Abstract
Early in Earth’s history, the Sun provided less energy to the Earth than it does today. However, the Earth was not permanently glaciated, an apparent contradiction known as the faint young Sun paradox. By implication, the Earth must have been warmed by a stronger greenhouse effect or a lower planetary albedo. Here we use a radiative–convective climate model to show that more N2 in the atmosphere would have increased the warming effect of existing greenhouse gases by broadening their absorption lines. With the atmospheric CO2 and CH4 levels estimated for 2.5 billion years ago, a doubling of the present atmospheric nitrogen (PAN) level would cause a warming of 4.4 ∘C. Our new budget of Earth’s geological nitrogen reservoirs indicates that there is a sufficient quantity of nitrogen in the crust (0.5 PAN) and mantle (>1.4 PAN) to have supported this, and that this nitrogen was previously in the atmosphere. In the mantle, N correlates with 40Ar, the daughter product of 40K, indicating that the source of mantle N is subducted crustal rocks in which NH4+ has been substituted for K+. We thus conclude that a higher nitrogen level probably helped warm the early Earth, and suggest that the effects of N2 should be considered in assessing the habitable zone for terrestrial planets.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
265,23 € per year
only 22,10 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Sagan, C. & Mullen, G. Earth and Mars: Evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).
Kuhn, W. R. & Atreya, S. K. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus 37, 207–213 (1979).
Owen, T., Cess, R. D. & Ramanathan, V. Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277, 640–642 (1979).
Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambr. Res. 147, 148–155 (2006).
Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A. & Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981–11990 (2000).
Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).
Buick, R. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5, 97–100 (2007).
Kasting, J. F., Whitmere, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).
Ramanathan, V. & Coakley, J. A. Jr Climate modeling through radiative-convective models. Rev. Geophys. Space Phys. 16, 465–489 (1978).
Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, 1978).
Boyd, S. R. Nitrogen in future biosphere studies. Chem. Geol. 176, 1–30 (2001).
Holloway, J. M. & Dahlgren, R. A. Nitrogen in rock: Occurrences and biogeochemical implications. Glob. Biogeochem. Cycles 16, 1118 (2002).
Wlotzka, F. in Handbook of Geochemistry II (ed. Wedepohl, K. H.) 7B1–7O3 (Springer, 1972).
Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).
Veizer, J. & Mackenzie, F. T. in Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 369–407 (Elsevier, 2003).
Amiotte Suchet, P., Probst, J.-L. & Ludwig, W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).
Li, L. & Bebout, G. E. Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J. Geophys. Res. 110, B11202 (2005).
Sullivan, P. J., Sposito, G., Strathouse, S. M. & Hansen, C. L. Geologic nitrogen and the occurrence of high nitrate soils in the western San Joaquin Valley, California. Hilgardia 47, 15–49 (1979).
Hall, A. Ammonium in granites and its petrogenetic significance. Earth. Sci. Rev. 45, 145–165 (1999).
Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).
Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3 (eds Holland, H. D. & Turekian, K. K.) 1–64 (Elsevier, 2003).
Busigny, V., Cartigny, P., Philippot, P., Ader, M. & Javoy, M. Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: Evidence from HP to UHP oceanic metasediments of the Schistes Lustrs nappe (western Alps, Europe). Earth Planet. Sci. Lett. 215, 27–42 (2003).
Mingram, B. & Bräuer, K. Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochim. Cosmochim. Acta 65, 273–287 (2001).
Bebout, G. E., Ryan, J. G., Leeman, W. P. & Bebout, A. E. Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution. Earth Planet. Sci. Lett. 171, 63–81 (1999).
Li, L., Bebout, G. E. & Idleman, B. D. Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185: Insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochim. Cosmochim. Acta 71, 2344–2360 (2007).
Hawkesworth, C. J. & Kemp, A. I. S. Evolution of the continental crust. Nature 443, 811–817 (2006).
Tolstikhin, I. N. & Marty, B. The evolution of terrestrial volatiles: A view from helium, neon, argon and nitrogen isotope modelling. Chem. Geol. 147, 27–52 (1998).
Marty, B. & Dauphas, N. The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present. Earth Planet. Sci. Lett. 206, 397–410 (2003).
Tappert, R. et al. Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contrib. Mineral. Petrol. 150, 505–522 (2005).
Cartigny, P., Harris, J. W. & Javoy, M. Diamond genesis, mantle fractionations and mantle nitrogen content: A study of δ13C–N concentrations in diamonds. Earth Planet. Sci. Lett. 185, 85–98 (2001).
Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: A record of the evolution of atmosphere chemistry? Precambr. Res. 96, 63–82 (1999).
Philippot, P., Busigny, V., Scambelluri, M. & Cartigny, P. Oxygen and nitrogen isotopes as tracers of fluid activities in serpentinites and metasediments during subduction. Mineral. Petrol. 91, 11–24 (2007).
Hilton, D. R., Fischer, T. P. & Marry, B. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002).
Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).
Konovalov, S. K., Murray, J. W., Luther, G. W. & Tebo, B. M. Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep-Sea Res. II 53, 1817–1841 (2006).
De Ronde, C. E. J., Channer, D. M. deR., Faure, C. J., Bray, K. & Spooner, E. T. C. Fluid chemistry of Archean seafloor hydrothermal vents: Implications for the composition of circa 3.2 Ga seawater. Geochim. Cosmochim. Acta 61, 4025–4042 (1997).
Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006).
Manabe, S. & Wetherald, R. D. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).
Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. I: Choosing a configuration for a large scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).
Kasting, J. F., Pollack, J. B. & Crisp, D. Effects of high CO2 levels on surface temperature and atmospheric oxidation-state of the early Earth. J. Atmos. Chem. 1, 403–428 (1984).
Jain, A. K., Briegleb, B. P., Minschwaner, K. & Wuebbles, D. J. Radiative forcings and global warming potentials of 39 greenhouse gases. J. Geophys. Res. 105, 20773–20790 (2000).
Goldblatt, C. Bistability of Atmospheric Oxygen, the Great Oxidation and Climate. PhD thesis, Univ. East Anglia (2008).
Goldblatt, C., Lenton, T. M. & Watson, A. J. An evaluation of the longwave radiative transfer code used in the Met Office Unified Model. Q. J. R. Meteorol. Soc. 135, 619–633 (2009).
Clough, S. A. et al. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Ra. 91, 233–244 (2005).
Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000).
Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001).
Sbordone, L., Bonifacio, P., Castelli, F. & Kurucz, R. L. ATLAS and SYNTHE under Linux. Mem. Soc. Astron. Ital. Supp. 5, 93 (2004).
Castelli, F. & Kurucz, R. L. in Modelling of Stellar Atmospheres, IAU Symposium Vol. 210 (eds Piskunov, N., Weiss, W. W. & Gray, D. F.) 20P (Astronomical Society of the Pacific, 2003).
Arevalo, Ricardo Jr, McDonough, W. F. & Luong, M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett. 278, 361–269 (2009).
Adler, J. F. & Williams, Q. A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth’s core. J. Geophys. Res. 110, B01203 (2005).
Acknowledgements
We thank the Met Office for providing us access to the Edwards-Slingo radiation code. We thank R. Buick, D. Catling, R. von Glasow, R. Haberle, J. Kirschvink, J. Manners, E. Nisbet, R. Pierrehumbert, N. Sleep and Q. Williams for discussions and R. Haberle, K. Cahoy and J. Lissauer for comments on the manuscript. C.G. was financially supported by a NASA Postdoctoral Program fellowship. T.M.L.’s contribution was part of the NERC Feedbacks QUEST project (NE/F001657/1), which partly supported C.G.’s contribution. K.J.Z. was supported by the NASA Exobiology programme. M.W.C. received support from the NAI Virtual Planetary Laboratory.
Author information
Authors and Affiliations
Contributions
C.G., T.M.L and A.J.W. suggested the study. C.G. wrote the RCM and carried out all model runs. C.G., A.J.M. and T.M.L. analysed the climate results. C.G. and K.J.Z. developed the nitrogen budget. M.W.C. calculated the changed solar flux.
Corresponding author
Rights and permissions
About this article
Cite this article
Goldblatt, C., Claire, M., Lenton, T. et al. Nitrogen-enhanced greenhouse warming on early Earth. Nature Geosci 2, 891–896 (2009). https://doi.org/10.1038/ngeo692
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo692