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Abstract

The aim of this work is to introduce a new nonparametric regression technique in the

context of functional covariate and scalar response. We propose a local linear regression

estimator and study its asymptotic behaviour. Its finite-sample performance is compared

with a Nadayara-Watson type kernel regression estimator via a Monte Carlo study and the

analysis of two real data sets. In all the scenarios considered, the local linear regression

estimator performs better than the kernel one, in the sense that the mean squared prediction

error and its standard deviation are lower.
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1 Introduction

In the last years there has been an increasing interest in the analysis, modelling and use of

functional data. The observation of functional variables has become usual due, for instance,

to the development of measuring instruments that allow to observe variables (time or space

dependent) at finer and finer resolution. Then it seems natural to assume that the data are

actually observations from a random variable taking values in a functional space.

There is nowadays a large number of fields where functional data are collected: environmetrics,

medicine, finance, pattern recognition,. . . This has led to the extension of finite dimensional

statistical techniques to the infinite dimensional data setting. A classical statistical problem is

that of regression: studying the relationship between two observed variables with the aim to

predict the value of the response variable when a new value of the auxiliary one is observed.

∗Research partially supported by the IV PRICIT program titled Modelización Matemática y Simulación

Numérica en Ciencia y Tecnoloǵıa (SIMUMAT), by Spanish grant MTM2004-00098 and by MTM2006-09920

(Ministry of Education and Science-FEDER).
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In this work we consider the regression problem with functional auxiliary variable X taking values

in L2[0, T ] and scalar response Y . Without loss of generality from now on we assume that T = 1.

A sample of random elements (X1, Y1), . . . , (Xn, Yn) is observed, where the Xi are independent

and identically distributed as X and only recorded on an equispaced grid t1, t2, . . . , tN of [0, 1]

whose internodal space is w = 1/N . It is assumed that the response variable Y has been

generated as

Yi = m(Xi) + ǫi, i = 1, . . . , n (1)

and that the errors ǫi are independent, with zero mean and finite variance σ2
ǫ , and are also

independent from any of the Xj.

In the context of regression with functional data a common assumption is that m(x) is a linear

function of x. The linear model has been studied in a large number of works: see, e.g., Cardot,

Ferraty and Sarda (2003), Ramsay and Silverman (2005), Cai and Hall (2006), Hall and Horowitz

(2007) and references therein. Extensions of the linear model have been considered, for instance,

by James (2002), Ferré and Yao (2003), Cardot and Sarda (2005) or Müller and Stadtmüller

(2005). However, when dealing with functional data, it is difficult to gain an intuition on whether

the linear model is adequate at all or which is the parametric model that would best fit the data,

since graphical techniques are of scarce use here. Nonparametric techniques come in naturally

in this situation.

Here we are interested in estimating the regression function m in a nonparametric fashion.

Nonparametric functional regression estimation has already been considered, for instance, by

Ferraty and Vieu (2000, 2006), who study a kernel estimator of Nadaraya-Watson type

m̂K(x) :=

∑n
i=1 YiKh(‖Xi − x‖)

∑n
i=1 Kh(‖Xi − x‖)

, (2)

where Kh(·) := h−1K(·/h), h = hn is a positive smoothing parameter and ‖ · ‖ denotes the

L2[0, 1] norm. From now on K is assumed to be an asymmetrical decreasing kernel function.

Observe that the estimator m̂K(x) is the value of a minimizing the weighted squared error

WSE0(x) =
n

∑

i=1

(Yi − a)2Kh(‖Xi − x‖).

Thus the kernel estimator given by (2) is locally approximating m by a constant (a zero-degree

polynomial). However, in the context of nonparametric regression with finite-dimensional aux-

iliary variables, local polynomial smoothing has become the “golden standard” (see Fan 1992,

Fan and Marron 1993, Wand and Jones 1995). Local polynomial smoothing at a point x fits a

polynomial to the pairs (Xi, Yi) for those Xi falling in a neighbourhood of x determined by a

smoothing parameter h. In particular, the local linear regression estimator locally fits a polyno-

mial of degree one. Here we plan to extend the ideas of local linear smoothing to the functional

data setting, giving a first answer to the open question 5 in Ferraty and Vieu (2006): “How can

the local polynomial ideas be adapted to infinite dimensional settings?”

Section 2 contains our proposal for obtaining the local linear regression estimator in the context

of functional auxiliary variable and scalar response. Section 3 is devoted to the study of the
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asymptotic behaviour of this estimator. In Section 4 we compare the finite-sample performance

of the kernel and the local linear regression estimators via a Monte Carlo study. In Section 5

this comparison is carried out through the analysis of two real data sets. Finally the Appendix

contains some technical results together with the proof of the theorem stated in Section 3.

2 Local linear smoothing for functional data

Local polynomial smoothing is based on the assumption that the regression function m is smooth

enough to be locally well approximated by a polynomial. Thus from now on we will assume that

m is differentiable in a neighbourhood of x and, consequently, for every z in this neighbourhood

we may approximate m(z) by a polynomial of degree 1, that is, m(z) ≃ m(x) + 〈b, z − x〉,

where b = b(x) ∈ L2[0, 1] and 〈 , 〉 denotes the L2[0, 1] inner product (see Cartan 1967 for a

comprehensive review on this subject). In particular, we have m(Xi) ≃ m(x) + 〈b, Xi − x〉 for

every sample point in a neighbourhood of x. Then the weighted squared error

WSE(x) :=
n

∑

i=1

(Yi − m(Xi))
2 Kh(‖Xi − x‖)

may be approximated by

n
∑

i=1

(Yi − (m(x) + 〈b, Xi − x〉))2 Kh(‖Xi − x‖).

A first naive answer to the question posed by Ferraty and Vieu (2006) would come from opti-

mizing, in a and b ∈ L2[0, 1], the following error expression

WSE1(x) =
n

∑

i=1

(Yi − (a + 〈b, Xi − x〉))2 Kh(‖Xi − x‖). (3)

Once the value â of a minimizing (3) were found, we would take m̂LL(x) = â as the local linear

estimator of m(x), the regression function at x (see Fan 1992).

2.1 Smoothing the functional parameter b

The minimization of WSE1 may be achieved by a “wiggly” b̂ that forces m̂LL(x) to adapt to all

the data points in a neighbourhood of x (see Chapter 15 of Ramsay and Silverman 2005 for a

similar reasoning in the context of linear regression). Cai and Hall (2006) express the same idea

stating that optimizing in b is an infinite-dimensional problem. In order to reduce the dimension

of parameter b it is necessary an intermediate step of smoothing or regularization. A standard

approach in the functional linear regression setting is to expand b and Xi using an orthonormal

basis {φj}j≥1 of L2[0, 1],

b =
∞

∑

j=1

bjφj and Xi − x =
∞

∑

j=1

cijφj (4)
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with bj = 〈b, φj〉 and cij = 〈Xi − x, φj〉. The system {φj}j≥1 can be, for example, the Fourier

trigonometric basis (see Ramsay and Silverman 2005) or the eigenfunctions of the covariance

operator of X (see Cai and Hall 2006). If we substitute (4) in expression (3), Parseval’s theorem

yields

WSE1 =
n

∑

i=1

(

Yi −

(

a +
∞

∑

j=1

bjcij

))2

Kh(‖Xi − x‖).

The regularization step consists in truncating the series at a certain cut-off J . Thus we will

minimize the following approximation to WSE1

AWSE1 :=
n

∑

i=1

(

Yi −

(

a +
J

∑

j=1

bjcij

))2

Kh(‖Xi − x‖). (5)

Adding a penalization term that prevents b from oscillating too much is another possible regu-

larization procedure (see Ramsay and Silverman 2005). However simulation studies analogous

to the ones presented in Section 4 reveal that, in the context of this work, the penalization pro-

cedure performs worse than the truncation one. The question of how to choose (in an automatic

way) the optimal or at least a “good” J in practice is addressed in Section 4.

2.2 Estimating the regression function

In order to find the values of a and bj, for j = 1, . . . , J , minimizing AWSE1, we differentiate the

expression given in (5) with respect to these parameters and equate the derivatives to zero. As

a result, assuming that C′WC is a nonsingular matrix, we obtain













â

b̂1

...

b̂J













= (C′WC)−1C′WY,

where Y = (Y1, . . . , Yn)′, W = diag(Kh(X1 − x), . . . , Kh(Xn − x)) and

C =













1 c11 . . . c1J

1 c21 . . . c2J

...
...

1 cn1 . . . cnJ













.

Finally, our proposal for the local linear estimator of m(x) is

m̂LL(x) = â = e′
1(C

′WC)−1C′WY, (6)

where e1 is the (J + 1) × 1 vector having 1 in the first entry and 0’s in the rest.
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3 Asymptotic behaviour

The aim of this section is to state a consistency result for the local linear estimator introduced

in expression (6) of Section 2. More concretely we are interested in conditions under which the

mean squared error

E((m̂LL(x) − m(x))2|X1, . . . , Xn) (7)

converges to 0 as n → ∞ and J → ∞. From now on we will denote by X the sample X1, . . . , Xn

appearing in the conditional expectation and variance.

Let us first state some hypotheses to be used in this section.

(A1) The kernel K : R → R
+ satisfying

∫

K = 1 is a kernel of type I if there exist two real

constants 0 < cI < CI < ∞ such that cI1[0,1] ≤ K ≤ CI1[0,1].

The following condition states that the probability of observing X in any neighbourhood of x is

not null (see Ferraty and Vieu 2006).

(A2) For any ǫ > 0, the small ball probability ϕx(ǫ) := P{‖X − x‖ < ǫ} is strictly positive.

Conditions (A3) and (A4) are used to bound the error made when approximating Xi and x by

the trigonometric series (4) truncated at the cut-off J (see Zygmund 1988).

(A3) With probability one, any trajectory X(·, ω) of X has derivative of ν-th order which is

uniformly bounded on [0, 1] by a constant independent of ω.

(A4) The element x has derivative of ν-th order which is uniformly bounded on [0, 1].

The asymptotic behaviour of the local linear regression estimator defined in formula (6) is studied

in the following result, whose proof is detailed in the Appendix. From this proof we can see

that if m is a linear functional then the local linear estimator is unbiased. This fact was already

observed by Fan (1992) and Ruppert and Wand (1994) in the case that X has finite dimension.

Theorem: Let the assumptions (A1)–(A4) hold. Assume also that h → 0 and nϕx(h) → ∞

as n → ∞. If the regression function m is differentiable in a neighbourhood of x and twice

differentiable at x with continuous second derivative, then

E((m̂LL(x) − m(x))2|X) =
(

O(J−ν) + OP (h2)
)2

+ OP

(

(nϕx(h))−1
)

.

In the following corollary we obtain rates of convergence to 0 (in probability) for the mean

squared error, under an assumption on the fractal dimensionality of the probability measure

of X. More precisely, the random element X ∈ L2[0, 1] is said to be of fractal order τ with

respect to ‖ · ‖ if ϕx(ǫ) = O(ǫτ ) as ǫ → 0. This definition was introduced in the context of

kernel regression estimation by Ferraty and Vieu (2000) and further explored by Ferraty and

Vieu (2006).
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Corollary: Let the assumptions of the theorem hold. If X is of fractal order τ with respect to

‖ · ‖, h = O
(

n−1/(4+τ)
)

and J = O(h−2/ν), then

E((m̂LL(x) − m(x))2|X) = OP

(

n−4/(4+τ)
)

.

The rates obtained in the corollary agree with the asymptotic results for the kernel estimator

appearing in Ferraty and Vieu (2006), p. 208, in the sense that the more concentrated X is

around x (as measured by the small ball probability ϕx(h)), the faster the local linear estimator

will converge to the true regression function.

4 Simulations

In this section we compare the finite-sample behaviour of the local linear and the kernel regres-

sion estimators, m̂LL and m̂K respectively, via a Monte Carlo study. The performance of each

regression estimator m̂ is described by the squared prediction error SE(X) := (m̂(X)−m(X))2.

More concretely, for b = 1, . . . , B Monte Carlo trials we generate a sample X
(b)
1 , . . . , X

(b)
n and a

test observation X(b) from X. For each estimator m̂ we compute m̂(b), the regression estimator

constructed from X
(b)
1 , . . . , X

(b)
n , and SE(b)(X(b)) :=

(

m̂(b)(X(b)) − m(X(b))
)2

. The regression es-

timators are compared using the mean and standard deviation of {SE(b)(X(b)), b = 1, . . . , B}.

In the simulations displayed below we have taken B = 2000 and n = 100, 200.

4.1 Models for the simulations

In this subsection we specify the models used to generate (X, Y ). In all the cases considered we

have used the same distribution to generate X

X(t) =
50

∑

j=1

Zj2
1/2 cos(jπt),

where {Zj}1≤j≤50 are independent random variables and each Zj follows a normal distribution

with mean 0 and variance σ2
z j−2. To generate the response variable Y we have used the three

models described below. In Model 1 and Model 2 we have taken σz = 2 and in Model 3, σz = 1.

Model 1 (Linear regression function): Y = 〈β, X〉 + ǫ, where the “slope” is given by

β(t) =
50

∑

j=1

j−421/2 cos(jπt)

and the error ǫ is normally distributed with mean 0 and standard deviation σǫ = 2. This linear

model was used in the simulation study of Cai and Hall (2006). (See also Báıllo 2007).

Model 2 (Piecewise linear regression function):

Y =

{

α1 + 〈β(1), X〉 + ǫ, if ‖X‖2 ≤ 10,

α2 + 〈β(2), X〉 + ǫ, otherwise,
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where α1 = 2, α2 = 0, β1(t) =
∑50

j=1 j−421/2 cos(jπt), β2(t) =
∑50

j=1 j−521/2 cos(jπt) and the

error ǫ is normally distributed with mean 0 and standard deviation σǫ = 2.

Model 3 (Strictly non-linear regression function): Y = ‖X‖2 + ǫ, where the error ǫ is normally

distributed with mean 0 and standard deviation σǫ = 1.

4.2 Choosing the cut-off J and the bandwidth h

For both the kernel and the local linear regression estimators we use the asymmetrical Gaussian

kernel K(t) :=
√

2/π exp(−t2/2) for t ∈ (0,∞). The kernel bandwidth is chosen via the following

cross-validation procedure described in Ferraty and Vieu 2006, p. 101,

hK = arg min
h

CVK(h), (8)

where CVK(h) :=
∑n

i=1(Yi − m̂K,−i(Xi))
2 is a sum of squared residuals and

m̂K,−i(x) :=

∑n
j=1,j 6=i YjKh(Xj − x)

∑n
j=1,j 6=i Kh(Xj − x)

.

Let us now turn to the practical aspects of the local linear estimator. Concerning the basis used

in the series expansion we choose the (orthonormal) trigonometric basis

φ1(t) = 1, φ2r(t) = 2 sin(2πrt), φ2r+1(t) = 2 cos(2πrt), r = 1, 2, . . . . (9)

Regarding the cut-off J , it is clear that, as Ramsay and Silverman (2005) point out, the value

of J should be low in order to avoid the curse of dimensionality. As a first step, to check

how things work, we fix some values J = 1, 2, 3, . . . , 10. Once J is fixed, we choose h via a

cross-validation procedure analogous to the one proposed for the kernel estimator, hLL(J) :=

arg minh CVLL(J, h), where CVLL(J, h) :=
∑n

i=1(Yi − m̂LL,−i(Xi))
2 and m̂LL,−i is the local linear

estimator of m constructed using the sample {(Xj, Yj)}1≤j≤n, j 6=i and the first J terms of (9).

In Table 1 and Figure 1 we reproduce the simulation results for Model 1 and B = 1000 Monte

Carlo samples of size n = 100. We have computed the sample mean and the standard deviation

(in brackets) of the resulting squared prediction error {SE(b)(X(b)), b = 1, . . . , B} for different

values of J . In the graph we have only represented the mean squared error. We have included,

just for better comparison, the squared prediction error for the m̂K estimator (as a solid line),

which is computed independently of J . In both, the table and the figure, we can see that

certainly the optimal cut-off J should be low: even under the assumption of a linear model, the

performance of the local linear estimator is markedly better than that of the kernel estimator

only for J =2, 3, 4 or 5.

It is clear, then, the convenience of developing an automatic, data-based procedure of choosing

simultaneously the number of terms in the series expansion, J , and the window width, h. In

this work we choose both the optimal J and h as follows

JLL = arg min
J

CVLL(J, hLL(J)) and hLL = hLL(JLL).
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Table 1: Error for m̂K and m̂LL over B = 1000 simulations of size n = 100 from Model 1.

m̂K m̂LL

J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J = 8 J = 9 J = 10

Mean SE 0.468 0.643 0.270 0.298 0.339 0.372 0.425 0.437 0.451 0.547 0.538

(1.310) (1.726) (0.850) (0.641) (1.159) (0.933) (1.357) (1.173) (1.146) (1.719) (1.162)

Figure 1: Error for m̂K and m̂LL over B = 1000 simulations of size n = 100 from Model 1.
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4.3 Simulation results

Table 2 contains the mean squared error and the standard deviation (in brackets) for Models

1–3, taking B = 2000 Monte Carlo samples of size n = 100. The auxiliary variable X was

evaluated on N = 50 equispaced nodes. The last line in the table displays the resulting mean of

the optimal cut-off’s J . Table 3 contains analogous results for B = 2000 Monte Carlo samples

of size n = 200 and evaluated at N = 100 nodes.

Table 2: Simulation results for B = 2000 samples of size n = 100 from Models 1–3.

Model 1 Model 2 Model 3

m̂K m̂LL m̂K m̂LL m̂K m̂LL

Mean SE 0.4311 0.3429 0.6043 0.4459 0.5503 0.3636

(0.9054) (0.8081) (1.0456) (0.9638) (2.2255) (0.8922)

Mean J 3.2 3.1 2.9

Observe that the local linear regression estimator performs better than the kernel one: both the

mean and the standard deviation are smaller for the former. Other choices for the parameters

of the models yield similar results, favourable to the local linear smoother.

On the other hand, Table 2 and Table 3 suggest that, as n increases, the value of the optimal J

slightly increases too. This agrees with the theoretical results stated in Section 3, particularly

with the corollary, where the optimal J was a slowly increasing function of n.
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Table 3: Simulation results for B = 2000 samples of size n = 200 from Models 1–3.

Model 1 Model 2 Model 3

m̂K m̂LL m̂K m̂LL m̂K m̂LL

Mean SE 0.3017 0.1807 0.4246 0.2553 0.4255 0.2449

(0.6967) (0.3923) (0.9115) (0.6637) (2.5469) (0.8330)

Mean J 3.4 3.3 3.0

5 Analysis of real data

The aim of this section is to compare the performance of the kernel and local linear regression

estimators via the analysis of two real climate data sets from the U.S. National Climatic Data

Center web-site (www.ncdc.noaa.gov).

In the first group of data the response variable Yi is logarithm of the total number of tornados

in each U.S. state (i = 1, . . . , 48) along the period 2000-2005. The predictor variable Xi is the

monthly average temperature (measured in oF) in state i in the same period of time. This is of

interest, for instance, when assessing the possible consequences, like an increase in the number

of extreme climatic events, of an overall increase in the temperatures due to the climatic change.

Figure 2 (a) depicts the evolution of the temperature curves.

In the second data set the predictor is the daily maximum temperature (in oF) recorded in n = 80

weather stations from South Dakota in year 2000 (see Figure 2 (b)). The response variable Yi is

the logarithm of the total precipitation in each of the stations during the same year.

Figure 2: (a) Average monthly temperatures in U.S.A. states from 2000 to 2005 and (b) Daily

maximum temperatures along year 2000 in 80 stations from South Dakota.

10 20 30 40 50 60 70

10

20

30

40

50

60

70

80

Month in period 2000−2005

M
on

th
ly

 a
ve

ra
ge

 te
m

pe
ra

tu
re

50 100 150 200 250 300 350

0

20

40

60

80

100

Day in year 2000

M
ax

im
um

 d
ai

ly
 te

m
pe

ra
tu

re

(a) (b)

In Table 4 we have computed (via a cross-validation procedure) the mean squared prediction

error and the corresponding standard deviation (in brackets) attained by each of these estimators.

Observe that, in this study with real data, the differences between the performance of both

regression estimators are stressed, with a considerable reduction of the prediction error when

using the local linear estimator.
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Table 4: Squared prediction error for (a) tornado data and (b) South Dakota data.

m̂K m̂LL

Mean SE 1.5127 0.9283

(2.4302) (1.1038)

Mean J 3

m̂K m̂LL

Mean SE 0.0354 0.0142

(0.0513) (0.0189)

Mean J 4

(a) (b)

Appendix

Here we state some auxiliary results that are used throughout the proof of the theorem stated in

Section 3. The last part of this appendix contains the proof of the theorem. First we reproduce

Bernstein’s inequality as appearing in Ferraty and Vieu (2006).

Bernstein’s inequality: Let Z1, . . . , Zn be independent identically distributed random variables

with zero mean. If for all m ≥ 2 there exists a constant Cm > 0 such that E|Zm
1 | ≤ Cm a2(m−1),

we have that

P

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

> ǫ

}

≤ 2 exp

(

−
ǫ2 n

2 a2 (1 + ǫ)

)

, ∀ǫ > 0.

Below we state a technical lemma together with its proof.

Lemma: Let X1, . . . , Xn be independent random elements identically distributed as X and ∆i :=

K(h−1‖Xi − x‖)/E(K(h−1‖X − x‖)), for i = 1, . . . , n, where K is an asymmetrical decreasing

kernel function satisfying assumption (A1). If h → 0 and nϕx(h) → ∞ as n → ∞, then

(i) n−1
∑n

i=1 ∆i = 1 + op((nϕx(h))−1/2),

(ii) n−1
∑n

i=1 cij ∆i = Op(h) and n−1
∑n

i=1 cij cik ∆i = Op(h
2), for j, k = 1 . . . J .

Proof of the lemma:

(i) For each ǫ > 0, we bound P{|n−1
∑n

i=1 ∆i − 1| > ǫ} using the Bernstein-type inequality

introduced above. Since E(∆1) = 1, we define Zi = ∆i − 1, for i = 1, . . . , n. In order to

bound E|Z1|
m = E|∆1 − E∆1|

m for m ≥ 2, remark first that

Zm
1 = (∆1 − E∆1)

m =
m

∑

k=0

(m

k

)

∆k
1(−1)m−k.

Then

E|Z1|
m ≤

m
∑

k=0

(m

k

)

E(∆k
1) ≤ C max

k=0,...,m
E(∆k

1),

where C denotes a generic positive constant. Due to assumption (A1) we have that,

for k ≥ 2, E(∆k
1) = O(ϕx(h))−(k−1). For k = 0 or 1, E(∆k

1) = 1. Since, by assumption,

10



ϕx(h) → 0 as n → ∞, we conclude that maxk=0,...,m E(∆k
1) = O(ϕx(h))−(m−1). By applying

the exponential inequality with a2 = (ϕx(h))−1 we obtain that, for all ǫ > 0 small enough,

P

{∣

∣

∣

∣

∣

n−1

n
∑

i=1

∆i − 1

∣

∣

∣

∣

∣

> ǫ

}

≤ 2 exp
(

−Cǫ2nϕx(h)
)

,

which yields the desired result.

(ii) Note that each cij is multiplied by K(h−1‖Xi − x‖) for any value of j. Assumption (A1)

implies that, if K(h−1‖Xi − x‖) 6= 0, then ‖Xi − x‖2 =
∑∞

j=1 c2
ij ≤ h2, for all i, and

this in turn implies that 0 ≤ |cij| ≤ h, for i = 1, . . . , n and j = 1, . . . , J . Consequently

E|c1j∆1| = O(h) and E|c1jc1k∆1| = O(h2) for j, k = 1, . . . , J . Markov inequality finally

yields n−1
∑n

i=1 cij∆i = OP (h) and n−1
∑n

i=1 cijcik∆i = OP (h2) for j, k = 1, . . . , J . 2

We now proceed to prove the theorem stated in Section 3.

Proof of the theorem: Observe that the mean squared error (7) can be decomposed as

E((m̂LL(x) − m(x))2|X) = Bias2(m̂LL(x)|X) + Var(m̂LL(x)|X),

where

Var(m̂LL(x)|X) = E
(

(m̂LL(x) − E(m̂LL(x)|X))2|X
)

and

Bias(m̂LL(x)|X) = E(m̂LL(x)|X) − m(x).

Let us first prove that the bias term is O(J−ν) + OP (h2). Using the expression for the local

linear estimator m̂LL(x) given in (6) we get

E(m̂LL(x)|X) = e′
1(C

′∆C)−1C′∆M,

where ∆ = diag(∆1, . . . , ∆n), ∆i := K(h−1‖Xi − x‖)/E(K(h−1‖X − x‖)) for i = 1, . . . , n and

M := E(Y|X) = (m(X1), . . . , m(Xn))′.

We start with the term C′∆M. Since K has support in [0, 1], the Xi’s for which K(h−1‖Xi −

x‖) 6= 0 are in B(x, h), the ball of center x and radius h. Then, using that h → 0, the following

Taylor expansion is valid (see Cartan 1967)

m(Xi) = m(x) + m′
x(Xi − x) + m′′

x(Xi − x)2 + o(‖Xi − x‖3),

where m′
x and m′′

x are lineal continuous operators on L2[0, 1] and L2[0, 1]×L2[0, 1], respectively,

and (Xi − x)2 denotes (Xi − x, Xi − x). Using this expansion, we get

∆M = (m(X1)∆1, . . . , m(Xn)∆n)′

=







(m(x) + m′
x(X1 − x) + m′′

x(X1 − x)2 + o(‖X1 − x‖3))∆1

...

(m(x) + m′
x(Xn − x) + m′′

x(Xn − x)2 + o(‖Xn − x‖3))∆n







=







(m(x) + m′
x(X1 − x))∆1

...

(m(x) + m′
x(Xn − x))∆n






+







(OP (h2) + oP (h3))∆1

...

(OP (h2) + oP (h3))∆n






.
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To derive the last approximation we have used (see Cartan 1967) that, if m′′
x is continuous,

then ‖m′′
x‖ < ∞ and |m′′

x(z)2| ≤ ‖m′′
x‖ ‖z‖

2 if z ∈ B(0, 1). By the assumption that h → 0, if

K(h−1‖Xi −x‖) 6= 0, we have that Xi −x ∈ B(0, 1) for n sufficiently large, and |m′′
x(Xi −x)2| ≤

‖m′′
x‖ ‖Xi − x‖2 = O(h2) a.s.

Observe that we may approximate m′
x(Xi − x) by

∑J
j=1 m′

x,j cij, where m′
x,j := 〈m′

x, φj〉 are the

Fourier coefficients of m′
x (we use the fact that the space of lineal operators on L2[0, 1] is isometric

to L2[0, 1]). More precisely, by assumptions (A3) and (A4), we have maxi=1,...,n |m
′
x(Xi − x) −

∑J
j=1 m′

x,j cij| = O(J−ν) (see Zygmund 1988). Consequently

∆M = ∆C













m(x)

m′
x,1
...

m′
x,J













+













(O(J−ν) + OP (h2))∆1

(O(J−ν) + OP (h2))∆2

...

(O(J−ν) + OP (h2))∆n













and thus

E(m̂LL(x)|X) = m(x) + e′
1(C

′∆C)−1C′













(O(J−ν) + OP (h2))∆1

(O(J−ν) + OP (h2))∆2

...

(O(J−ν) + OP (h2))∆n













. (10)

In order to study the asymptotic behaviour of the bias, we multiply and divide the second term

in the right-hand side of (10) by n. Applying the previous Lemma, we may express the bias of

the local linear estimator as follows

Bias(m̂LL(x)|X) = e′
1 (n−1C′∆C)−1













O(J−ν) + OP (h2)

OP (h)(O(J−ν) + OP (h2))
...

OP (h)(O(J−ν) + OP (h2))













. (11)

Now let us examine the components in matrix

n−1C′∆C =













n−1
∑n

i=1 ∆i n−1
∑n

i=1 ci1∆i . . . n−1
∑n

i=1 ciJ∆i

n−1
∑n

i=1 ci1∆i n−1
∑n

i=1 c2
i1∆i . . . n−1

∑n
i=1 ci1ciJ∆i

...
...

...

n−1
∑n

i=1 ciJ∆i n−1
∑n

i=1 ci1ciJ∆i . . . n−1
∑n

i=1 c2
iJ∆i













=













1 + oP ((nϕx(h))−1/2) OP (h) . . . OP (h)

OP (h) OP (h2) . . . OP (h2)
...

...
...

OP (h) OP (h2) . . . OP (h2)













.

To derive the last equality we have used again the same lemma. Note that we can express

n−1C′∆C as a block matrix

n−1C′∆C =

(

1 + oP ((nϕx(h))−1/2) OP (h)b′

OP (h)b OP (h2)B

)

,
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where b is a J × 1 vector and B is a J × J nonsingular matrix. Using a well-known formula to

invert a block nonsingular symmetric matrix (see Seber 1984), we can write

(n−1C′∆C)−1 =

(

r −r OP (h−1)b′ B−1

−r OP (h−1)B−1 b OP (h−2) (B−1 + r B−1 bb′ B−1)

)

, (12)

where r = 1/(1+oP ((nϕx(h))−1/2)−b′ B−1 b. Finally, substituting formula (12) into expression

(11), we conclude that Bias(m̂LL(x)|X) = OP (h2).

Let us now analize the variance term

Var(m̂LL(x)|X) = E
(

(m̂LL(x) − E(m̂LL(x)|X))2|X
)

= E
(

e′
1(C

′∆C)−1C′∆(Y − M)(Y − M)′∆C(C′∆C)−1e1|X
)

= e′
1(C

′∆C)−1C′∆V∆C(C′∆C)−1e1, (13)

where V := Var(Y|X) = diag(Var(Y1|X1), . . . , Var(Yn|Xn)) = diag(σ2
ǫ , . . . , σ

2
ǫ ). Multiplying and

dividing (13) by n−2E(K2(h−1‖X − x‖)) it is easy to check that

Var(m̂LL(x)|X)

=
σ2

ǫ

n

E(K2(h−1‖X − x‖))

E2(K(h−1‖X − x‖))
e′

1(n
−1C′∆C)−1n−1C′ΛC(n−1C′∆C)−1e1,

where Λ = diag(Λ1, . . . , Λn) and Λi = K2(h−1‖Xi − x‖)/E(K2(h−1‖X − x‖)) for i = 1, . . . , n.

Observe that, by assumption (A1), E(K2(h−1‖X − x‖))/E2(K(h−1‖X − x‖)) = O(ϕ−1
x (h)) and

that

n−1C′ΛC =













n−1
∑n

i=1 Λi n−1
∑n

i=1 ci1Λi . . . n−1
∑n

i=1 ciJΛi

n−1
∑n

i=1 ci1Λi n−1
∑n

i=1 c2
i1Λi . . . n−1

∑n
i=1 ci1ciJΛi

...
...

...

n−1
∑n

i=1 ciJΛi n−1
∑n

i=1 ci1ciJΛi . . . n−1
∑n

i=1 c2
iJΛi













.

Following the same steps as with the bias term we obtain the asymptotic behaviour of the

components in the previous matrix. More concretely, n−1
∑n

i=1 Λi = 1 + oP ((nϕx(h))−1/2),

n−1
∑n

i=1 cijΛi = OP (h) and n−1
∑n

i=1 cijcikΛi = OP (h2) for any j, k = 1, . . . , J . Thus

n−1C′ΛC =

(

1 + oP ((nϕx(h))−1/2) OP (h) b̃′

OP (h) b̃ OP (h2) B̃

)

.
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Then the variance term can be expressed as follows

Var(m̂LL(x)|X)

=
σ2

ǫ

n

E(K2(h−1‖X − x‖))

E2(K(h−1‖X − x‖))
e′

1

(

r −r OP (h−1)b′ B−1

−r OP (h−1)B−1 b OP (h−2)(B−1 + r B−1 bb′ B−1)

)

(

1 + oP ((nϕx(h))−1/2) OP (h) b̃′

OP (h) b̃ OP (h2) B̃

)

(

r −r OP (h−1)b′ B−1

−r OP (h−1)B−1 b OP (h−2)(B−1 + r B−1 bb′ B−1)

)

e1

=
C

nϕx(h)

[

1 + oP ((nϕx(h))−1/2) − b̃′B−1b − b′B−1b̃ + b′B−1B̃B−1b
]

= OP

(

(nϕx(h))−1
)

.

2
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