Skip to main content

Advertisement

Log in

Estimation of water productivity in winter wheat using the AquaCrop model with field hyperspectral data

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Water productivity (WP) is a key element of agricultural water management in agricultural irrigated regions. The objectives of this study were: (i) to estimate biomass of winter wheat using spectral indices; (ii) integrate the estimation of biomass data with the AquaCrop model using a lookup table for higher accuracy biomass simulation; (iii) show estimation accuracy of the data assimilation method in yield and WP. Spectral variables and concurrent biomass, yield and WP of samples were acquired at the Xiaotangshan experimental site in Beijing, China, during the 2008/2009, 2009/2010, 2010/2011 and 2011/2012 winter wheat growing seasons. The results showed that all spectral indices had a highly significant relationship with biomass, especially normalized difference matter index, with R2 and RMSE values of 0.84 and 1.43 t/ha, respectively. Simulation of biomass and yield by the AquaCrop model were in good agreement with the measured biomass and yield of winter wheat. The results showed that the data assimilation method (R2 = 0.79 and RMSE = 0.12 kg/m3) could be used to estimate WP. The result indicated that the AquaCrop model could be used to estimate yield and WP with the aid of remote sensing for improving agricultural water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, R. G., Periera, L. S., Raes. D., & Smith, M. (1998). Crop evapotranspiration. Guide lines for computing crop water requirement. FAO irrigation and drainage paper no. 56, FAO, Rome, Italy

  • Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5003–5013.

    Article  Google Scholar 

  • Du, W. Y., He, X. K., Shamaila, Z., Hu, Z. F., Zeng, A. J., & Muller, J. (2011). Yield and biomass prediction testing of AquaCrop model for winter wheat. Transactions of the Chinese Society for Agricultural Machinery, 42(4), 174–183. (in Chinese).

    Google Scholar 

  • Faramarzi, M., Yang, H., Schulin, R., & Abbaspour, K. C. (2010). Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agricultural Water Management, 97, 1861–1875.

    Article  Google Scholar 

  • Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of characteristics of vegetation. Journal Plant Physiology, 161, 165–173.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403. doi:10.1029/2005GL022688.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  • Heng, L. K., Hsiao, T. C., Evett, S., Howell, T., & Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal, 101(3), 488–498.

    Article  Google Scholar 

  • Hunt, E. R., Jr., & Rock, B. N. (1989). Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sensing of Environment, 30(1), 43–54.

    Article  Google Scholar 

  • Immerzeel, W. W., Gaur, A., & Zwart, S. J. (2008). Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural Water Management, 95, 11–24.

    Article  Google Scholar 

  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845.

    Article  Google Scholar 

  • Jin, X. L., Diao, W. Y., Xiao, C. H., Wang, F. Y., Chen, B., Wang, K. R., et al. (2013a). Estimation of wheat agronomic parameters using new spectral indices. PLoS One, 8, e72736. doi:10.1371/journal.pone.0072736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, X. L., Feng, H. K., Li, Z. H., Song, S. N., Zhu, X. K., Song, X. Y., et al. (2014a). Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PLoS One, 9, e86938. doi:10.1371/journal.pone.0086938.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, X. L., Yang, G. J., Li, Z. H., Feng, H. K., & Xu, X. G. (2014b). New combined spectral index to improve total leaf chlorophyll content estimation in cotton. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4589–4600.

    Article  Google Scholar 

  • Jin, X. L., Xu, X. G., Song, X. Y., Li, Z. H., Wang, J. H., & Guo, W. S. (2013b). Estimation of leaf water content in winter wheat using grey relational analysis-partial least squares modeling with hyperspectral data. Agronomy Journal, 105(5), 1385–1392.

    Article  Google Scholar 

  • Kadaja, J., & Saue, T. (2016). Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate. Agricultural Water Management, 165, 61–71.

    Article  Google Scholar 

  • Li, H. J., Zheng, L., Lei, Y. P., Li, C. Q., Liu, Z. J., & Zhang, S. W. (2008). Estimation of water consumption and crop water productivity of winter wheat in North China Plain using remote sensing technology. Agricultural Water Management, 95, 1271–1278.

    Article  Google Scholar 

  • Lin, L. I., & Torbeck, L. D. (1998). Coefficient of accuracy and concordance correlation coefficient: new statistics for method comparison. PDA Journal of Pharmaceutical Science and Technology, 52, 55–59.

    CAS  PubMed  Google Scholar 

  • Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., & McVicar, T. R. (2005). Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183(1–2), 301–322.

    Article  Google Scholar 

  • Molden, F., Oweis, T. Y., Steduto, P., Kijne, J. W., Hanjra, M. A., & Bindraban, P. S. (2007). Pathways for increasing agricultural water productivity. In D. J. Molden (Ed.), Water for Food, Water for Life: A comprehensive assessment of water management in agriculture. London: Earthscan/International Water Management Institute.

    Google Scholar 

  • Oumar, Z., & Mutanga, O. (2010). Predicting plant water content in Eucalyptus grandis forest stands in KwaZulu-Natal, South Africa using field spectra resampled to the Sumbandila satellite sensor. International Journal of Applied Earth Observation and Geoinformation, 12(3), 158–164.

    Article  Google Scholar 

  • Oweis, T., & Hachum, A. (2006). Water harvesting and supplementary irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agriculture Water Management, 80, 57–73.

    Article  Google Scholar 

  • Penuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950–970 nm region as an indicator of plant water status. International Journal of Remote Sensing, 14(10), 1887–1905.

    Article  Google Scholar 

  • Pu, R., & Gong, P. (2011). Hyperspectral remote sensing of vegetation bioparameters. In Q. Weng (Ed.), Advances in environmental remote sensing: sensors algorithm and applications (pp. 101–142). Paris: CRC.

    Chapter  Google Scholar 

  • Raes, D., Steduto, P., Hsiao, T.C, & Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water: reference manual annexes. Retrieved 21 March 2016 from www.fao.org/nr/water/aquacrop.html

  • Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2012). Reference manual: AquaCrop plug-in program (version 4.0). FAO, Rome

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement of retrogradation (green wave effect) of natural vegetation (pp. 1–371). Greenbelt: NASA/GSFC.

    Google Scholar 

  • Seelig, H. D., Hoehn, A., Stodieck, L. S., Klaus, D. M., Adams, W. W., & Emery, W. J. (2008). The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. International Journal of Remote Sensing, 29(13), 3701–3713.

    Article  Google Scholar 

  • Soddu, A., Deidda, R., Marrocu, M., Meloni, R., Paniconi, C., Ludwig, R., et al. (2013). Climate variability and durum wheat adaptation using the AquaCrop model in southern Sardinia. Procedia Environmental Sciences, 19, 830–835.

    Article  Google Scholar 

  • Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop-The FAO crop model to simulate yield response to water. I Concepts. Agronomy Journal, 101(3), 426–437.

    Article  Google Scholar 

  • Stern, B. (2000). Interactive Data Language. Space, 2000, 1011–1015. doi:10.1061/40479(204)125.

    Google Scholar 

  • Teixeira, A. H. C., Scherer-Warren, M., Hernandez, F. B. T., Andrade, R. G., & Leivas, J. F. (2013). Large-scale water productivity assessments with MODIS images in a changing semi-arid environment: a Brazilian case study. Remote Sensing, 5, 5783–5804.

    Article  Google Scholar 

  • Timsina, J., Godwin, D., Humphreys, E., Singh, Y., Singh, B., Kukal, S. S., et al. (2008). Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSAT-CSM-CERES-wheat model. Agricultural Water Management, 95, 1099–1110.

    Article  Google Scholar 

  • Wang, L., Qu, J. J., Hao, X., & Hunt, E. R. (2011). Estimating dry matter content from spectral reflectance for green leaves of different species. International Journal of Remote Sensing, 32(22), 7097–7109.

    Article  Google Scholar 

  • Yan, N. N., & Wu, B. F. (2014). Integrated spatial-temporal analysis of crop water productivity of winter wheat in Hai Basin. Agricultural Water Management, 133, 24–33.

    Article  Google Scholar 

  • Yang, G. J., Pu, R. L., Zhao, C. J., & Xue, X. Z. (2014). Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations. Agricultural Water Management, 133, 34–43.

    Article  Google Scholar 

  • Zhang, Y. Q., Kendy, E., Yu, Q., Liu, C. M., Shen, Y. J., & Sun, H. Y. (2004). Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agricultural Water Management, 64, 107–122.

    Article  Google Scholar 

  • Zhang, X., Pei, D., & Hu, C. (2003). Conserving groundwater for irrigation in the North China Plain. Irrigation Science, 21, 159–166.

    Google Scholar 

  • Zwart, S. J., & Bastiaanssen, W. G. M. (2007). SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems. Agricultural Water Management, 89, 287–296.

    Article  Google Scholar 

  • Zwart, S. J., Bastiaanssen, W. G. M., de Fraiture, C., & Molden, D. J. (2010). WATPRO: A remote sensing based model for mapping water productivity of wheat. Agricultural Water Management, 97, 1628–1636.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of China (41271345, 41471351, 41301375, 41601369), the Beijing Natural Science Foundation (4141001), the National High Technology Research and Development Program of China (2013AA102303), the Special Fund for Agro-scientific Research in the Public Interest (201303109), the Special Funds for Technology Innovation Capacity Building sponsored by the Beijing Academy of Agriculture and Forestry Sciences (KJCX20140417), the Key Deployment Project of Chinese Academy of Sciences (KZZD-EW-TZ-16-1), and Yangzhou University Excellent Doctoral Foundation. The authors are grateful to Mr. Haikuan Feng, Weiguo Li and Mrs. Hong Chang for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuliang Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Yang, G., Li, Z. et al. Estimation of water productivity in winter wheat using the AquaCrop model with field hyperspectral data. Precision Agric 19, 1–17 (2018). https://doi.org/10.1007/s11119-016-9469-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9469-2

Keywords

Navigation