getServiceInstances, 684
getSession, 717, 718
getSessionFactory, 685, 685, 720
getStatus, 678
getStringProperty, 685
getType, 734
greaterEqual, 730
greaterThan, 731
in, 731
isActive, 721
isClosed, 712
isNotNull, 731
isNull, 731
isPartitionKey, 687
isPrimaryKey, 687
iterator, 708
javaType, 687
lessEqual, 731
lessThan, 732
like, 732
load, 712
lookup, 680
makePersistent, 713
makePersistentAll, 713
markModified, 713
maximumLength, 687
name, 688
newDbug, 686
newInstance, 713, 713
not, 729, 733
nullable, 688
number, 688
or, 729
output, 700
param, 733
persist, 714
pop, 701
precision, 688
print, 701

push, 701, 701
reconnect, 718, 718
release, 714
remove, 714
rollback, 721
savePersistent, 714
savePersistentAll, 715
scale, 688
set, 701, 701
setLimits, 706
setLockMode, 715
setOrdering, 707
setParameter, 707
setPartitionKey, 715
setRecvThreadActivationThreshold, 718
setRecvThreadCPUids, 719
setRollbackOnly, 721
trace, 701
unloadSchema, 715
updatePersistent, 716
updatePersistentAll, 716
where, 733

MGM API
coding examples, 655
errors, 653

multiple clusters, 15
multiple clusters, connecting to

example, 486, 657
Mynode (Connector for JavaScript), 742
Mynode.connect(), 744
Mynode.ConnectionProperties(), 742
Mynode.getOpenSessionFactories(), 744
Mynode.openSession(), 744
MySQL NDB Cluster Connector for Java, 661

and foreign keys, 736
and joins, 736
and TIMESTAMP, 736
and views, 736
known issues, 735, 736

MySQL privileges
and NDB API applications, 2

N
name (ClusterJ), 688, 722, 724, 728
NDB

defined, 4
record structure, 13

Ndb
NDB API class, 106

NDB API
and MySQL privileges, 2
coding examples, 474
defined, 5
errors, 330
lock handles, 225, 288

NDB API classes
overview, 5

NDB Cluster

769

benchmarks, 6
Node.js, 737
performance, 6

NDB Cluster replication
and Column, 38
and Dictionary::create*() methods, 59

Ndb::closeTransaction(), 111
Ndb::computeHash(), 111
Ndb::dropEventOperation(), 112
Ndb::EventBufferMemoryUsage

NDB API structure, 112
Ndb::getDatabaseName(), 113
Ndb::getDatabaseSchemaName(), 113
Ndb::getDictionary(), 113
Ndb::getGCIEventOperations() (DEPRECATED), 114
Ndb::getHighestQueuedEpoch(), 115
Ndb::getLatestGCI() (DEPRECATED), 115
Ndb::getNdbError(), 116
Ndb::getNdbErrorDetail(), 116
Ndb::getNdbObjectName(), 117
Ndb::get_eventbuffer_free_percent(), 114
Ndb::get_eventbuf_max_alloc(), 114
Ndb::get_event_buffer_memory_usage(), 115
Ndb::init(), 118
Ndb::isConsistent() (DEPRECATED), 118
Ndb::isConsistentGCI() (DEPRECATED), 119
Ndb::isExpectingHigherQueuedEpochs(), 119
Ndb::Key_part_ptr

NDB API structure, 120
Ndb::nextEvent() (DEPRECATED), 120
Ndb::nextEvent2(), 120
Ndb::PartitionSpec

NDB API structure, 121
Ndb::pollEvents() (DEPRECATED), 123
Ndb::pollEvents2(), 124
Ndb::setDatabaseName(), 125
Ndb::setDatabaseSchemaName(), 125
Ndb::setNdbObjectName(), 127
Ndb::set_eventbuffer_free_percent(), 126
Ndb::set_eventbuf_max_alloc(), 126
Ndb::startTransaction(), 127
NdbBlob

close(), 144
NDB API class, 140

NdbBlob::ActiveHook type, 144
NdbBlob::blobsFirstBlob(), 144
NdbBlob::blobsNextBlob(), 144
NdbBlob::getBlobEventName(), 145
NdbBlob::getBlobTableName(), 145
NdbBlob::getColumn(), 146
NdbBlob::getLength(), 146
NdbBlob::getNdbError(), 146
NdbBlob::getNdbOperation(), 147
NdbBlob::getNull(), 146
NdbBlob::getPos(), 147
NdbBlob::getState(), 147
NdbBlob::getValue(), 147
NdbBlob::getVersion(), 148

NdbBlob::readData(), 148
NdbBlob::setActiveHook(), 148
NdbBlob::setNull(), 149
NdbBlob::setPos(), 149
NdbBlob::setValue(), 149
NdbBlob::State type, 150
NdbBlob::truncate(), 150
NdbBlob::writeData(), 150
NdbDictionary

NDB API class, 151
NdbDictionary::AutoGrowSpecification

NDB API structure, 152
NdbDictionary::Column

NDB API class, 34
NdbDictionary::Dictionary

NDB API class, 56
NdbDictionary::Event

NDB API class, 74
NdbDictionary::getEmptyBitmask(), 153
NdbDictionary::getFirstAttrId(), 153
NdbDictionary::getNextAttrId(), 153
NdbDictionary::getNullBitOffset(), 154
NdbDictionary::getOffset(), 154
NdbDictionary::getRecordIndexName(), 154
NdbDictionary::getRecordRowLength(), 154
NdbDictionary::getRecordTableName(), 154
NdbDictionary::getRecordType(), 155
NdbDictionary::getValuePtr(), 155
NdbDictionary::Index

NDB API class, 95
NdbDictionary::isNull(), 155
NdbDictionary::LogfileGroup

NDB API class, 102
NdbDictionary::Object

NDB API class, 291
NdbDictionary::RecordSpecification

NDB API structure, 156
NdbDictionary::setNull(), 157
NdbDictionary::Table

NDB API class, 295
NdbDictionary::Tablespace

NDB API class, 321
NdbDictionary::Undofile

NDB API class, 326
NdbError

NDB API structure, 157
NdbError::Classification type, 159
NdbError::Status type, 160
NdbEventOperation

NDB API class, 160
NdbEventOperation::clearError() (DEPRECATED), 163
NdbEventOperation::execute(), 163
NdbEventOperation::getBlobHandle(), 164
NdbEventOperation::getEpoch(), 164
NdbEventOperation::getEventType() (DEPRECATED),
164
NdbEventOperation::getEventType2(), 165
NdbEventOperation::getGCI() (DEPRECATED), 165

770

NdbEventOperation::getLatestGCI() (DEPRECATED),
165
NdbEventOperation::getNdbError(), 165
NdbEventOperation::getPreBlobHandle(), 166
NdbEventOperation::getPreValue(), 166
NdbEventOperation::getState(), 166
NdbEventOperation::getValue(), 167
NdbEventOperation::hasError() (DEPRECATED), 167
NdbEventOperation::isConsistent() (DEPRECATED),
168
NdbEventOperation::isEmptyEpoch(), 168
NdbEventOperation::isErrorEpoch(), 168
NdbEventOperation::isOverrun(), 168
NdbEventOperation::mergeEvents(), 169
NdbEventOperation::State, 169
NdbEventOperation::tableFragmentationChanged(),
169
NdbEventOperation::tableFrmChanged(), 170
NdbEventOperation::tableNameChanged(), 170
NdbIndexOperation

NDB API class, 170
NdbIndexOperation class

example, 7
NdbIndexOperation::deleteTuple(), 171
NdbIndexOperation::getIndex(), 171
NdbIndexOperation::readTuple(), 171
NdbIndexOperation::updateTuple(), 172
NdbIndexScanOperation

NDB API class, 172
NdbIndexScanOperation::BoundType, 173
NdbIndexScanOperation::end_of_bound(), 173
NdbIndexScanOperation::getDescending(), 174
NdbIndexScanOperation::getSorted(), 174
NdbIndexScanOperation::get_range_no(), 174
NdbIndexScanOperation::IndexBound

NDB API structure, 174
NdbIndexScanOperation::readTuples(), 175
NdbIndexScanOperation::reset_bounds(), 176
NdbInterpretedCode

branch_col_eq_param(), 187
branch_col_ge_param(), 188
branch_col_gt_param(), 190
branch_col_le_param(), 191
branch_col_lt_param(), 193
branch_col_ne_param(), 194
NDB API class, 178

NdbInterpretedCode register-loading methods, 16
NdbInterpretedCode() (constructor), 182
NdbInterpretedCode::add_reg(), 183
NdbInterpretedCode::add_val(), 183
NdbInterpretedCode::branch_col_and_mask_eq_mask(),
184
NdbInterpretedCode::branch_col_and_mask_eq_zero(),
184
NdbInterpretedCode::branch_col_and_mask_ne_mask(),
185
NdbInterpretedCode::branch_col_and_mask_ne_zero(),
185

NdbInterpretedCode::branch_col_eq(), 186
NdbInterpretedCode::branch_col_eq_null(), 187
NdbInterpretedCode::branch_col_ge(), 187
NdbInterpretedCode::branch_col_gt(), 189
NdbInterpretedCode::branch_col_le(), 190
NdbInterpretedCode::branch_col_like(), 191
NdbInterpretedCode::branch_col_lt(), 192
NdbInterpretedCode::branch_col_ne(), 193
NdbInterpretedCode::branch_col_ne_null(), 194
NdbInterpretedCode::branch_col_notlike(), 195
NdbInterpretedCode::branch_eq(), 195
NdbInterpretedCode::branch_eq_null(), 195
NdbInterpretedCode::branch_ge(), 196
NdbInterpretedCode::branch_gt(), 196
NdbInterpretedCode::branch_label(), 196
NdbInterpretedCode::branch_le(), 197
NdbInterpretedCode::branch_lt(), 197
NdbInterpretedCode::branch_ne(), 197
NdbInterpretedCode::branch_ne_null(), 197
NdbInterpretedCode::call_sub(), 198
NdbInterpretedCode::copy(), 198
NdbInterpretedCode::def_label(), 198
NdbInterpretedCode::def_sub(), 198
NdbInterpretedCode::finalise(), 199
NdbInterpretedCode::getNdbError(), 199
NdbInterpretedCode::getTable(), 199
NdbInterpretedCode::getWordsUsed(), 199
NdbInterpretedCode::interpret_exit_last_row(), 200
NdbInterpretedCode::interpret_exit_nok(), 200
NdbInterpretedCode::interpret_exit_ok(), 200
NdbInterpretedCode::load_const_null(), 200
NdbInterpretedCode::load_const_u16(), 201
NdbInterpretedCode::load_const_u32(), 201
NdbInterpretedCode::load_const_u64(), 201
NdbInterpretedCode::read_attr(), 201
NdbInterpretedCode::reset(), 202
NdbInterpretedCode::ret_sub(), 202
NdbInterpretedCode::sub_reg(), 203
NdbInterpretedCode::sub_val(), 203
NdbInterpretedCode::write_attr(), 204
NdbLockHandle

defined, 225
using, 225

NdbMgmHandle, 605, 612, 612, 613
NdbOperation

add_reg(), 210
branch_col_and_mask_eq_mask(), 216
branch_col_and_mask_eq_zero(), 217
branch_col_and_mask_ne_mask(), 216
branch_col_and_mask_ne_zero(), 217
branch_col_eq(), 211
branch_col_eq_null(), 211
branch_col_ge(), 214
branch_col_gt(), 213
branch_col_le(), 213
branch_col_like(), 215
branch_col_lt(), 212
branch_col_ne(), 212

771

branch_col_ne_null(), 211
branch_col_notlike(), 215
branch_eq(), 220
branch_eq_null(), 221
branch_ge(), 218
branch_gt(), 218
branch_label(), 221
branch_le(), 219
branch_lt(), 219
branch_ne(), 220
branch_ne_null(), 221
call_sub(), 221
def_label(), 222
def_subroutine(), 222
incValue(), 230
interpretedDeleteTuple(), 231
interpretedUpdateTuple(), 232
interpretedWriteTuple(), 232
interpret_exit_last_row(), 231
interpret_exit_nok(), 231
interpret_exit_ok(), 231
load_const_null(), 233
load_const_u32(), 232
load_const_u64(), 232
NDB API class, 204
read_attr(), 235
ret_sub(), 236
subValue(), 240
sub_reg(), 239
write_attr(), 241

NdbOperation class
example, 7

NdbOperation::AbortOption, 210
NdbOperation::deleteTuple(), 222
NdbOperation::equal(), 222
NdbOperation::getBlobHandle(), 224
NdbOperation::getLockHandle(), 224
NdbOperation::getLockMode(), 225
NdbOperation::getNdbError(), 226
NdbOperation::getNdbErrorLine(), 226
NdbOperation::getNdbTransaction(), 226
NdbOperation::getTable(), 226
NdbOperation::getTableName(), 226
NdbOperation::getType(), 227
NdbOperation::getValue(), 227
NdbOperation::GetValueSpec

NDB API structure, 228
NdbOperation::insertTuple(), 230
NdbOperation::LockMode, 233
NdbOperation::NdbIndexOperation

NDB API class, 170
NdbOperation::NdbScanOperation

NDB API class, 260
NdbOperation::OperationOptions

NDB API structure, 233
NdbOperation::readTuple(), 236
NdbOperation::setValue(), 236
NdbOperation::SetValueSpec

NDB API structure, 238
NdbOperation::Type, 240
NdbOperation::updateTuple(), 241
NdbOperation::writeTuple(), 241
NdbRecAttr

NDB API class, 242
NdbRecAttr class, 242
NdbRecAttr::aRef(), 244
NdbRecAttr::char_value(), 244
NdbRecAttr::clone(), 245
NdbRecAttr::double_value(), 245
NdbRecAttr::float_value(), 245
NdbRecAttr::getColumn(), 246
NdbRecAttr::getType(), 246
NdbRecAttr::get_size_in_bytes(), 245
NdbRecAttr::int32_value(), 246
NdbRecAttr::int64_value(), 246
NdbRecAttr::int8_value(), 246
NdbRecAttr::isNULL(), 247
NdbRecAttr::medium_value(), 247
NdbRecAttr::short_value(), 247
NdbRecAttr::u_32_value(), 248
NdbRecAttr::u_64_value(), 248
NdbRecAttr::u_8_value(), 247
NdbRecAttr::u_char_value(), 248
NdbRecAttr::u_medium_value(), 248
NdbRecAttr::u_short_value(), 248
NdbRecord

example, 511, 573
NDB API interface, 249
obtaining column size for, 43

NdbScanFilter
NDB API class, 250
setSqlCmpSemantics(), 260

NdbScanFilter class
integer comparison methods, 251

NdbScanFilter::begin(), 252
NdbScanFilter::BinaryCondition, 252
NdbScanFilter::cmp(), 253
NdbScanFilter::cmp_param(), 254
NdbScanFilter::end(), 255
NdbScanFilter::eq(), 255
NdbScanFilter::ge(), 257
NdbScanFilter::getNdbError(), 257
NdbScanFilter::getNdbOperation(), 257
NdbScanFilter::Group, 258
NdbScanFilter::gt(), 258
NdbScanFilter::isfalse(), 256
NdbScanFilter::isnotnull(), 256
NdbScanFilter::isnull(), 256
NdbScanFilter::istrue(), 256
NdbScanFilter::le(), 258
NdbScanFilter::lt(), 259
NdbScanFilter::ne(), 259
NdbScanFilter::reset(), 260
NdbScanOperation

NDB API class, 260
NdbScanOperation::close(), 262

772

NdbScanOperation::deleteCurrentTuple(), 262
NdbScanOperation::getNdbTransaction(), 263
NdbScanOperation::getPruned(), 263
NdbScanOperation::lockCurrentTuple(), 264
NdbScanOperation::NdbIndexScanOperation

NDB API class, 172
NdbScanOperation::nextResult(), 265
NdbScanOperation::readTuples(), 267
NdbScanOperation::restart(), 267
NdbScanOperation::ScanFlag, 267
NdbScanOperation::ScanOptions

NDB API structure, 269
NdbScanOperation::updateCurrentTuple(), 271
NdbTransaction

NDB API class, 272
NdbTransaction class methods

using, 6
NdbTransaction::AbortOption, 210
NdbTransaction::close(), 275
NdbTransaction::commitStatus(), 275
NdbTransaction::CommitStatusType, 276
NdbTransaction::deleteTuple(), 276
NdbTransaction::ExecType, 277
NdbTransaction::execute(), 277
NdbTransaction::executePendingBlobOps(), 278
NdbTransaction::getGCI(), 279
NdbTransaction::getMaxPendingBlobReadBytes(), 279
NdbTransaction::getMaxPendingBlobWriteBytes(), 279
NdbTransaction::getNdbError(), 280
NdbTransaction::getNdbErrorLine(), 280
NdbTransaction::getNdbErrorOperation(), 280
NdbTransaction::getNdbIndexOperation(), 280
NdbTransaction::getNdbIndexScanOperation(), 281
NdbTransaction::getNdbOperation(), 281
NdbTransaction::getNdbScanOperation(), 281
NdbTransaction::getNextCompletedOperation(), 281
NdbTransaction::getTransactionId(), 282
NdbTransaction::insertTuple(), 282
NdbTransaction::readTuple(), 283
NdbTransaction::refresh(), 284
NdbTransaction::releaseLockHandle(), 285
NdbTransaction::scanIndex(), 285
NdbTransaction::scanTable(), 286
NdbTransaction::setMaxPendingBlobReadBytes(), 287
NdbTransaction::setMaxPendingBlobWriteBytes(), 287
NdbTransaction::unlock(), 288
NdbTransaction::updateTuple(), 289
NdbTransaction::writeTuple(), 290
Ndb_cluster_connection

get_max_adaptive_send_time() method, 134
get_next_ndb_object() method, 134
get_num_recv_threads(), 135
get_recv_thread_activation_threshold(), 135
get_system_name(), 135
get_tls_certificate_path(), 135
NDB API class, 129
set_max_adaptive_send_time(), 137
set_num_recv_threads(), 137

set_recv_thread_activation_threshold(), 138
set_recv_thread_cpu(), 139
set_service_uri(), 138
unset_recv_thread_cpu(), 140

ndb_cluster_connection
lock_ndb_objects() method, 136
unlock_ndb_objects() method, 139

Ndb_cluster_connection::configure_tls(), 132
Ndb_cluster_connection::connect(), 132
Ndb_cluster_connection::get_auto_reconnect(), 133
Ndb_cluster_connection::get_latest_error(), 133
Ndb_cluster_connection::get_latest_error_msg(), 134
Ndb_cluster_connection::set_auto_reconnect(), 136
Ndb_cluster_connection::set_data_node_neighbour(),
136
Ndb_cluster_connection::set_name(), 137
Ndb_cluster_connection::set_optimized_node_selection(),
137
Ndb_cluster_connection::set_timeout(), 139
Ndb_cluster_connection::wait_until_ready(), 140
ndb_end()

NDB API function, 27
ndb_init()

NDB API function, 27
ndb_logevent structure (MGM API), 646
ndb_logevent_get_fd() function (MGM API), 608
ndb_logevent_get_latest_error() function (MGM API),
610
ndb_logevent_get_latest_error_msg() function (MGM
API), 610
ndb_logevent_get_next() function (MGM API), 608
ndb_logevent_get_next2() function (MGM API), 609
ndb_logevent_handle_error type (MGM API), 644
Ndb_logevent_type type (MGM API), 638
ndb_mgm_abort_backup() function (MGM API), 632
ndb_mgm_cert_table struct (MGM API), 636
ndb_mgm_cert_table_free() function (MGM API), 633
ndb_mgm_check_connection() function (MGM API),
615
ndb_mgm_cluster_state structure (MGM API), 652
ndb_mgm_cluster_state2 structure (MGM API), 653
ndb_mgm_connect() function (MGM API), 618
ndb_mgm_connect_tls() function (MGM API), 634
ndb_mgm_create_handle() function (MGM API), 612
ndb_mgm_create_logevent_handle() function (MGM
API), 608, 608
ndb_mgm_destroy_handle() function (MGM API), 613
ndb_mgm_destroy_logevent_handle() function (MGM
API), 608
ndb_mgm_disconnect() function (MGM API), 618
ndb_mgm_dump_state() function (MGM API), 620
ndb_mgm_enter_single_user() function (MGM API),
632
ndb_mgm_error type (MGM API), 638
ndb_mgm_event_category type (MGM API), 645
ndb_mgm_event_severity type (MGM API), 644
ndb_mgm_exit_single_user() function (MGM API), 633

773

ndb_mgm_get_clusterlog_loglevel() function (MGM
API), 628
ndb_mgm_get_clusterlog_severity_filter() function
(MGM API), 627
ndb_mgm_get_configuration_nodeid() function (MGM
API), 614
ndb_mgm_get_connected_host() function (MGM API),
614
ndb_mgm_get_connected_port() function (MGM API),
614
ndb_mgm_get_connectstring() function (MGM API),
613
ndb_mgm_get_latest_error() function (MGM API), 610
ndb_mgm_get_latest_error_desc() function (MGM
API), 611
ndb_mgm_get_latest_error_msg() function (MGM API),
611
ndb_mgm_get_loglevel_clusterlog() function (MGM
API) - DEPRECATED, 628
ndb_mgm_get_status() function (MGM API), 619
ndb_mgm_get_status2() function (MGM API), 619
ndb_mgm_get_status3() function (MGM API), 620
ndb_mgm_get_tls_stats() function (MGM API), 634
ndb_mgm_get_version() function (MGM API), 614
ndb_mgm_has_tls() function (MGM API), 635
ndb_mgm_is_connected() function (MGM API), 615
ndb_mgm_listen_event() function (MGM API), 607
ndb_mgm_list_certs() function (MGM API), 635
ndb_mgm_node_state structure (MGM API), 651
ndb_mgm_node_state2 structure (MGM API), 652
ndb_mgm_node_status type (MGM API), 637
ndb_mgm_node_type type (MGM API), 637
ndb_mgm_number_of_mgmd_in_connect_string()
function (MGM API), 616
ndb_mgm_reply structure (MGM API), 653
ndb_mgm_restart() function (MGM API), 624
ndb_mgm_restart2() function (MGM API), 625
ndb_mgm_restart3() function (MGM API), 625
ndb_mgm_restart4() function (MGM API), 626
ndb_mgm_set_bindaddress() function (MGM API), 616
ndb_mgm_set_clusterlog_loglevel() function (MGM
API), 628
ndb_mgm_set_clusterlog_severity_filter() function
(MGM API), 627
ndb_mgm_set_configuration_nodeid() function (MGM
API), 617
ndb_mgm_set_connectstring() function (MGM API),
617
ndb_mgm_set_connect_timeout() function (MGM API),
616
ndb_mgm_set_error_stream() function (MGM API), 611
ndb_mgm_set_ignore_sigpipe() function (MGM API),
612
ndb_mgm_set_name() function (MGM API), 612
ndb_mgm_set_ssl_ctx() function (MGM API), 635
ndb_mgm_set_timeout() function (MGM API), 618
ndb_mgm_start() function (MGM API), 621
ndb_mgm_start_backup() function (MGM API), 629

ndb_mgm_start_backup2() function (MGM API), 629
ndb_mgm_start_backup3() function (MGM API), 630
ndb_mgm_start_backup4() function (MGM API), 631
ndb_mgm_start_tls() function (MGM API), 636
ndb_mgm_stop() function (MGM API), 622
ndb_mgm_stop2() function (MGM API), 622
ndb_mgm_stop3() function (MGM API), 623
ndb_mgm_stop4() function (MGM API), 623
ndb_mgm_tls_stats struct (MGM API), 636
ne() (method of NdbScanFilter), 259
newDbug (ClusterJ), 686
newInstance (ClusterJ), 713, 713
nextEvent() (method of Ndb) (DEPRECATED), 120
nextEvent2() (method of Ndb), 120
nextResult() (method of NdbScanOperation), 265
NoCommit

defined, 6
node

defined, 3
node failure

defined, 4
node restart

defined, 4
Node.js, 737
not (ClusterJ), 729, 733
NotPersistent (ClusterJ), 725
nullable (ClusterJ), 688
NullValue (ClusterJ), 725
nullValue (ClusterJ), 727
number (ClusterJ), 688

O
Object

NDB API class, 291
Object::Datafile

NDB API class, 51
Object::ForeignKey

NDB API class, 85
Object::FragmentType, 292
Object::getObjectId(), 292
Object::getObjectStatus(), 292
Object::getObjectVersion(), 293
Object::HashMap

NDB API class, 92
Object::PartitionBalance, 293
Object::State, 293
Object::Status, 294
Object::Store, 294
Object::Type, 294
openSession() (method of Mynode), 744
openSession() (method of SessionFactory), 746
OperationOptions

NDB API structure, 233
operations

defined, 6
scanning, 8
single-row, 7
transactions and, 6

774

or (ClusterJ), 729
output (ClusterJ), 700

P
param (ClusterJ), 733
PartitionBalance (Object data type), 293
PartitionKey (ClusterJ), 725
PartitionSpec

NDB API structure, 121
persist (ClusterJ), 714
persist() (method of Context), 740
PersistenceCapable (ClusterJ), 726
PersistenceModifier (ClusterJ), 726
Persistent (ClusterJ), 727
pollEvents() (method of Ndb) (DEPRECATED), 123
pollEvents2() (method of Ndb), 124
pop (ClusterJ), 701
precision (ClusterJ), 688
Predicate (ClusterJ), 728
PredicateOperand (ClusterJ), 729
prepareHashMap() (method of Dictionary), 72
primaryKey (ClusterJ), 727
PrimaryKey (ClusterJ), 727
print (ClusterJ), 701
Projection (ClusterJ), 728
PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
(ClusterJ), 695
PROPERTY_CLUSTER_CONNECTION_SERVICE
(ClusterJ), 696
PROPERTY_CLUSTER_CONNECTSTRING
(ClusterJ), 696
PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
(ClusterJ), 695
PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START
(ClusterJ), 695
PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
(ClusterJ), 695
PROPERTY_CLUSTER_CONNECT_DELAY
(ClusterJ), 695
PROPERTY_CLUSTER_CONNECT_RETRIES
(ClusterJ), 695
PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
(ClusterJ), 695
PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
(ClusterJ), 696
PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
(ClusterJ), 696
PROPERTY_CLUSTER_CONNECT_VERBOSE
(ClusterJ), 696
PROPERTY_CLUSTER_DATABASE (ClusterJ), 696
PROPERTY_CLUSTER_MAX_TRANSACTIONS
(ClusterJ), 696
PROPERTY_CONNECTION_POOL_NODEIDS
(ClusterJ), 696
PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
(ClusterJ), 697
PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS
(ClusterJ), 697

PROPERTY_CONNECTION_POOL_SIZE (ClusterJ),
697
PROPERTY_CONNECTION_RECONNECT_TIMEOUT
(ClusterJ), 697
PROPERTY_DEFER_CHANGES (ClusterJ), 697
PROPERTY_JDBC_DRIVER_NAME (ClusterJ), 697
PROPERTY_JDBC_PASSWORD (ClusterJ), 698
PROPERTY_JDBC_URL (ClusterJ), 698
PROPERTY_JDBC_USERNAME (ClusterJ), 698
push (ClusterJ), 701, 701

Q
Query (ClusterJ), 703
Query.Ordering (ClusterJ), 707
QueryBuilder (ClusterJ), 732
QueryDefinition (ClusterJ), 733
QueryDomainType (ClusterJ), 733

R
readData() (method of NdbBlob), 148
readTuple() (method of NdbIndexOperation), 171
readTuple() (method of NdbOperation), 236
readTuple() (method of NdbTransaction), 283
readTuples() (method of NdbIndexScanOperation), 175
readTuples() (method of NdbScanOperation), 267
read_attr() (method of NdbInterpretedCode), 201
read_attr() (method of NdbOperation), 235
reconnect (ClusterJ), 718, 718
record structure

NDB, 13
RecordSpecification

NDB API structure, 156
refresh() (method of NdbTransaction), 284
Register-loading methods (NdbInterpretedCode), 16
release (ClusterJ), 714
releaseEvent() (method of Dictionary), 73
releaseLockHandle() (method of NdbTransaction), 285
releaseRecord() (method of Dictionary), 73
remove (ClusterJ), 714
remove() (method of Context), 740
removeCachedIndex() (method of Dictionary), 73
removeCachedTable() (method of Dictionary), 73
reset() (method of NdbInterpretedCode), 202
reset() (method of NdbScanFilter), 260
reset_bounds() (method of NdbIndexScanOperation),
176
restart() (method of NdbScanOperation), 267
restore

defined, 3
Results (ClusterJ), 708
ret_sub() (method of NdbInterpretedCode), 202
ret_sub() (method of NdbOperation), 236
rollback (ClusterJ), 721
rollback() (method of Transaction), 748

S
save() (method of Context), 741

775

savePersistent (ClusterJ), 714
savePersistentAll (ClusterJ), 715
scale (ClusterJ), 688
scan operations, 8

characteristics, 9
used for updates or deletes, 10
with lock handling, 11

ScanFlag (NdbScanOperation data type), 267
scanIndex() (method of NdbTransaction), 285
ScanOptions

NDB API structure, 269
scans

performing with NdbScanFilter and
NdbScanOperation, 495
types supported, 1
using secondary indexes

example, 508
example (using NdbRecord), 511

scanTable() (method of NdbTransaction), 286
SCAN_TYPE (ClusterJ), 704
SCAN_TYPE_INDEX_SCAN (ClusterJ), 704
SCAN_TYPE_PRIMARY_KEY (ClusterJ), 704
SCAN_TYPE_TABLE_SCAN (ClusterJ), 704
SCAN_TYPE_UNIQUE_KEY (ClusterJ), 705
Schema transactions, 60
schema transactions

and Dictionary::prepareHashMap() method, 72
SchemaTransFlag, 66
Session (ClusterJ), 708
Session class (Connector for JavaScript), 745
Session.close(), 745
Session.createBatch(), 745
Session.currentTransaction(), 745
Session.getMapping(), 745
Session.getTableMetadata(), 745
Session.isClosed(), 745
Session.listBatches(), 745
Session.listTables(), 745
Session.setLockMode(), 745
SessionFactory (ClusterJ), 716
SessionFactory class (Connector for JavaScript), 746
SessionFactory.close(), 746
SessionFactory.getOpenSessions(), 746
SessionFactory.openSession(), 746
SessionFactory.State (ClusterJ), 719
SessionFactoryService (ClusterJ), 719
SESSION_FACTORY_SERVICE_CLASS_NAME
(ClusterJ), 698
SESSION_FACTORY_SERVICE_FILE_NAME
(ClusterJ), 698
set (ClusterJ), 701, 701
setActiveHook() (method of NdbBlob), 148
setArrayType() (method of Column), 44
setAutoGrowSpecification() (method of LogfileGroup),
105
setAutoGrowSpecification() (method of Tablespace),
325
setAutoIncrement() (method of Column), 44

setAutoIncrementInitialValue() (method of Column), 45
setCharset() (method of Column), 45
setChild() (method of ForeignKey), 91
setDatabaseName() (method of Ndb), 125
setDatabaseSchemaName() (method of Ndb), 125
setDefaultLogfileGroup() (method of Tablespace), 325
setDefaultNoPartitionsFlag() (method of Table), 314
setDefaultValue() (method of Column), 45
setDurability() (method of Event), 83
setEventBufferQueueEmptyEpoch() (method of Ndb),
125
setExtentSize() (method of Tablespace), 325
setExtraMetadata() (method of Table), 314
setForceVarPart() (method of Table), 314
setFragmentCount() (method of Table), 315
setFragmentData() (method of Table), 315
setFragmentType() (method of Table), 315
setFrm() (method of Table), 315
setHashMap() (method of Table), 316
setKValue() (method of Table), 316
setLength() (method of Column), 46
setLimits (ClusterJ), 706
setLinearFlag() (method of Table), 316
setLockMode (ClusterJ), 715
setLockMode() (method of Session), 745
setLogfileGroup() (method of Undofile), 329
setLogging() (method of Table), 316
setMap() (method of HashMap), 94
setMaxLoadFactor() (method of Table), 317
setMaxPendingBlobReadBytes() (method of
NdbTransaction), 287
setMaxPendingBlobWriteBytes() (method of
NdbTransaction), 287
setMaxRows() (method of Table), 317
setMinLoadFactor() (method of Table), 317
setName() (method of Column), 46
setName() (method of Event), 84
setName() (method of ForeignKey), 90
setName() (method of HashMap), 94
setName() (method of Index), 101
setName() (method of LogfileGroup), 105
setName() (method of Table), 317
setName() (method of Tablespace), 325
setNdbObjectName() (method of Ndb), 127
setNode() (method of Datafile), 55
setNode() (method of Undofile) (OBSOLETE), 330
setNull() (method of NdbBlob), 149
setNull() (method of NdbDictionary), 157
setNullable() (method of Column), 46
setObjectType() (method of Table) (OBSOLETE), 318
setOnDeleteAction() (method of ForeignKey), 91
setOnUpdateAction() (method of ForeignKey), 91
setOrdering (ClusterJ), 707
setParameter (ClusterJ), 707
setParent() (method of ForeignKey), 91
setPartitionBalance() (method of Table), 318
setPartitionKey (ClusterJ), 715
setPartitionKey() (method of Column), 47

776

setPartSize() (method of Column), 47
setPath() (method of Datafile), 55
setPath() (method of Undofile), 330
setPos() (method of NdbBlob), 149
setPrecision() (method of Column), 48
setPrimaryKey() (method of Column), 48
setRangeListData() (method of Table), 318
setRecvThreadActivationThreshold (ClusterJ), 718
setRecvThreadCPUids (ClusterJ), 719
setReport() (method of Event), 84
setRollbackOnly (ClusterJ), 721
setRollbackOnly() (method of Transaction), 749
setRowChecksumIndicator() (method of Table), 318
setRowGCIIndicator() (method of Table), 319
setScale() (method of Column), 48
setSchemaObjectOwnerChecks(), 288
setSchemaObjectOwnerChecks() (method of
NdbTransaction), 288
setSingleUserMode() (method of Table), 319
setSize() (method of Datafile), 56
setSize() (method of Undofile), 330
setSqlCmpSemantics() (method of NdbScanFilter), 260
setStatusInvalid() (method of Table), 319
setStorageType() (method of Column), 49
setStripeSize() (method of Column), 48
setTable() (method of Event), 84
setTable() (method of Index), 101
setTablespace() (method of Datafile), 56
setTablespace() (method of Table), 319
setTablespaceData() (method of Table), 320
setTablespaceNames() (method of Table), 320
setType() (method of Column), 49
setType() (method of Index), 101
setUndoBufferSize() (method of LogfileGroup), 105
setValue() (method of NdbBlob), 149
setValue() (method of NdbOperation), 236
SetValueSpec

NDB API structure, 238
set_auto_reconnect() (method of
Ndb_cluster_connection), 136
set_data_node_neighbour() (method of
Ndb_cluster_connection), 136
set_eventbuffer_free_percent() (method of Ndb), 126
set_eventbuf_max_alloc() (method of Ndb), 126
set_max_adaptive_send_time() (method of
Ndb_cluster_connection), 137
set_name() (method of Ndb_cluster_connection), 137
set_num_recv_threads() (method of
Ndb_cluster_connection), 137
set_optimized_node_selection() (method of
Ndb_cluster_connection), 137
set_recv_thread_activation_threshold() (method of
Ndb_cluster_connection), 135, 138
set_recv_thread_cpu() (method of
Ndb_cluster_connection), 139
set_service_uri() (method of Ndb_cluster_connection),
138
set_timeout() (method of Ndb_cluster_connection), 139

short_value() (method of NdbRecAttr), 247
SingleUserMode (Table data type), 320
SQL node

defined, 3
startTransaction() (method of Ndb), 127
State (NdbBlob data type), 150
State (NdbEventOperation data type), 169
State (Object data type), 293
Status (NdbError data type), 160
Status (Object data type), 294
StorageType (Column data type), 49
Store (Object data type), 294
subValue() (method of NdbOperation), 240
sub_reg() (method of NdbInterpretedCode), 203
sub_reg() (method of NdbOperation), 239
sub_val() (method of NdbInterpretedCode), 203
system crash

defined, 4
system restart

defined, 4

T
Table

getExtraMetadata(), 303
getRowSizeInBytes(), 311
getSingleUserMode(), 311
NDB API class, 295
setExtraMetadata(), 314
setSingleUserMode(), 319

Table::addColumn(), 301
Table::aggregate(), 301
Table::equal(), 302
Table::getColumn(), 302
Table::getDefaultNoPartitionsFlag(), 303
Table::getForceVarPart(), 303
Table::getFragmentCount(), 304
Table::getFragmentData(), 304
Table::getFragmentDataLen(), 304
Table::getFragmentNodes(), 304
Table::getFragmentType(), 305
Table::getFrmData(), 305
Table::getFrmLength(), 305
Table::getHashMap(), 306
Table::getKValue(), 306
Table::getLinearFlag(), 306
Table::getLogging(), 306
Table::getMaxLoadFactor(), 307
Table::getMaxRows(), 307
Table::getMinLoadFactor(), 307
Table::getMinRows(), 307
Table::getNoOfAutoIncrementColumns(), 308
Table::getNoOfColumns(), 308
Table::getNoOfPrimaryKeys(), 308
Table::getObjectId(), 308
Table::getObjectStatus(), 309
Table::getObjectType() (OBSOLETE), 309
Table::getObjectVersion(), 309
Table::getPartitionBalance(), 309

777

Table::getPartitionBalanceString(), 309
Table::getPartitionId(), 310
Table::getPrimaryKey(), 310
Table::getRangeListData(), 310
Table::getRangeListDataLen(), 310
Table::getRowChecksumIndicator(), 311
Table::getRowGCIIndicator(), 311
Table::getTableId(), 311
Table::getTablespace(), 312
Table::getTablespaceData(), 312
Table::getTablespaceDataLen(), 313
Table::getTablespaceNames(), 313
Table::getTablespaceNamesLen(), 313
Table::hasDefaultValues(), 313
Table::setDefaultNoPartitionsFlag(), 314
Table::setForceVarPart(), 314
Table::setFragmentCount(), 315
Table::setFragmentData(), 315
Table::setFragmentType(), 315
Table::setFrm(), 315
Table::setHashMap(), 316
Table::setKValue(), 316
Table::setLinearFlag(), 316
Table::setLogging(), 316
Table::setMaxLoadFactor(), 317
Table::setMaxRows(), 317
Table::setMinLoadFactor(), 317
Table::setName(), 317
Table::setObjectType() (OBSOLETE), 318
Table::setPartitionBalance(), 318
Table::setRangeListData(), 318
Table::setRowChecksumIndicator(), 318
Table::setRowGCIIndicator(), 319
Table::setStatusInvalid(), 319
Table::setTablespace(), 319
Table::setTablespaceData(), 320
Table::setTablespaceNames(), 320
Table::SingleUserMode, 320
Table::validate(), 320
TableEvent (Event data type), 85
tableFragmentationChanged() (method of
NdbEventOperation), 169
tableFrmChanged() (method of NdbEventOperation),
170
TableMapping class (Connector for JavaScript), 746
TableMapping.applyToClass(), 747
TableMapping.mapField(), 746
TableMetadata class (Connector for JavaScript), 747
tableNameChanged() (method of NdbEventOperation),
170
Tablespace

NDB API class, 321
Tablespace::getAutoGrowSpecification(), 323
Tablespace::getDefaultLogfileGroup(), 323
Tablespace::getDefaultLogfileGroupId(), 323
Tablespace::getExtentSize(), 324
Tablespace::getName(), 324
Tablespace::getObjectId(), 324

Tablespace::getObjectStatus(), 324
Tablespace::getObjectVersion(), 324
Tablespace::setAutoGrowSpecification(), 325
Tablespace::setDefaultLogfileGroup(), 325
Tablespace::setExtentSize(), 325
Tablespace::setName(), 325
TC

and NDB Kernel, 12
defined, 4
selecting, 13

threading, 14
trace (ClusterJ), 701
Transaction (ClusterJ), 720
Transaction class (Connector for JavaScript), 748
Transaction Coordinator

defined, 4
transaction coordinator, 127
Transaction.begin(), 748
Transaction.commit(), 748
Transaction.getRollbackOnly(), 749
Transaction.isActive(), 749
Transaction.rollback(), 748
Transaction.setRollbackOnly(), 749
transactions

concurrency, 14
example, 486
handling and transmission, 14
performance, 14
synchronous, 6

example of use, 481
using, 5

transactions and locking
NDB API, 224

transporter
defined, 4

truncate() (method of NdbBlob), 150
TUP

and NDB Kernel, 13
defined, 4

Tuple Manager
defined, 4

Type (Column data type), 50
Type (Index data type), 101
Type (NdbOperation data type), 240
Type (Object data type), 294

U
Undofile

NDB API class, 326
Undofile::getFileNo() (OBSOLETE), 327
Undofile::getLogfileGroup(), 328
Undofile::getLogfileGroupId(), 328
Undofile::getNode() (OBSOLETE), 328
Undofile::getObjectId(), 328
Undofile::getObjectStatus(), 329
Undofile::getObjectVersion(), 329
Undofile::getPath(), 329
Undofile::getSize(), 329

778

Undofile::setLogfileGroup(), 329
Undofile::setNode() (OBSOLETE), 330
Undofile::setPath(), 330
Undofile::setSize(), 330
unique (ClusterJ), 724
unloadSchema (ClusterJ), 715
unlock() (method of NdbTransaction), 288
unlock_ndb_objects() (method of
ndb_cluster_connection), 139
unset_recv_thread_cpu() (method of
Ndb_cluster_connection), 140
update() (method of Context), 741
updateCurrentTuple() (method of NdbScanOperation),
271
updatePersistent (ClusterJ), 716
updatePersistentAll (ClusterJ), 716
updateTuple() (method of NdbIndexOperation), 172
updateTuple() (method of NdbOperation), 241
updateTuple() (method of NdbTransaction), 289
u_32_value() (method of NdbRecAttr), 248
u_64_value() (method of NdbRecAttr), 248
u_8_value() (method of NdbRecAttr), 247
u_char_value() (method of NdbRecAttr), 248
u_medium_value() (method of NdbRecAttr), 248
u_short_value() (method of NdbRecAttr), 248

V
validate() (method of Table), 320
value (ClusterJ), 722, 723, 723, 724
vendorName (ClusterJ), 723
version information

in MGM API, 614
visibility of database objects

and MySQL Server, 38, 59

W
wait_until_ready() (method of Ndb_cluster_connection),
140
where (ClusterJ), 733
writeData() (method of NdbBlob), 150
writeTuple() (method of NdbOperation), 241
writeTuple() (method of NdbTransaction), 290
write_attr() (method of NdbInterpretedCode), 204
write_attr() (method of NdbOperation), 241

779

780

	MySQL NDB Cluster API Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 NDB Cluster APIs: Overview and Concepts
	1.1 NDB Cluster API Overview: Introduction
	1.1.1 NDB Cluster API Overview: The NDB API
	1.1.2 NDB Cluster API Overview: The MGM API

	1.2 NDB Cluster API Overview: Version Compatibility
	1.3 NDB Cluster API Overview: Terminology
	1.4 The NDB Transaction and Scanning API
	1.4.1 Core NDB API Classes
	1.4.2 Application Program Basics
	1.4.2.1 Using Transactions
	1.4.2.2 Synchronous Transactions
	1.4.2.3 Operations
	NDB Access Types
	Single-row operations
	Scan Operations
	Using Scans to Update or Delete Rows
	Lock Handling with Scans
	Error Handling

	1.4.3 Review of NDB Cluster Concepts
	1.4.3.1 Selecting a Transaction Coordinator
	1.4.3.2 NDB Record Structure

	1.4.4 The Adaptive Send Algorithm

	1.5 Application-level partitioning
	1.6 Using NdbInterpretedCode

	Chapter 2 The NDB API
	2.1 Getting Started with the NDB API
	2.1.1 Compiling and Linking NDB API Programs
	2.1.1.1 General Requirements
	2.1.1.2 Compiler Options
	2.1.1.3 Linker Options
	2.1.1.4 Using Autotools

	2.1.2 Connecting to the Cluster
	2.1.2.1 Include Files
	2.1.2.2 API Initialization and Cleanup
	2.1.2.3 Establishing the Connection

	2.1.3 Mapping MySQL Database Object Names and Types to NDB
	2.1.3.1 MySQL Database Object Names in the NDB API
	2.1.3.2 NDB API Handling of MySQL Data Types

	2.2 The NDB API Class Hierarachy
	2.3 NDB API Classes, Interfaces, and Structures
	2.3.1 The Column Class
	2.3.2 The Datafile Class
	2.3.3 The Dictionary Class
	2.3.4 The Element Structure
	2.3.5 The Event Class
	2.3.6 The ForeignKey Class
	2.3.7 The HashMap Class
	2.3.8 The Index Class
	2.3.9 The LogfileGroup Class
	2.3.10 The List Class
	2.3.11 The Ndb Class
	2.3.12 The Ndb_cluster_connection Class
	2.3.13 The NdbBlob Class
	2.3.14 The NdbDictionary Class
	2.3.15 The NdbError Structure
	2.3.16 The NdbEventOperation Class
	2.3.17 The NdbIndexOperation Class
	2.3.18 The NdbIndexScanOperation Class
	2.3.19 The NdbInterpretedCode Class
	2.3.20 The NdbOperation Class
	2.3.21 The NdbRecAttr Class
	2.3.22 The NdbRecord Interface
	2.3.23 The NdbScanFilter Class
	2.3.24 The NdbScanOperation Class
	2.3.25 The NdbTransaction Class
	2.3.26 The Object Class
	2.3.27 The Table Class
	2.3.28 The Tablespace Class
	2.3.29 The Undofile Class

	2.4 NDB API Errors and Error Handling
	2.4.1 Handling NDB API Errors
	2.4.2 NDB Error Codes: by Type
	2.4.2.1 No error
	2.4.2.2 Application error
	2.4.2.3 Configuration or application error
	2.4.2.4 No data found
	2.4.2.5 Constraint violation
	2.4.2.6 Schema error
	2.4.2.7 Schema object already exists
	2.4.2.8 User defined error
	2.4.2.9 Insufficient space
	2.4.2.10 Temporary Resource error
	2.4.2.11 Node Recovery error
	2.4.2.12 Overload error
	2.4.2.13 Timeout expired
	2.4.2.14 Node shutdown
	2.4.2.15 Internal temporary
	2.4.2.16 Unknown result error
	2.4.2.17 Internal error
	2.4.2.18 Function not implemented

	2.4.3 NDB Error Codes: Single Listing
	2.4.4 NDB Error Classifications

	2.5 NDB API Examples
	2.5.1 Basic NDB API Examples
	2.5.1.1 NDB API Basic Connection Example
	2.5.1.2 NDB API Basic Insertion Example
	2.5.1.3 NDB API Basic Reading Example
	2.5.1.4 NDB API Basic Delete Example

	2.5.2 NDB API Example Using Synchronous Transactions
	2.5.3 NDB API Example Using Synchronous Transactions and Multiple Clusters
	2.5.4 NDB API Example: Handling Errors and Retrying Transactions
	2.5.5 NDB API Basic Scanning Example
	2.5.6 NDB API Example: Using Secondary Indexes in Scans
	2.5.7 NDB API Example: Using NdbRecord with Hash Indexes
	2.5.8 NDB API Example Comparing RecAttr and NdbRecord
	2.5.9 NDB API Event Handling Example
	2.5.10 NDB API Example: Basic BLOB Handling
	2.5.11 NDB API Example: Handling BLOB Columns and Values Using NdbRecord
	2.5.12 NDB API Simple Array Example
	2.5.13 NDB API Simple Array Example Using Adapter
	2.5.14 Timestamp2 Example
	2.5.15 Common Files for NDB API Array Examples

	Chapter 3 The MGM API
	3.1 MGM API Concepts
	3.2 MGM API Function Listings
	3.2.1 Log Event Functions
	3.2.2 MGM API Error Handling Functions
	3.2.3 Management Server Handle Functions
	3.2.4 Management Server Connection Functions
	3.2.5 Cluster Status Functions
	3.2.6 Functions for Starting & Stopping Nodes
	3.2.7 Cluster Log Functions
	3.2.8 Backup Functions
	3.2.9 Single-User Mode Functions
	3.2.10 TLS Functions

	3.3 MGM API Data Types
	3.4 MGM API Data Structures
	3.5 MGM API Errors
	3.6 MGM API Examples
	3.6.1 Basic MGM API Event Logging Example
	3.6.2 MGM API Event Handling with Multiple Clusters

	Chapter 4 MySQL NDB Cluster Connector for Java
	4.1 MySQL NDB Cluster Connector for Java: Overview
	4.1.1 MySQL NDB Cluster Connector for Java Architecture
	4.1.2 Java and NDB Cluster
	4.1.3 The ClusterJ API and Data Object Model

	4.2 Using MySQL NDB Cluster Connector for Java
	4.2.1 Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java
	4.2.2 Using ClusterJ
	4.2.2.1 Executing ClusterJ Applications and Sessions
	4.2.2.2 Creating tables
	4.2.2.3 Annotations
	4.2.2.4 ClusterJ Basic Operations
	4.2.2.5 ClusterJ Mappings Between MySQL and Java Data Types

	4.2.3 Using Connector/J with NDB Cluster

	4.3 ClusterJ API Reference
	4.3.1 com.mysql.clusterj
	4.3.1.1 Major Interfaces
	SessionFactory

	4.3.1.2 ClusterJDatastoreException
	Synopsis
	getClassification()
	getCode()
	getMysqlCode()
	getStatus()

	4.3.1.3 ClusterJDatastoreException.Classification
	Synopsis
	lookup(int)

	4.3.1.4 ClusterJException
	Synopsis

	4.3.1.5 ClusterJFatalException
	Synopsis

	4.3.1.6 ClusterJFatalInternalException
	Synopsis

	4.3.1.7 ClusterJFatalUserException
	Synopsis

	4.3.1.8 ClusterJHelper
	Synopsis
	getBooleanProperty(String, String)
	getServiceInstance(Class<T>)
	getServiceInstance(Class<T>, ClassLoader)
	getServiceInstance(Class<T>, String)
	getServiceInstance(Class<T>, String, ClassLoader)
	getServiceInstances(Class<T>, ClassLoader, StringBuffer)
	getSessionFactory(Map)
	getSessionFactory(Map, ClassLoader)
	getStringProperty(String, String)
	newDbug()

	4.3.1.9 ClusterJUserException
	Synopsis

	4.3.1.10 ColumnMetadata
	charsetName()
	columnType()
	isPartitionKey()
	isPrimaryKey()
	javaType()
	maximumLength()
	name()
	nullable()
	number()
	precision()
	scale()

	4.3.1.11 ColumnType
	Synopsis

	4.3.1.12 Constants
	Synopsis
	DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
	DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
	DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START
	DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
	DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY
	DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES
	DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
	DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
	DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
	DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE
	DEFAULT_PROPERTY_CLUSTER_DATABASE
	DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS
	DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
	DEFAULT_PROPERTY_CONNECTION_POOL_SIZE
	DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT
	ENV_CLUSTERJ_LOGGER_FACTORY_NAME
	PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
	PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
	PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START
	PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
	PROPERTY_CLUSTER_CONNECT_DELAY
	PROPERTY_CLUSTER_CONNECT_RETRIES
	PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
	PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
	PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
	PROPERTY_CLUSTER_CONNECT_VERBOSE
	PROPERTY_CLUSTER_CONNECTION_SERVICE
	PROPERTY_CLUSTER_CONNECTSTRING
	PROPERTY_CLUSTER_DATABASE
	PROPERTY_CLUSTER_MAX_TRANSACTIONS
	PROPERTY_CONNECTION_POOL_NODEIDS
	PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
	PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS
	PROPERTY_CONNECTION_POOL_SIZE
	PROPERTY_CONNECTION_RECONNECT_TIMEOUT
	PROPERTY_DEFER_CHANGES
	PROPERTY_JDBC_DRIVER_NAME
	PROPERTY_JDBC_PASSWORD
	PROPERTY_JDBC_URL
	PROPERTY_JDBC_USERNAME
	SESSION_FACTORY_SERVICE_CLASS_NAME
	SESSION_FACTORY_SERVICE_FILE_NAME

	4.3.1.13 Dbug
	Synopsis
	append(String)
	debug(String)
	debug(String[])
	flush()
	get()
	output(String)
	pop()
	print(String, String)
	push()
	push(String)
	set()
	set(String)
	trace()

	4.3.1.14 DynamicObject
	4.3.1.15 DynamicObjectDelegate
	4.3.1.16 LockMode
	Synopsis

	4.3.1.17 Query
	Synopsis
	INDEX_USED
	SCAN_TYPE
	SCAN_TYPE_INDEX_SCAN
	SCAN_TYPE_PRIMARY_KEY
	SCAN_TYPE_TABLE_SCAN
	SCAN_TYPE_UNIQUE_KEY
	deletePersistentAll()
	execute(Map<String, ?>)
	execute(Object...)
	execute(Object)
	explain()
	getResultList()
	setLimits(long, long)
	setOrdering(Query.Ordering, String...)
	setParameter(String, Object)

	4.3.1.18 Query.Ordering
	Synopsis

	4.3.1.19 Results
	Synopsis
	iterator()

	4.3.1.20 Session
	Synopsis
	close()
	createQuery(QueryDefinition<T>)
	currentTransaction()
	deletePersistent(Class<T>, Object)
	deletePersistent(Object)
	deletePersistentAll(Class<T>)
	deletePersistentAll(Iterable<?>)
	find(Class<T>, Object)
	flush()
	found(Object)
	getQueryBuilder()
	isClosed()
	load(T)
	makePersistent(T)
	makePersistentAll(Iterable<?>)
	markModified(Object, String)
	newInstance(Class<T>)
	newInstance(Class<T>, Object)
	persist(Object)
	release(T)
	remove(Object)
	savePersistent(T)
	savePersistentAll(Iterable<?>)
	setLockMode(LockMode)
	setPartitionKey(Class<?>, Object)
	unloadSchema(Class<?>)
	updatePersistent(Object)
	updatePersistentAll(Iterable<?>)

	4.3.1.21 SessionFactory
	Synopsis
	close()
	currentState()
	getConnectionPoolSessionCounts()
	getRecvThreadActivationThreshold()
	getRecvThreadCPUids()
	getSession()
	getSession(Map)
	reconnect()
	reconnect(int)
	setRecvThreadActivationThreshold(int)
	setRecvThreadCPUids(short[])

	4.3.1.22 SessionFactory.State
	Synopsis

	4.3.1.23 SessionFactoryService
	Synopsis
	getSessionFactory(Map<String, String>)

	4.3.1.24 Transaction
	Synopsis
	begin()
	commit()
	getRollbackOnly()
	isActive()
	rollback()
	setRollbackOnly()

	4.3.2 com.mysql.clusterj.annotation
	4.3.2.1 Column
	Synopsis
	allowsNull
	defaultValue
	name

	4.3.2.2 Columns
	Synopsis
	value

	4.3.2.3 Extension
	Synopsis
	key
	value
	vendorName

	4.3.2.4 Extensions
	Synopsis
	value

	4.3.2.5 Index
	Synopsis
	columns
	name
	unique

	4.3.2.6 Indices
	Synopsis
	value

	4.3.2.7 Lob
	Synopsis

	4.3.2.8 NotPersistent
	Synopsis

	4.3.2.9 NullValue
	Synopsis

	4.3.2.10 PartitionKey
	Synopsis
	column
	columns

	4.3.2.11 PersistenceCapable
	Synopsis

	4.3.2.12 PersistenceModifier
	Synopsis

	4.3.2.13 Persistent
	Synopsis
	column
	extensions
	nullValue
	primaryKey

	4.3.2.14 PrimaryKey
	Synopsis
	column
	columns
	name

	4.3.2.15 Projection
	Synopsis

	4.3.3 com.mysql.clusterj.query
	4.3.3.1 Predicate
	Synopsis
	and(Predicate)
	not()
	or(Predicate)

	4.3.3.2 PredicateOperand
	Synopsis
	between(PredicateOperand, PredicateOperand)
	equal(PredicateOperand)
	greaterEqual(PredicateOperand)
	greaterThan(PredicateOperand)
	in(PredicateOperand)
	isNotNull()
	isNull()
	lessEqual(PredicateOperand)
	lessThan(PredicateOperand)
	like(PredicateOperand)

	4.3.3.3 QueryBuilder
	Synopsis
	createQueryDefinition(Class<T>)

	4.3.3.4 QueryDefinition
	Synopsis
	not(Predicate)
	param(String)
	where(Predicate)

	4.3.3.5 QueryDomainType
	Synopsis
	get(String)
	getType()

	4.3.4 Constant field values
	4.3.4.1 com.mysql.clusterj.*

	4.4 MySQL NDB Cluster Connector for Java: Limitations and Known Issues

	Chapter 5 MySQL NoSQL Connector for JavaScript
	5.1 MySQL NoSQL Connector for JavaScript Overview
	5.2 Installing the JavaScript Connector
	5.3 Connector for JavaScript API Documentation
	5.3.1 Batch
	5.3.2 Context
	5.3.3 Converter
	5.3.4 Errors
	5.3.5 Mynode
	5.3.6 Session
	5.3.7 SessionFactory
	5.3.8 TableMapping and FieldMapping
	5.3.9 TableMetadata
	5.3.10 Transaction

	5.4 Using the MySQL JavaScript Connector: Examples
	5.4.1 Requirements for the Examples
	5.4.2 Example: Finding Rows
	5.4.3 Inserting Rows
	5.4.4 Deleting Rows

	Index

