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About This Book

Books are not made to be believed, but to be

subjected to inquiry.

— Umberto Eco, The Name of the Rose

For Whom Is This Book?

This book is for those who will not settle for a black-box approach when work-

ing with a database. If you are eager to learn, prefer not to take expert advice for

granted, and would like to figure out everything yourself, follow along.

I assume that the reader has already tried using Postgre��� and has at least some

general understanding of how it works. Entry-level users may find the text a bit

difficult. For example, I will not tell anything about how to install the server, enter

psql commands, or set configuration parameters.

I hope that the book will also be useful for those who are familiar with another

database system, but switch over to Postgre��� and would like to understand how

they differ. A book like this would have saved me a lot of time several years ago.

And that’s exactly why I finally wrote it.

What This Book Will Not Provide

This book is not a collection of recipes. You cannot find ready-made solutions for

every occasion, but if you understand inner mechanisms of a complex system, you

will be able to analyze and critically evaluate other people’s experience and come

to your own conclusions. For this reason, I explain such details that may at first

seem to be of no practical use.

But this book is not a tutorial either. While delving deeply into some fields (in

which I am more interested myself), it may say nothing at all about the other.
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About This Book

By no means is this book a reference. I tried to be precise, but I did not aim at

replacing documentation, so I could easily leave out some details that I considered

insignificant. In any unclear situation read the documentation.

This book will not teach you how to develop the Postgre��� core. I do not expect

any knowledge of the C language, as this book is mainly intended for database

administrators and application developers. But I do provide multiple references to

the source code, which can give you as many details as you like, and even more.

What This Book Does Provide

In the introductory chapter, I briefly touch upon the main database concepts that

will serve as the foundation for all the further narration. I do not expect you to

get much new information from this chapter but still include it to complete the

big picture. Besides, this overview can be found useful by those who are migrating

from other database systems.

Part I is devoted to questions of data consistency and isolation. I first cover them

from the user’s perspective (you will learn which isolation levels are available and

what are the implications) and then dwell on their internals. For this purpose,

I have to explain implementation details of multiversion concurrency control and

snapshot isolation, paying special attention to cleanup of outdated row versions.

Part II describes buffer cache and ���, which is used to restore data consistency

after a failure.

Part III goes into details about the structure and usage of various types of locks:

lightweight locks for ���, heavyweight locks for relations, and row-level locks.

Part IVexplains how the server plans and executes ��� queries. I will tell youwhich

data access methods are available, which join methods can be used, and how the

collected statistics are applied.

Part V extends the discussion of indexes from the already covered B-trees to other

access methods. I will explain some general principles of extensibility that define

the boundaries between the core of the indexing system, index access methods,

and data types (which will bring us to the concept of operator classes), and then

elaborate on each of the available methods.
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Conventions

Postgre��� includes multiple “introspective” extensions, which are not used in

routine work, but give us an opportunity to peek into the server’s internal behav-

ior. This book uses quite a few of them. Apart from letting us explore the server

internals, these extensions can also facilitate troubleshooting in complex usage

scenarios.

Conventions

I tried to write this book in a way that would allow reading it page by page, from

start to finish. But it is hardly possible to uncover all the truth at once, so I had to

get back to one and the same topic several times. Writing that “it will be considered

later” over and over again would inevitably make the text much longer, that’s why

in such cases I simply put the page number in the margin p. ��to refer you to further

discussion. A similar number pointing backwards will take you to the page where

something has been already said on the subject.

Both the text and all the code examples in this book apply to Postgre��� ��. Next

to some paragraphs, you can see a version number in the page margin. v. ��It means

that the provided information is relevant starting from the indicated Postgre���

version, while all the previous versions either did not have the described feature

at all, or used a different implementation. Such notes can be useful for those who

have not upgraded their systems to the latest release yet.

I also use the margins to show the default values of the discussed parameters. The

names of both regular and storage parameters are printed in italics: 4MBwork_mem.

In footnotes, I provide multiple links to various sources of information. There are

several of them,but first and foremost, I list the Postgre��� documentation,1 which

is a wellspring of knowledge. Being an essential part of the project, it is always kept

up-to-date by Postgre��� developers themselves. However, the primary reference

is definitely the source code.2 It is amazing how many answers you can find by

simply reading comments and browsing through ������ files, even if you do not

know C. Sometimes I also refer to commitfest entries:3 you can always trace the

1 postgresql.org/docs/14/index.html
2 git.postgresql.org/gitweb/?p=postgresql.git;a=summary
3 commitfest.postgresql.org
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history of all changes and understand the logic of decisions taken by developers

if you read the related discussions in the psql-hackers mailing list, but it requires

digging through piles of emails.

Side notes that can lead the discussion astray (which I could not help but include into the

book) are printed like this, so they can be easily skipped.

Naturally, the book contains multiple code examples, mainly in ���. The code is

provided with the prompt =>; the server response follows if necessary:

=> SELECT now();

now

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2022−09−19 14:50:52.347483+03

(1 row)

If you carefully repeat all the provided commands in Postgre��� ��, you should get

exactly the same results (down to transaction ��s and other inessential details).

Anyway, all the code examples in this book have been generated by the script con-

taining exactly these commands.

When it is required to illustrate concurrent execution of several transactions, the

code run in another session is indented and marked off by a vertical line.

=> SHOW server_version;

server_version

−−−−−−−−−−−−−−−−

14.4

(1 row)

To try out such commands (which is useful for self-study, just like any experimen-

tation), it is convenient to open two psql terminals.

The names of commands and various database objects (such as tables and columns,

functions, or extensions) are highlighted in the text using a sans-serif font: ������,

pg_class.

If a utility is called from the operating system, it is shown with a prompt that ends

with $:

14
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1
Introduction

1.1 Data Organization

Databases

Postgre��� is a program that belongs to the class of database management sys-

tems. When this program is running, we call it a Postgre��� server, or instance.

Data managed by Postgre��� is stored in databases.1 A single Postgre��� instance

can serve several databases at a time; together they are called a database cluster.

To be able to use the cluster, you must first initialize2 (create) it. The directory that

contains all the files related to the cluster is usually called ������, after the name

of the environment variable pointing to this directory.

Installations from pre-built packages can add their own “abstraction layers” over the reg-

ular Postgre��� mechanism by explicitly setting all the parameters required by utilities.

In this case, the database server runs as an operating system service, and you may never

come across the ������ variable directly. But the term itself is well-established, so I am

going to use it.

After cluster initialization, ������ contains three identical databases:

template0 is used for cases like restoring data from a logical backup or creating a

database with a different encoding; it must never be modified.

template1 serves as a template for all the other databases that a user can create in

the cluster.

1 postgresql.org/docs/14/managing-databases.html
2 postgresql.org/docs/14/app-initdb.html
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postgres is a regular database that you can use at your discretion.

postgres template0 template1

CREATE DATABASE

newdb

PostgreSQL instance

database
cluster

System Catalog

Metadata of all cluster objects (such as tables, indexes, data types, or functions)

is stored in tables that belong to the system catalog.1 Each database has its own

set of tables (and views) that describe the objects of this database. Several system

catalog tables are common to the whole cluster; they do not belong to any partic-

ular database (technically, a dummy database with a zero �� is used), but can be

accessed from all of them.

The system catalog can be viewed using regular ��� queries,while allmodifications

in it are performed by ��� commands. The psql client also offers a whole range of

commands that display the contents of the system catalog.

Names of all system catalog tables begin with pg_, like in pg_database. Column

names start with a three-letter prefix that usually corresponds to the table name,

like in datname.

In all system catalog tables, the column declared as the primary key is called oid

(object identifier); its type, which is also called oid, is a ��-bit integer.

1 postgresql.org/docs/14/catalogs.html
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The implementation of oid object identifiers is virtually the same as that of sequences, but

it appeared in Postgre��� much earlier. What makes it special is that the generated unique

��s issued by a common counter are used in different tables of the system catalog. When

an assigned �� exceeds the maximum value, the counter is reset. To ensure that all values

in a particular table are unique, the next issued oid is checked by the unique index; if it is

already used in this table, the counter is incremented, and the check is repeated.1

Schemas

Schemas2 are namespaces that store all objects of a database. Apart from user

schemas, Postgre��� offers several predefined ones:

public is the default schema for user objects unless other settings are specified.

pg_catalog is used for system catalog tables.

information_schema provides an alternative view for the system catalog as defined

by the ��� standard.

pg_toast is used for objects related to ����� p. ��.

pg_temp comprises temporary tables. Although different users create temporary

tables in different schemas called pg_temp_N, everyone refers to their objects

using the pg_temp alias.

Each schema is confined to a particular database, and all database objects belong

to this or that schema.

If the schema is not specified explicitly when an object is accessed, Postgre��� se-

lects the first suitable schema from the search path. The search path is based on the

value of the search_path parameter, which is implicitly extended with pg_catalog

and (if necessary) pg_temp schemas. It means that different schemas can contain

objects with the same names.

1 backend/catalog/catalog.c, GetNewOidWithIndex function
2 postgresql.org/docs/14/ddl-schemas.html
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Tablespaces

Unlike databases and schemas, which determine logical distribution of objects,

tablespaces define physical data layout. A tablespace is virtually a directory in a

file system. You can distribute your data between tablespaces in such a way that

archive data is stored on slow disks, while the data that is being actively updated

goes to fast disks.

One and the same tablespace can be used by different databases, and each database

can store data in several tablespaces. It means that logical structure and physical

data layout do not depend on each other.

Each database has the so-called default tablespace. All database objects are cre-

ated in this tablespace unless another location is specified. System catalog objects

related to this database are also stored there.

postgres template1

pg_catalog public plugh pg_catalog public

pg_global

pg_default

xyzzy

common cluster objects
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During cluster initialization, two tablespaces are created:

pg_default is located in the ������/base directory; it is used as the default ta-

blespace unless another tablespace is explicitly selected for this purpose.

pg_global is located in the ������/global directory; it stores system catalog objects

that are common to the whole cluster.

When creating a custom tablespace, you can specify any directory; Postgre��� will

create a symbolic link to this location in the ������/pg_tblspc directory. In fact,

all paths used by Postgre��� are relative to the ������ directory, which allows you

to move it to a different location (provided that you have stopped the server, of

course).

The illustration on the previous page puts together databases, schemas, and ta-

blespaces. Here the postgres database uses tablespace xyzzy as the default one,

whereas the template1 database uses pg_default. Various database objects are

shown at the intersections of tablespaces and schemas.

Relations

For all of their differences, tables and indexes—the most important database

objects—have one thing in common: they consist of rows. This point is quite

self-evident when we think of tables, but it is equally true for �-tree nodes, which

contain indexed values and references to other nodes or table rows.

Some other objects also have the same structure; for example, sequences (virtual-

ly one-row tables) and materialized views (which can be thought of as tables that

“keep” the corresponding queries). Besides, there are regular views, which do not

store any data but otherwise are very similar to tables.

In Postgre���, all these objects are referred to by the generic term relation.

In my opinion, it is not a happy term because it confuses database tables with “genuine”

relations defined in the relational theory. Here we can feel the academic legacy of the

project and the inclination of its founder, Michael Stonebraker, to see everything as a rela-

tion. In one of his works, he even introduced the concept of an “ordered relation” to denote

a table in which the order of rows is defined by an index.
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The system catalog table for relations was originally called pg_relation, but following the

object orientation trend, it was soon renamed to pg_class, which we are now used to. Its

columns still have the ��� prefix though.

Files and Forks

All information associated with a relation is stored in several different forks,1 each

containing data of a particular type.

At first, a fork is represented by a single file. Its filename consists of a numeric ��

(oid), which can be extended by a suffix that corresponds to the fork’s type.

The file grows over time, and when its size reaches � ��, another file of this fork

is created (such files are sometimes called segments). The sequence number of the

segment is added to the end of its filename.

Thefile size limit of � ��was historically established to support various file systems

that could not handle large files. You can change this limit when building Post-

gre��� (./configure --with-segsize).

visibility map

free space map

the main fork

12345_vm

12345_fsm.1

12345_fsm

12345.2

12345.1

12345

1 postgresql.org/docs/14/storage-file-layout.html
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Thus, a single relation is represented on disk by several files. Even a small table

without indexes will have at least three files, by the number of mandatory forks.

Each tablespace directory (except for pg_global) contains separate subdirectories

for particular databases. All files of the objects belonging to the same tablespace

and database are located in the same subdirectory. You must take it into account

because toomany files in a single directorymay not be handled well by file systems.

There are several standard types of forks.

The main fork represents actual data: table rows or index rows. This fork is avail-

able for any relations (except for views, which contain no data).

Files of the main fork are named by their numeric ��s, which are stored as

relfilenode values in the pg_class table.

Let’s take a look at the path to a file that belongs to a table created in the

pg_default tablespace:

=> CREATE UNLOGGED TABLE t(

a integer,

b numeric,

c text,

d json

);

=> INSERT INTO t VALUES (1, 2.0, 'foo', '{}');

=> SELECT pg_relation_filepath('t');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16384/16385

(1 row)

The base directory corresponds to the pg_default tablespace, the next sub-

directory is used for the database, and it is here that we find the file we are

looking for:

=> SELECT oid FROM pg_database WHERE datname = 'internals';

oid

−−−−−−−

16384

(1 row)
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=> SELECT relfilenode FROM pg_class WHERE relname = 't';

relfilenode

−−−−−−−−−−−−−

16385

(1 row)

Here is the corresponding file in the file system:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385');

size

−−−−−−

8192

(1 row)

The initialization fork1 is available only for unlogged tables (created with the ��-

������ clause) and their indexes. Such objects are the same as regular ones,

except that any actions performed on them are not written into the write-

ahead log.p. ��� It makes these operations considerably faster, but you will not be

able to restore consistent data in case of a failure. Therefore, Postgre��� sim-

ply deletes all forks of such objects during recovery and overwrites the main

fork with the initialization fork, thus creating a dummy file.

The t table is created as unlogged, so the initialization fork is present. It has

the same name as the main fork, but with the _init suffix:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_init');

size

−−−−−−

0

(1 row)

The free space map2 keeps track of available space within pages. Its volume

changes all the time, growing after vacuuming and getting smaller when new

row versions appear. The free space map is used to quickly find a page that

can accommodate new data being inserted.

1 postgresql.org/docs/14/storage-init.html
2 postgresql.org/docs/14/storage-fsm.html

backend/storage/freespace/README
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All files related to the free space map have the _fsm suffix. Initially, no such

files are created; they appear only when necessary. The easiest way to get

them is to vacuum a table p. ���:

=> VACUUM t;

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_fsm');

size

−−−−−−−

24576

(1 row)

To speed up search, the free space map is organized as a tree; it takes at least

three pages (hence its file size for an almost empty table).

The free space map is provided for both tables and indexes. But since an index

row cannot be added into an arbitrary page (for example, �-trees define the

place of insertion by the sort order), Postgre��� tracks only those pages that

have been fully emptied and can be reused in the index structure.

The visibility map1 can quickly show whether a page needs to be vacuumed or

frozen. For this purpose, it provides two bits for each table page.

The first bit is set for pages that contain only up-to-date row versions. Vac-

uum p. ���skips such pages because there is nothing to clean up. Besides, when a

transaction tries to read a row from such a page, there is no point in checking

its visibility, so an index-only scan can be used.

The second bit v. �.�is set for pages that contain only frozen row versions. I will use

the term freeze p. ���map to refer to this part of the fork.

Visibility map files have the _vm suffix. They are usually the smallest ones:

=> SELECT size

FROM pg_stat_file('/usr/local/pgsql/data/base/16384/16385_vm');

size

−−−−−−

8192

(1 row)

The visibility map is provided for tables, but not for indexes. p. ��

1 postgresql.org/docs/14/storage-vm.html
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Pages

To facilitate �/�, all files are logically split into pagesp. �� (or blocks), which represent

the minimum amount of data that can be read or written. Consequently, many

internal Postgre��� algorithms are tuned for page processing.

The page size is usually � k�. It can be configured to some extent (up to �� k�), but

only at build time (./configure --with-blocksize), and nobody usually does it. Once

built and launched, the instance can work only with pages of the same size; it is

impossible to create tablespaces that support different page sizes.

Regardless of the fork they belong to, all the files are handled by the server in

roughly the same way. Pages are first moved to the bufferp. ��� cache (where they can

be read and updated by processes) and then flushed back to disk as required.

TOAST

Each row must fit a single page: there is no way to continue a row on the next

page. To store long rows, Postgre��� uses a special mechanism called �����1 (The

Oversized Attributes Storage Technique).

T���� implies several strategies. You can move long attribute values into a sep-

arate service table, having sliced them into smaller “toasts.” Another option is to

compress a long value in such a way that the row fits the page. Or you can do both:

first compress the value, and then slice and move it.

If the main table contains potentially long attributes, a separate ����� table is

created for it right away, one for all the attributes. For example, if a table has a

column of the numeric or text type, a ����� table will be created even if this column

will never store any long values.

For indexes, the ����� mechanism can offer only compression; moving long at-

tributes into a separate table is not supported. It limits the size of the keys that can

be indexed (the actual implementation depends on a particular operator class).

1 postgresql.org/docs/14/storage-toast.html

include/access/heaptoast.h

26

https://postgresql.org/docs/14/storage-toast.html
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/heaptoast.h;hb=REL_14_STABLE


1.1 Data Organization

By default, the ����� strategy is selected based on the data type of a column. The

easiest way to review the used strategies is to run the \d+ command in psql, but I

will query the system catalog to get an uncluttered output:

=> SELECT attname, atttypid::regtype,

CASE attstorage

WHEN 'p' THEN 'plain'

WHEN 'e' THEN 'external'

WHEN 'm' THEN 'main'

WHEN 'x' THEN 'extended'

END AS storage

FROM pg_attribute

WHERE attrelid = 't'::regclass AND attnum > 0;

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | extended

(4 rows)

Postgre��� supports the following strategies:

plain means that ����� is not used (this strategy is applied to data types that are

known to be “short,” such as the integer type).

extended allows both compressing attributes and storing them in a separate �����

table.

external implies that long attributes are stored in the ����� table in an uncom-

pressed state.

main requires long attributes to be compressed first; they will be moved to the

����� table only if compression did not help.

In general terms, the algorithm looks as follows.1 Postgre��� aims at having at

least four rows in a page. So if the size of the row exceeds one fourth of the page,

excluding the header (for a standard-size page it is about ���� bytes), we must ap-

ply the �����mechanism to some of the values. Following the workflow described

below, we stop as soon as the row length does not exceed the threshold anymore:

1 backend/access/heap/heaptoast.c
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1. First of all, we go through attributes with external and extended strategies,

starting from the longest ones. Extended attributes get compressed, and if the

resulting value (on its own, without taking other attributes into account) ex-

ceeds one fourth of the page, it ismoved to the ����� table right away. External

attributes are handled in the same way, except that the compression stage is

skipped.

2. If the row still does not fit the page after the first pass, we move the remaining

attributes that use external or extended strategies into the ����� table, one by

one.

3. If it did not help either, we try to compress the attributes that use the main

strategy, keeping them in the table page.

4. If the row is still not short enough, the main attributes are moved into the

����� table.

The threshold valuev. �� is ���� bytes, but it can be redefined at the table level using

the toast_tuple_target storage parameter.

It may sometimes be useful to change the default strategy for some of the col-

umns. If it is known in advance that the data in a particular column cannot be

compressed (for example, the column stores ���� images), you can set the external

strategy for this column; it allows you to avoid futile attempts to compress the

data. The strategy can be changed as follows:

=> ALTER TABLE t ALTER COLUMN d SET STORAGE external;

If we repeat the query, we will get the following result:

attname | atttypid | storage

−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−

a | integer | plain

b | numeric | main

c | text | extended

d | json | external

(4 rows)

T���� tables reside in a separate schema called pg_toast; it is not included into

the search path, so ����� tables are usually hidden. For temporary tables,

pg_toast_temp_N schemas are used, by analogy with pg_temp_N.
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Let’s take a look at the inner mechanics of the process. Suppose table t contains

three potentially long attributes; it means that there must be a corresponding

����� table. Here it is:

=> SELECT relnamespace::regnamespace, relname

FROM pg_class

WHERE oid = (

SELECT reltoastrelid

FROM pg_class WHERE relname = 't'

);

relnamespace | relname

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

pg_toast | pg_toast_16385

(1 row)

=> \d+ pg_toast.pg_toast_16385

TOAST table "pg_toast.pg_toast_16385"

Column | Type | Storage

−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−

chunk_id | oid | plain

chunk_seq | integer | plain

chunk_data | bytea | plain

Owning table: "public.t"

Indexes:

"pg_toast_16385_index" PRIMARY KEY, btree (chunk_id, chunk_seq)

Access method: heap

It is only logical that the resulting chunks of the toasted row use the plain strategy:

there is no second-level �����.

Apart from the ����� table itself, Postgre��� creates the corresponding index in

the same schema. This index is always used to access ����� chunks. The name

of the index is displayed in the output, but you can also view it by running the

following query:

=> SELECT indexrelid::regclass FROM pg_index

WHERE indrelid = (

SELECT oid

FROM pg_class WHERE relname = 'pg_toast_16385'

);

indexrelid

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pg_toast.pg_toast_16385_index

(1 row)

29



Chapter 1 Introduction

=> \d pg_toast.pg_toast_16385_index

Unlogged index "pg_toast.pg_toast_16385_index"

Column | Type | Key? | Definition

−−−−−−−−−−−+−−−−−−−−−+−−−−−−+−−−−−−−−−−−−

chunk_id | oid | yes | chunk_id

chunk_seq | integer | yes | chunk_seq

primary key, btree, for table "pg_toast.pg_toast_16385"

Thus, a ����� table increases the minimum number of fork files used by the table

up to eight: three for the main table, three for the ����� table, and two for the

����� index.

Column c uses the extended strategy, so its values will be compressed:

=> UPDATE t SET c = repeat('A',5000);

=> SELECT * FROM pg_toast.pg_toast_16385;

chunk_id | chunk_seq | chunk_data

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−

(0 rows)

The ����� table is empty: repeated symbols have been compressed by the �� al-

gorithm, so the value fits the table page.

And now let’s construct this value of random symbols:

=> UPDATE t SET c = (

SELECT string_agg( chr(trunc(65+random()*26)::integer), '')

FROM generate_series(1,5000)

)

RETURNING left(c,10) || '...' || right(c,10);

?column?

−−−−−−−−−−−−−−−−−−−−−−−−−

KRAZUZAWGE...UVRXRWJPYB

(1 row)

UPDATE 1

This sequence cannot be compressed, so it gets into the ����� table:

=> SELECT chunk_id,

chunk_seq,

length(chunk_data),

left(encode(chunk_data,'escape')::text, 10) || '...' ||

right(encode(chunk_data,'escape')::text, 10)

FROM pg_toast.pg_toast_16385;
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chunk_id | chunk_seq | length | ?column?

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−

16390 | 0 | 1996 | KRAZUZAWGE...OSREMITVWR

16390 | 1 | 1996 | IIIAAPCKUF...GBPMOOTBID

16390 | 2 | 1008 | XTDOFJVSOS...UVRXRWJPYB

(3 rows)

We can see that the characters are sliced into chunks. The chunk size is selected in

such away that the page of the ����� table can accommodate four rows. This value

varies a little from version to version depending on the size of the page header.

When a long attribute is accessed, Postgre��� automatically restores the original

value and returns it to the client; it all happens seamlessly for the application. If

long attributes do not participate in the query, the ����� table will not be read at

all. It is one of the reasons why you should avoid using the asterisk in production

solutions.

If v. ��the client queries one of the first chunks of a long value, Postgre��� will read the

required chunks only, even if the value has been compressed.

Nevertheless, data compression and slicing require a lot of resources; the same

goes for restoring the original values. That’s why it is not a good idea to keep

bulky data in Postgre���, especially if this data is being actively used and does

not require transactional logic (like scanned accounting documents). A potentially

better alternative is to store such data in the file system, keeping in the database

only the names of the corresponding files. But then the database system cannot

guarantee data consistency.

1.2 Processes and Memory

A Postgre��� server instance consists of several interacting processes.

The first process launched at the server start is postgres, which is traditionally

called postmaster. It spawns all the other processes (Unix-like systems use the fork

system call for this purpose) and supervises them: if any process fails, postmas-

ter restarts it (or the whole server if there is a risk that the shared data has been

damaged).
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Because of its simplicity, the process model has been used in Postgre��� from the very

beginning, and ever since there have been unending discussions about switching over to

threads.

The current model has several drawbacks: static shared memory allocation does not allow

resizing structures like buffer cache on the fly; parallel algorithms are hard to imple-

ment and less efficient than they could be; sessions are tightly bound to processes. Using

threads sounds promising, even though it involves some challenges related to isolation,

OS compatibility, and resource management. However, their implementation would re-

quire a radical code overhaul and years of work, so conservative views prevail for now: no

such changes are expected in the near future.

Server operation is maintained by background processes. Here are the main ones:

startup restores the system after a failure.

autovacuum removesp. ��� stale data from tables and indexes.

wal writer writes ��� entries to diskp. ��� .

checkpointer executes checkpointsp. ��� .

writer flushes dirty pages to diskp. ��� .

stats collector collects usage statistics for the instance.

wal sender sends ��� entries to a replica.

wal receiver gets ��� entries on a replica.

Some of these processes are terminated once the task is complete, others run in

the background all the time, and some can be switched off.

Each process is managed by configuration parameters, sometimes by dozens of them. To

set up the server in a comprehensive manner, you have to be aware of its inner workings.

But general considerations will only help you select more or less adequate initial values;

later on, these settings have to be fine-tuned based on monitoring data.

To enable process interaction, postmaster allocates shared memory, which is avail-

able to all the processes.

Since disks (especially ���, but ��� too) are much slower than ���, Postgre���

uses caching:p. ��� some part of the shared ��� is reserved for recently read pages, in

hope that they will be needed more than once and the overhead of repeated disk
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access will be reduced. Modified data is also flushed to disk after some delay, not

immediately.

Buffer cache takes the greater part of the sharedmemory,which also contains other

buffers used by the server to speed up disk access.

The operating system has its own cache too. Postgre��� (almost) never bypasses

the operating system mechanisms to use direct �/�, so it results in double caching.

backendbackend

postmaster

backend background processes

buffer cache

shared memory

PostgreSQL
instance

client
application

client
application

client
application

cache

operating
system

In case of a failure (such as a power outage or an operating system crash), the data

kept in ��� is lost, including that of the buffer cache. The files that remain on

disk have their pages written at different points in time. To be able to restore data

consistency, Postgre��� maintains the write-ahead log (���) p. ���during its operation,

which makes it possible to repeat lost operations when necessary.

1.3 Clients and the Client-Server Protocol

Another task of the postmaster process is to listen for incoming connections. Once

a new client appears, postmaster spawns a separate backend process.1 The client

1 backend/tcop/postgres.c, PostgresMain function
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establishes a connection and starts a session with this backend. The session con-

tinues until the client disconnects or the connection is lost.

The server has to spawn a separate backend for each client. If many clients are

trying to connect, it can turn out to be a problem.

• Each process needs ��� to cache catalog tables, prepared statements, inter-

mediate query results, and other data. The more connections are open, the

more memory is required.

• If connections are short and frequent (a client performs a small query and

disconnects), the cost of establishing a connection, spawning a new process,

and performing pointless local caching is unreasonably high.

• Themore processes are started, themore time is required to scan their list, and

this operation is performed very often.p. �� As a result, performance may decline

as the number of clients grows.

This problem can be resolved by connection pooling, which limits the number of

spawned backends. Postgre��� has no such built-in functionality, so we have to

rely on third-party solutions: pooling managers integrated into the application

server or external tools (such as PgBouncer1 or Odyssey2). This approach usually

means that each server backend can execute transactions of different clients, one

after another. It imposes some restrictions on application development since it

is only allowed to use resources that are local to a transaction, not to the whole

session.

To understand each other, a client and a server must use one and the same inter-

facing protocol.3 It is usually based on the standard libpq library, but there are also

other custom implementations.

Speaking in the most general terms, the protocol allows clients to connect to the

server and execute ��� queries.

A connection is always established to a particular database on behalf of a particu-

lar role, or user. Although the server supports a database cluster, it is required to

establish a separate connection to each database that you would like to use in your

1 pgbouncer.org
2 github.com/yandex/odyssey
3 postgresql.org/docs/14/protocol.html
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application. At this point,authentication is performed: the backend process verifies

the user’s identity (for example, by asking for the password) and checks whether

this user has the right to connect to the server and to the specified database.

S�� queries are passed to the backend process as text strings. The process parses

the text, optimizes the query, executes it, and returns the result to the client.
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2
Isolation

2.1 Consistency

The key feature of relational databases is their ability to ensure data consistency,

that is, data correctness.

It is a known fact that at the database level it is possible to create integrity con-

straints, such as ��� ���� or ������. The database system ensures that these con-

straints are never broken, so data integrity is never compromised.

If all the required constraints could be formulated at the database level, consis-

tency would be guaranteed. But some conditions are too complex for that, for

example, they touch upon several tables at once. And even if a constraint can be

defined in the database, but for some reason it is not, it does not mean that this

constraint may be violated.

Thus, data consistency is stricter than integrity, but the database system has no

idea what “consistency” actually means. If an application breaks it without break-

ing the integrity, there is no way for the database system to find out. Consequently,

it is the application that must lay down the criteria for data consistency, and we

have to believe that it is written correctly and will never have any errors.

But if the application always executes only correct sequences of operators, where

does the database system come into play?

First of all, a correct sequence of operators can temporarily break data consistency,

and—strange as it may seem—it is perfectly normal.

Ahackneyed but clear example is a transfer of funds fromone account to another. A

consistency rule may sound as follows: a money transfer must never change the total
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balance of the affected accounts. It is quite difficult (although possible) to formulate

this rule as an integrity constraint in ���, so let’s assume that it is defined at the

application level and remains opaque to the database system. A transfer consists of

two operations: the first one draws somemoney from one of the accounts,whereas

the second one adds this sum to another account. The first operation breaks data

consistency, whereas the second one restores it.

If the first operation succeeds, but the second one does not (because of some fail-

ure), data consistency will be broken. Such situations are unacceptable, but it takes

a great deal of effort to detect and address them at the application level. Luckily

it is not required—the problem can be completely solved by the database system

itself if it knows that these two operations constitute an indivisible whole, that is,

a transaction.

But there is also a more subtle aspect here. Being absolutely correct on their own,

transactions can start operating incorrectly when run in parallel. That’s because

operations belonging to different transactions often get intermixed. There would

be no such issues if the database system first completed all operations of one trans-

action and thenmoved on to the next one, but performance of sequential execution

would be implausibly low.

A truly simultaneous execution of transactions can only be achieved on systems with suit-

able hardware: a multi-core processor, a disk array, and so on. But the same reasoning

is also true for a server that executes commands sequentially in the time-sharing mode.

For generalization purposes, both these situations are sometimes referred to as concurrent

execution.

Correct transactions that behave incorrectly when run together result in concur-

rency anomalies, or phenomena.

Here is a simple example. To get consistent data from the database, the applica-

tion must not see any changes made by other uncommitted transactions, at the

very minimum. Otherwise (if some transactions are rolled back), it would see the

database state that has never existed. Such an anomaly is called a dirty read. There

are also many other anomalies, which are more complex.

When running transactions concurrently, the database must guarantee that the

result of such execution will be the same as the outcome of one of the possible se-
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quential executions. In other words, it must isolate transactions from one another,

thus taking care of any possible anomalies.

To sum it up, a transaction is a set of operations that takes the database from one

correct state to another correct state (consistency), provided that it is executed in

full (atomicity) and without being affected by other transactions (isolation). This

definition combines the requirements implied by the first three letters of the ����

acronym. They are so intertwined that it makes sense to discuss them together. In

fact, the durability p. ���requirement is hardly possible to split off either: after a crash,

the system may still contain some changes made by uncommitted transactions,

and you have to do something about it to restore data consistency.

Thus, the database system helps the application maintain data consistency by tak-

ing transaction boundaries into account, even though it has no idea about the im-

plied consistency rules.

Unfortunately, full isolation is hard to implement and can negatively affect per-

formance. Most real-life systems use weaker isolation levels, which prevent some

anomalies, but not all of them. It means that the job of maintaining data consis-

tency partially falls on the application. And that’s exactly why it is very important

to understand which isolation level is used in the system, what is guaranteed at

this level and what is not, and how to ensure that your code will be correct in such

conditions.

2.2 Isolation Levels and Anomalies Defined by the SQL

Standard

The ��� standard specifies four isolation levels.1 These levels are defined by the list

of anomalies that may or may not occur during concurrent transaction execution.

So when talking about isolation levels, we have to start with anomalies.

We should bear in mind that the standard is a theoretical construct: it affects the

practice, but the practice still diverges from it in lots of ways. That’s why all ex-

1 postgresql.org/docs/14/transaction-iso.html
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amples here are rather hypothetical. Dealing with transactions on bank accounts,

these examples are quite self-explanatory, but I have to admit that they have noth-

ing to do with real banking operations.

It is interesting that the actual database theory also diverges from the standard: it

was developed after the standard had been adopted, and the practice was already

well ahead.

Lost Update

The lost update anomaly occurs when two transactions read one and the same table

row, then one of the transactions updates this row, and finally the other transaction

updates the same row without taking into account any changes made by the first

transaction.

Suppose that two transactions are going to increase the balance of one and the

same account by $���. The first transaction reads the current value ($�,���), then

the second transaction reads the same value. The first transaction increases the

balance (making it $�,���) and writes the new value into the database. The second

transaction does the same: it gets $�,��� after increasing the balance and writes

this value. As a result, the customer loses $���.

Lost updates are forbidden by the standard at all isolation levels.

Dirty Reads and Read Uncommitted

The dirty read anomaly occurs when a transaction reads uncommitted changes

made by another transaction.

For example, the first transaction transfers $��� to an empty account but does not

commit this change. Another transaction reads the account state (which has been

updated but not committed) and allows the customer to withdraw the money—

even though the first transaction gets interrupted and its changes are rolled back,

so the account is empty.

The standard allows dirty reads at the Read Uncommitted level.
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Non-Repeatable Reads and Read Committed

The non-repeatable read anomaly occurs when a transaction reads one and the

same row twice,whereas another transaction updates (or deletes) this row between

these reads and commits the change. As a result, the first transaction gets different

results.

For example, suppose there is a consistency rule that forbids having a negative bal-

ance in bank accounts. The first transaction is going to reduce the account balance

by $���. It checks the current value, gets $�,���, and decides that this operation

is possible. At the same time, another transaction withdraws all the money from

this account and commits the changes. If the first transaction checked the bal-

ance again at this point, it would get $� (but the decision to withdraw the money

is already taken, and this operation causes an overdraft).

The standard allows non-repeatable reads at the Read Uncommitted and Read Com-

mitted levels.

Phantom Reads and Repeatable Read

The phantom read anomaly occurswhenone and the same transaction executes two

identical queries returning a set of rows that satisfy a particular condition, while

another transaction adds some other rows satisfying this condition and commits

the changes in the time interval between these queries. As a result, the first trans-

action gets two different sets of rows.

For example, suppose there is a consistency rule that forbids a customer to have

more than three accounts. The first transaction is going to open a new account,

so it checks how many accounts are currently available (let’s say there are two of

them) and decides that this operation is possible. At this very moment, the second

transaction also opens a new account for this client and commits the changes. If

the first transaction double-checked the number of open accounts, it would get

three (but it is already opening another account, and the client ends up having

four of them).

The standard allows phantom reads at the Read Uncommitted,Read Committed, and

Repeatable Read isolation levels.
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No Anomalies and Serializable

The standard also defines the Serializable level, which does not allow any anoma-

lies. It is not the same as the ban on lost updates and dirty, non-repeatable, and

phantom reads. In fact, there is a much higher number of known anomalies than

the standard specifies, and an unknown number of still unknown ones.

The Serializable level must prevent any anomalies. It means that the application

developer does not have to take isolation into account. If transactions execute

correct operator sequences when run on their own, concurrent execution cannot

break data consistency either.

To illustrate this idea, I will use a well-known table provided in the standard; the

last column is added here for clarity:

lost dirty non-repeatable phantom other
update read read read anomalies

Read Uncommitted — yes yes yes yes

Read Committed — — yes yes yes

Repeatable Read — — — yes yes

Serializable — — — — —

Why These Anomalies?

Of all the possible anomalies, why does the standardmentions only some, and why

exactly these ones?

No one seems to know it for sure. But it is not unlikely that other anomalies were

simply not considered when the first versions of the standard were adopted, as

theory was far behind practice at that time.

Besides, it was assumed that isolation had to be based on locks. The widely used

two-phase locking protocol (���) requires transactions to lock the affected rows dur-

ing execution and release the locks upon completion. In simplistic terms, themore

locks a transaction acquires, the better it is isolated from other transactions. And

consequently, the worse is the system performance, as transactions start queuing

to get access to the same rows instead of running concurrently.

44



2.3 Isolation Levels in PostgreSQL

I believe that to a great extent the difference between the standard isolation levels

is defined by the number of locks required for their implementation.

If the rows to be updated are locked for writes but not for reads, we get the Read

Uncommitted isolation level, which allows reading data before it is committed.

If the rows to be updated are locked for both reads and writes, we get the Read

Committed level: it is forbidden to read uncommitted data, but a query can return

different values if it is run more than once (non-repeatable reads).

Locking the rows to be read and to be updated for all operations gives us the Re-

peatable Read level: a repeated query will return the same result.

However, the Serializable level poses a problem: it is impossible to lock a row that

does not exist yet. It leaves an opportunity for phantom reads to occur: a transac-

tion can add a row that satisfies the condition of the previous query, and this row

will appear in the next query result.

Thus, regular locks cannot provide full isolation: to achieve it, we have to lock con-

ditions (predicates) rather than rows. Such predicate locks were introduced as early

as ���� when System R was being developed; however, their practical applicability

is limited to simple conditions for which it is clear whether two different predicates

may conflict. As far as I know, predicate locks in their intended form p. ���have never

been implemented in any system.

2.3 Isolation Levels in PostgreSQL

Over time, lock-based protocols for transactionmanagement got replaced with the

Snapshot Isolation (��) protocol. The idea behind this approach is that each trans-

action accesses a consistent snapshot of data as it appeared at a particular point in

time. The snapshot includes all the current changes committed before the snap-

shot was taken.

Snapshot isolation minimizes the number of required locks. p. ���In fact, a row will be

locked only by concurrent update attempts. In all other cases, operations can be

executed concurrently: writes never lock reads, and reads never lock anything.
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Postgre��� uses a multiversion flavor of the �� protocol. Multiversion concurrency

control implies that at any moment the database system can contain several ver-

sions of one and the same row, so Postgre��� can include an appropriate version

into the snapshot rather than abort transactions that attempt to read stale data.

Based on snapshots, Postgre��� isolation differs from the requirements specified

in the standard—in fact, it is even stricter. Dirty reads are forbidden by design.

Technically, you can specify theRead Uncommitted level, but its behavior will be the

same as that of Read Committed, so I am not going to mention this level anymore.

Repeatable Read allowsp. ��� neither non-repeatable nor phantom reads (even though

it does not guarantee full isolation). But in some cases, there is a risk of losing

changes at the Read Committed level.

lost dirty non-repeatable phantom other
updates reads reads reads anomalies

Read Committed yes — yes yes yes

Repeatable Read — — — — yes

Serializable — — — — —

Before exploring the internal mechanisms of isolation,p. �� let’s discuss each of the

three isolation levels from the user’s perspective.

For this purpose, we are going to create the accounts table; Alice and Bob will have

$�,��� each, but Bob will have two accounts:

=> CREATE TABLE accounts(

id integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,

client text,

amount numeric

);

=> INSERT INTO accounts VALUES

(1, 'alice', 1000.00), (2, 'bob', 100.00), (3, 'bob', 900.00);

Read Committed

No dirty reads. It is easy to check that reading dirty data is not allowed. Let’s start

a transaction. By default, it uses the Read Committed1 isolation level:

1 postgresql.org/docs/14/transaction-iso.html#XACT-READ-COMMITTED
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=> BEGIN;

=> SHOW transaction_isolation;

transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

To be more exact, the default level is set by the following parameter, which can be

changed as required:

=> SHOW default_transaction_isolation;

default_transaction_isolation

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

read committed

(1 row)

The opened transactionwithdraws some funds from the customer account but does

not commit these changes yet. It will see its own changes though, as it is always

allowed:

=> UPDATE accounts SET amount = amount - 200 WHERE id = 1;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

In the second session, we start another transaction that will also run at the Read

Committed level:

=> BEGIN;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

Predictably, the second transaction does not see any uncommitted changes—dirty

reads are forbidden.
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Non-repeatable reads. Now let the first transaction commit the changes. Then the

second transaction will repeat the same query:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

1 | alice | 800.00

(1 row)

=> COMMIT;

The query receives an updated version of the data—and it is exactly what is under-

stood by the non-repeatable read anomaly, which is allowed at the Read Committed

level.

A practical insight: in a transaction, you must not take any decisions based on the

data read by the previous operator, as everything can change in between. Here is

an example whose variations appear in the application code so often that it can be

considered a classic anti-pattern:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;

During the time that passes between the check and the update, other transactions

can freely change the state of the account, so such a “check” is absolutely useless.

For better understanding, you can imagine that random operators of other transac-

tions are “wedged” between the operators of the current transaction. For example,

like this:

IF (SELECT amount FROM accounts WHERE id = 1) >= 1000 THEN

UPDATE accounts SET amount = amount - 200 WHERE id = 1;

COMMIT;

UPDATE accounts SET amount = amount - 1000 WHERE id = 1;

END IF;
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If everything goes wrong as soon as the operators are rearranged, then the code

is incorrect. Do not delude yourself that you will never get into this trouble: any-

thing that can go wrong will go wrong. Such errors are very hard to reproduce, and

consequently, fixing them is a real challenge.

How can you correct this code? There are several options:

• Replace procedural code with declarative one.

For example, in this particular case it is easy to turn an �� statement into a

����� constraint:

ALTER TABLE accounts

ADD CHECK amount >= 0;

Now you do not need any checks in the code: it is enough to simply run the

command and handle the exception that will be raised if an integrity con-

straint violation is attempted.

• Use a single ��� operator.

Data consistency can be compromised if a transaction gets committed within

the time gap between operators of another transaction, thus changing data

visibility. If there is only one operator, there are no such gaps.

Postgre��� has enough capabilities to solve complex tasks with a single ���

statement. In particular, it offers common table expressions (���) that can

contain operators like ������, ������, ������, as well as the ������ �� ��������

operator that implements the following logic: insert the row if it does not

exist, otherwise perform an update.

• Apply explicit locks.

The last resort is to manually set an exclusive lock on all the required rows p. ���

(������ ��� ������) or even on the whole table (���� �����) p. ���. This approach

always works, but it nullifies all the advantages of ����: some operations

that could be executed concurrently will run sequentially.
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Read skew. However, it is not all that simple. The Postgre��� implementation

allows other, less known anomalies, which are not regulated by the standard.

Suppose the first transaction has started amoney transfer between Bob’s accounts:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 2;

Meanwhile, the other transaction starts looping through all Bob’s accounts to cal-

culate their total balance. It begins with the first account (seeing its previous state,

of course):

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 2;

amount

−−−−−−−−

100.00

(1 row)

At this moment, the first transaction completes successfully:

=> UPDATE accounts SET amount = amount + 100 WHERE id = 3;

=> COMMIT;

The second transaction reads the state of the second account (and sees the already

updated value):

=> SELECT amount FROM accounts WHERE id = 3;

amount

−−−−−−−−−

1000.00

(1 row)

=> COMMIT;

As a result, the second transaction gets $�,��� because it has read incorrect data.

Such an anomaly is called read skew.

How can you avoid this anomaly at the Read Committed level? The answer is obvi-

ous: use a single operator. For example, like this:

SELECT sum(amount) FROM accounts WHERE client = 'bob';
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I have been stating so far that data visibility can change only between operators,

but is it really so? What if the query is running for a long time? Can it see different

parts of data in different states in this case?

Let’s check it out. A convenient way to do it is to add a delay to an operator by

calling the pg_sleep function. Then the first rowwill be read at once, but the second

row will have to wait for two seconds:

=> SELECT amount, pg_sleep(2) -- two seconds

FROM accounts WHERE client = 'bob';

While this statement is being executed, let’s start another transaction to transfer

the money back:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

The result shows that the operator has seen all the data in the state that corre-

sponds to the beginning of its execution, which is certainly correct:

amount | pg_sleep

−−−−−−−−−+−−−−−−−−−−

0.00 |

1000.00 |

(2 rows)

But it is not all that simple either. If the query contains a function that is de-

clared ��������, and this function executes another query, then the data seen by

this nested query will not be consistent with the result of the main query.

Let’s check the balance in Bob’s accounts using the following function:

=> CREATE FUNCTION get_amount(id integer) RETURNS numeric

AS $$

SELECT amount FROM accounts a WHERE a.id = get_amount.id;

$$ VOLATILE LANGUAGE sql;

=> SELECT get_amount(id), pg_sleep(2)

FROM accounts WHERE client = 'bob';

We will transfer the money between the accounts once again while our delayed

query is being executed:
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=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

=> COMMIT;

In this case, we are going to get inconsistent data—$��� has been lost:

get_amount | pg_sleep

−−−−−−−−−−−−+−−−−−−−−−−

100.00 |

800.00 |

(2 rows)

I would like to emphasize that this effect is possible only at the Read Committed

isolation level, and only if the function is ��������. The trouble is that Postgre���

uses exactly this isolation level and this volatility category by default. So we have

to admit that the trap is set in a very cunning way.

Read skew instead of lost updates. The read skew anomaly can also occur within a

single operator during an update—even though in a somewhat unexpected way.

Let’s see what happens if two transactions try to modify one and the same row.

Bob currently has a total of $�,��� in two accounts:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

Start a transaction that will reduce Bob’s balance:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100 WHERE id = 3;

At the same time, the other transaction will be calculating the interest for all cus-

tomer accounts with the total balance of $�,��� or more:
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=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

GROUP BY client

HAVING sum(amount) >= 1000

);

The ������ operator execution virtually consists of two stages. First, the rows to be

updated are selected based on the provided condition. Since the first transaction

is not committed yet, the second transaction cannot see its result, so the selection

of rows picked for interest accrual is not affected. Thus, Bob’s accounts satisfy the

condition, and his balance must be increased by $�� once the ������ operation

completes.

At the second stage, the selected rows are updated one by one. The second trans-

action has to wait because the row with id = 3 is locked: it is being updated by the

first transaction.

Meanwhile, the first transaction commits its changes:

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 202.0000

3 | bob | 707.0000

(2 rows)

On the one hand, the ������ command must not see any changes made by the first

transaction. But on the other hand, it must not lose any committed changes.

Once the lock is released, the ������ operator re-reads p. ���the row to be updated (but

only this row!). As a result, Bob gets $� of interest, based on the total of $���. But

if he had $���, his accounts should not have been included into the query results

in the first place.

Thus, our transaction has returned incorrect data: different rows have been read

from different snapshots. Instead of a lost update, we observe the read skew

anomaly again.
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Lost updates. However, the trick of re-reading the locked rowwill not help against

lost updates if the data is modified by different ��� operators.

Here is an example that we have already seen.p. �� The application reads and registers

(outside of the database) the current balance of Alice’s account:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

Meanwhile, the other transaction does the same:

=> BEGIN;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

800.00

(1 row)

Thefirst transaction increases the previously registered value by $��� and commits

this change:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1

=> COMMIT;

The second transaction does the same:

=> UPDATE accounts SET amount = 800.00 + 100 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−

900.00

(1 row)

UPDATE 1
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=> COMMIT;

Unfortunately, Alice has lost $���. The database system does not know that the

registered value of $��� is somehow related to accounts.amount, so it cannot pre-

vent the lost update anomaly. At the Read Committed isolation level, this code is

incorrect.

Repeatable Read

No non-repeatable and phantom reads. As its name suggests, the Repeatable Read1

isolation level must guarantee repeatable reading. Let’s check it and make sure

that phantom reads cannot occur either. For this purpose, we are going to start a

transaction that will revert Bob’s accounts to their previous state and create a new

account for Charlie:

=> BEGIN;

=> UPDATE accounts SET amount = 200.00 WHERE id = 2;

=> UPDATE accounts SET amount = 800.00 WHERE id = 3;

=> INSERT INTO accounts VALUES

(4, 'charlie', 100.00);

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−−+−−−−−−−−

1 | alice | 900.00

2 | bob | 200.00

3 | bob | 800.00

4 | charlie | 100.00

(4 rows)

In the second session, let’s start another transaction,with theRepeatable Read level

explicitly specified in the ����� command (the level of the first transaction is not

important):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT * FROM accounts ORDER BY id;

1 postgresql.org/docs/14/transaction-iso.html#XACT-REPEATABLE-READ
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id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

Now the first transaction commits its changes, and the second transaction repeats

the same query:

=> COMMIT;

=> SELECT * FROM accounts ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

1 | alice | 900.00

2 | bob | 202.0000

3 | bob | 707.0000

(3 rows)

=> COMMIT;

The second transaction still sees the same data as before: neither new rows nor row

updates are visible. At this isolation level, you do not have to worry that something

will change between operators.

Serialization failures instead of lost updates. As we have already seenp. �� , if two trans-

actions update one and the same row at the Read Committed level, it can cause the

read skew anomaly: the waiting transaction has to re-read the locked row, so it

sees the state of this row at a different point in time as compared to other rows.

Such an anomaly is not allowed at the Repeatable Read isolation level, and if it does

happen, the transaction can only be abortedwith a serialization failure. Let’s check

it out by repeating the scenario with interest accrual:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 800.00

(2 rows)

=> BEGIN;
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=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> UPDATE accounts SET amount = amount * 1.01

WHERE client IN (

SELECT client

FROM accounts

GROUP BY client

HAVING sum(amount) >= 1000

);

=> COMMIT;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

The data remains consistent:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

3 | bob | 700.00

(2 rows)

The same error will be raised by any concurrent row updates, even if they affect

different columns.

We will also get this error if we try to update the balance based on the previously

stored value:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> BEGIN ISOLATION LEVEL REPEATABLE READ;
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=> SELECT amount FROM accounts WHERE id = 1;

amount

−−−−−−−−

900.00

(1 row)

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

amount

−−−−−−−−−

1000.00

(1 row)

UPDATE 1

=> COMMIT;

=> UPDATE accounts SET amount = 900.00 + 100.00 WHERE id = 1

RETURNING amount;

ERROR: could not serialize access due to concurrent update

=> ROLLBACK;

A practical insight: if your application is using the Repeatable Read isolation level

for write transactions, it must be ready to retry transactions that have been com-

pleted with a serialization failure. For read-only transactions, such an outcome is

impossible.

Write skew. As we have seen, the Postgre��� implementation of the Repeatable

Read isolation level prevents all the anomalies described in the standard. But not

all possible ones: no one knows how many of them exist. However, one important

fact is proved for sure: snapshot isolation does not prevent only two anomalies, no

matter how many other anomalies are out there.

The first one is write skew.

Let’s define the following consistency rule: it is allowed to have a negative balance

in some of the customer’s accounts as long as the total balance is non-negative.

The first transaction gets the total balance of Bob’s accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;
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=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The second transaction gets the same sum:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−

900.00

(1 row)

The first transaction fairly assumes that it can debit one of the accounts by $���:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

The second transaction comes to the same conclusion, but debits the other ac-

count:

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

=> COMMIT;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

2 | bob | −400.00

3 | bob | 100.00

(2 rows)

Bob’s total balance is now negative, although both transactions would have been

correct if run separately.

Read-only transaction anomaly. The read-only transaction anomaly is the second

and the last one allowed at the Repeatable Read isolation level. To observe this

anomaly, we have to run three transactions: two of them are going to update the

data, while the third one will be read-only.
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But first let’s restore Bob’s balance:

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

3 | bob | 100.00

2 | bob | 900.00

(2 rows)

The first transaction calculates the interest to be accrued on Bob’s total balance

and adds this sum to one of his accounts:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 1

=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

Then the second transaction withdraws somemoney from Bob’s other account and

commits this change:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

If the first transaction gets committed at this point, there will be no anomalies: we

could assume that the first transaction is committed before the second one (but not

vice versa—the first transaction had seen the state of account with id = 3 before any

updates were made by the second transaction).

But let’s imagine that at this very moment we start a ready-only transaction to

query an account that is not affected by the first two transactions:

=> BEGIN ISOLATION LEVEL REPEATABLE READ; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

And only now will the first transaction get committed:
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=> COMMIT;

Which state should the third transaction see at this point? Having started, it could

see the changes made by the second transaction (which had already been commit-

ted), but not by the first one (which had not been committed yet). But as we have

already established, the second transaction should be treated as if it were started

after the first one. Any state seen by the third transactionwill be inconsistent—this

is exactly what is meant by the read-only transaction anomaly:

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 0.00

(2 rows)

=> COMMIT;

Serializable

The Serializable1 isolation level prevents all possible anomalies. This level is vir-

tually built on top of snapshot isolation. Those anomalies that do not occur at the

Repeatable Read isolation level (such as dirty, non-repeatable, or phantom reads)

cannot occur at the Serializable level either. And those two anomalies that do occur

(write skew and read-only transaction anomalies) get detected in a special way to

abort the transaction, causing an already familiar serialization failure.

No anomalies. Let’s make sure that our write skew scenario p. ��will eventually end

with a serialization failure:

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

1 postgresql.org/docs/14/transaction-iso.html#XACT-SERIALIZABLE
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=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> SELECT sum(amount) FROM accounts WHERE client = 'bob';

sum

−−−−−−−−−−

910.0000

(1 row)

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 2;

=> UPDATE accounts SET amount = amount - 600.00 WHERE id = 3;

=> COMMIT;

COMMIT

=> COMMIT;

ERROR: could not serialize access due to read/write dependencies

among transactions

DETAIL: Reason code: Canceled on identification as a pivot, during

commit attempt.

HINT: The transaction might succeed if retried.

The scenario with the read-only transaction anomaly will lead to the same error.

Deferring a read-only transaction. To avoid situations when a read-only transac-

tion can cause an anomaly that compromises data consistency, Postgre��� offers

an interesting solution: this transaction can be deferred until its execution be-

comes safe. It is the only case when a ������ statement can be blocked by row

updates.

We are going to check it out by repeating the scenario that demonstrated the read-

only transaction anomaly:

=> UPDATE accounts SET amount = 900.00 WHERE id = 2;

=> UPDATE accounts SET amount = 100.00 WHERE id = 3;

=> SELECT * FROM accounts WHERE client = 'bob' ORDER BY id;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 900.00

3 | bob | 100.00

(2 rows)

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 1
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=> UPDATE accounts SET amount = amount + (

SELECT sum(amount) FROM accounts WHERE client = 'bob'

) * 0.01

WHERE id = 2;

=> BEGIN ISOLATION LEVEL SERIALIZABLE; -- 2

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 3;

=> COMMIT;

Let’s explicitly declare the third transaction as ���� ���� and ����������:

=> BEGIN ISOLATION LEVEL SERIALIZABLE READ ONLY DEFERRABLE; -- 3

=> SELECT * FROM accounts WHERE client = 'alice';

An attempt to run the query blocks the transaction—otherwise, it would have

caused an anomaly.

And only when the first transaction is committed, the third one can continue its

execution:

=> COMMIT;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−

1 | alice | 1000.00

(1 row)

=> SELECT * FROM accounts WHERE client = 'bob';

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−−−

2 | bob | 910.0000

3 | bob | 0.00

(2 rows)

=> COMMIT;

Thus, if an application uses the Serializable isolation level, it must be ready to retry

transactions that have ended with a serialization failure. (The Repeatable Read

level requires the same approach unless the application is limited to read-only

transactions.)

The Serializable isolation level brings ease of programming, but the price you pay

is the overhead incurred by anomaly detection and forced termination of a certain
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fraction of transactions. You can lower this impact by explicitly using the ����

���� clause when declaring read-only transactions. But the main questions is, of

course, how big the fraction of aborted transactions is—since these transactions

will have to be retried. It would have been not so bad if Postgre��� aborted only

those transactions that result in data conflicts and are really incompatible. But

such an approach would inevitably be too resource-intensive, as it would involve

tracking operations on each row.

The current implementationp. ��� allows false positives: Postgre��� can abort some ab-

solutely safe transactions that are simply out of luck. Their “luck” depends on

many factors, such as the presence of appropriate indexes or the amount of ���

available, so the actual behavior is hard to predict in advance.

If you use the Serializable level, it must be observed by all transactions of the ap-

plication. When combined with other levels, Serializable behaves as Repeatable

Read without any notice. So if you decide to use the Serializable level, it makes

sense to modify theread

committed

default_transaction_isolation parameter value accordingly—

even though someone can still overwrite it by explicitly setting a different level.

There are also other restrictions;v. �� for example, queries run at the Serializable level

cannot be executed on replicas. And although the functionality of this level is

constantly being improved, the current limitations and overhead make it less at-

tractive.

2.4 Which Isolation Level to Use?

Read Committed is the default isolation level in Postgre���, and apparently it is this

level that is used in the vast majority of applications. This level can be convenient

because it allows aborting transactions only in case of a failure; it does not abort

any transactions to preserve data consistency. In otherwords, serialization failures

cannot occur, so you do not have to take care of transaction retries.

The downside of this level is a large number of possible anomalies, which have

been discussed in detail above. A developer has to keep them in mind all the time

and write the code in a way that prevents their occurrence. If it is impossible to

define all the needed actions in a single ��� statement, then you have to resort

to explicit locking. The toughest part is that the code is hard to test for errors
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related to data inconsistency; such errors can appear in unpredictable and barely

reproducible ways, so they are very hard to fix too.

The Repeatable Read isolation level eliminates some of the inconsistency prob-

lems, but alas, not all of them. Therefore, you must not only remember about the

remaining anomalies, but also modify the application to correctly handle serializa-

tion failures, which is certainly inconvenient. However, for read-only transactions

this level is a perfect complement to the Read Committed level; it can be very useful

for cases like building reports that involve multiple ��� queries.

And finally, the Serializable isolation level allows you not to worry about data con-

sistency at all, which simplifies writing the code to a great extent. The only thing

required from the application is the ability to retry any transaction that is aborted

with a serialization failure. However, the number of aborted transactions and as-

sociated overhead can significantly reduce system throughput. You should also

keep in mind that the Serializable level is not supported on replicas and cannot be

combined with other isolation levels.
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Pages and Tuples

3.1 Page Structure

Each page has a certain inner layout that usually consists of the following parts:1

• page header

• an array of item pointers

• free space

• items (row versions)

• special space

Page Header

The page header is located in the lowest addresses and has a fixed size. It stores

various information about the pagep. ��� , such as its checksum and the sizes of all the

other parts of the page.

These sizes can be easily displayed using the pageinspect extension.2 Let’s take a

look at the first page of the table (page numbering is zero-based):

1 postgresql.org/docs/14/storage-page-layout.html

include/storage/bufpage.h
2 postgresql.org/docs/14/pageinspect.html
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=> CREATE EXTENSION pageinspect;

=> SELECT lower, upper, special, pagesize

FROM page_header(get_raw_page('accounts',0));

lower | upper | special | pagesize

−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−−−−

152 | 6904 | 8192 | 8192

(1 row)

header

an array of item pointers

free space

items

special space

0

24

lower

upper

special

pagesize

Special Space

The special space is located in the opposite part of the page, taking its highest ad-

dresses. It is used by some indexes to store auxiliary information; in other indexes

and table pages this space is zero-sized.

In general, the layout of index pages is quite diverse; their content largely depends

on a particular index type. Even one and the same index can have different kinds

of pages: for example, �-trees have a metadata page of a special structure (page

zero) and regular pages that are very similar to table pages.

Tuples

Rows contain the actual data stored in the database, together with some additional

information. They are located just before the special space.
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In the case of tables, we have to deal with row versions rather than rows because

multiversion concurrency control implies having several versions of one and the

same row. Indexes do not use this ���� mechanism; instead, they have to ref-

erence all the available row versions, falling back on visibility rules to select the

appropriate ones.

Both table row versions and index entries are often referred to as tuples. This term is

borrowed from the relational theory—it is yet another legacy of Postgre���’s academic

past.

Item Pointers

The array of pointers to tuples serves as the page’s table of contents. It is located

right after the header.

Index entries have to refer to particular heap tuples somehow. Postgre��� em-

ploys six-byte tuple identifiers (���s) for this purpose. Each ��� consists of the page

number of the main forkp. �� and a reference to a particular row version located in this

page.

In theory, tuples could be referred to by their offset from the start of the page. But

then it would be impossible to move tuples within pages without breaking these

references, which in turn would lead to page fragmentation and other unpleasant

consequences.

For this reason, Postgre��� uses indirect addressing: a tuple identifier refers to the

corresponding pointer number, and this pointer specifies the current offset of the

tuple. If the tuple is moved within the page, its ��� still remains the same; it is

enough to modify the pointer, which is also located in this page.

Each pointer takes exactly four bytes and contains the following data:

• tuple offset from the start of the page

• tuple length

• several bits defining the tuple status
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Free Space

Pages can have some free space left between pointers and tuples (which is reflected

in the free spacemap p. ��). There is no page fragmentation: all the free space available

is always aggregated into one chunk.1

3.2 Row Version Layout

Each row version contains a header followed by actual data. The header consists

of multiple fields, including the following:

xmin, xmax represent transaction ��s; they are used to differentiate between this

and other versions of one and the same row.

infomask provides a set of information bits that define version properties.

ctid is a pointer to the next updated version of the same row.

null bitmap is an array of bits marking the columns that can contain ���� values.

As a result, the header turns out quite big: it requires at least �� bytes for each tu-

ple, and this value is often exceeded because of the null bitmap and the mandatory

padding used for data alignment. In a “narrow” table, the size of various metadata

can easily beat the size of the actual data stored.

Data layout on disk fully coincideswith data representation in ���. The page along

with its tuples is read into the buffer cache as is, without any transformations.

That’s why data files are incompatible between different platforms.2

One of the sources of incompatibility is the byte order. For example, the x�� ar-

chitecture is little-endian, z/�rchitecture is big-endian, and ��� has configurable

byte order.

Another reason is data alignment by machine word boundaries, which is required

by many architectures. For example, in a ��-bit x�� system, integer numbers (the

integer type, takes four bytes) are aligned by the boundary of four-byte words,

1 backend/storage/page/bufpage.c, PageRepairFragmentation function
2 include/access/htup_details.h
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just like double-precision floating-point numbers (the double precision type, eight

bytes). But in a ��-bit system, double values are aligned by the boundary of eight-

byte words.

Data alignment makes the size of a tuple dependent on the order of fields in the

table. This effect is usually negligible, but in some cases it can lead to a significant

size increase. Here is an example:

=> CREATE TABLE padding(

b1 boolean,

i1 integer,

b2 boolean,

i2 integer

);

=> INSERT INTO padding VALUES (true,1,false,2);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

40

(1 row)

I have used the heap_page_items function of the pageinspect extension to display

some details about pointers and tuples.

In Postgre���, tables are often referred to as heap. This is yet another obscure term that

hints at the similarity between space allocation for tuples and dynamic memory alloca-

tion. Some analogy can certainly be seen, but tables are managed by completely different

algorithms. We can interpret this term in the sense that “everything is piled up into a heap,”

by contrast with ordered indexes.

The size of the row is �� bytes. Its header takes �� bytes, a column of the integer

type takes � bytes, and boolean columns take � byte each. It makes �� bytes, and �

bytes are wasted on four-byte alignment of integer columns.

If we rebuild the table, the space will be used more efficiently:

=> DROP TABLE padding;

=> CREATE TABLE padding(

i1 integer,

i2 integer,

b1 boolean,

b2 boolean

);
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=> INSERT INTO padding VALUES (1,2,true,false);

=> SELECT lp_len FROM heap_page_items(get_raw_page('padding', 0));

lp_len

−−−−−−−−

34

(1 row)

Another possible micro-optimization is to start the table with the fixed-length

columns that cannot contain ���� values. Access to such columns will be more

efficient because it is possible to cache their offset within the tuple.1

3.3 Operations on Tuples

To identify different versions of one and the same row, Postgre��� marks each of

them with two values: xmin and xmax. These values define “validity time” of each

row version, but instead of the actual time, they rely on ever-increasing transaction

��s. p. ���

When a row is created, its xmin value is set to the transaction �� of the ������ com-

mand.

When a row is deleted, the xmax value of its current version is set to the transaction

�� of the ������ command.

With a certain degree of abstraction, the ������ command can be regarded as

two separate operations: ������ and ������. First, the xmax value of the current

row version is set to the transaction �� of the ������ command. Then a new ver-

sion of this row is created; its xmin value will be the same as the xmax value of the

previous version.

Now let’s get down to some low-level details of different operations on tuples.2

For these experiments, we will need a two-column table with an index created on

one of the columns:

1 backend/access/common/heaptuple.c, heap_deform_tuple function
2 backend/access/transam/README
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=> CREATE TABLE t(

id integer GENERATED ALWAYS AS IDENTITY,

s text

);

=> CREATE INDEX ON t(s);

Insert

Start a transaction and insert one row:

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

Here is the current transaction ��:

=> -- txid_current() before v.13

SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

776

(1 row)

To denote the concept of a transaction, Postgre��� uses the term xact, which can be found

both in ��� function names and in the source code. Consequently, a transaction �� can be

called xact ��, ����, or simply ���. We are going to come across these abbreviations over

and over again.

Let’s take a look at the page contents. The heap_page_items function can give us

all the required information, but it shows the data “as is,” so the output format is

a bit hard to comprehend:

=> SELECT *

FROM heap_page_items(get_raw_page('t',0)) \gx

−[ RECORD 1 ]−−−−−−−−−−−−−−−−−−−

lp | 1

lp_off | 8160

lp_flags | 1

lp_len | 32

t_xmin | 776

t_xmax | 0

t_field3 | 0

t_ctid | (0,1)
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t_infomask2 | 2

t_infomask | 2050

t_hoff | 24

t_bits |

t_oid |

t_data | \x0100000009464f4f

To make it more readable, we can leave out some information and expand a few

columns:

=> SELECT '(0,'||lp||')' AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin as xmin,

t_xmax as xmax,

(t_infomask & 256) > 0 AS xmin_committed,

(t_infomask & 512) > 0 AS xmin_aborted,

(t_infomask & 1024) > 0 AS xmax_committed,

(t_infomask & 2048) > 0 AS xmax_aborted

FROM heap_page_items(get_raw_page('t',0)) \gx

−[ RECORD 1 ]−−+−−−−−−−

ctid | (0,1)

state | normal

xmin | 776

xmax | 0

xmin_committed | f

xmin_aborted | f

xmax_committed | f

xmax_aborted | t

This is what has been done here:

• The lp pointer is converted to the standard format of a tuple ��: (page number,

pointer number).

• The lp_flags state is spelled out. Here it is set to the normal value,whichmeans

that it really points to a tuple.

• Of all the information bits, we have singled out just two pairs so far. The

xmin_committed and xmin_aborted bits show whether the xmin transaction is
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committed or aborted. The xmax_committed and xmax_aborted bits give simi-

lar information about the xmax transaction.

The pageinspectv. �� extension provides the heap_tuple_infomask_flags function that explains

all the information bits, but I am going to retrieve only those that are required at the

moment, showing them in a more concise form.

Let’s get back to our experiment. The ������ command has added pointer � to the

heap page; it refers to the first tuple, which is currently the only one.

The xmin field of the tuple is set to the current transaction ��. This transaction is

still active, so the xmin_committed and xmin_aborted bits are not set yet.

The xmax field contains �, which is a dummy number showing that this tuple has

not been deleted and represents the current version of the row. Transactions will

ignore this number because the xmax_aborted bit is set.

It may seem strange that the bit corresponding to an aborted transaction is set for the

transaction that has not happened yet. But there is no difference between such transac-

tions from the isolation standpoint: an aborted transaction leaves no trace, hence it has

never existed.

Wewill use this querymore than once, so I am going to wrap it into a function. And

while being at it, I will alsomake the outputmore concise by hiding the information

bit columns and displaying the status of transactions together with their ��s.

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(ctid tid, state text, xmin text, xmax text)

AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

t_xmax || CASE
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WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Now it is much clearer what is happening in the tuple header:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

You can get similar but less detailed information from the table itself by querying

the xmin and xmax pseudocolumns:

=> SELECT xmin, xmax, * FROM t;

xmin | xmax | id | s

−−−−−−+−−−−−−+−−−−+−−−−−

776 | 0 | 1 | FOO

(1 row)

Commit

Once a transaction has been completed successfully, its status has to be stored

somehow—it must be registered that the transaction is committed. For this pur-

pose, Postgre��� employs a special ���� (commit log) structure.1 It is stored as

files in the ������/pg_xact directory rather than as a system catalog table.

Previously, these files were located in ������/pg_clog, but in version �� this directory got

renamed:2 it was not uncommon for database administrators unfamiliar with Postgre���

to delete it in search of free disk space, thinking that a “log” is something unnecessary.

1 include/access/clog.h

backend/access/transam/clog.c
2 commitfest.postgresql.org/13/750
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C��� is split into several files solely for convenience.p. ��� These files are accessed page

by page via buffers in the server’s shared memory.1

Just like a tuple header, ���� contains two bits for each transaction: committed

and aborted.

Once committed, a transaction is marked in ���� with the committed bit. When

any other transaction accesses a heap page, it has to answer the question: has the

xmin transaction already finished?

• If not, then the created tuple must not be visible.

To check whether the transaction is still active, Postgre��� uses yet another

structure located in the shared memory of the instance; it is called ProcArray.

This structure contains the list of all the active processes,with the correspond-

ing current (active) transaction specified for each process.

• If yes,was it committed or aborted? In the latter case, the corresponding tuple

cannot be visible either.

It is this check that requires ����. But even though the most recent ����

pages are stored in memory buffers, it is still expensive to perform this check

every time. Once determined, the transaction status is written into the tuple

header—more specifically, into xmin_committed and xmin_aborted information

bits, which are also called hint bits. If one of these bits is set, then the xmin

transaction status is considered to be already known, and the next transaction

will have to access neither ���� nor ProcArray.

Why aren’t these bits set by the transaction that performs row insertion? The prob-

lem is that it is not known yet at that time whether this transaction will complete

successfully. Andwhen it is committed, it is already unclearwhich tuples and pages

have been changed. If a transaction affects many pages, it may be too expensive to

track them. Besides, some of these pagesmay be not in the cache anymore; reading

them again to simply update the hint bits would seriously slow down the commit.

1 backend/access/transam/clog.c
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The flip side of this cost reduction is that any transaction (even a read-only ������

command) can start setting hint bits, thus leaving a trail of dirtied pages in the

buffer cache.

Finally, let’s commit the transaction started with the ������ statement:

=> COMMIT;

Nothing has changed in the page (but we know that the transaction status has al-

ready been written into ����):

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−

(0,1) | normal | 776 | 0 a

(1 row)

Now the first transaction that accesses the page (in a“standard”way,without using

pageinspect) has to determine the status of the xmin transaction and update the

hint bits:

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 0 a

(1 row)

Delete

When a row is deleted, the xmax field of its current version is set to the transaction

�� that performs the deletion, and the xmax_aborted bit is unset.
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While this transaction is active, the xmaxp. ��� value serves as a row lock. If another transaction

is going to update or delete this row, it will have to wait until the xmax transaction is

complete.

Let’s delete a row:

=> BEGIN;

=> DELETE FROM t;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

777

(1 row)

The transaction �� has already been written into the xmax field, but the informa-

tion bits have not been set yet:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)

Abort

The mechanism of aborting a transaction is similar to that of commit and happens

just as fast, but instead of committed it sets the aborted bit in ����. Although the

corresponding command is called ��������, no actual data rollback is happening:

all the changes made by the aborted transaction in data pages remain in place.

=> ROLLBACK;

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 777

(1 row)
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When the page is accessed, the transaction status is checked, and the tuple receives

the xmax_aborted hint bit. The xmax number itself still remains in the page, but

no one is going to pay attention to it anymore:

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | FOO

(1 row)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 776 c | 777 a

(1 row)

Update

An update is performed in such a way as if the current tuple is deleted, and then a

new one is inserted:

=> BEGIN;

=> UPDATE t SET s = 'BAR';

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

778

(1 row)

The query returns a single row (its new version):

=> SELECT * FROM t;

id | s

−−−−+−−−−−

1 | BAR

(1 row)
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But the page keeps both versions:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 776 c | 778

(0,2) | normal | 778 | 0 a

(2 rows)

The xmax field of the previously deleted version contains the current transaction

��. This value is written on top of the old one because the previous transaction was

aborted. The xmax_aborted bit is unset since the status of the current transaction

is still unknown.

To complete this experiment, let’s commit the transaction.

=> COMMIT;

3.4 Indexes

Regardless of their type, indexes donot use row versioning; each row is represented

by exactly one tuple. In other words, index row headers do not contain xmin and

xmax fields. Index entries point to all the versions of the corresponding table rowp. ��� .

To figure out which row version is visible, transactions have to access the table

(unless the required page appears in the visibility map).

For convenience, let’s create a simple function that will use pageinspect to display

all the index entries in the page (�-tree index pages store them as a flat list):

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid)

AS $$

SELECT itemoffset,

htid -- ctid before v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

The page references both heap tuples, the current and the previous one:
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=> SELECT * FROM index_page('t_s_idx',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,2)

2 | (0,1)

(2 rows)

Since ��� < ���, the pointer to the second tuple comes first in the index.

3.5 TOAST

A ����� table p. ��is virtually a regular table, and it has its own versioning that does

not depend on row versions of the main table. However, rows of ����� tables are

handled in such a way that they are never updated; they can be either added or

deleted, so their versioning is somewhat artificial.

Each datamodification results in creation of a new tuple in themain table. But if an

update does not affect any long values stored in �����, the new tuple will reference

an existing toasted value. Only when a long value gets updated will Postgre���

create both a new tuple in the main table and new “toasts.”

3.6 Virtual Transactions

To consume transaction ��s sparingly, Postgre��� offers a special optimization.

If a transaction is read-only, it does not affect row visibility in any way. That’s why

such a transaction is given a virtual ���1 at first, p. ���which consists of the backend

process �� and a sequential number. Assigning a virtual ��� does not require any

synchronization between different processes, so it happens very fast. At this point,

the transaction has no real �� yet:

=> BEGIN;

1 backend/access/transam/xact.c
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=> -- txid_current_if_assigned() before v.13

SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1 row)

At different points in time, the system can contain some virtual ���s that have

already been used. And it is perfectly normal: virtual ���s exist only in ���, and

only while the corresponding transactions are active; they are never written into

data pages and never get to disk.

Once the transaction starts modifying data, it receives an actual unique ��:

=> UPDATE accounts

SET amount = amount - 1.00;

=> SELECT pg_current_xact_id_if_assigned();

pg_current_xact_id_if_assigned

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

780

(1 row)

=> COMMIT;

3.7 Subtransactions

Savepoints

S�� supports savepoints, which enable canceling some of the operations within a

transaction without aborting this transaction as a whole. But such a scenario does

not fit the course of action described above: the status of a transaction applies to

all its operations, and no physical data rollback is performed.

To implement this functionality, a transaction containing a savepoint is split into

several subtransactions,1 so their status can be managed separately.

1 backend/access/transam/subtrans.c
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Subtransactions have their own ��s (which are bigger than the �� of themain trans-

action). The status of a subtransaction is written into ���� in the usual manner;

however, committed subtransactions receive both the committed and the aborted

bits at once. The final decision depends on the status of the main transaction: if it

is aborted, all its subtransactions will be considered aborted too.

The information about subtransactions is stored under the ������/pg_subtrans di-

rectory. File access is arranged via buffers that are located in the instance’s shared

memory and have the same structure as ���� buffers.1

Do not confuse subtransactions with autonomous ones. Unlike subtransactions, the latter

do not depend on each other in any way. Vanilla Postgre��� does not support autonomous

transactions, and it is probably for the best: they are required in very rare cases, but their

availability in other database systems often provokes misuse, which can cause a lot of

trouble.

Let’s truncate the table, start a new transaction, and insert a row:

=> TRUNCATE TABLE t;

=> BEGIN;

=> INSERT INTO t(s) VALUES ('FOO');

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Now create a savepoint and insert another row:

=> SAVEPOINT sp;

=> INSERT INTO t(s) VALUES ('XYZ');

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

782

(1 row)

Note that the pg_current_xact_id function returns the �� of the main transaction,

not that of a subtransaction.

1 backend/access/transam/slru.c
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=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | 3 | XYZ

(2 rows)

Let’s roll back to the savepoint and insert the third row:

=> ROLLBACK TO sp;

=> INSERT INTO t(s) VALUES ('BAR');

=> SELECT *

FROM heap_page('t',0) p

LEFT JOIN t ON p.ctid = t.ctid;

ctid | state | xmin | xmax | id | s

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−+−−−−−

(0,1) | normal | 782 | 0 a | 2 | FOO

(0,2) | normal | 783 | 0 a | |

(0,3) | normal | 784 | 0 a | 4 | BAR

(3 rows)

The page still contains the row added by the aborted subtransaction.

Commit the changes:

=> COMMIT;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 0 a

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(3 rows)
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Now we can clearly see that each subtransaction has its own status.

S�� does not allow using subtransactions directly, that is, you cannot start a new

transaction before completing the current one:

=> BEGIN;

BEGIN

=> BEGIN;

WARNING: there is already a transaction in progress

BEGIN

=> COMMIT;

COMMIT

=> COMMIT;

WARNING: there is no transaction in progress

COMMIT

Subtransactions are employed implicitly: to implement savepoints, handle excep-

tions in ��/pg���, and in some other, more exotic cases.

Errors and Atomicity

What happens if an error occurs during execution of a statement?

=> BEGIN;

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

After a failure, the whole transaction is considered aborted and cannot perform

any further operations:

=> SELECT * FROM t;

ERROR: current transaction is aborted, commands ignored until end

of transaction block
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And even if you try to commit the changes, Postgre��� will report that the trans-

action is rolled back:

=> COMMIT;

ROLLBACK

Why is it forbidden to continue transaction execution after a failure? Since the

already executed operations are never rolled back, we would get access to some

changes made before the error—it would break the atomicity of the statement, and

hence that of the transaction itself.

For example, in our experiment the operator hasmanaged to update one of the two

rows before the failure:

=> SELECT * FROM heap_page('t',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | normal | 782 c | 785

(0,2) | normal | 783 a | 0 a

(0,3) | normal | 784 c | 0 a

(0,4) | normal | 785 | 0 a

(4 rows)

On a side note, psql provides a special mode that allows you to continue a transac-

tion after a failure as if the erroneous statement were rolled back:

=> \set ON_ERROR_ROLLBACK on

=> BEGIN;

=> UPDATE t SET s = repeat('X', 1/(id-4));

ERROR: division by zero

=> SELECT * FROM t;

id | s

−−−−+−−−−−

2 | FOO

4 | BAR

(2 rows)

=> COMMIT;

COMMIT
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As you can guess, psql simply adds an implicit savepoint before each command

when run in this mode; in case of a failure, a rollback is initiated. This mode is

not used by default because issuing savepoints (even if they are not rolled back to)

incurs significant overhead.
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Snapshots

4.1 What is a Snapshot?

A data page can contain several versions of one and the same row, although each

transaction must see only one of them at the most. Together, visible versions of

all the different rows constitute a snapshotp. �� . A snapshot includes only the current

data committed by the time it was taken, thus providing a consistent (in the ����

sense) view of the data for this particular moment.

To ensure isolation, each transaction uses its own snapshot. Itmeans that different

transactions can see different snapshots taken at different points in time,which are

nevertheless consistent.

At the Read Committed isolation level, a snapshot is taken at the beginning of each

statement, and it remains active only for the duration of this statement.

At the Repeatable Read and Serializable levels, a snapshot is taken at the begin-

ning of the first statement of a transaction, and it remains active until the whole

transaction is complete.

xid

snapshot1 snapshot2

statement1 statement2

Read Committed
xid

snapshot

statement1 statement2

Repeatable Read,

Serializable
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4.2 Row Version Visibility

A snapshot is not a physical copy of all the required tuples. Instead, it is defined

by several numbers, while tuple visibility is determined by certain rules.

Tuple visibility is defined by xmin and xmax fields of the tuple header (that is, ��s

of transactions that perform insertion and deletion) and the corresponding hint

bits. Since xmin–xmax intervals do not intersect, each row is represented in any

snapshot by only one of its versions.

The exact visibility rules are quite complex,1 as they take into account a variety of

different scenarios and corner cases. Very roughly,we can describe them as follows:

a tuple is visible in a snapshot that includes xmin transaction changes but excludes

xmax transaction changes (in other words, the tuple has already appeared and has

not been deleted yet).

In their turn, transaction changes are visible in a snapshot if this transaction was

committed before the snapshot creation. As an exception, transactions can see

their own uncommitted changes. If a transaction is aborted, its changes will not

be visible in any snapshot.

Let’s take a look at a simple example. In this illustration line segments represent

transactions (from their start time till commit time):

xid
1 2 3

snapshot

Here visibility rules are applied to transactions as follows:

• Transaction � was committed before the snapshot creation, so its changes are

visible.

1 backend/access/heap/heapam_visibility.c
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• Transaction � was active at the time of the snapshot creation, so its changes

are not visible.

• Transaction � was started after the snapshot creation, so its changes are not

visible either (it makes no difference whether this transaction is completed or

not).

4.3 Snapshot Structure

Unfortunately, the previous illustration has nothing to do with the way Postgre���

actually sees this picture.1 The problem is that the system does not know when

transactions got committed. It is only knownwhen they were started (thismoment

is defined by the transaction ��),while their completion is not registered anywhere.

Commit times can be tracked2 if you enable theoff track_commit_timestamp parameter, but

they do not participate in visibility checks in any way (although it can still be useful to

track them for other purposes, for example, to apply in external replication solutions).

Besides, Postgre��� always logs commit and rollback times in the corresponding ��� en-

triesp. ��� , but this information is used only for point-in-time recovery.

It is only the current status of a transaction that we can learn. This information is

available in the server’s shared memory: the ProcArray structure contains the list

of all the active sessions and their transactions. Once a transaction is complete, it

is impossible to find out whether it was active at the time of the snapshot creation.

So to create a snapshot, it is not enough to register the moment when it was taken:

it is also necessary to collect the status of all the transactions at that moment.

Otherwise, later it will be impossible to understand which tuples must be visible

in the snapshot, and which must be excluded.

Take a look at the information available to the systemwhen the snapshotwas taken

and some time afterwards (the white circle denotes an active transaction, whereas

the black circles stand for completed ones):

1 include/utils/snapshot.h

backend/utils/time/snapmgr.c
2 backend/access/transam/commit_ts.c
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xid
1 2 3

at snapshot creation…

xid
1 2 3

…and some time later

Suppose we did not know that at the time the snapshot was taken the first transac-

tion was still being executed and the third transaction had not started yet. Then it

would seem that they were just like the second transaction (which was committed

at that time), and it would be impossible to filter them out.

For this reason, Postgre��� cannot create a snapshot that shows a consistent state

of data at some arbitrary point in the past, even if all the required tuples are present

in heap pages. Consequently, it is impossible to implement retrospective queries

(which are sometimes also called temporal or flashback queries).

Intriguingly, such functionality was declared as one of the objectives of Postgres and was

implemented at the very start, but it was removed from the database system when the

project support was passed on to the community.1

Thus, a snapshot consists of several values saved at the time of its creation:2

xmin is the snapshot’s lower boundary,which is represented by the �� of the oldest

active transaction.

All the transactions with smaller ��s p. ���are either committed (so their changes

are included into the snapshot) or aborted (so their changes are ignored).

xmax is the snapshot’s upper boundary, which is represented by the value that

exceeds the �� of the latest committed transaction by one. Theupper boundary

defines the moment when the snapshot was taken.

All the transactions whose ��s are equal to or greater than xmax are either still

running or do not exist, so their changes cannot be visible.

xip_list is the list of ��s of all the active transactions except for virtual ones,which

do not affect visibility in any way. p. ��

1 Joseph M. Hellerstein, Looking Back at Postgres. https://arxiv.org/pdf/1901.01973.pdf
2 backend/storage/ipc/procarray.c, GetSnapshotData function
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Snapshots also include several other parameters, but we will ignore them for now.

In a graphical form, a snapshot can be represented as a rectangle that comprises

transactions from xmin to xmax:

xid
1 2 3

xmin xmax

xip_list

To understand how visibility rules are defined by the snapshot, we are going to

reproduce the above scenario on the accounts table.

=> TRUNCATE TABLE accounts;

The first transaction inserts the first row into the table and remains open:

=> BEGIN;

=> INSERT INTO accounts VALUES (1, 'alice', 1000.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

790

(1 row)

The second transaction inserts the second row and commits this change immedi-

ately:

=> BEGIN;

=> INSERT INTO accounts VALUES (2, 'bob', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

791

(1 row)

=> COMMIT;
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At this point, let’s create a new snapshot in another session. We could simply run

any query for this purpose, but we will use a special function to take a look at this

snapshot right away:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> -- txid_current_snapshot() before v.13

SELECT pg_current_snapshot();

pg_current_snapshot

−−−−−−−−−−−−−−−−−−−−−

790:792:790

(1 row)

This function displays the following snapshot components, separated by colons:

xmin, xmax, and xip_list (the list of active transactions; in this particular case it

consists of a single item).

Once the snapshot is taken, commit the first transaction:

=> COMMIT;

The third transaction is started after the snapshot creation. It modifies the second

row, so a new tuple appears:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100 WHERE id = 2;

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

792

(1 row)

=> COMMIT;

Our snapshot sees only one tuple:

=> SELECT ctid, * FROM accounts;

ctid | id | client | amount

−−−−−−−+−−−−+−−−−−−−−+−−−−−−−−

(0,2) | 2 | bob | 100.00

(1 row)
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But the table contains three of them:

=> SELECT * FROM heap_page('accounts',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 790 c | 0 a

(0,2) | normal | 791 c | 792 c

(0,3) | normal | 792 c | 0 a

(3 rows)

So how does Postgre��� choose which versions to show? By the above rules,

changes are included into a snapshot only if they are made by committed trans-

actions that satisfy the following criteria:

• If xid < xmin, changes are shown unconditionally (like in the case of the trans-

action that created the accounts table).

• If xmin ⩽ xid < xmax, changes are shownonly if the corresponding transaction

��s are not in xip_list.

The first row (�,�) is invisible because it is inserted by a transaction that appears in

xip_list (even though this transaction falls into the snapshot range).

The latest version of the second row (�,�) is invisible because the corresponding

transaction �� is above the upper boundary of the snapshot.

But the first version of the second row (�,�) is visible: row insertion was performed

by a transaction that falls into the snapshot range and does not appear in xip_list

(the insertion is visible), while row deletion was performed by a transaction whose

�� is above the upper boundary of the snapshot (the deletion is invisible).

=> COMMIT;

4.4 Visibility of Transactions’ Own Changes

Things get a bit more complicated when it comes to defining visibility rules for

transactions’ own changes: in some cases, only part of such changes must be vis-

ible. For example, a cursor that was opened at a particular point in time must not

see any changes that happened later, regardless of the isolation level.
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To address such situations, tuple headers provide a special field (displayed as

cmin and cmax pseudocolumns) that shows the sequence number of the operation

within the transaction. The cmin column identifies insertion, while cmax is used

for deletion operations. To save space, these values are stored in a single field of

the tuple header rather than in two different ones. It is assumed that one and the

same row almost never gets both inserted and deleted within a single transaction.

(If it does happen, Postgre��� writes a special combo identifier into this field, and

the actual cmin and cmax values are stored by the backend in this case.1)

As an illustration, let’s start a transaction and insert a row into the table:

=> BEGIN;

=> INSERT INTO accounts VALUES (3, 'charlie', 100.00);

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

793

(1 row)

Open a cursor to run the query that returns the number of rows in this table:

=> DECLARE c CURSOR FOR SELECT count(*) FROM accounts;

Insert one more row:

=> INSERT INTO accounts VALUES (4, 'charlie', 200.00);

Now extend the output by another column to display the cmin value for the rows

inserted by our transaction (it makes no sense for other rows):

=> SELECT xmin, CASE WHEN xmin = 793 THEN cmin END cmin, *

FROM accounts;

xmin | cmin | id | client | amount

−−−−−−+−−−−−−+−−−−+−−−−−−−−−+−−−−−−−−−

790 | | 1 | alice | 1000.00

792 | | 2 | bob | 200.00

793 | 0 | 3 | charlie | 100.00

793 | 1 | 4 | charlie | 200.00

(4 rows)

1 backend/utils/time/combocid.c
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The cursor query gets only three rows; the row inserted when the cursor was al-

ready open does not make it into the snapshot because the cmin < 1 condition is

not satisfied:

=> FETCH c;

count

−−−−−−−

3

(1 row)

Naturally, this cmin number is also stored in the snapshot, but it is impossible to

display it using any ��� means.

4.5 Transaction Horizon

As mentioned earlier, the lower boundary of the snapshot is represented by xmin,

which is the �� of the oldest transaction that was active at the moment of the snap-

shot creation. This value is very important because it defines the horizon of the

transaction that uses this snapshot.

If a transaction has no active snapshot (for example, at the Read Committed isola-

tion level between statement execution), its horizon is defined by its own �� if it is

assigned.

All the transactions that are beyond the horizon (those with xid < xmin) are gu-

ranteed to be committed. It means that a transaction can see only the current row

versions beyond its horizon.

As you can guess, this term is inspired by the concept of event horizon in physics.

Postgre��� tracks the current horizons of all its processes; transactions can see

their own horizons in the pg_stat_activity table:

=> BEGIN;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)
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Virtual transactions have no real ��s, but they still use snapshots just like regular

transactions, so they have their own horizons. The only exception is virtual trans-

actions without an active snapshot: the concept of the horizon makes no sense for

them, and they are fully “transparent” to the system when it comes to snapshots

and visibility (even though pg_stat_activity.backend_xminmay still contain an xmin

of an old snapshot).

We can also define the database horizon in a similar manner. For this purpose,

we should take the horizons of all the transactions in this database and select the

most remote one, which has the oldest xmin.1 Beyond this horizon, outdated heap

tuples will never be visible to any transaction in this database. Such tuples can be

safely cleaned up by vacuum—this is exactly why the concept of the horizon is so

important from a practical standpoint.

xid
1 2 3 4 5 6 7 8 9 10

database
horizon

outdated tuples

that can be vacuumed

Let’s draw some conclusions:

• If a transaction (no matter whether it is real or virtual) at the Repeatable Read

or Serializable isolation level is running for a long time, it thereby holds the

database horizon and defers vacuuming.

1 backend/storage/ipc/procarray.c, ComputeXidHorizons function

97

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/storage/ipc/procarray.c;hb=REL_14_STABLE


Chapter 4 Snapshots

• A real transaction at the Read Committed isolation level holds the database

horizon in the same way, even if it is not executing any operators (being in the

“idle in transaction” state).

• A virtual transaction at the Read Committed isolation level holds the horizon

only while executing operators.

There is only one horizon for the whole database, so if it is being held by a trans-

action, it is impossible to vacuum any data within this horizon—even if this data

has not been accessed by this transaction.

Cluster-wide tables of the system catalog have a separate horizon that takes into account

all transactions in all databases. Temporary tables, on the contrary, do not have to pay

attention to any transactions except those that are being executed by the current process.

Let’s get back to our current experiment. The active transaction of the first session

still holds the database horizon; we can see it by incrementing the transaction

counter:

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

794

(1 row)

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

793

(1 row)

And only when this transaction is complete, the horizon moves forward, and out-

dated tuples can be vacuumed:

=> COMMIT;

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

795

(1 row)
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In a perfect world, you should avoid combining p. ���long transactions with frequent

updates (that spawn new row versions), as it will lead to table and index bloating.

4.6 System Catalog Snapshots

Although the system catalog consists of regular tables, they cannot be accessed

via a snapshot used by a transaction or an operator. The snapshot must be “fresh”

enough to include all the latest changes, otherwise transactions could see outdated

definitions of table columns or miss newly added integrity constraints.

Here is a simple example:

=> BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- a snapshot for the transaction is taken

=> ALTER TABLE accounts

ALTER amount SET NOT NULL;

=> INSERT INTO accounts(client, amount)

VALUES ('alice', NULL);

ERROR: null value in column "amount" of relation "accounts"

violates not−null constraint

DETAIL: Failing row contains (1, alice, null).

=> ROLLBACK;

The integrity constraint that appeared after the snapshot creation was visible to

the ������ command. It may seem that such behavior breaks isolation, but if the

inserting transaction had accessed the accounts table, the ����� ����� command

would have been blocked p. ���until this transaction completion.

In general, the server behaves as if a separate snapshot is created for each system

catalog query. But the implementation is, of course, much more complex1 since

frequent snapshot creation would negatively affect performance; besides, many

system catalog objects get cached, and it must also be taken into account.

1 backend/utils/time/snapmgr.c, GetCatalogSnapshot function
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4.7 Exporting Snapshots

In some situations, concurrent transactions must see one and the same snapshot

by all means. For example, if the pg_dump utility is run in the parallel mode, all its

processes must see the same database state to produce a consistent backup.

We cannot assume that snapshots will be identical simply because transactions

were started “simultaneously.” To ensure that all the transactions see the same

data, we must employ the snapshot export mechanism.

The pg_export_snapshot function returns a snapshot ��, which can be passed to

another transaction (outside of the database system):

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

=> SELECT pg_export_snapshot();

pg_export_snapshot

−−−−−−−−−−−−−−−−−−−−−

00000004−0000006E−1

(1 row)

Before executing the first statement, the other transaction can import the snapshot

by running the ��� ����������� �������� command. The isolation level must be set

to Repeatable Read or Serializable because operators use their own snapshots at the

Read Committed level:

=> DELETE FROM accounts;

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SET TRANSACTION SNAPSHOT '00000004-0000006E-1';

Now the second transaction is going to use the snapshot of the first transaction,

and consequently, it will see four rows (instead of zero):

100



4.7 Exporting Snapshots

=> SELECT count(*) FROM accounts;

count

−−−−−−−

4

(1 row)

Clearly, the second transaction will not see any changes made by the first transac-

tion after the snapshot export (and vice versa): regular visibility rules still apply.

The exported snapshot’s lifetime is the same as that of the exporting transaction.

=> COMMIT;

=> COMMIT;
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5
Page Pruning and HOT Updates

5.1 Page Pruning

While a heap page is being read or updated, Postgre��� can perform some quick

page cleanup, or pruning.1 It happens in the following cases:

• The previous ������ operation did not find enough space to place a new tuple

into the same page. This event is reflected in the page header.

• The heap page contains more data than allowed by the100 fillfactor storage pa-

rameter.

An ������ operation can add a new row into the page only if this page is filled

for less than fillfactor percent. The rest of the space is kept for ������ opera-

tions (no such space is reserved by default).

Page pruning removes the tuples that cannot be visible in any snapshot anymore

(that is, that are beyond the database horizonp. �� ). It never goes beyond a single heap

page, but in return it is performed very fast. Pointers to pruned tuples remain

in place since they may be referenced from an index—which is already a different

page.

For the same reason, neither the visibility map nor the free space map is refreshed

(so the recovered space is set aside for updates, not for insertions).

Since a page can be pruned during reads, any ������ statement can cause page

modifications. This is yet another such case in addition to deferred setting of in-

formation bits.p. ��

1 backend/access/heap/pruneheap.c, heap_page_prune_opt function
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Let’s take a look at how page pruning actually works. We are going to create a

two-column table and build an index on each of the columns:

=> CREATE TABLE hot(id integer, s char(2000)) WITH (fillfactor = 75);

=> CREATE INDEX hot_id ON hot(id);

=> CREATE INDEX hot_s ON hot(s);

If the s column contains only Latin letters, each heap tuple will have a fixed size

of ���� bytes, plus �� bytes of the header. The fillfactor storage parameter is set

to ��%. It means that the page has enough free space for four tuples, but we can

insert only three.

Let’s insert a new row and update it several times:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

Now the page contains four tuples:

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−

(0,1) | normal | 801 c | 802 c

(0,2) | normal | 802 c | 803 c

(0,3) | normal | 803 c | 804

(0,4) | normal | 804 | 0 a

(4 rows)

Expectedly, we have just exceeded the fillfactor threshold. You can tell it by the

difference between the pagesize and upper p. ��values—it is bigger than ��% of the

page size, which is ���� bytes:

=> SELECT upper, pagesize FROM page_header(get_raw_page('hot',0));

upper | pagesize

−−−−−−−+−−−−−−−−−−

64 | 8192

(1 row)

The next page access triggers page pruning that removes all the outdated tuples.

Then a new tuple (�,�) is added into the freed space:
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=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−

(0,1) | dead | |

(0,2) | dead | |

(0,3) | dead | |

(0,4) | normal | 804 c | 805

(0,5) | normal | 805 | 0 a

(5 rows)

The remaining heap tuples are physically moved towards the highest addresses

so that all the free space is aggregated into a single continuous chunk. The tuple

pointers are also modified accordingly. As a result, there is no free space fragmen-

tation in the page.

The pointers to the pruned tuples cannot be removed yet because they are still ref-

erenced from the indexes; Postgre��� changes their status from normal to dead.

Let’s take a look at the first page of the hot_s index (the zero page is used for meta-

data):

=> SELECT * FROM index_page('hot_s',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)

We can see the same picture in the other index too:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid

−−−−−−−−−−−−+−−−−−−−

1 | (0,1)

2 | (0,2)

3 | (0,3)

4 | (0,4)

5 | (0,5)

(5 rows)
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An index scan can return (�,�), (�,�), and (�,�) as tuple identifiers. The server tries

to read the corresponding heap tuple but sees that the pointer has the dead status;

it means that this tuple does not exist anymore and should be ignored. And while

being at it, the server also changes the pointer status in the index page to avoid

repeated heap page access.1

Let’s extend the function v. ��displaying index pages so that it also shows whether the

pointer is dead:

=> DROP FUNCTION index_page(text, integer);

=> CREATE FUNCTION index_page(relname text, pageno integer)

RETURNS TABLE(itemoffset smallint, htid tid, dead boolean)

AS $$

SELECT itemoffset,

htid,

dead -- starting from v.13

FROM bt_page_items(relname,pageno);

$$ LANGUAGE sql;

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

4 | (0,4) | f

5 | (0,5) | f

(5 rows)

All the pointers in the index page are active so far. But as soon as the first index

scan occurs, their status changes:

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM hot WHERE id = 1;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Index Scan using hot_id on hot (actual rows=1 loops=1)

Index Cond: (id = 1)

(2 rows)

1 backend/access/index/indexam.c, index_fetch_heap function
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=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | t

2 | (0,2) | t

3 | (0,3) | t

4 | (0,4) | t

5 | (0,5) | f

(5 rows)

Although the heap tuple referenced by the fourth pointer is still unpruned and

has the normal status, it is already beyond the database horizon. That’s why this

pointer is also marked as dead in the index.

5.2 HOT Updates

It would be very inefficient to keep references to all heap tuples in an index.

To begin with, each rowmodification triggers updates of all the indexes created on

the table: once a new heap tuple appears, each index must include a reference to

this tuple, even if the modified fields are not indexed.

Furthermore, indexes accumulate references to historic heap tuples, so they have

to be pruned together with these tuples.p. ���

Things get worse as you create more indexes on a table.

But if the updated column is not a part of any index, there is no point in creating

another index entry that contains the same key value. To avoid such redundancies,

Postgre��� provides an optimization called Heap-Only Tuple updates.1

If such an update is performed, an index page contains only one entry for each row.

This entry points to the very first row version; all the subsequent versions located

in the same page are bound into a chain by ctid pointers in the tuple headers.

Row versions that are not referenced from any index are tagged with theHeap-Only

Tuple bit. If a version is included into the ��� chain, it is tagged with the Heap Hot

Updated bit.

1 backend/access/heap/README.HOT
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If an index scan accesses a heap page and finds a row version marked as Heap Hot

Updated, it means that the scan should continue, so it goes further along the chain

of ��� updates. Obviously, all the fetched row versions are checked for visibility

before the result is returned to the client.

To take a look at how ��� updates are performed, let’s delete one of the indexes

and truncate the table.

=> DROP INDEX hot_s;

=> TRUNCATE TABLE hot;

For convenience, we will redefine the heap_page function so that its output in-

cludes three more fields: ctid and the two bits related to ��� updates:

=> DROP FUNCTION heap_page(text,integer);

=> CREATE FUNCTION heap_page(relname text, pageno integer)

RETURNS TABLE(

ctid tid, state text,

xmin text, xmax text,

hhu text, hot text, t_ctid tid

) AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax,

CASE WHEN (t_infomask2 & 16384) > 0 THEN 't' END AS hhu,

CASE WHEN (t_infomask2 & 32768) > 0 THEN 't' END AS hot,

t_ctid

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;
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Let’s repeat the insert and update operations:

=> INSERT INTO hot VALUES (1, 'A');

=> UPDATE hot SET s = 'B';

The page now contains a chain of ��� updates:

• The Heap Hot Updated bit shows that the executor should follow the ����

chain.

• The Heap Only Tuple bit indicates that this tuple is not referenced from any

indexes.

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 | t | | (0,2)

(0,2) | normal | 813 | 0 a | | t | (0,2)

(2 rows)

As we make further updates, the chain will grow—but only within the page limits:

=> UPDATE hot SET s = 'C';

=> UPDATE hot SET s = 'D';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 812 c | 813 c | t | | (0,2)

(0,2) | normal | 813 c | 814 c | t | t | (0,3)

(0,3) | normal | 814 c | 815 | t | t | (0,4)

(0,4) | normal | 815 | 0 a | | t | (0,4)

(4 rows)

The index still contains only one reference, which points to the head of this chain:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

(1 row)
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A ��� update is possible if the modified fields are not a part of any index. Other-

wise, some of the indexes would contain a reference to a heap tuple that appears

in the middle of the chain, which contradicts the idea of this optimization. Since

a ��� chain can grow only within a single page, traversing the whole chain never

requires access to other pages and thus does not hamper performance.

5.3 Page Pruning for HOT Updates

A special case of page pruning—which is nevertheless important—is pruning of

��� update chains.

In the example above, the fillfactor threshold is already exceeded, so the next up-

date should trigger page pruning. But this time the page contains a chain of ���

updates. The head of this chain must always remain in its place since it is refer-

enced from the index, but other pointers can be released because they are sure to

have no external references.

To avoidmoving the head, Postgre��� uses dual addressing: the pointer referenced

from the index (which is (�,�) in this case) receives the redirect status since it points

to the tuple that currently starts the chain:

=> UPDATE hot SET s = 'E';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | normal | 815 c | 816 | t | t | (0,2)

(4 rows)

The tuples (�,�), (�,�), and (�,�) have been pruned; the head pointer � remains for

redirection purposes, while pointers � and � have been deallocated (received the

unused status) since they are guaranteed to have no references from indexes. The

new tuple is written into the freed space as tuple (�,�).
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Let’s perform some more updates:

=> UPDATE hot SET s = 'F';

=> UPDATE hot SET s = 'G';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 4 | | | | |

(0,2) | normal | 816 c | 817 c | t | t | (0,3)

(0,3) | normal | 817 c | 818 | t | t | (0,5)

(0,4) | normal | 815 c | 816 c | t | t | (0,2)

(0,5) | normal | 818 | 0 a | | t | (0,5)

(5 rows)

The next update is going to trigger page pruning:

=> UPDATE hot SET s = 'H';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 5 | | | | |

(0,2) | normal | 819 | 0 a | | t | (0,2)

(0,3) | unused | | | | |

(0,4) | unused | | | | |

(0,5) | normal | 818 c | 819 | t | t | (0,2)

(5 rows)

Again, some of the tuples are pruned, and the pointer to the head of the chain is

shifted accordingly.

If unindexed columns are modified frequently, it makes sense to reduce the fillfac-

tor value, thus reserving some space in the page for updates. Obviously, you have

to keep in mind that the lower the fillfactor value is, the more free space is left in

the page, so the physical size of the table grows.
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5.4 HOT Chain Splits

If the page has no more space to accommodate a new tuple, the chain will be cut

off. Postgre��� will have to add a separate index entry to refer to the tuple located

in another page.

To observe this situation, let’s start a concurrent transaction with a snapshot that

blocks page pruning:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1;

Now we are going to perform some updates in the first session:

=> UPDATE hot SET s = 'I';

=> UPDATE hot SET s = 'J';

=> UPDATE hot SET s = 'K';

=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 | t | t | (0,5)

(0,5) | normal | 822 | 0 a | | t | (0,5)

(5 rows)

When the next update happens, this page will not be able to accommodate another

tuple, and page pruning will not manage to free any space:

=> UPDATE hot SET s = 'L';

=> COMMIT; -- the snapshot is not required anymore
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=> SELECT * FROM heap_page('hot',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | redirect to 2 | | | | |

(0,2) | normal | 819 c | 820 c | t | t | (0,3)

(0,3) | normal | 820 c | 821 c | t | t | (0,4)

(0,4) | normal | 821 c | 822 c | t | t | (0,5)

(0,5) | normal | 822 c | 823 | | t | (1,1)

(5 rows)

Tuple (�,�) contains the (�,�) reference that goes to page �:

=> SELECT * FROM heap_page('hot',1);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(1,1) | normal | 823 | 0 a | | | (1,1)

(1 row)

However, this reference is not used: the Heap Hot Updated bit is not set for tuple

(�,�). As for tuple (�,�), it can be accessed from the index that now has two entries.

Each of them points to the head of their own ��� chain:

=> SELECT * FROM index_page('hot_id',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (1,1) | f

(2 rows)

5.5 Page Pruning for Indexes

I have declared that page pruning is confined to a single heap page and does not

affect indexes. However, indexes have their own pruning,1 which also cleans up a

single page—an index one in this case.

Index pruning happens when an insertion into a �-tree is about to split the page

into two, as the original page does not have enough space anymore. The problem is

that even if some index entries are deleted later, two separate index pages will not

1 postgresql.org/docs/14/btree-implementation.html#BTREE-DELETION
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be merged into one. It leads to index bloating, and once bloated, the index cannot

shrink even if a large part of the data is deleted. But if pruning can remove some

of the tuples, a page split may be deferred.

There are two types of tuples that can be pruned from an index.

First of all, Postgre��� prunes those tuples that have been tagged as dead.1 As

I have already said, Postgre��� sets such a tag during an index scan if it detects

an index entry pointing to a tuple that is not visible in any snapshot anymore or

simply does not exist.

If no tuples are known to be dead v. ��, Postgre��� checks those index entries that ref-

erence different versions of one and the same table row.2 Because of ����, update

operations may generate a large number of row versions, and many of them are

soon likely to disappear behind the database horizon. H�� updates cushion this

effect, but they are not always applicable: if the column to update is a part of an

index, the corresponding references are propagated to all the indexes. Before split-

ting the page, it makes sense to search for the rows that are not tagged as dead

yet but can already be pruned. To achieve this, Postgre��� has to check visibility

of heap tuples. Such checks require table access, so they are performed only for

“promising” index tuples, which have been created as copies of the existing ones

for ���� purposes. It is cheaper to perform such a check than to allow an extra

page split.

1 backend/access/nbtree/README, Simple deletion section
2 backend/access/nbtree/README, Bottom-Up deletion section

include/access/tableam.h
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6.1 Vacuum

Page pruning happens very fast, but it frees only part of the space that can be po-

tentially reclaimed. Operating within a single heap page, it does not touch upon

indexes (or vice versa, it cleans up an index page without affecting the table).

Routine vacuuming,1 which is the main vacuuming procedure, is performed by the

������ command.2 It processes thewhole table and eliminates both outdatedheap

tuples and all the corresponding index entries.

Vacuuming is performed in parallel with other processes in the database system.

While being vacuumed, tables and indexes can be used in the usual manner, both

for read and write operations (but concurrent execution of such commands as ���-

��� �����, ����� �����, and some others is not allowedp. ��� ).

To avoid scanning extra pages, Postgre��� uses a visibility mapp. �� . Pages tracked

in this map are skipped since they are sure to contain only the current tuples, so

a page will only be vacuumed if it does not appear in this map. If all the tuples

remaining in a page after vacuuming are beyond the database horizon, the visibility

map is refreshed to include this page.

The free space map also gets updated to reflect the space that has been cleared.

Let’s create a table with an index on it:

1 postgresql.org/docs/14/routine-vacuuming.html
2 postgresql.org/docs/14/sql-vacuum.html

backend/commands/vacuum.c
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=> CREATE TABLE vac(

id integer,

s char(100)

)

WITH (autovacuum_enabled = off);

=> CREATE INDEX vac_s ON vac(s);

The autovacuum_enabled storage parameter turns off autovacuum; we are doing

it here solely for the purpose of experimentation to precisely control vacuuming

start time.

Let’s insert a row and make a couple of updates:

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

=> UPDATE vac SET s = 'C';

Now the table contains three tuples:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | normal | 826 c | 827 c | | | (0,2)

(0,2) | normal | 827 c | 828 | | | (0,3)

(0,3) | normal | 828 | 0 a | | | (0,3)

(3 rows)

Each tuple is referenced from the index:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,1) | f

2 | (0,2) | f

3 | (0,3) | f

(3 rows)

Vacuuming has removed all the dead tuples, leaving only the current one:

=> VACUUM vac;
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=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 828 c | 0 a | | | (0,3)

(3 rows)

In the case of page pruning, the first two pointers would be considered dead, but

here they have the unused status since no index entries are referring to them now:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)

Pointers with the unused status are treated as free and can be reused by new row

versions.

Now the heap page appears in the visibility map; we can check it using the pg_vis-

ibility extension:

=> CREATE EXTENSION pg_visibility;

=> SELECT all_visible

FROM pg_visibility_map('vac',0);

all_visible

−−−−−−−−−−−−−

t

(1 row)

The page header has also received an attribute showing that all its tuples are visible

in all snapshots:

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)
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6.2 Database Horizon Revisited

Vacuuming detects dead tuples based on the database horizon. This concept is so

fundamental that it makes sense to get back to it once again.

Let’s restart our experiment from the very beginning:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s) VALUES (1,'A');

=> UPDATE vac SET s = 'B';

But this time, before updating the row, we are going to open another transaction

that will hold the database horizon (it can be almost any transaction p. ��, except for

a virtual one executed at the Read Committed isolation level). For example, this

transaction can modify some rows in another table.

=> BEGIN;

=> UPDATE accounts SET amount = 0;

=> UPDATE vac SET s = 'C';

Now our table contains three tuples, and the index contains three references. Let’s

vacuum the table and see what changes:

=> VACUUM vac;

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | normal | 833 c | 835 c | | | (0,3)

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,2) | f

2 | (0,3) | f

(2 rows)
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While the previous run left only one tuple in the page, now we have two of them:

������ has decided that version (�,�) cannot be removed yet. The reason is the

database horizon, which is defined by an unfinished transaction in this case:

=> SELECT backend_xmin FROM pg_stat_activity

WHERE pid = pg_backend_pid();

backend_xmin

−−−−−−−−−−−−−−

834

(1 row)

We can use the ������� clause when calling ������ to observe what is going on:

=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: table "vac": found 0 removable, 2 nonremovable row versions

in 1 out of 1 pages

DETAIL: 1 dead row versions cannot be removed yet, oldest xmin: 834

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

The output shows the following information:

• ������ has detected no tuples that can be removed (0 ���������).

• Two tuples must not be removed (2 ������������).

• One of the nonremovable tuples is dead (1 ����), the other is in use.

• The current horizon respected by ������ (������ ����) is the horizon of the

active transaction.

Once the active transaction completes, the database horizon moves forward, and

vacuuming can continue:

=> COMMIT;
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=> VACUUM VERBOSE vac;

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 1 row versions

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: table "vac": removed 1 dead item identifiers in 1 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 1 row versions in 2 pages

DETAIL: 1 index row versions were removed.

0 index pages were newly deleted.

0 index pages are currently deleted, of which 0 are currently

reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 1 removable, 1 nonremovable row versions

in 1 out of 1 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 836

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

������ has detected and removed a dead tuple beyond the new database horizon.

Now the page contains no outdated row versions; the only version remaining is the

current one:

=> SELECT * FROM heap_page('vac',0);

ctid | state | xmin | xmax | hhu | hot | t_ctid

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−+−−−−−+−−−−−+−−−−−−−−

(0,1) | unused | | | | |

(0,2) | unused | | | | |

(0,3) | normal | 835 c | 0 a | | | (0,3)

(3 rows)

The index also contains only one entry:

=> SELECT * FROM index_page('vac_s',1);

itemoffset | htid | dead

−−−−−−−−−−−−+−−−−−−−+−−−−−−

1 | (0,3) | f

(1 row)
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6.3 Vacuum Phases

The mechanism of vacuuming seems quite simple, but this impression is mislead-

ing. After all, both tables and indexes have to be processed concurrently, without

blocking other processes. To enable such operation, vacuuming of each table is

carried out in several phases.1

It all starts with scanning a table in search of dead tuples; if found, they are first

removed from indexes and then from the table itself. If too many dead tuples have

to be vacuumed in one go, this process is repeated. Eventually, heap truncation

may be performed.

Heap Scan

In the first phase, a heap scan is performed.2 The scanning process takes the vis-

ibility map into account: all pages tracked in this map are skipped because they

are sure to contain no outdated tuples. If a tuple is beyond the horizon and is not

required anymore, its �� is added to a special tid array. Such tuples cannot be re-

moved yet because they may still be referenced from indexes.

The tid array resides in the local memory of the ������ process; the size of the

allocated memory chunk is defined by the64MB maintenance_work_mem parameter. The

whole chunk is allocated at once rather than on demand. However, the allocated

memory never exceeds the volume required in the worst-case scenario, so if the

table is small, vacuuming may use less memory than specified in this parameter.

Index Vacuuming

The first phase can have two outcomes: either the table is scanned in full, or the

memory allocated for the tid array is filled up before this operation completes. In

any case, index vacuuming begins.3 In this phase, each of the indexes created on

1 backend/access/heap/vacuumlazy.c, heap_vacuum_rel function
2 backend/access/heap/vacuumlazy.c, lazy_scan_heap function
3 backend/access/heap/vacuumlazy.c, lazy_vacuum_all_indexes function
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the table is fully scanned to find all the entries that refer to the tuples registered in

the tid array. These entries are removed from index pages.

An index can help you quickly get to a heap tuple by its index key, but there is no way to

quickly find an index entry by the corresponding tuple ��. This functionality is currently

being implemented for �-trees,1 but this work is not completed yet.

If there are several indexes bigger than the 512kBmin_parallel_index_scan_size value, they

can be vacuumed v. ��by background workers running in parallel. Unless the level

of parallelism is explicitly defined by the parallel N clause, ������ launches one

worker per suitable index (within the general limits imposed on the number of

background workers).2 One index cannot be processed by several workers.

During the index vacuuming phase, Postgre��� updates the free space map and

calculates statistics on vacuuming. However, this phase is skipped if rows are only

inserted (and are neither deleted nor updated) because the table contains no dead

tuples in this case. Then an index scan will be forced only once at the very end, as

part of a separate phase of index cleanup.3

The index vacuuming phase leaves no references to outdated heap tuples in in-

dexes, but the tuples themselves are still present in the table. It is perfectly normal:

index scans cannot find any dead tuples, while sequential scans of the table rely

on visibility rules to filter them out.

Heap Vacuuming

Then the heap vacuuming phase begins.4 The table is scanned again to remove the

tuples registered in the tid array and free the corresponding pointers. Now that all

the related index references have been removed, it can be done safely.

The space recovered by ������ is reflected in the free space map, while the pages

that now contain only the current tuples visible in all snapshots are tagged in the

visibility map.

1 commitfest.postgresql.org/21/1802
2 postgresql.org/docs/14/bgworker.html
3 backend/access/heap/vacuumlazy.c, lazy_cleanup_all_indexes function

backend/access/nbtree/nbtree.c, btvacuumcleanup function
4 backend/access/heap/vacuumlazy.c, lazy_vacuum_heap function
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If the table was not read in full during the heap scan phase, the tid array is cleared,

and the heap scan is resumed from where it left off last time.

Heap Truncation

Vacuumed heap pages contain some free space; occasionally, you may be lucky to

clear the whole page. If you get several empty pages at the end of the file, vacuum-

ing can “bite off” this tail and return the reclaimed space to the operating system.

It happens during heap truncation,1 which is the final vacuum phase.

Heap truncation requires a short exclusivep. ��� lock on the table. To avoid holding other

processes for too long, attempts to acquire a lock do not exceed five seconds.

Since the table has to be locked, truncation is only performed if the empty tail takes

at least 1

16
of the table or has reached the length of �,��� pages. These thresholds

are hardcoded and cannot be configured.

If, despite all these precautions, table locks still cause any issuesv. �� , truncation can be

disabled altogether using the vacuum_truncate and toast.vacuum_truncate storage

parameters.

6.4 Analysis

When talking about vacuuming, we have to mention yet another task that is

closely related to it, even though there is no formal connection between them.

It is analysis,2 or gathering statistical information for the query planner. The

collected statistics include the number of rows (pg_class.reltuples) and pages

(pg_class.relpages) in relations, data distribution within columns, and some other

information.

You can run the analysis manually using the ������� command,3 or combine it with

vacuuming by calling ������ �������. However, these two tasks are still performed

sequentially, so there is no difference in terms of performance.

1 backend/access/heap/vacuumlazy.c, lazy_truncate_heap function
2 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-STATISTICS
3 backend/commands/analyze.c
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Historically, ������ ������� appeared first, in version �.�, while a separate ������� com-

mand was not implemented until version �.�. In earlier versions, statistics were collected

by a ��� script.

Automatic vacuum and analysis are set up in a similar way, so it makes sense to

discuss them together.

6.5 Automatic Vacuum and Analysis

Unless the database horizon is held up for a long time, routine vacuuming should

cope with its work. But how often do we need to call the ������ command?

If a frequently updated table is vacuumed too seldom, it will grow bigger than de-

sired. Besides, it may accumulate too many changes, and then the next ������ run

will have to make several passes over the indexes.

If the table is vacuumed too often, the serverwill be busywithmaintenance instead

of useful work.

Furthermore, typicalworkloadsmay change over time, so having a fixed vacuuming

schedule will not help anyway: themore often the table is updated, themore often

it has to be vacuumed.

This problem is solved by autovacuum,1 which launches vacuum and analysis pro-

cesses based on the intensity of table updates.

About the Autovacuum Mechanism

When autovacuum is enabled ( onautovacuum configuration parameter is on), the au-

tovacuum launcher process is always running in the system. This process defines

the autovacuum schedule and maintains the list of “active” databases based on us-

age statistics. Such statistics are collected if the ontrack_counts parameter is enabled.

Do not switch off these parameters, otherwise autovacuum will not work.

1 postgresql.org/docs/14/routine-vacuuming.html#AUTOVACUUM
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Once in1min autovacuum_naptime, the autovacuum launcher starts an autovacuum

worker1 for each active database in the list (these workers are spawned by post-

master, as usual). Consequently, if there are N active databases in the cluster, N

workers are spawned within the autovacuum_naptime interval. But the total num-

ber of autovacuumworkers running in parallel cannot exceed the threshold defined

by the3 autovacuum_max_workers parameter.

Autovacuum workers are very similar to regular background workers, but they appeared

much earlier than this general mechanism of task management. It was decided to

leave the autovacuum implementation unchanged, so autovacuum workers do not use

max_worker_processes slots.

Once started, the background worker connects to the specified database and builds

two lists:

• the list of all tables, materialized views, and ����� tables to be vacuumed

• the list of all tables and materialized views to be analyzed (����� tables are

not analyzed because they are always accessed via an index)

Then the selected objects are vacuumed or analyzed one by one (or undergo both

operations), and once the job is complete, the worker is terminated.

Automatic vacuuming works similar to the manual one initiated by the ������

command, but there are some nuances:

• Manual vacuuming accumulates tuple ��s in a memory chunk of the mainte-

nance_work_mem size. However, using the same limit for autovacuum is un-

desirable, as it can result in excessive memory consumption: there may be

several autovacuum workers running in parallel, and each of them will get

maintenance_work_mem of memory at once. Instead, Postgre��� provides a

separate memory limit for autovacuum processes, which is defined by the au-

tovacuum_work_mem parameter.

By default, the−1 autovacuum_work_mem parameter falls back on the regular

maintenance_work_mem limit, so if the autovacuum_max_workers value is high,

you may have to adjust the autovacuum_work_mem value accordingly.

1 backend/postmaster/autovacuum.c
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• Concurrent processing of several indexes created on one table can be per-

formed only by manual vacuuming; using autovacuum for this purpose would

result in a large number of parallel processes, so it is not allowed.

If a worker fails to complete all the scheduled tasks within the autovacuum_naptime

interval, the autovacuum launcher spawns another worker to be run in parallel in

that database. The second worker will build its own lists of objects to be vacuumed

and analyzed and will start processing them. There is no parallelism at the table

level; only different tables can be processed concurrently.

Which Tables Need to be Vacuumed?

You can disable autovacuum at the table level—although it is hard to imagine why

it could be necessary. There are two storage parameters provided for this purpose,

one for regular tables and the other for ����� tables:

• autovacuum_enabled

• toast.autovacuum_enabled

In usual circumstances, autovacuum is triggered either by p. ���accumulation of dead

tuples or by insertion of new rows.

Dead tuple accumulation. Dead tuples are constantly being counted by the statis-

tics collector; their current number is shown in the system catalog table called

pg_stat_all_tables.

It is assumed that dead tuples have to be vacuumed if they exceed the threshold

defined by the following two parameters:

• 50autovacuum_vacuum_threshold, which specifies the number of dead tuples

(an absolute value)

• 0.2autovacuum_vacuum_scale_factor, which sets the fraction of dead tuples in a

table
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Vacuuming is required if the following condition is satisfied:

pg_stat_all_tables.n_dead_tup >

autovacuum_vacuum_threshold +

autovacuum_vacuum_scale_factor × pg_class.reltuples

Themain parameter here is of course autovacuum_vacuum_scale_factor: its value is

important for large tables (and it is large tables that are likely to cause themajority

of issues). The default value of ��% seems too big andmay have to be significantly

reduced.

For different tables, optimal parameter values may vary: they largely depend on

the table size andworkload type. It makes sense to setmore or less adequate initial

values and then override them for particular tables using storage parameters:

• autovacuum_vacuum_threshold and toast.autovacuum_vacuum_threshold

• autovacuum_vacuum_scale_factor and toast.autovacuum_vacuum_scale_factor

Row insertions.v. �� If rows are only inserted and are neither deleted nor updated, the

table contains no dead tuples. But such tables should also be vacuumed to freeze

heap tuples in advancep. ��� and update the visibility map (thus enabling index-only

scans).

A table will be vacuumed if the number of rows inserted since the previous vacu-

uming exceeds the threshold defined by another similar pair of parameters:

•1000 autovacuum_vacuum_insert_threshold

•0.2 autovacuum_vacuum_insert_scale_factor

The formula is as follows:

pg_stat_all_tables.n_ins_since_vacuum >

autovacuum_vacuum_insert_threshold +

autovacuum_vacuum_insert_scale_factor × pg_class.reltuples

126



6.5 Automatic Vacuum and Analysis

Like in the previous example, you can override these values at the table level using

storage parameters:

• autovacuum_vacuum_insert_threshold and its ����� counterpart

• autovacuum_vacuum_insert_scale_factor and its ����� counterpart

Which Tables Need to Be Analyzed?

Automatic analysis needs to process only modified rows, so the calculations are a

bit simpler than those for autovacuum.

It is assumed that a table has to be analyzed if the number of rows modified since

the previous analysis exceeds the threshold defined by the following two configu-

ration parameters:

• 50autovacuum_analyze_threshold

• 0.1autovacuum_analyze_scale_factor

Autoanalysis is triggered if the following condition is met:

pg_stat_all_tables.n_mod_since_analyze >

autovacuum_analyze_threshold +

autovacuum_analyze_scale_factor × pg_class.reltuples

To override autoanalysis settings for particular tables, you can use the same-name

storage parameters:

• autovacuum_analyze_threshold

• autovacuum_analyze_scale_factor

Since ����� tables are not analyzed, they have no corresponding parameters.
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Autovacuum in Action

To formalize everything said in this section, let’s create two views that show which

tables currently need to be vacuumed and analyzed.1 The function used in these

views returns the current value of the passed parameter, taking into account that

this value can be redefined at the table level:

=> CREATE FUNCTION p(param text, c pg_class) RETURNS float

AS $$

SELECT coalesce(

-- use storage parameter if set

(SELECT option_value

FROM pg_options_to_table(c.reloptions)

WHERE option_name = CASE

-- for TOAST tables the parameter name is different

WHEN c.relkind = 't' THEN 'toast.' ELSE ''

END || param

),

-- else take the configuration parameter value

current_setting(param)

)::float;

$$ LANGUAGE sql;

This is how a vacuum-related view can look like:

=> CREATE VIEW need_vacuum AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_vacuum_threshold', c) threshold,

p('autovacuum_vacuum_scale_factor', c) scale_factor,

p('autovacuum_vacuum_insert_threshold', c) ins_threshold,

p('autovacuum_vacuum_insert_scale_factor', c) ins_scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m','t')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_dead_tup AS dead_tup,

c.threshold + c.scale_factor * c.reltuples AS max_dead_tup,

st.n_ins_since_vacuum AS ins_tup,

c.ins_threshold + c.ins_scale_factor * c.reltuples AS max_ins_tup,

st.last_autovacuum

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

1 backend/postmaster/autovacuum.c, relation_needs_vacanalyze function
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The max_dead_tup column shows the number of dead tuples that will trigger au-

tovacuum, whereas the max_ins_tup column shows the threshold value related to

insertion.

Here is a similar view for analysis:

=> CREATE VIEW need_analyze AS

WITH c AS (

SELECT c.oid,

greatest(c.reltuples, 0) reltuples,

p('autovacuum_analyze_threshold', c) threshold,

p('autovacuum_analyze_scale_factor', c) scale_factor

FROM pg_class c

WHERE c.relkind IN ('r','m')

)

SELECT st.schemaname || '.' || st.relname AS tablename,

st.n_mod_since_analyze AS mod_tup,

c.threshold + c.scale_factor * c.reltuples AS max_mod_tup,

st.last_autoanalyze

FROM pg_stat_all_tables st

JOIN c ON c.oid = st.relid;

Themax_mod_tup column shows the threshold value for autoanalysis.

To speed up the experiment, we will be starting autovacuum every second:

=> ALTER SYSTEM SET autovacuum_naptime = '1s';

=> SELECT pg_reload_conf();

Let’s truncate the vac table and then insert �,��� rows. Note that autovacuum is

turned off at the table level.

=> TRUNCATE TABLE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,1000) id;

Here is what our vacuum-related view will show:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 50

ins_tup | 1000

max_ins_tup | 1000

last_autovacuum |

129



Chapter 6 Vacuum and Autovacuum

The actual threshold value is max_dead_tup = 50, although the formula listed

above suggests that it should be 50 + 0.2 × 1000 = 250. The thing is that statistics

on this table are not available yet since the ������ command does not update it:

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

−1

(1 row)

The pg_class.reltuples valuev. �� is set to −1; this special constant is used instead of

zero to differentiate between a table without any statistics and a really empty table

that has already been analyzed. For the purpose of calculation, the negative value

is taken as zero, which gives us 50 + 0.2 × 0 = 50.

The value of max_ins_tup = 1000 differs from the projected value of �,��� for the

same reason.

Let’s have a look at the analysis view:

=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−−+−−−−−−−−−−−

tablename | public.vac

mod_tup | 1006

max_mod_tup | 50

last_autoanalyze |

We have updated (inserted in this case) �,��� rows; as a result, the threshold is

exceeded: since the table size is unknown, it is currently set to ��. It means that

autoanalysis will be triggered immediately when we turn it on:

=> ALTER TABLE vac SET (autovacuum_enabled = on);

Once the table analysis completes, the threshold is reset to an adequate value of

��� rows.

=> SELECT reltuples FROM pg_class WHERE relname = 'vac';

reltuples

−−−−−−−−−−−

1000

(1 row)
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=> SELECT * FROM need_analyze WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

mod_tup | 0

max_mod_tup | 150

last_autoanalyze | 2022−09−19 14:51:25.983319+03

Let’s get back to autovacuum:

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

The max_dead_tup and max_ins_tup values have also been updated based on the

actual table size discovered by the analysis.

Vacuuming will be started if at least one of the following conditions is met:

• More than ��� dead tuples are accumulated.

• More than ��� rows are inserted into the table. v. ��

Let’s turn off autovacuum again and update ��� rows so that the threshold value

is exceeded by one:

=> ALTER TABLE vac SET (autovacuum_enabled = off);

=> UPDATE vac SET s = 'B' WHERE id <= 251;

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−

tablename | public.vac

dead_tup | 251

max_dead_tup | 250

ins_tup | 1000

max_ins_tup | 1200

last_autovacuum |

Now the trigger condition is satisfied. Let’s enable autovacuum; after a while, we

will see that the table has been processed, and its usage statistics has been reset:
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=> ALTER TABLE vac SET (autovacuum_enabled = on);

=> SELECT * FROM need_vacuum WHERE tablename = 'public.vac' \gx

−[ RECORD 1 ]−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tablename | public.vac

dead_tup | 0

max_dead_tup | 250

ins_tup | 0

max_ins_tup | 1200

last_autovacuum | 2022−09−19 14:51:32.001381+03

6.6 Managing the Load

Operating at the page level, vacuuming does not block other processes; but never-

theless, it increases the system load and can have a noticeable impact on perfor-

mance.

Vacuum Throttling

To control vacuuming intensity, Postgre��� makes regular pauses in table pro-

cessing. After completing about200 vacuum_cost_limit units of work, the process falls

asleep and remains idle for the0 vacuum_cost_delay time interval.

The default zero value of vacuum_cost_delay means that routine vacuuming actu-

ally never sleeps, so the exact vacuum_cost_limit value makes no difference. It is

assumed that if administrators have to resort to manual vacuuming, they are likely

to expect its completion as soon as possible.

If the sleep time is set, then the process will pause each time it has spent vac-

uum_cost_limit units of work on page processing in the buffer cachep. ��� . The cost of

each page read is estimated at1 vacuum_cost_page_hit units if the page is found in

the buffer cache, or2 vacuum_cost_page_miss units otherwise.1 If a clean page is dirt-

ied by vacuum, it adds another20 vacuum_cost_page_dirty units.2

1 backend/storage/buffer/bufmgr.c, ReadBuffer_common function
2 backend/storage/buffer/bufmgr.c, MarkBufferDirty function
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If you keep the default value of the vacuum_cost_limit parameter, ������ can pro-

cess up to ��� pages per cycle in the best-case scenario (if all the pages are cached,

and no pages are dirtied by ������) and only nine pages in the worst case (if all the

pages are read from disk and become dirty).

Autovacuum Throttling

Throttling for autovacuum1 is quite similar to ������ throttling. However, auto-

vacuum can be run with a different intensity as it has its own set of parameters:

• −1autovacuum_vacuum_cost_limit

• 2msautovacuum_vacuum_cost_delay

If any of these parameters is set to −1, it falls back on the corresponding parameter

for regular ������. Thus, the autovacuum_vacuum_cost_limit parameter relies on

the vacuum_cost_limit value by default.

Prior to version ��, the default value of autovacuum_vacuum_cost_delay was �� ms, and it

led to very poor performance on modern hardware.

Autovacuumwork units are limited to autovacuum_vacuum_cost_limit per cycle, and

since they are shared between all the workers, the overall impact on the system re-

mains roughly the same, regardless of their number. So if you need to speed up au-

tovacuum, both the autovacuum_max_workers and autovacuum_vacuum_cost_limit

values should be increased proportionally.

If required, you can override these settings for particular tables by setting the fol-

lowing storage parameters:

• autovacuum_vacuum_cost_delay and toast.autovacuum_vacuum_cost_delay

• autovacuum_vacuum_cost_limit and toast.autovacuum_vacuum_cost_limit

1 backend/postmaster/autovacuum.c, autovac_balance_cost function
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6.7 Monitoring

If vacuuming is monitored, you can detect situations when dead tuples cannot be

removed in one go, as references to them do not fit the maintenance_work_mem

memory chunk. In this case, all the indexes will have to be fully scanned several

times. It can take a substantial amount of time for large tables, thus creating a

significant load on the system. Even though queries will not be blocked, extra �/�

operations can seriously limit system throughput.

Such issues can be corrected either by vacuuming the table more often (so that

each run cleans up fewer tuples) or by allocating more memory.

Monitoring Vacuum

When run with the ������� clause, the ������ command performs the cleanup and

displays the status report, whereas the pg_stat_progress_vacuumv. �.� view shows the

current state of the started process.

There is also a similar view for analysisv. �� (pg_stat_progress_analyze), even though it

is usually performed very fast and is unlikely to cause any issues.

Let’s insert more rows into the table and update them all so that ������ has to run

for a noticeable period of time:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, 'A' FROM generate_series(1,500000) id;

=> UPDATE vac SET s = 'B';

For the purpose of this demonstration, we will limit the amount of memory allo-

cated for the tid array by � ��:

=> ALTER SYSTEM SET maintenance_work_mem = '1MB';

=> SELECT pg_reload_conf();

Launch the ������ command and query the pg_stat_progress_vacuum view several

times while it is running:
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=> VACUUM VERBOSE vac;

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14542

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 3009

heap_blks_vacuumed | 0

index_vacuum_count | 0

max_dead_tuples | 174761

num_dead_tuples | 174522

=> SELECT * FROM pg_stat_progress_vacuum \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−−−−−−−−−−

pid | 14542

datid | 16391

datname | internals

relid | 16479

phase | vacuuming indexes

heap_blks_total | 17242

heap_blks_scanned | 17242

heap_blks_vacuumed | 6017

index_vacuum_count | 2

max_dead_tuples | 174761

num_dead_tuples | 150956

In particular, this view shows:

• phase—the name of the current vacuumphase (I have described themain ones,

but there are actually more of them1)

• heap_blks_total—the total number of pages in a table

• heap_blks_scanned—the number of scanned pages

• heap_blks_vacuumed—the number of vacuumed pages

• index_vacuum_count—the number of index scans

1 postgresql.org/docs/14/progress-reporting.html#VACUUM-PHASES
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The overall vacuuming progress is defined by the ratio of heap_blks_vacuumed to

heap_blks_total, but you have to keep in mind that it changes in spurts because of

index scans. In fact, it is more important to pay attention to the number of vacuum

cycles: if this value is greater than one, it means that the allocated memory was

not enough to complete vacuuming in one go.

You can see thewhole picture in the output of the ������ ������� command,which

has already finished by this time:

INFO: vacuuming "public.vac"

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.05 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.01 s, system: 0.00 s, elapsed: 0.05 s

INFO: scanned index "vac_s" to remove 174522 row versions

DETAIL: CPU: user: 0.03 s, system: 0.00 s, elapsed: 0.07 s

INFO: table "vac": removed 174522 dead item identifiers in

3009 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.02 s

INFO: scanned index "vac_s" to remove 150956 row versions

DETAIL: CPU: user: 0.02 s, system: 0.00 s, elapsed: 0.03 s

INFO: table "vac": removed 150956 dead item identifiers in

2603 pages

DETAIL: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s

INFO: index "vac_s" now contains 500000 row versions in

932 pages

DETAIL: 500000 index row versions were removed.

433 index pages were newly deleted.

433 index pages are currently deleted, of which 0 are

currently reusable.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

INFO: table "vac": found 500000 removable, 500000

nonremovable row versions in 17242 out of 17242 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest

xmin: 851

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.20 s, system: 0.01 s, elapsed: 0.47 s.

VACUUM

index
vacuum

table
vacuum

index
vacuum

table
vacuum

index
vacuum

table
vacuum

All in all, there have been three index scans; each scan has removed ���,���

pointers to dead tuples at the most. This value is defined by the number of

tid pointers (each of them takes � bytes) that can fit into an array of the main-

tenance_work_mem size. The maximum size possible is shown by pg_stat_prog-
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ress_vacuum.max_dead_tuples, but the actually used space is always a bit smaller. It

guarantees that when the next page is read, all its pointers to dead tuples, no mat-

ter how many of them are located in this page, will fit into the remaining memory.

Monitoring Autovacuum

The main approach to monitoring autovacuum is to print its status information

(which is similar to the output of the ������ ������� command) into the server

log for further analysis. If the −1log_autovacuum_min_duration parameter is set to

zero, all autovacuum runs are logged:

=> ALTER SYSTEM SET log_autovacuum_min_duration = 0;

=> SELECT pg_reload_conf();

=> UPDATE vac SET s = 'C';

UPDATE 500000

postgres$ tail -n 13 /home/postgres/logfile

2022−09−19 14:51:50.730 MSK [17371] LOG: automatic vacuum of table

"internals.public.vac": index scans: 3

pages: 0 removed, 17242 remain, 0 skipped due to pins, 0

skipped frozen

tuples: 500000 removed, 500000 remain, 0 are dead but not

yet removable, oldest xmin: 853

index scan needed: 8622 pages from table (50.01% of total)

had 500000 dead item identifiers removed

index "vac_s": pages: 1428 in total, 496 newly deleted, 929

currently deleted, 433 reusable

avg read rate: 13.020 MB/s, avg write rate: 18.228 MB/s

buffer usage: 45851 hits, 5857 misses, 8200 dirtied

WAL usage: 41686 records, 14922 full page images, 97549479

bytes

system usage: CPU: user: 0.30 s, system: 0.28 s, elapsed:

3.51 s

2022−09−19 14:51:51.064 MSK [17371] LOG: automatic analyze of table

"internals.public.vac"

avg read rate: 47.743 MB/s, avg write rate: 0.023 MB/s

buffer usage: 15355 hits, 2035 misses, 1 dirtied

system usage: CPU: user: 0.09 s, system: 0.00 s, elapsed:

0.33 s
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To track the list of tables that have to be vacuumed and analyzed, you can use

the need_vacuum and need_analyze views, which we have already reviewed. If this

list grows, it means that autovacuum does not cope with the load and has to be

sped up by either reducing the gap (autovacuum_vacuum_cost_delay) or increasing

the amount of work done between the gaps (autovacuum_vacuum_cost_limit). It is

not unlikely that the degree of parallelism will also have to be increased (autovac-

uum_max_workers).

138



7
Freezing

7.1 Transaction ID Wraparound

In Postgre���, a transaction �� takes �� bits. Four billions seems to be quite a big

number, but it can be exhausted very fast if the system is being actively used. For

example, for an average load of �,��� transactions per second (excluding virtual

ones), it will happen in about six weeks of continuous operation.

Once all the numbers are used up, the counter has to be reset to start the next

round (this situation is called a “wraparound”). But a transaction with a smaller

�� can only be considered older than another transaction with a bigger �� if the

assigned numbers are always increasing. So the counter cannot simply start using

the same numbers anew after being reset.

Allocating �� bits for transaction ��s would have eliminated this problem alto-

gether, so why doesn’t Postgre��� take advantage of it? The thing is that each

tuple header has to store ��s for two transactions: xmin and xmax. p. ��The header is

quite big already (at least �� bytes if data alignment is taken into account), and

adding more bits would have given another � bytes.

Postgre��� does implement ��-bit transaction ��s1 that extend a regular �� by a ��-bit

epoch, but they are used only internally and never get into data pages.

To correctly handlewraparound,Postgre��� has to compare the age of transactions

(defined as the number of subsequent transactions that have appeared since the

start of this transaction) rather than transaction ��s. Thus, instead of the terms less

than and greater than we should use the concepts of older (precedes) and younger

(follows).

1 include/access/transam.h, FullTransactionId type
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In the code, this comparison is implemented by simply using the ��-bit arithmetic:

first the difference between ��-bit transaction ��s is found, and then this result is

compared to zero.1

To better visualize this idea, you can imagine a sequence of transaction ��s as a

clock face. For each transaction, half of the circle in the clockwise direction will be

in the future, while the other half will be in the past.

fu
tu
re

p
a
st

T1 T1

T2

T1T1

T2

T3

However, this visualization has an unpleasant catch. An old transaction (��) is in

the remote past as compared to more recent transactions. But sooner or later a

new transaction will see it in the half of the circle related to the future. If it were

really so, it would have a catastrophic impact: from now on, all newer transactions

would not see the changes made by transaction ��.

7.2 Tuple Freezing and Visibility Rules

To prevent such “time travel,” vacuuming performs one more task (in addition to

page cleanup):2 it searches for tuples that are beyond the database horizon (so they

are visible in all snapshots) and tags them in a special way, that is, freezesp. ��� them.

For frozen tuples, visibility rules do not have to take xmin into account since such

tuples are known to be visible in all snapshots, so this transaction �� can be safely

reused.

1 backend/access/transam/transam.c, TransactionIdPrecedes function
2 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-WRAPAROUND
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You can imagine that the xmin transaction �� is replaced in frozen tuples by a hy-

pothetical “minus infinity” (pictured as a snowflake below); it is a sign that this

tuple is created by a transaction that is so far in the past that its actual �� does

not matter anymore. Yet in reality xmin remains unchanged, whereas the freezing

attribute is defined by a combination of two hint bits: committed and aborted.

T1̂

T2

T3

T4

^

^

T3

T4T1

T1̂

^

^

T4T1

T2

Many sources (including the documentation) mention FrozenTransactionId = 2. It is the

“minus infinity” that I have already referred to—this value used to replace xmin in versions

prior to �.�, but now hint bits are employed instead. As a result, the original transaction

�� remains in the tuple, which is convenient for both debugging and support. Old systems

can still contain the obsolete FrozenTransactionId, even if they have been upgraded to

higher versions.

The xmax transaction �� does not participate in freezing in any way. It is only

present in outdated tuples, and once such tuples stop being visible in all snap-

shots (which means that the xmax �� is beyond the database horizon), they will be

vacuumed away.

Let’s create a new table for our experiments. The fillfactor parameter should be set

to the lowest value so that each page can accommodate only two tuples—it will be

easier to track the progress this way. Wewill also disable autovacuum tomake sure

that the table is only cleaned up on demand.

=> CREATE TABLE tfreeze(

id integer,

s char(300)

)

WITH (fillfactor = 10, autovacuum_enabled = off);
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We are going to create yet another flavor of the function that displays heap pages

using pageinspect. Dealing with a range of pages, it will show the values of the

freezing attribute (f) and the xmin transaction age for each tuple (it will have to

call the age system function—the age itself is not stored in heap pages, of course):

=> CREATE FUNCTION heap_page(

relname text, pageno_from integer, pageno_to integer

)

RETURNS TABLE(

ctid tid, state text,

xmin text, xmin_age integer, xmax text

) AS $$

SELECT (pageno,lp)::text::tid AS ctid,

CASE lp_flags

WHEN 0 THEN 'unused'

WHEN 1 THEN 'normal'

WHEN 2 THEN 'redirect to '||lp_off

WHEN 3 THEN 'dead'

END AS state,

t_xmin || CASE

WHEN (t_infomask & 256+512) = 256+512 THEN ' f'

WHEN (t_infomask & 256) > 0 THEN ' c'

WHEN (t_infomask & 512) > 0 THEN ' a'

ELSE ''

END AS xmin,

age(t_xmin) AS xmin_age,

t_xmax || CASE

WHEN (t_infomask & 1024) > 0 THEN ' c'

WHEN (t_infomask & 2048) > 0 THEN ' a'

ELSE ''

END AS xmax

FROM generate_series(pageno_from, pageno_to) p(pageno),

heap_page_items(get_raw_page(relname, pageno))

ORDER BY pageno, lp;

$$ LANGUAGE sql;

Now let’s insert some rows into the table and run the ������ command that will

immediately create the visibility map.

=> INSERT INTO tfreeze(id, s)

SELECT id, 'FOO'||id FROM generate_series(1,100) id;

INSERT 0 100

=> VACUUM tfreeze;
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We are going to observe the first two heap pages using the pg_visibility exten-

sion. When vacuuming completes, both pages get tagged in the visibility map

(all_visible) but not in the freeze map (all_frozen v. �.�), as they still contain some un-

frozen tuples:

=> CREATE EXTENSION pg_visibility;

=> SELECT *

FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

The xmin_age of the transaction that has created the rows equals 1 because it is

the latest transaction performed in the system:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 1 | 0 a

(0,2) | normal | 856 c | 1 | 0 a

(1,1) | normal | 856 c | 1 | 0 a

(1,2) | normal | 856 c | 1 | 0 a

(4 rows)

7.3 Managing Freezing

There are four main parameters that control freezing. All of them represent trans-

action age and define when the following events happen:

• Freezing starts (vacuum_freeze_min_age).

• Aggressive freezing is performed (vacuum_freeze_table_age).

• Freezing is forced (autovacuum_freeze_max_age).

• Freezing receives priority v. ��(vacuum_failsafe_age).
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Minimal Freezing Age

The50 million vacuum_freeze_min_age parameter defines the minimal freezing age of xmin

transactions. The lower its value, the higher the overhead: if a row is “hot” and is

actively being changed, then freezing all its newly created versions will be a wasted

effort. Setting this parameter to a relatively high value allows you to wait for a

while.

To observe the freezing process, let’s reduce this parameter value to one:

=> ALTER SYSTEM SET vacuum_freeze_min_age = 1;

=> SELECT pg_reload_conf();

Now update one row in the zero page. The new row version will get into the same

page because the fillfactor value is quite small:

=> UPDATE tfreeze SET s = 'BAR' WHERE id = 1;

The age of all transactions has been increased by one, and the heap pages now look

as follows:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 856 c | 2 | 857

(0,2) | normal | 856 c | 2 | 0 a

(0,3) | normal | 857 | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

At this point, the tuples that are older than vacuum_freeze_min_age = 1 are subject

to freezing. But vacuum will not process any pages tagged in the visibility mapp. ��� :

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | f | f

1 | t | f

(2 rows)
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The previous ������ command has removed the visibility bit of the zero page, so

the tuple that has an appropriate xmin age in this page will be frozen. But the first

page will be skipped altogether:

=> VACUUM tfreeze;

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 c | 2 | 0 a

(1,2) | normal | 856 c | 2 | 0 a

(5 rows)

Now the zero page appears in the visibility map again, and if nothing changes in

it, vacuuming will not return to this page anymore:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | f

(2 rows)

Age for Aggressive Freezing

As we have just seen, if a page contains only the current tuples that are visible in

all snapshots, vacuuming will not freeze them. To overcome this constraint, Post-

gre��� provides the 150

million

vacuum_freeze_table_age parameter. It defines the transaction

age that allows vacuuming to ignore the visibility map, so any heap page can be

frozen.

For each table, the system catalog keeps a transaction �� for which it is known that

all the older transactions are sure to be frozen. It is stored as relfrozenid:
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=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

854 | 4

(1 row)

It is the age of this transaction that is compared to the vacuum_freeze_table_age

value to decide whether the time has come for aggressive freezing.

Thanks to the freeze mapv. �.� , there is no need to perform a full table scan during vac-

uuming: it is enough to check only those pages that do not appear in the map.

Apart from this important optimization, the freezemap also brings fault tolerance:

if vacuuming is interrupted, its next run will not have to get back to the pages that

have already been processed and are tagged in the map.

Postgre��� performs aggressive freezing of all pages in a table each time when

the number of transactions in the system reaches the vacuum_freeze_table_age −
vacuum_freeze_min_age limit (if the default values are used, it happens after each

��� million transactions). Thus, if the vacuum_freeze_min_age value is too big, it

can lead to excessive freezing and increased overhead.

To freeze the whole table, let’s reduce the vacuum_freeze_table_age value to four;

then the condition for aggressive freezing will be satisfied:

=> ALTER SYSTEM SET vacuum_freeze_table_age = 4;

=> SELECT pg_reload_conf();

Run the ������ command:

=> VACUUM VERBOSE tfreeze;

INFO: aggressively vacuuming "public.tfreeze"

INFO: table "tfreeze": found 0 removable, 100 nonremovable row

versions in 50 out of 50 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin: 858

Skipped 0 pages due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

146



7.3 Managing Freezing

Now that the whole table has been analyzed, the relfrozenid value can be ad-

vanced—heap pages are guaranteed to have no older unfrozen xmin transactions:

=> SELECT relfrozenxid, age(relfrozenxid)

FROM pg_class

WHERE relname = 'tfreeze';

relfrozenxid | age

−−−−−−−−−−−−−−+−−−−−

857 | 1

(1 row)

The first page now contains only frozen tuples:

=> SELECT * FROM heap_page('tfreeze',0,1);

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | redirect to 3 | | |

(0,2) | normal | 856 f | 2 | 0 a

(0,3) | normal | 857 c | 1 | 0 a

(1,1) | normal | 856 f | 2 | 0 a

(1,2) | normal | 856 f | 2 | 0 a

(5 rows)

Besides, this page is tagged in the freeze map:

=> SELECT * FROM generate_series(0,1) g(blkno),

pg_visibility_map('tfreeze',g.blkno)

ORDER BY g.blkno;

blkno | all_visible | all_frozen

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−

0 | t | f

1 | t | t

(2 rows)

Age for Forced Autovacuum

Sometimes it is not enough to configure the two parameters discussed above to

timely freeze tuples. Autovacuum might be switched off, while regular ������ is

not being called at all (it is a very bad idea, but technically it is possible). Besides,
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some inactive databases (like template0) may not be vacuumedp. ��� . Postgre��� can

handle such situations by forcing autovacuum in the aggressive mode.

Autovacuum is forced1 (even if it is switched off) when there is a risk that the

age of some unfrozen transaction ��s in the database will exceed the200

million

autovacu-

um_freeze_max_age value. The decision is taken based on the age of the oldest

pg_class.relfrozenxid transaction in all the tables, as all the older transactions are

guaranteed to be frozen. The �� of this transaction is stored in the system catalog:

=> SELECT datname, datfrozenxid, age(datfrozenxid) FROM pg_database;

datname | datfrozenxid | age

−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−

postgres | 726 | 132

template1 | 726 | 132

template0 | 726 | 132

internals | 726 | 132

(4 rows)

xid

datfrozenxid

relfrozenxid

of table 1

relfrozenxid

of table 3

relfrozenxid

of table 2

all row versions
in the database are

guaranteed to be frozen

The autovacuum_freeze_max_age limit is set to � billion transactions (a bit less than

half of the circle), while the default value is �� times smaller. It is done for good

reason: a big value increases the risk of transaction �� wraparound, as Postgre���

may fail to timely freeze all the required tuples. In this case, the server must stop

immediately to prevent possible issues and will have to be restarted by an admin-

istrator.

1 backend/access/transam/varsup.c, SetTransactionIdLimit function
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The autovacuum_freeze_max_age value also affects the size of ����. p. ��There is no

need to keep the status of frozen transactions, and all the transactions that precede

the onewith the oldest datfrozenxid in the cluster are sure to be frozen. Those ����

files that are not required anymore are removed by autovacuum.1

Changing the autovacuum_freeze_max_age parameter requires a server restart.

However, all the freezing settings discussed above can also be adjusted at the table

level via the corresponding storage parameters. Note that the names of all these

parameters start with “auto”:

• autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age

• autovacuum_freeze_table_age and toast.autovacuum_freeze_table_age

• autovacuum_freeze_max_age and toast.autovacuum_freeze_max_age

Age for Failsafe Freezing v. ��

If autovacuum is already struggling to prevent transaction �� wraparound and it is

clearly a race against time, a safety switch is pulled: autovacuum will ignore the

autovacuum_vacuum_cost_delay (vacuum_cost_delay) value andwill stop vacuuming

indexes to freeze heap tuples as soon as possible.

A failsafe freezing mode2 is enabled if there is a risk that the age of an unfrozen

transaction in the databasewill exceed the 1.6 billionvacuum_failsafe_age value. It is assumed

that this value must be higher than autovacuum_freeze_max_age.

7.4 Manual Freezing

It is sometimes more convenient to manage freezing manually rather than rely on

autovacuum.

1 backend/commands/vacuum.c, vac_truncate_clog function
2 backend/access/heap/vacuumlazy.c, lazy_check_wraparound_failsafe function
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Freezing by Vacuum

You can initiate freezing by calling the ������ command with the ������ op-

tion. It will freeze all the heap tuples regardless of their transaction age, as if

vacuum_freeze_min_age = 0.

If the purposev. �� of such a call is to freeze heap tuples as soon as possible, it makes

sense to disable index vacuuming, like it is done in the failsafe mode. You can do it

either explicitly, by running the ������ (freeze, index_cleanup false) command, or

via the vacuum_index_cleanup storage parameter. It is rather obvious that it should

not be done on a regular basis since in this case ������will not be coping well with

its main task of page cleanup.

Freezing Data at the Initial Loading

The data that is not expected to change can be frozen at once, while it is being

loaded into the database. It is done by running the ���� command with the ������

option.

Tuples can be frozen during the initial loading only if the resulting table has been

created or truncated within the same transaction, as both these operations acquire

an exclusive lockp. ��� on the table. This restriction is necessary because frozen tuples

are expected to be visible in all snapshots, regardless of the isolation level; other-

wise, transactions would suddenly see freshly-frozen tuples right as they are being

uploaded. But if the lock is acquired, other transactions will not be able to get

access to this table.

Nevertheless, it is still technically possible to break isolation. Let’s start a new

transaction at the Repeatable Read isolation level in a separate session:

=> BEGIN ISOLATION LEVEL REPEATABLE READ;

=> SELECT 1; -- the shapshot is built

Truncate the tfreeze table and insert new rows into this table within the same trans-

action. (If the read-only transaction had already accessed the tfreeze table, the

�������� command will be blocked.)
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=> BEGIN;

=> TRUNCATE tfreeze;

=> COPY tfreeze FROM stdin WITH FREEZE;

1 FOO

2 BAR

3 BAZ

\.

=> COMMIT;

Now the reading transaction sees the new data as well:

=> SELECT count(*) FROM tfreeze;

count

−−−−−−−

3

(1 row)

=> COMMIT;

It does break isolation, but since data loading is unlikely to happen regularly, in

most cases it will not cause any issues.

If you load data with freezing v. ��, the visibility map is created at once, and page head-

ers receive the visibility attribute: p. ���

=> SELECT * FROM pg_visibility_map('tfreeze',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('tfreeze',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)

Thus, v. ��if the data has been loaded with freezing, the table will not be processed by

vacuum (as long as the data remains unchanged). Unfortunately, this functionality

is not supported for ����� tables yet: if an oversized value is loaded, vacuum will

have to rewrite the whole ����� table to set visibility attributes in all page headers.
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8.1 Full Vacuuming

Why is Routine Vacuuming not Enough?

Routine vacuuming can free more space than page pruning, but sometimes it may

still be not enough.

If table or index files have grown in size, ������ can clean up some space within

pages, but it can rarely reduce the number of pages. The reclaimed space can only

be returned to the operating system if several empty pages appear at the very end

of the file, which does not happen too often.

An excessive size can lead to unpleasant consequences:

• Full table (or index) scan will take longer.

• A bigger buffer cache may be required (pages are cached as a whole, so data

density decreases).

• B-trees can get an extra level, which slows down index access.

• Files take up extra space on disk and in backups.

If the fraction of useful data in a file has dropped below some reasonable level, an

administrator can perform full vacuuming by running the ������ ���� command.1

In this case, the table and all its indexes are rebuilt from scratch, and the data is

packed as densely as possible (taking the fillfactorp. ��� parameter into account).

1 postgresql.org/docs/14/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
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8.1 Full Vacuuming

When full vacuuming is performed, Postgre��� first fully rebuilds the table and

then each of its indexes. While an object is being rebuilt, both old and new files

have to be stored on disk,1 so this process may require a lot of free space.

You should also keep in mind that this operation fully blocks access to the table,

both for reads and writes.

Estimating Data Density

For the purpose of illustration, let’s insert some rows into the table:

=> TRUNCATE vac;

=> INSERT INTO vac(id,s)

SELECT id, id::text FROM generate_series(1,500000) id;

Storage density can be estimated using the pgstattuple extension:

=> CREATE EXTENSION pgstattuple;

=> SELECT * FROM pgstattuple('vac') \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−

table_len | 70623232

tuple_count | 500000

tuple_len | 64500000

tuple_percent | 91.33

dead_tuple_count | 0

dead_tuple_len | 0

dead_tuple_percent | 0

free_space | 381844

free_percent | 0.54

The function reads the whole table and displays statistics on space distribution in

its files. The tuple_percent field shows the percentage of space taken up by use-

ful data (heap tuples). This value is inevitably less than ���% because of various

metadata within pages, but in this example it is still quite high.

For indexes, the displayed information differs a bit, but the avg_leaf_density field

has the samemeaning: it shows the percentage of useful data (in �-tree leaf pages).

1 backend/commands/cluster.c
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=> SELECT * FROM pgstatindex('vac_s') \gx

−[ RECORD 1 ]−−−−−−+−−−−−−−−−−

version | 4

tree_level | 3

index_size | 114302976

root_block_no | 2825

internal_pages | 376

leaf_pages | 13576

empty_pages | 0

deleted_pages | 0

avg_leaf_density | 53.88

leaf_fragmentation | 10.59

The previously used pgstattuple functions read the table or index in full to get the

precise statistics. For large objects, it can turn out to be too expensive, so the

extension also provides another function called pgstattuple_approx, which skips

the pages tracked in the visibility map to show approximate figures.

A faster but even less accurate method is to roughly estimate the ratio between the

data volume and the file size using the system catalog.1

Here are the current sizes of the table and its index:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

Now let’s delete ��% of all the rows:

=> DELETE FROM vac WHERE id % 10 != 0;

DELETE 450000

Routine vacuuming does not affect the file size because there are no empty pages

at the end of the file:

=> VACUUM vac;

1 wiki.postgresql.org/wiki/Show_database_bloat
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=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

67 MB | 109 MB

(1 row)

However, data density has dropped about �� times:

=> SELECT vac.tuple_percent, vac_s.avg_leaf_density

FROM pgstattuple('vac') vac, pgstatindex('vac_s') vac_s;

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

9.13 | 6.71

(1 row)

The table and the index are currently located in the following files:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[ RECORD 1 ]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16514

vac_s_filepath | base/16391/16515

Let’s check what we will get after ������ ����. While the command is running, v. ��its

progress can be tracked in the pg_stat_progress_cluster view (which is similar to the

pg_stat_progress_vacuum view provided for ������):

=> VACUUM FULL vac;

=> SELECT * FROM pg_stat_progress_cluster \gx

−[ RECORD 1 ]−−−−−−−+−−−−−−−−−−−−−−−−−

pid | 19492

datid | 16391

datname | internals

relid | 16479

command | VACUUM FULL

phase | rebuilding index

cluster_index_relid | 0

heap_tuples_scanned | 50000

heap_tuples_written | 50000

heap_blks_total | 8621

heap_blks_scanned | 8621

index_rebuild_count | 0
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Expectedly, ������ ���� phases1 differ from those of routine vacuuming.

Full vacuuming has replaced old files with new ones:

=> SELECT pg_relation_filepath('vac') AS vac_filepath,

pg_relation_filepath('vac_s') AS vac_s_filepath \gx

−[ RECORD 1 ]−−+−−−−−−−−−−−−−−−−−

vac_filepath | base/16391/16526

vac_s_filepath | base/16391/16529

Both index and table sizes are much smaller now:

=> SELECT pg_size_pretty(pg_table_size('vac')) AS table_size,

pg_size_pretty(pg_indexes_size('vac')) AS index_size;

table_size | index_size

−−−−−−−−−−−−+−−−−−−−−−−−−

6904 kB | 6504 kB

(1 row)

As a result, data density has increased. For the index, it is even higher than the

original one: it is more efficient to create a �-tree from scratch based on the avail-

able data than to insert entries row by row into an already existing index:

=> SELECT vac.tuple_percent,

vac_s.avg_leaf_density

FROM pgstattuple('vac') vac,

pgstatindex('vac_s') vac_s;

tuple_percent | avg_leaf_density

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

91.23 | 91.08

(1 row)

Freezing

When the table is being rebuilt, Postgre��� freezes its tuples because this opera-

tion costs almost nothing compared to the rest of the work:

1 postgresql.org/docs/14/progress-reporting.html#CLUSTER-PHASES
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=> SELECT * FROM heap_page('vac',0,0) LIMIT 5;

ctid | state | xmin | xmin_age | xmax

−−−−−−−+−−−−−−−−+−−−−−−−+−−−−−−−−−−+−−−−−−

(0,1) | normal | 861 f | 5 | 0 a

(0,2) | normal | 861 f | 5 | 0 a

(0,3) | normal | 861 f | 5 | 0 a

(0,4) | normal | 861 f | 5 | 0 a

(0,5) | normal | 861 f | 5 | 0 a

(5 rows)

But pages are registered neither in the visibilitymap nor in the freezemap, and the

page header does not receive the visibility attribute (as it happens when the ����

command is executed with the ������ option p. ���):

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

f | f

(1 row)

=> SELECT flags & 4 > 0 all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

f

(1 row)

The situation improves only after ������ is called (or autovacuum is triggered):

=> VACUUM vac;

=> SELECT * FROM pg_visibility_map('vac',0);

all_visible | all_frozen

−−−−−−−−−−−−−+−−−−−−−−−−−−

t | t

(1 row)

=> SELECT flags & 4 > 0 AS all_visible

FROM page_header(get_raw_page('vac',0));

all_visible

−−−−−−−−−−−−−

t

(1 row)
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It essentially means that even if all tuples in a page are beyond the database hori-

zon, such a page will still have to be rewritten.

8.2 Other Rebuilding Methods

Alternatives to Full Vacuuming

In addition to ������ ����, there are several other commands that can fully rebuild

tables and indexes. All of themexclusively lock the table, all of themdelete old data

files and recreate them anew.

The ������� command is fully analogous to ������ ����, but it also reorders tuples

in files based on one of the available indexes. In some cases, it can help the planner

use index scans more efficiently. But you should bear in mind that clusterization

is not supported: all further table updates will be breaking the physical order of

tuples.

Programmatically, ������ ���� is simply a special instance of the ������� com-

mand that does not require tuple reordering.1

The ������� command rebuilds one or more indexes.2 In fact, ������ ���� and

������� use this command under the hood when rebuilding indexes.

The �������� command3 deletes all table rows; it is a logical equivalent of ������

runwithout the����� clause. Butwhile������p. �� simplymarks heap tuples as deleted

(so they still have to be vacuumed), �������� creates a new empty file, which is

usually faster.

Reducing Downtime during Rebuilding

������ ���� is not meant to be run regularly, as it exclusively locksp. ��� the table (even

for queries) for the whole duration of its operation. This is usually not an option

for highly available systems.

1 backend/commands/cluster.c
2 backend/commands/indexcmds.c
3 backend/commands/tablecmds.c, ExecuteTruncate function
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There are several extensions (such as pg_repack1) that can rebuild tables and in-

dexes with almost zero downtime. An exclusive lock is still required, but only at the

beginning and at the end of this process, and only for a short time. It is achieved

by a more complex implementation: all the changes made on the original table

while it is being rebuilt are saved by a trigger and then applied to the new table. To

complete the operation, the utility replaces one table with the other in the system

catalog.

An unconventional solution is offered by the pgcompacttable utility.2 It performs

multiple fake row updates (that do not change any data) so that current row ver-

sions gradually move towards the start of the file.

Between these update series, vacuuming removes outdated tuples and truncates p. ���

the file little by little. This approach takes much more time and resources, but it

requires no extra space for rebuilding the table and does not lead to load spikes.

Short-time exclusive locks are still acquired while the table is being truncated, but

vacuuming handles them rather smoothly.

8.3 Preventive Measures

Read-Only Queries

One of the reasons for file bloating is executing long-running transactions that

hold the database horizon p. ��alongside intensive data updates.

As such, long-running (read-only) transactions do not cause any issues. So a com-

mon approach is to split the load between different systems: keep fast ���� queries

on the primary server and direct all ���� transactions to a replica. Although it

makes the solution more expensive and complicated, such measures may turn out

to be indispensable.

In some cases, long transactions are the result of application or driver bugs rather

than a necessity. If an issue cannot be resolved in a civilized way, the administrator

can resort to the following two parameters:

1 github.com/reorg/pg_repack
2 github.com/dataegret/pgcompacttable
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• The old_snapshot_thresholdv. �.� parameter defines the maximum lifetime of a

snapshot. Once this time is up, the server has the right to remove outdated

tuples; if a long-running transaction still requires them, it will get an error

(“snapshot too old”).

• The idle_in_transaction_session_timeoutv. �.� parameter limits the lifetime of an idle

transaction. The transaction is aborted upon reaching this threshold.

Data Updates

Another reason for bloating is simultaneous modification of a large number of tu-

ples. If all table rows get updated, the number of tuples can double, and vacuuming

will not have enough time to interfere. Page pruning can reduce this problem, but

not resolve it entirely.

Let’s extend the output with another column to keep track of the processed rows:

=> ALTER TABLE vac ADD processed boolean DEFAULT false;

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

6936 kB

(1 row)

Once all the rows are updated, the table gets almost two times bigger:

=> UPDATE vac SET processed = true;

UPDATE 50000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

14 MB

(1 row)

To address this situation, you can reduce the number of changes performed by a

single transaction, spreading them out over time; then vacuuming can delete out-

dated tuples and free some space for new ones within the already existing pages.

Assuming that each row update can be committed separately, we can use the fol-

lowing query that selects a batch of rows of the specified size as a template:
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SELECT ID

FROM table

WHERE filtering the already processed rows

LIMIT batch size

FOR UPDATE SKIP LOCKED

This code snippet selects and immediately locks a set of rows that does not ex-

ceed the specified size. The rows that are already locked by other transactions are

skipped p. ���: they will get into another batch next time. It is a rather flexible and con-

venient solution that allows you to easily change the batch size and restart the

operation in case of a failure. Let’s unset the processed attribute and perform full

vacuuming to restore the original size of the table:

=> UPDATE vac SET processed = false;

=> VACUUM FULL vac;

Once the first batch is updated, the table size grows a bit:

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000

=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7064 kB

(1 row)

But from now on, the size remains almost the same because new tuples replace the

removed ones:

=> VACUUM vac;

=> WITH batch AS (

SELECT id FROM vac WHERE NOT processed LIMIT 1000

FOR UPDATE SKIP LOCKED

)

UPDATE vac SET processed = true

WHERE id IN (SELECT id FROM batch);

UPDATE 1000
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=> SELECT pg_size_pretty(pg_table_size('vac'));

pg_size_pretty

−−−−−−−−−−−−−−−−

7072 kB

(1 row)
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9
Buffer Cache

9.1 Caching

In modern computing systems, caching is omnipresent—both at the hardware and

at the software level. The processor alone can have up to three or four levels of

cache. R��� controllers and disks add their own cache too.

Caching is used to even out performance difference between fast and slow types of

memory. Fast memory is expensive and has smaller volume, while slow memory

is bigger and cheaper. Therefore, fast memory cannot accommodate all the data

stored in slow memory. But in most cases only a small portion of data is being

actively used at each particular moment, so allocating some fast memory for cache

to keep hot data can significantly reduce the overhead incurred by slow memory

access.

In Postgre���, buffer cache1 holds relation pages, thus balancing access times to

disks (milliseconds) and ��� (nanoseconds).

The operating system has its own cache that serves the same purpose. For this

reason, database systems are usually designed to avoid double caching: the data

stored on disk is usually queried directly, bypassing the �� cache. But Postgre���

uses a different approach: it reads and writes all data via buffered file operations.

Double caching can be avoided if you apply direct �/�. It will reduce the overhead, as

Postgre��� will use direct memory access (���) instead of copying buffered pages into

the �� address space; besides, you will gain immediate control over physical writes on

disk. However, direct �/� does not support data prefetching enabled by bufferization, so

you have to implement it separately via asynchronous �/�, which requires massive code

1 backend/storage/buffer/README
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modifications in Postgre��� core, as well as handling �� incompatibilities when it comes

to direct and asynchronous �/� support. But once the asynchronous communication is set

up, you can enjoy additional benefits of no-wait disk access.

The Postgre��� community has already started this major effort,1 but it will take a long

time for the actual results to appear.

9.2 Buffer Cache Design

Buffer cache is located in the server’s shared memory and is accessible to all the

processes. It takes the major part of the shared memory and is surely one of the

most important and complex data structures in Postgre���. Understanding how

cache works is important in its own right, but even more so as many other struc-

tures (such as subtransactions, ���� transaction status, and ��� entries) use a

similar caching mechanism, albeit a simpler one.

The name of this cache is inspired by its inner structure, as it consists of an array of

buffers. Each buffer reserves a memory chuck that can accommodate a single data

page together with its header.2

header

page

buffer cache

A header contains some information about the buffer and the page in it, such as:

• physical location of the page (file ��, fork, and block number in the fork)

• the attribute showing that the data in the page has been modified and sooner

or later has to be written back to disk (such a page is called dirty)

• buffer usage count

• pin count (or reference count)

1 www.postgresql.org/message-id/flat/20210223100344.llw5an2aklengrmn%40alap3.anarazel.de
2 include/storage/buf_internals.h
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To get access to a relation’s data page, a process requests it from the buffer man-

ager1 and receives the �� of the buffer that contains this page. Then it reads the

cached data and modifies it right in the cache if needed. While the page is in use,

its buffer is pinned. Pins forbid eviction of the cached page and can be applied

together with other locks p. ���. Each pin increments the usage count as well.

As long as the page is cached, its usage does not incur any file operations.

We can explore the buffer cache using the pg_buffercache extension:

=> CREATE EXTENSION pg_buffercache;

Let’s create a table and insert a row:

=> CREATE TABLE cacheme(

id integer

) WITH (autovacuum_enabled = off);

=> INSERT INTO cacheme VALUES (1);

Now the buffer cache contains a heap page with the newly inserted row. You can

see it for yourself by selecting all the buffers related to a particular table. We will

need such a query again, so let’s wrap it into a function:

=> CREATE FUNCTION buffercache(rel regclass)

RETURNS TABLE(

bufferid integer, relfork text, relblk bigint,

isdirty boolean, usagecount smallint, pins integer

) AS $$

SELECT bufferid,

CASE relforknumber

WHEN 0 THEN 'main'

WHEN 1 THEN 'fsm'

WHEN 2 THEN 'vm'

END,

relblocknumber,

isdirty,

usagecount,

pinning_backends

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode(rel)

ORDER BY relforknumber, relblocknumber;

$$ LANGUAGE sql;

1 backend/storage/buffer/bufmgr.c
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=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 1 | 0

(1 row)

The page is dirty: it has been modified, but is not written to disk yet. Its usage

count is set to one.

9.3 Cache Hits

When the buffer manager has to read a page,1 it first checks the buffer cache.

All buffer ��s are stored in a hash table,2 which is used to speed up their search.

Many modern programming languages include hash tables as one of the basic data types.

Hash tables are often called associative arrays, and indeed, from the user’s perspective

they do look like an array; however, their index (a hash key) can be of any data type, for

example, a text string rather than an integer.

While the range of possible key values can be quite large, hash tables never contain that

many different values at a time. The idea of hashing is to convert a key value into an

integer number using a hash function. This number (or some of its bits) is used as an index

of a regular array. The elements of this array are called hash table buckets.

A good hash function distributes hash keys between buckets more or less uniformly, but it

can still assign the same number to different keys, thus placing them into the same bucket;

it is called a collision. For this reason, values are stored in buckets together with hash keys;

to access a hashed value by its key, Postgre��� has to check all the keys in the bucket.

There are multiple implementations of hash tables; of all the possible options, the

buffer cache uses the extendible table that resolves hash collisions by chaining.3

A hash key consists of the �� of the relation file, the type of the fork, and the ��

of the page within this fork’s file. Thus, knowing the page, Postgre��� can quickly

find the buffer containing this page or make sure that the page is not currently

cached.

1 backend/storage/buffer/bufmgr.c, ReadBuffer_common function
2 backend/storage/buffer/buf_table.c
3 backend/utils/hash/dynahash.c
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3501, 0, 3

2610, 0, 7

hash table

The buffer cache implementation has long been criticized for relying on a hash table: this

structure is of no use when it comes to finding all the buffers taken by pages of a particular

relation, which is required to remove pages from cache when running ���� and ��������

commands or truncating a table during vacuuming.1 Yet no one has suggested an adequate

alternative so far.

If the hash table contains the required buffer ��, the buffermanager pins this buffer

and returns its �� to the process. Then this process can start using the cached page

without incurring any �/� traffic.

To pin a buffer, Postgre��� has to increment the pin counter in its header; a buffer

can be pinned by several processes at a time. While its pin counter is greater than

zero, the buffer is assumed to be in use, and no radical changes in its contents are

allowed. For example, a new tuple can appear (it will be invisible following the

visibility rules), but the page itself cannot be replaced.

When run with the analyze and buffers options, the ������� command executes the

displayed query plan and shows the number of used buffers:

1 backend/storage/buffer/bufmgr.c, DropRelFileNodeBuffers function
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=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM cacheme;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Seq Scan on cacheme (actual rows=1 loops=1)

Buffers: shared hit=1

Planning:

Buffers: shared hit=12 read=7

(4 rows)

Here hit=1means that the only page that had to be read was found in the cache.

Buffer pinning increases the usage count by one:

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 2 | 0

(1 row)

To observe pinning in action during query execution, let’s open a cursor—it will

hold the buffer pin, as it has to provide quick access to the next row in the result

set:

=> BEGIN;

=> DECLARE c CURSOR FOR SELECT * FROM cacheme;

=> FETCH c;

id

−−−−

1

(1 row)

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 3 | 1

(1 row)

If a process cannot use a pinned buffer, it usually skips it and simply chooses an-

other one. We can see it during table vacuuming:
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=> VACUUM VERBOSE cacheme;

INFO: vacuuming "public.cacheme"

INFO: table "cacheme": found 0 removable, 0 nonremovable row

versions in 1 out of 1 pages

DETAIL: 0 dead row versions cannot be removed yet, oldest xmin:

878

Skipped 1 page due to buffer pins, 0 frozen pages.

CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.

VACUUM

The page was skipped because its tuples could not be physically removed from the

pinned buffer.

But if it is exactly this buffer that is required, the process joins the queue and waits

for exclusive access to this buffer. An example of such an operation is vacuuming

with freezing.1 p. ���

Once the cursor closes or moves on to another page, the buffer gets unpinned. In

this example, it happens at the end of the transaction:

=> COMMIT;

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 3 | 0

310 | vm | 0 | f | 2 | 0

(2 rows)

Page modifications are protected by the same pinning mechanism. For example,

let’s insert another row into the table (it will get into the same page):

=> INSERT INTO cacheme VALUES (2);

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

268 | main | 0 | t | 4 | 0

310 | vm | 0 | f | 2 | 0

(2 rows)

1 backend/storage/buffer/bufmgr.c, LockBufferForCleanup function
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Postgre��� does not perform any immediate writes to disk: a page remains dirty

in the buffer cache for a while, providing some performance gains for both reads

and writes.

9.4 Cache Misses

If the hash table has no entry related to the queried page, it means that this page

is not cached. In this case, a new buffer is assigned (and immediately pinned), the

page is read into this buffer, and the hash table references aremodified accordingly.

Let’s restart the instance to clear its buffer cache:

postgres$ pg_ctl restart -l /home/postgres/logfile

An attempt to read a page will result in a cache miss, and the page will be loaded

into a new buffer:

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM cacheme;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Seq Scan on cacheme (actual rows=2 loops=1)

Buffers: shared read=1 dirtied=1

Planning:

Buffers: shared hit=15 read=7

(4 rows)

Instead of hit, the plan now shows the read status, which denotes a cache miss.

Besides, this page has become dirty, as the query has modified some hint bitsp. �� .

A buffer cache query shows that the usage count for the newly added page is set to

one:

=> SELECT * FROM buffercache('cacheme');

bufferid | relfork | relblk | isdirty | usagecount | pins

−−−−−−−−−−+−−−−−−−−−+−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−+−−−−−−

98 | main | 0 | t | 1 | 0

(1 row)
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The pg_statio_all_tables view contains the complete statistics on buffer cache usage

by tables:

=> SELECT heap_blks_read, heap_blks_hit

FROM pg_statio_all_tables

WHERE relname = 'cacheme';

heap_blks_read | heap_blks_hit

−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−

2 | 5

(1 row)

Postgre��� provides similar views for indexes and sequences. They can also display

statistics on �/� operations, but only if offtrack_io_timing is enabled.

Buffer Search and Eviction

Choosing a buffer for a page is not so trivial.1 There are two possible scenarios:

1. Right after the server start all the buffers are empty and are bound into a list.

While some buffers are still free, the next page read from disk will occupy the

first buffer, and it will be removed from the list.

A buffer can return to the list2 only if its page disappears, without being re-

placed by another page. It can happen if you call ���� or �������� commands,

or if the table is truncated during vacuuming.

2. Sooner or later no free buffers will be left (since the size of the database is

usually bigger than the memory chunk allocated for cache). Then the buffer

manager will have to select one of the buffers that is already in use and evict

the cached page from this buffer. It is performed using the clock sweep algo-

rithm, which is well illustrated by the clock metaphor. Pointing to one of the

buffers, the clock hand starts going around the buffer cache and reduces the

usage count for each cached page by one as it passes. The first unpinned buffer

with the zero count found by the clock hand will be cleared.

1 backend/storage/buffer/freelist.c, StrategyGetBuffer function
2 backend/storage/buffer/freelist.c, StrategyFreeBuffer function
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Thus, the usage count is incremented each time the buffer is accessed (that is,

pinned), and reduced when the buffer manager is searching for pages to evict.

As a result, the least recently used pages are evicted first,while those that have

been accessed more often will remain in the cache longer.

As you can guess, if all the buffers have a non-zero usage count, the clock hand

has to complete more than one full circle before any of them finally reaches

the zero value. To avoid running multiple laps, Postgre��� limits the usage

count by �.

Once the buffer to evict is found, the reference to the page that is still in this

buffer must be removed from the hash table.

But if this buffer is dirty,p. ��� that is, it contains some modified data, the old page

cannot be simply thrown away—the buffer manager has to write it to disk first.

free buffers

clock hand

Then the buffer manager reads a new page into the found buffer—no matter if it

had to be cleared or was still free. It uses buffered �/� for this purpose, so the page

will be read from disk only if the operating system cannot find it in its own cache.

Those database systems that use direct �/� and do not depend on the �� cache differentiate

between logical reads (from ���, that is, from the buffer cache) and physical reads (from
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disk). From the standpoint of Postgre���, a page can be either read from the buffer cache

or requested from the operating system, but there is no way to tell whether it was found

in ��� or read from disk in the latter case.

The hash table is updated to refer to the new page, and the buffer gets pinned. Its

usage count is incremented and is now set to one, which gives this buffer some

time to increase this value while the clock hand is traversing the buffer cache.

9.5 Bulk Eviction

If bulk reads or writes are performed, there is a risk that one-time data can quickly

oust useful pages from the buffer cache.

As a precaution, bulk operations use rather small buffer rings, and eviction is per-

formed within their boundaries, without affecting other buffers.

Alongside the “buffer ring,” the code also uses the term“ring buffer”. However, this synonym

is rather ambiguous because the ring buffer itself consists of several buffers (that belong

to the buffer cache). The term “buffer ring” is more accurate in this respect.

A buffer ring of a particular size consists of an array of buffers that are used one

after another. At first, the buffer ring is empty, and individual buffers join it one by

one, after being selected from the buffer cache in the usual manner. Then eviction

comes into play, but only within the ring limits.1

Buffers added into a ring are not excluded from the buffer cache and can still be

used by other operations. So if the buffer to be reused turns out to be pinned, or

its usage count is higher than one, it will be simply detached from the ring and

replaced by another buffer.

Postgre��� supports three eviction strategies.

Bulk reads strategy is used for sequential scans of large tables if their size exceeds
1

4
of the buffer cache. The ring buffer takes ��� k� (�� standard pages).

1 backend/storage/buffer/freelist.c, GetBufferFromRing function
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This strategy does not allowwriting dirty pages to disk to free a buffer; instead,

the buffer is excluded from the ring and replaced by another one. As a result,

reading does not have to wait for writing to complete, so it is performed faster.

If it turns out that the table is already being scanned, the process that starts

another scan joins the existing buffer ring and gets access to the currently

available data, without incurring extra �/� operations.1 When the first process

completes the scan, the second one gets back to the skipped part of the table.

Bulk writes strategy is applied by ���� ����, ������ ����� �� ������, and ������ ��-

���������� ���� commands, as well as by those ����� ����� flavors that cause

table rewrites. The allocated ring is quite big, its default size being �� ��

(���� standard pages), but it never exceeds 1

8
of the total size of the buffer

cache.

Vacuuming strategy is used by the process of vacuuming when it performs a full

table scan without taking the visibility map into account. The ring buffer is

assigned ��� k� of ��� (�� standard pages).

Buffer rings do not always prevent undesired eviction. If ������ or ������ com-

mands affect a lot of rows, the performed table scan applies the bulk reads strategy,

but since the pages are constantly being modified, buffer rings virtually become

useless.

Another example worth mentioning is storing oversized data in �����p. �� tables. In

spite of a potentially large volume of data that has to be read, toasted values are

always accessed via an index, so they bypass buffer rings.

Let’s take a closer look at the bulk reads strategy. For simplicity, we will create a

table in such away that an inserted row takes thewhole page. By default, the buffer

cache size is ��,��� pages, � k� each. So the table must take more than ���� pages

for the scan to use a buffer ring.

=> CREATE TABLE big(

id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,

s char(1000)

) WITH (fillfactor = 10);

1 backend/access/common/syncscan.c

176

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/common/syncscan.c;hb=REL_14_STABLE


9.5 Bulk Eviction

=> INSERT INTO big(s)

SELECT 'FOO' FROM generate_series(1,4096+1);

Let’s analyze the table:

=> ANALYZE big;

=> SELECT relname, relfilenode, relpages

FROM pg_class

WHERE relname IN ('big', 'big_pkey');

relname | relfilenode | relpages

−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−

big | 16546 | 4097

big_pkey | 16551 | 14

(2 rows)

Restart the server to clear the cache, as now it contains some heap pages that have

been read during analysis.

postgres$ pg_ctl restart -l /home/postgres/logfile

Once the server is restarted, let’s read the whole table:

=> EXPLAIN (analyze, costs off, timing off, summary off, summary off)

SELECT id FROM big;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Seq Scan on big (actual rows=4097 loops=1)

(1 row)

Heap pages take only �� buffers, which make up the buffer ring for this operation:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

32

(1 row)

But in the case of an index scan the buffer ring is not used:
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=> EXPLAIN (analyze, costs off, timing off, summary off, summary off)

SELECT * FROM big ORDER BY id;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Index Scan using big_pkey on big (actual rows=4097 loops=1)

(1 row)

As a result, the buffer cache ends up containing the whole table and the whole

index:

=> SELECT relfilenode, count(*)

FROM pg_buffercache

WHERE relfilenode IN (

pg_relation_filenode('big'),

pg_relation_filenode('big_pkey')

)

GROUP BY relfilenode;

relfilenode | count

−−−−−−−−−−−−−+−−−−−−−

16546 | 4097

16551 | 14

(2 rows)

9.6 Choosing the Buffer Cache Size

The size of the buffer cache is defined by the128MB shared_buffers parameter. Its default

value is known to be low, so it makes sense to increase it right after the Postgre���

installation. You will have to reload the server in this case because shared memory

is allocated for cache at the server start.

But how can we determine an appropriate value?

Even a very large database has a limited set of hot data that is being used simulta-

neously. In the perfect world, it is this set that must fit the buffer cache (with some

space being reserved for one-time data). If the cache size is smaller, the actively

used pages will be evicting each other all the time, thus leading to excessive �/� op-

erations. But thoughtless increase of the cache size is not a good idea either: ���

is a scarce resource, and besides, larger cache incurs higher maintenance costs.
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The optimal buffer cache size differs from system to system: it depends on things

like the total size of the available memory, data profiles, and workload types. Un-

fortunately, there is no magic value or formula to suit everyone equally well.

You should also keep in mind that a cache miss in Postgre��� does not necessarily

trigger a physical �/� operation. If the buffer cache is quite small, the �� cache

uses the remaining free memory and can smooth things out to some extent. But

unlike the database, the operating system knows nothing about the read data, so

it applies a different eviction strategy.

A typical recommendation is to start with 1

4
of ��� and then adjust this setting as

required.

The best approach is experimentation: you can increase or decrease the cache size

and compare the system performance. Naturally, it requires having a test system

that is fully analogous to the production one, and you must be able to reproduce

typical workloads.

You can also run some analysis using the pg_buffercache extension. For example,

explore buffer distribution depending on their usage:

=> SELECT usagecount, count(*)

FROM pg_buffercache

GROUP BY usagecount

ORDER BY usagecount;

usagecount | count

−−−−−−−−−−−−+−−−−−−−

1 | 4128

2 | 50

3 | 4

4 | 4

5 | 73

| 12125

(6 rows)

N��� usage count values correspond to free buffers. They are quite expected in

this case because the server was restarted and remained idle most of the time. The

majority of the used buffers contain pages of the system catalog tables read by the

backend to fill its system catalog cache and to perform queries.

We can check what fraction of each relation is cached, and whether this data is hot

(a page is considered hot here if its usage count is bigger than one):
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=> SELECT c.relname,

count(*) blocks,

round( 100.0 * 8192 * count(*) /

pg_table_size(c.oid) ) AS "% of rel",

round( 100.0 * 8192 * count(*) FILTER (WHERE b.usagecount > 1) /

pg_table_size(c.oid) ) AS "% hot"

FROM pg_buffercache b

JOIN pg_class c ON pg_relation_filenode(c.oid) = b.relfilenode

WHERE b.reldatabase IN (

0, -- cluster-wide objects

(SELECT oid FROM pg_database WHERE datname = current_database())

)

AND b.usagecount IS NOT NULL

GROUP BY c.relname, c.oid

ORDER BY 2 DESC

LIMIT 10;

relname | blocks | % of rel | % hot

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−+−−−−−−−

big | 4097 | 100 | 1

pg_attribute | 30 | 48 | 47

big_pkey | 14 | 100 | 0

pg_proc | 13 | 12 | 6

pg_operator | 11 | 61 | 50

pg_class | 10 | 59 | 59

pg_proc_oid_index | 9 | 82 | 45

pg_attribute_relid_attnum_index | 8 | 73 | 64

pg_proc_proname_args_nsp_index | 6 | 18 | 6

pg_amproc | 5 | 56 | 56

(10 rows)

This example shows that the big table and its index are fully cached, but their pages

are not being actively used.

Analyzing data from different angles, you can gain some useful insights. However,

make sure to follow these simple rules when running pg_buffercache queries:

• Repeat such queries several times since the returned figures will vary to some

extent.

• Do not run such queries non-stop because the pg_buffercache extension locks

the viewed buffers, even if only briefly.
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9.7 Cache Warming

After a server restart, the cache requires some time to warm up, that is, to accu-

mulate the actively used data. It may be helpful to cache certain tables right away,

and the pg_prewarm extension serves exactly this purpose:

=> CREATE EXTENSION pg_prewarm;

Apart from v. ��loading tables into the buffer cache (or into the �� cache only), this

extension can write the current cache state to disk and then restore it after the

server restart. To enable this functionality, you have to add this extension’s library

to shared_preload_libraries and restart the server:

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_prewarm';

postgres$ pg_ctl restart -l /home/postgres/logfile

If the onpg_prewarm.autoprewarm setting has not changed, a process called auto-

prewarm leader will be started automatically after the server is reloaded; once in

300spg_prewarm.autoprewarm_interval seconds, this process will flush the list of cached

pages to disk (using one of the max_parallel_processes slots).

postgres$ ps -o pid,command \

--ppid `head -n 1 /usr/local/pgsql/data/postmaster.pid` | \

grep prewarm

23129 postgres: autoprewarm leader

Now that the server has been restarted, the big table is not cached anymore:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

0

(1 row)
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If you have well-grounded assumptions that the whole table is going to be actively

used and disk access will make response times unacceptably high, you can load this

table into the buffer cache in advance:

=> SELECT pg_prewarm('big');

pg_prewarm

−−−−−−−−−−−−

4097

(1 row)

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

4097

(1 row)

The list of pages is dumped into the ������/autoprewarm.blocks file. You can wait

until the autoprewarm leader completes for the first time, but we will initiate the

dump manually:

=> SELECT autoprewarm_dump_now();

autoprewarm_dump_now

−−−−−−−−−−−−−−−−−−−−−−

4224

(1 row)

The number of flushed pages is bigger than ���� because all the used buffers are

taken into account. The file is written in a text format; it contains the ��s of the

database, tablespace, and file, as well as the fork and segment numbers:

postgres$ head -n 10 /usr/local/pgsql/data/autoprewarm.blocks

<<4224>>

0,1664,1262,0,0

0,1664,1260,0,0

16391,1663,1259,0,0

16391,1663,1259,0,1

16391,1663,1259,0,2

16391,1663,1259,0,3

16391,1663,1249,0,0

16391,1663,1249,0,1

16391,1663,1249,0,2

182



9.8 Local Cache

Let’s restart the server again.

postgres$ pg_ctl restart -l /home/postgres/logfile

The table appears in the cache right away:

=> SELECT count(*)

FROM pg_buffercache

WHERE relfilenode = pg_relation_filenode('big'::regclass);

count

−−−−−−−

4097

(1 row)

It is again the autoprewarm leader that does all the preliminary work: it reads the

file, sorts the pages by databases, reorders them (so that disk reads happen sequen-

tially if possible), and then passes them to the autoprewarm worker for processing.

9.8 Local Cache

Temporary tables do not follow the workflow described above. Since temporary

data is visible to a single process only, there is no point in loading it into the shared

buffer cache. Therefore, temporary data uses the local cache of the process that

owns the table.1

In general, local buffer cache works similar to the shared one:

• Page search is performed via a hash table.

• Eviction follows the standard algorithm (except that buffer rings are not used).

• Pages can be pinned to avoid eviction.

However, local cache implementation is much simpler because it has to handle

neither locks on memory structures p. ���(buffers can be accessed by a single process

only) nor fault tolerance p. ���(temporary data exists till the end of the session at the

most).

1 backend/storage/buffer/localbuf.c
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Since only few sessions typically use temporary tables, local cache memory is as-

signed on demand. The maximum size of the local cache available to a session is

limited by the8MB temp_buffers parameter.

Despite a similar name, the temp_file_limit parameter has nothing to do with temporary

tables; it is related to files that may be created during query execution to temporarily store

intermediate data.

In the ������� command output, all calls to the local buffer cache are tagged as

local instead of shared:

=> CREATE TEMPORARY TABLE tmp AS SELECT 1;

=> EXPLAIN (analyze, buffers, costs off, timing off, summary off)

SELECT * FROM tmp;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Seq Scan on tmp (actual rows=1 loops=1)

Buffers: local hit=1

Planning:

Buffers: shared hit=12 read=7

(4 rows)
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Write-Ahead Log

10.1 Logging

In case of a failure, such as a power outage, an �� error, or a database server crash,

all the contents of ��� will be lost; only the data written to disk will persist. To

start the server after a failure, you have to restore data consistency. If the disk itself

has been damaged, the same issue has to be resolved by backup recovery.

In theory, you could maintain data consistency on disk at all times. But in prac-

tice it means that the server has to constantly write random pages to disk (even

though sequential writing is cheaper), and the order of such writes must guaran-

tee that consistency is not compromised at any particular moment (which is hard

to achieve, especially if you deal with complex index structures).

Just like the majority of database systems, Postgre��� uses a different approach.

While the server is running, some of the current data is available only in ���, its

writing to permanent storage being deferred. Therefore, the data stored on disk

is always inconsistent during server operation, as pages are never flushed all at

once. But each change that happens in ��� (such as a page update performed in

the buffer cache) is logged: Postgre��� creates a log entry that contains all the

essential information required to repeat this operation if the need arises.1

A log entry related to a page modification must be written to disk ahead of the

modified page itself. Hence the name of the log: write-ahead log, or ���. This

requirement guarantees that in case of a failure Postgre��� can read ��� entries

from disk and replay them to repeat the already completed operations whose re-

sults were still in ��� and did not make it to disk before the crash.

1 postgresql.org/docs/14/wal-intro.html
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Keeping a write-ahead log is usually more efficient than writing random pages to

disk. W�� entries constitute a continuous stream of data, which can be handled

even by ���s. Besides, ��� entries are often smaller than the page size.

It is required to log all operations that can potentially break data consistency in

case of a failure. In particular, the following actions are recorded in ���:

• page modifications performed in the buffer cache—since writes are deferred

• transaction commits and rollbacks—since the status change happens in ����

buffers and does not make it to disk right away

• file operations (like creation and deletion of files and directories when ta-

bles get added or removed)—since such operations must be in sync with data

changes

The following actions are not logged:

• operations on �������� tables

• operations on temporary tables—since their lifetime is anyway limited by the

session that spawns them

Prior to Postgre��� ��, hash indexes were not logged either. Their only purpose was to

match hash functions to different data types.

Apart from crash recovery, ��� can also be used for point-in-time recovery from a

backup and replication.

10.2 WAL Structure

Logical Structure

Speaking about its logical structure, we can describe ���1 as a stream of log en-

tries of variable length. Each entry contains some data about a particular operation

1 postgresql.org/docs/14/wal-internals.html

backend/access/transam/README
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preceded by a standard header.1 Among other things, the header provides the fol-

lowing information:

• transaction �� related to the entry

• the resource manager that interprets the entry2

• the checksum to detect data corruption

• entry length

• a reference to the previous ��� entry

W�� is usually read in the forward direction, but some utilities like pg_rewind may scan it

backwards.

W�� data itself can have different formats and meaning. For example, it can be a

page fragment that has to replace some part of the page at the specified offset. The

corresponding resource manager must know how to interpret and replay a particu-

lar entry. There are separate managers for tables, various index types, transaction

status, and other entities.

W�� files take up special buffers in the server’s shared memory. The size of the

cache used by ��� is defined by the −1wal_buffers parameter. By default, this size is

chosen automatically as 1

32
of the total buffer cache size.

W�� cache is quite similar to buffer cache, but it usually operates in the ring buffer

mode: new entries are added to its head, while older entries are saved to disk start-

ing at the tail. If ��� cache is too small, disk synchronization will be performed

more often than necessary.

Under low load, the insert position (the buffer’s head) is almost always the same as

the position of the entries that have already been saved to disk (the buffer’s tail):

=> SELECT pg_current_wal_lsn(), pg_current_wal_insert_lsn();

pg_current_wal_lsn | pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E807B58 | 0/3E807B58

(1 row)

1 include/access/xlogrecord.h
2 include/access/rmgrlist.h
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Prior to Postgre��� ��, all function names contained the ���� acronym instead of ���.

To refer to a particular entry, Postgre��� uses a special data type: pg_lsn (log se-

quence number, ���). It represents a ��-bit offset in bytes from the start of the

��� to an entry. An ��� is displayed as two ��-bit numbers in the hexadecimal

notation separated by a slash.

Let’s create a table:

=> CREATE TABLE wal(id integer);

=> INSERT INTO wal VALUES (1);

Start a transaction and note the ��� of the ��� insert position:

=> BEGIN;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E820AC8

(1 row)

Now run some arbitrary command, for example, update a row:

=> UPDATE wal SET id = id + 1;

The page modification is performed in the buffer cache in ���. This change is

logged in a ��� page, also in ���. As a result, the insert ��� is advanced:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E820B10

(1 row)

To ensure that the modified data page is flushed to disk strictly after the corre-

sponding ��� entry, the page header stores the ��� of the latest ��� entry related

to this page. You can view this ��� using pageinspect:

=> SELECT lsn FROM page_header(get_raw_page('wal',0));

lsn

−−−−−−−−−−−−

0/3E820B10

(1 row)
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There is only one ��� for the whole database cluster, and new entries constantly

get appended to it. For this reason, the ��� stored in the page may turn out to be

smaller than the one returned by the pg_current_wal_insert_lsn function some time

ago. But if nothing has happened in the system, these numbers will be the same.

Now let’s commit the transaction:

=> COMMIT;

The commit operation is also logged, and the insert ��� changes again:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3E820B38

(1 row)

A commit updates transaction status in ���� pages p. ��, which are kept in their own

cache.1 The ���� cache usually takes ��� pages in the shared memory.2 To make

sure that a ���� page is not flushed to disk before the corresponding ��� entry,

the ��� of the latest ��� entry has to be tracked for ���� pages too. But this in-

formation is stored in ���, not in the page itself.

At some point p. ������ entries will make it to disk; then it will be possible to evict ����

and data pages from the cache. If they had to be evicted earlier, it would have been

discovered, and ��� entries would have been forced to disk first.3

If you know two ��� positions, you can calculate the size of ��� entries between

them (in bytes) by simply subtracting one position from the other. You just have

to cast them to the pg_lsn type:

=> SELECT '0/3E820B38'::pg_lsn - '0/3E820AC8'::pg_lsn;

?column?

−−−−−−−−−−

112

(1 row)

1 backend/access/transam/slru.c
2 backend/access/transam/clog.c, CLOGShmemBuffers function
3 backend/storage/buffer/bufmgr.c, FlushBuffer function
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In this particular case, ��� entries related to ������ and ������ operations took

about a hundred of bytes.

You can use the same approach to estimate the volume of ��� entries generated

by a particular workload per unit of time. This information will be required for the

checkpoint setup.

Physical Structure

On disk, the ��� is stored in the ������/pg_wal directory as separate files, or seg-

ments. Their size is shown by the read-only16MB wal_segment_size parameter.

For high-load systems, it makes sense to increase the segment sizev. �� since it may

reduce the overhead, but this setting can be modified only during cluster initial-

ization (initdb --wal-segsize).

W�� entries get into the current file until it runs out of space; then Postgre���

starts a new file.

We can learn in which file a particular entry is located, and at what offset from the

start of the file:

=> SELECT file_name, upper(to_hex(file_offset)) file_offset

FROM pg_walfile_name_offset('0/3E820AC8');

file_name | file_offset

−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−

00000001000000000000003E | 820AC8

(1 row)

timeline log sequence number

The name of the file consists of two parts. The highest eight hexadecimal digits

define the timeline used for recovery from a backup, while the rest represent the

highest ��� bits (the lowest ��� bits are shown in the file_offset field).

To view the current ��� filesv. �� , you can call the following function:

=> SELECT *

FROM pg_ls_waldir()

WHERE name = '00000001000000000000003E';
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name | size | modification

−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−

00000001000000000000003E | 16777216 | 2022−09−19 14:52:22+03

(1 row)

Now let’s take a look at the headers of the newly created ��� entries using the

pg_waldump utility, which can filter ��� entries both by the ��� range (like in this

example) and by a particular transaction ��.

The pg_waldump utility should be started on behalf of the postgres �� user, as it

needs access to ��� files on disk.

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3E820AC8 -e 0/3E820B38#

rmgr: Heap len (rec/tot): 69/ 69, tx: 887, lsn:

0/3E820AC8, prev 0/3E820AA0, desc: HOT_UPDATE off 1 xmax 887 flags

0x40 ; new off 2 xmax 0, blkref #0: rel 1663/16391/16562 blk 0

rmgr: Transaction len (rec/tot): 34/ 34, tx: 887, lsn:

0/3E820B10, prev 0/3E820AC8, desc: COMMIT 2022−09−19 14:52:22.552253

MSK

Here we can see the headers of two entries.

The first one is the ���_������ p. ���operation handled by the Heap resource manager.

The blkref field shows the filename and the page �� of the updated heap page:

=> SELECT pg_relation_filepath('wal');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16391/16562

(1 row)

The second entry is the ������ operation supervised by the Transaction resource

manager.

10.3 Checkpoint

To restore data consistency after a failure (that is, to perform recovery), Postgre���

has to replay the ��� in the forward direction and apply the entries that represent

lost changes to the corresponding pages. To find out what has been lost, the ���
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of the page stored on disk is compared to the ��� of the ��� entry. But at which

point should we start the recovery? If we start too late, the pages written to disk

before this point will fail to receive all the changes, which will lead to irreversible

data corruption. Starting from the very beginning is unrealistic: it is impossible

to store such a potentially huge volume of data, and neither is it possible to accept

such a long recovery time. We need a checkpoint that is gradually moving forward,

thusmaking it safe to start the recovery from this point and remove all the previous

��� entries.

The most straightforward way to create a checkpoint is to periodically suspend

all system operations and force all dirty pages to disk. This approach is of course

unacceptable, as the system will hang for an indefinite but quite significant time.

For this reason, the checkpoint is spread out over time, virtually constituting an

interval. Checkpoint execution is performed by a special background process called

checkpointer.1

Checkpoint start. The checkpointer process flushes to disk everything that can be

written instantaneously: ���� transaction status, subtransactions’ metadata,

and a few other structures.

Checkpoint execution. Most of the checkpoint execution time is spent on flushing

dirty pages to disk.2

First, a special tag is set in the headers of all the buffers that were dirty at the

checkpoint start. It happens very fast since no �/� operations are involved.

Then checkpointer traverses all the buffers and writes the tagged ones to disk.

Their pages are not evicted from the cache: they are simply written down, so

usage and pin counts can be ignored.

Pagesv. �.� are processed in the order of their ��s to avoid random writing if pos-

sible. For better load balancing, Postgre��� alternates between different ta-

blespaces (as they may be located on different physical devices).

1 backend/postmaster/checkpointer.c

backend/access/transam/xlog.c, CreateCheckPoint function
2 backend/storage/buffer/bufmgr.c, BufferSync function
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Backends can also write tagged buffers to disk—if they get to them first. In any

case, buffer tags are removed at this stage, so for the purpose of the checkpoint

each buffer will be written only once.

Naturally, pages can still be modified in the buffer cache while the checkpoint

is in progress. But since new dirty buffers are not tagged, checkpointer will

ignore them.

Checkpoint completion. When all the buffers that were dirty at the start of the

checkpoint are written to disk, the checkpoint is considered complete. From

now on (but not earlier!), the start of the checkpoint will be used as a new

starting point of recovery. All the ��� entries written before this point are

not required anymore.

time
checkpoint

failure

start of
recovery

required WAL files

time
checkpoint checkpoint

failure

start of
recovery

required WAL files

Finally, checkpointer creates a ��� entry that corresponds to the checkpoint

completion, specifying the checkpoint’s start ���. Since the checkpoint logs

nothing when it starts, this ��� can belong to a ��� entry of any type.

The ������/global/pg_control file also gets updated to refer to the latest com-

pleted checkpoint. (Until this process is over, pg_control keeps the previous

checkpoint.)
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checkpoint
start

CHECKPOINT

checkpoint
finish

Latest checkpoint location: 0/3F09FA08

Latest checkpoint's REDO location: 0/3F09F9D0

PGDATA/global/pg_control

To figure out once and for all what points where, let’s take a look at a simple ex-

ample. We will make several cached pages dirty:

=> UPDATE big SET s = 'FOO';

=> SELECT count(*) FROM pg_buffercache WHERE isdirty;

count

−−−−−−−

4119

(1 row)

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3F09F9D0

(1 row)

Now let’s complete the checkpoint manually. All the dirty pages will be flushed to

disk; since nothing happens in the system, new dirty pages will not appear:

=> CHECKPOINT;

=> SELECT count(*) FROM pg_buffercache WHERE isdirty;

count

−−−−−−−

0

(1 row)

Let’s see how the checkpoint is reflected in the ���:
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=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3F09FA80

(1 row)

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3F09F9D0 -e 0/3F09FA80

rmgr: Standby len (rec/tot): 50/ 50, tx: 0, lsn:

0/3F09F9D0, prev 0/3F09F9A8, desc: RUNNING_XACTS nextXid 889

latestCompletedXid 888 oldestRunningXid 889

rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn:

0/3F09FA08, prev 0/3F09F9D0, desc: CHECKPOINT_ONLINE redo

0/3F09F9D0; tli 1; prev tli 1; fpw true; xid 0:889; oid 24754; multi

1; offset 0; oldest xid 726 in DB 1; oldest multi 1 in DB 1;

oldest/newest commit timestamp xid: 0/0; oldest running xid 889;

online

The latest ��� entry is related to the checkpoint completion (����������_������).

The start ��� of this checkpoint is specified after the word redo; this position cor-

responds to the latest inserted ��� entry at the time of the checkpoint start.

The same information can also be found in the pg_control file:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | egrep 'Latest.*location'

Latest checkpoint location: 0/3F09FA08

Latest checkpoint's REDO location: 0/3F09F9D0

10.4 Recovery

The first process launched at the server start is postmaster. In its turn, postmaster

spawns the startup process,1 which takes care of data recovery in case of a failure.

To determine whether recovery is needed, the startup process reads the pg_control

file and checks the cluster status. The pg_controldata utility enables us to view the

content of this file:

1 backend/postmaster/startup.c

backend/access/transam/xlog.c, StartupXLOG function
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postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep state

Database cluster state: in production

A properly stopped server has the “shut down” status; the “in production” status

of a non-running server indicates a failure. In this case, the startup process will au-

tomatically initiate recovery from the start ��� of the latest completed checkpoint

found in the same pg_control file.

If the ������ directory contains a backup_label file related to a backup, the start ��� posi-

tion is taken from that file.

The startup process reads ��� entries one by one, starting from the defined posi-

tion, and applies them to data pages if the ��� of the page is smaller than the ���

of the ��� entry. If the page contains a bigger ���, ��� should not be applied; in

fact, it must not be applied because its entries are designed to be replayed strictly

sequentially.

However, some ��� entries constitute a full page image, or ���. Entries of this type

can be applied to any state of the page since all the page contents will be erased

anyway. Such modifications are called idempotent. Another example of an idempo-

tent operation is registering transaction status changes: each transaction status is

defined in ���� by certain bits that are set regardless of their previous values, so

there is no need to keep the ��� of the latest change in ���� pages.

W�� entries are applied to pages in the buffer cache, just like regular page updates

during normal operation.

Files get restored from��� in a similar manner: for example, if a ��� entry shows

that the file must exit, but it is missing for some reason, it will be created anew.

Once the recovery is over, all unlogged relations are overwritten by the correspond-

ing initialization forks.p. ��

Finally, the checkpoint is executed to secure the recovered state on disk.

The job of the startup process is now complete.

In its classic form, the recovery process consists of two phases. In the roll-forward phase,

��� entries are replayed, repeating the lost operations. In the roll-back phase, the server

aborts the transactions that were not yet committed at the time of the failure.
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In Postgre���, the second phase is not required. After the recovery, the ���� will contain

neither commit nor abort bits for an unfinished transaction (which technically denotes

an active transaction), but since it is known for sure that the transaction is not running

anymore, it will be considered aborted.1

We can simulate a failure by forcing the server to stop in the immediate mode:

postgres$ pg_ctl stop -m immediate

Here is the new cluster state:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep 'state'

Database cluster state: in production

When we launch the server, the startup process sees that a failure has occurred and

enters the recovery mode:

postgres$ pg_ctl start -l /home/postgres/logfile

postgres$ tail -n 6 /home/postgres/logfile

LOG: database system was interrupted; last known up at 2022−09−19

14:52:23 MSK

LOG: database system was not properly shut down; automatic recovery

in progress

LOG: redo starts at 0/3F09F9D0

LOG: invalid record length at 0/3F09FA80: wanted 24, got 0

LOG: redo done at 0/3F09FA08 system usage: CPU: user: 0.00 s,

system: 0.00 s, elapsed: 0.00 s

LOG: database system is ready to accept connections

If the server is being stopped normally, postmaster disconnects all clients and then

executes the final checkpoint to flush all dirty pages to disk.

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/3F09FAF8

(1 row)

1 backend/access/heap/heapam_visibility.c, HeapTupleSatisfiesMVCC function
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Now let’s stop the server properly:

postgres$ pg_ctl stop

Here is the new cluster state:

postgres$ /usr/local/pgsql/bin/pg_controldata \

-D /usr/local/pgsql/data | grep state

Database cluster state: shut down

At the end of the ���, we can see the ����������_�������� entry, which denotes

the final checkpoint:

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/3F09FAF8

rmgr: XLOG len (rec/tot): 114/ 114, tx: 0, lsn:

0/3F09FAF8, prev 0/3F09FA80, desc: CHECKPOINT_SHUTDOWN redo

0/3F09FAF8; tli 1; prev tli 1; fpw true; xid 0:889; oid 24754; multi

1; offset 0; oldest xid 726 in DB 1; oldest multi 1 in DB 1;

oldest/newest commit timestamp xid: 0/0; oldest running xid 0;

shutdown

pg_waldump: fatal: error in WAL record at 0/3F09FAF8: invalid record

length at 0/3F09FB70: wanted 24, got 0

The latest pg_waldumpmessage shows that the utility has read the ��� to the end.

Let’s start the instance again:

postgres$ pg_ctl start -l /home/postgres/logfile

10.5 Background Writing

If the backend needs to evict a dirty page from a buffer, it has to write this page to

disk. Such a situation is undesired because it leads to waits—it is much better to

perform writing asynchronously in the background.

This job is partially handled by checkpointer, but it is still not enough.
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Therefore, Postgre��� provides another process called bgwriter,1 specifically for

backgroundwriting. It relies on the same buffer search algorithmas eviction, except

for the two main differences:

• The bgwriter process uses its own clock hand that never lags behind that of

eviction and typically overtakes it.

• As the buffers are being traversed, the usage count is not reduced.

A dirty page is flushed to disk if the buffer is not pinned and has zero usage count.

Thus, bgwriter runs before eviction and proactively writes to disk those pages that

are highly likely to be evicted soon.

It raises the odds of the buffers selected for eviction being clean.

10.6 WAL Setup

Configuring Checkpoints

The checkpoint duration (to be more exact, the duration of writing dirty buffers to

disk) is defined by the 0.9checkpoint_completion_target parameter. Its value specifies

the fraction of time between the starts of two v. ��neighboring checkpoints that is allot-

ted to writing. Avoid setting this parameter to one: as a result, the next checkpoint

may be due before the previous one is complete. No disaster will happen, as it is

impossible to execute more than one checkpoint at a time, but normal operation

may still be disrupted.

When configuring other parameters, we can use the following approach. First, we

define an appropriate volume of ��� files to be stored between two neighboring

checkpoints. The bigger the volume, the smaller the overhead, but this value will

anyway be limited by the available free space and the acceptable recovery time.

To estimate the time required to generate this volume by normal load, you need to

note the initial insert ��� and check the difference between this and the current

insert positions from time to time.

1 backend/postmaster/bgwriter.c
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The received figure is assumed to be a typical interval between checkpoints, so we

will use it as the5min checkpoint_timeout parameter value. The default setting is likely

to be too small;p. ��� it is usually increased, for example, to �� minutes.

However, it is quite possible (and even probable) that the load will sometimes be

higher, so the size of ��� files generated during this interval will be too big. In

this case, the checkpoint must be executed more often. To set up such a trigger, we

will limit the size of ��� files required for recovery by the1GB max_wal_size parameter.

When this threshold is exceeded, the server invokes an extra checkpoint.1

W�� filesv. �� required for recovery contain all the entries both for the latest completed

checkpoint and for the current one,which is not completed yet. So to estimate their

total volume you should multiply the calculated ��� size between checkpoints by

1 + checkpoint_completion_target.

Prior to version ��, Postgre��� kept ��� files for two completed checkpoints, so the mul-

tiplier was 2 + checkpoint_completion_target.

Following this approach,most checkpoints are executed on schedule, once per the

checkpoint_timeout interval; but should the load increase, the checkpoint is trig-

gered when ��� size exceeds the max_wal_size value.

The actual progress is periodically checked against the expected figures:2

The actual progress is defined by the fraction of cached pages that have already

been processed.

The expected progress (by time) is defined by the fraction of time that has al-

ready elapsed, assuming that the checkpoint must be completed within the

checkpoint_timeout × checkpoint_completion_target interval.

The expected progress (by size) is defined by the fraction of the already filled ���

files, their expected number being estimated based on the max_wal_size ×
checkpoint_completion_target value.

If dirty pages get written to disk ahead of schedule, checkpointer is paused for a

while; if there is any delay by either of the parameters, it catches up as soon as

1 backend/access/transam/xlog.c, LogCheckpointNeeded & CalculateCheckpointSegments functions
2 backend/postmaster/checkpointer.c, IsCheckpointOnSchedule function
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possible.1 Since both time and data size are taken into account, Postgre��� can

manage scheduled and on-demand checkpoints using the same approach.

Once the checkpoint has been completed, ��� files that are not required for recov-

ery anymore are deleted;2 however, several files (up to 80MBmin_wal_size in total) are

kept for reuse and are simply renamed.

Such renaming v. ��reduces the overhead incurred by constant file creation and dele-

tion, but you can turn off this feature using the onwal_recycle parameter if you do not

need it.

The following figure shows how the size of ��� files stored on disk changes under

normal conditions.

time

WAL size

checkpoint_timeout

m
ax

_w
al
_s
iz
e

the size of WAL generated between
the starts of two checkpoints

It is important to keep in mind that the actual size of ��� files on disk may exceed

the max_wal_size value:

• The max_wal_size parameter specifies the desired target value rather than a

hard limit. If the load spikes, writing may lag behind the schedule.

• The server has no right to delete ��� files that are yet to be replicated or han-

dled by continuous archiving. If enabled, this functionalitymust be constantly

monitored, as it can easily cause a disk overflow.

1 backend/postmaster/checkpointer.c, CheckpointWriteDelay function
2 backend/access/transam/xlog.c, RemoveOldXlogFiles function
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• You can reserve a certain amount of spacev. �� for ��� files by configuring the

0MB wal_keep_size parameter.

Configuring Background Writing

Once checkpointer is configured, you should also set up bgwriter. Together, these

processes must be able to cope with writing dirty buffers to disk before backends

need to reuse them.

During its operation, bgwriter makes periodic pauses, sleeping for200ms bgwriter_delay

units of time.

The number of pages written between two pauses depends on the average number

of buffers accessed by backends since the previous run (Postgre��� uses a moving

average to level out possible spikes and avoid depending on very old data at the

same time). The calculated number is then multiplied by2 bgwriter_lru_multiplier.

But in any case, the number of pages written in a single run cannot exceed the

100 bgwriter_lru_maxpages value.

If no dirty buffers are detected (that is, nothing happens in the system), bgwriter

sleeps until one of the backends accesses a buffer. Then it wakes up and continues

its regular operation.

Monitoring

Checkpoint settings can and should be tuned based on monitoring data.

If size-triggered checkpoints have to be performed more often than defined by the

30s checkpoint_warning parameter, Postgre��� issues a warning. This setting should

be brought in line with the expected peak load.

Theoff log_checkpoints parameter enables printing checkpoint-related information

into the server log. Let’s turn it on:

=> ALTER SYSTEM SET log_checkpoints = on;

=> SELECT pg_reload_conf();

Now we will modify some data and execute a checkpoint:
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=> UPDATE big SET s = 'BAR';

=> CHECKPOINT;

The server log shows the number of written buffers, some statistics on ��� file

changes after the checkpoint, the duration of the checkpoint, and the distance (in

bytes) between the starts of two neighboring checkpoints:

postgres$ tail -n 2 /home/postgres/logfile

LOG: checkpoint starting: immediate force wait

LOG: checkpoint complete: wrote 4100 buffers (25.0%); 0 WAL file(s)

added, 0 removed, 0 recycled; write=0.049 s, sync=0.004 s,

total=0.062 s; sync files=3, longest=0.002 s, average=0.002 s;

distance=9213 kB, estimate=9213 kB

The most useful data that can affect your configuration decisions is statistics on

background writing and checkpoint execution provided in the pg_stat_bgwriter

view.

Prior to version 9.2, both tasks were performed by bgwriter; then a separate checkpointer

process was introduced, but the common view remained unchanged.

=> SELECT * FROM pg_stat_bgwriter \gx

−[ RECORD 1 ]−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

checkpoints_timed | 0

checkpoints_req | 14

checkpoint_write_time | 29168

checkpoint_sync_time | 185

buffers_checkpoint | 14106

buffers_clean | 12246

maxwritten_clean | 116

buffers_backend | 84054

buffers_backend_fsync | 0

buffers_alloc | 84449

stats_reset | 2022−09−19 14:50:51.861607+03

Among other things, this view displays the number of completed checkpoints:

• The checkpoints_timed field shows scheduled checkpoints (which are triggered

when the checkpoint_timeout interval is reached).

• The checkpoints_req field shows on-demand checkpoints (including those trig-

gered when the max_wal_size size is reached).

203



Chapter 10 Write-Ahead Log

A large checkpoint_req value (as compared to checkpoints_timed) indicates that

checkpoints are performed more often than expected.

The following statistics on the number of written pages are also very important:

• buffers_checkpoint pages written by checkpointer

• buffers_backend pages written by backends

• buffers_clean pages written by bgwriter

In a well-configured system, the buffers_backend value must be considerably lower

than the sum of buffers_checkpoint and buffers_clean.

When setting up background writing, pay attention to themaxwritten_clean value:

it shows how many times bgwriter had to stop because of exceeding the threshold

defined by bgwriter_lru_maxpages.

The following call will drop the collected statistics:

=> SELECT pg_stat_reset_shared('bgwriter');
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11.1 Performance

While the server is running normally, ��� files are being constantly written to disk.

However, these writes are sequential: there is almost no random access, so even

���s can cope with this task. Since this type of load is very different from a typical

data file access, it may be worth setting up a separate physical storage for ���

files and replacing the ������/pg_wal catalog by a symbolic link to a directory in a

mounted file system.

There are a couple of situations when ��� files have to be both written and read. The

first one is the obvious case of crash recovery; the second one is stream replication. The

walsender1 process reads ��� entries directly from files.2 So if a replica does not receive

��� entries while the required pages are still in the �� buffers of the primary server, the

data has to be read from disk. But the access will still be sequential rather than random.

��� entries can be written in one of the following modes:

• The synchronousmode forbids any further operations until a transaction com-

mit saves all the related ��� entries to disk.

• The asynchronous mode implies instant transaction commits, with ��� en-

tries being written to disk later in the background.

The current mode is defined by the onsynchronous_commit parameter.

1 backend/replication/walsender.c
2 backend/access/transam/xlogreader.c
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Synchronous mode. To reliably register the fact of a commit, it is not enough to

simply pass ��� entries to the operating system; you have to make sure that

disk synchronization has completed successfully. Since synchronization im-

plies actual �/� operations (which are quite slow), it is beneficial to perform it

as seldom as possible.

For this purpose, the backend that completes the transaction and writes ���

entries to disk can make a small pause as defined by the0s commit_delay param-

eter. However, it will only happen if there are at least5 commit_siblings active

transactions in the system:1 during this pause, some of them may finish, and

the server will manage to synchronize all the ��� entries in one go. It is a lot

like holding doors of an elevator for someone to rush in.

By default, there is no pause. It makes sense to modify the commit_delay pa-

rameter only for systems that perform a lot of short ���� transactions.

After a potential pause, the process that completes the transaction flushes

all the accumulated ��� entries to disk and performs synchronization (it is

important to save the commit entry and all the previous entries related to this

transaction; the rest is written just because it does not increase the cost).

From this time on, the ����’s durability requirement is guaranteed—the trans-

action is considered to be reliably committed.2 That’s why the synchronous

mode is the default one.

The downside of the synchronous commit is longer latencies (the ������ com-

mand does not return control until the end of synchronization) and lower sys-

tem throughput, especially for ���� loads.

Asynchronous mode. To enable asynchronous commits,3 you have to turn off the

synchronous_commit parameter.

In the asynchronous mode, ��� entries are written to disk by the walwriter4

process, which alternates between work and sleep. The duration of pauses is

defined by the200ms wal_writer_delay value.

1 backend/access/transam/xlog.c, XLogFlush function
2 backend/access/transam/xlog.c, RecordTransactionCommit function
3 postgresql.org/docs/14/wal-async-commit.html
4 backend/postmaster/walwriter.c
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Waking up from a pause, the process checks the cache for new completely filled

��� pages. If any such pages have appeared, the process writes them to disk,

skipping the current page. Otherwise, it writes the current half-empty page

since it has woken up anyway.1

The purpose of this algorithm is to avoid flushing one and the same page

several times, which brings noticeable performance gains for workloads with

intensive data changes.

Although ��� cache is used as a ring buffer, walwriter stops when it reaches

the last page of the cache; after a pause, the next writing cycle starts from the

first page. So in the worst casewalwriter needs three runs to get to a particular

��� entry: first, it will write all full pages located at the end of the cache, then

it will get back to the beginning, and finally, it will handle the underfilled page

containing the entry. But in most cases it takes one or two cycles.

Synchronization is performed each time the 1MBwal_writer_flush_after amount of

data is written, and once again at the end of the writing cycle.

Asynchronous commits are faster than synchronous ones since they do not

have to wait for physical writes to disk. But reliability suffers: you can lose

the data committed within the 3×wal_writer_delay timeframe before a failure

(which is 0.6 seconds by default).

In the real world, these two modes complement each other. In the synchronous

mode, ��� entries related to a long transaction can still be written asynchronously

to free ��� buffers. And vice versa, a ��� entry related to a page that is about to

be evicted from the buffer cache will be immediately flushed to disk even in the

asynchronous mode—otherwise, it is impossible to continue operation.

In most cases, a hard choice between performance and durability has to be made

by the system designer.

The synchronous_commit parameter can also be set for particular transactions. If it

is possible to classify all transactions at the application level as either absolutely

critical (such as handling financial data) or less important, you can boost perfor-

mance while risking to lose only non-critical transactions.

1 backend/access/transam/xlog.c, XLogBackgroundFlush function
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To get some idea of potential performance gains of the asynchronous commit, let’s

compare latency and throughput in the two modes using a pgbench test.1

First, initialize the required tables:

postgres$ /usr/local/pgsql/bin/pgbench -i internals

Start a ��-second test in the synchronous mode:

postgres$ /usr/local/pgsql/bin/pgbench -T 30 internals

pgbench (14.4)

starting vacuum...end.

transaction type: <builtin: TPC−B (sort of)>

scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

duration: 30 s

number of transactions actually processed: 22133

latency average = 1.355 ms

initial connection time = 1.860 ms

tps = 737.788800 (without initial connection time)

And now run the same test in the asynchronous mode:

=> ALTER SYSTEM SET synchronous_commit = off;

=> SELECT pg_reload_conf();

postgres$ /usr/local/pgsql/bin/pgbench -T 30 internals

pgbench (14.4)

starting vacuum...end.

transaction type: <builtin: TPC−B (sort of)>

scaling factor: 1

query mode: simple

number of clients: 1

number of threads: 1

duration: 30 s

number of transactions actually processed: 71925

latency average = 0.417 ms

initial connection time = 2.091 ms

tps = 2397.630831 (without initial connection time)

1 postgresql.org/docs/14/pgbench.html
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In the asynchronous mode, this simple benchmark shows a significantly lower la-

tency and higher throughput (���). Naturally, each particular system will have its

own figures depending on the current load, but it is clear that the impact on short

���� transactions can be quite tangible.

Let’s restore the default settings:

=> ALTER SYSTEM RESET synchronous_commit;

=> SELECT pg_reload_conf();

11.2 Fault Tolerance

It is self-evident that write-ahead logging must guarantee crash recovery under

any circumstances (unless the persistent storage itself is broken). There are many

factors that can affect data consistency, but I will cover only the most important

ones: caching, data corruption, and non-atomic writes.1

Caching

Before reaching a non-volatile storage (such as a hard disk), data can pass through

various caches.

A disk write simply instructs the operating system to place the data into its cache

(which is also prone to crashes, just like any other part of ���). The actual writing

is performed asynchronously, as defined by the settings of the �/� scheduler of the

operating system.

Once the scheduler decides to flush the accumulated data, this data is moved to

the cache of a storage device (like an ���). Storage devices can also defer writing,

for example, to group of adjacent pages together. A ���� controller adds one more

caching level between the disk and the operating system.

Unless special measures are taken, the moment when the data is reliably stored

on disk remains unknown. It is usually not so important because we have the ���,

1 postgresql.org/docs/14/wal-reliability.html
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but ��� entries themselves must be reliably saved on disk right away.1 It is equally

true for the asynchronousmode—otherwise, it is impossible to guarantee that ���

entries get do disk ahead of the modified data.

The checkpointer process must also save the data in a reliable way, ensuring that

dirty pages make it to disk from the �� cache. Besides, it has to synchronize all the

file operations that have been performed by other processes (such as page writes

or file deletions): when the checkpoint completes, the results of all these actions

must be already saved on disk.2

There are also some other situations that demand fail-safe writing, such as execut-

ing unlogged operations at theminimal��� level.

Operating systems provide various means to guarantee immediate writing of data

into a non-volatile storage. All of them boil down to the following two main ap-

proaches: either a separate synchronization command is called after writing (such

as fsync or fdatasync), or the requirement to perform synchronization (or even di-

rect writing that bypasses �� cache) is specified when the file is being opened or

written into.

The pg_test_fsync utility can help you determine the best way to synchronize the

��� depending on your �� and file system; the preferred method can be specified

in the wal_sync_method parameter. For other operations, an appropriate synchro-

nization method is selected automatically and cannot be configured.3

A subtle aspect here is that in each particular case the most suitable method de-

pends on the hardware. For example, if you use a controller with a backup battery,

you can take advantage of its cache, as the battery will protect the data in case of

a power outage.

You should keep in mind that the asynchronous commit and lack of synchroniza-

tion are two totally different stories. Turning off synchronization (by theon fsync

parameter) boosts system performance, yet any failure will lead to fatal data loss.

The asynchronous mode guarantees crash recovery up to a consistent state, but

some of the latest data updates may be missing.

1 backend/access/transam/xlog.c, issue_xlog_fsync function
2 backend/storage/sync/sync.c
3 backend/storage/file/fd.c, pg_fsync function
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Data Corruption

Technical equipment is imperfect, and data can get damaged both in memory and

on disk, or while it is being transferred via interface cables. Such errors are usually

handled at the hardware level, yet some can escape.

To catch issues in good time, Postgre��� always protects��� entries by checksums.

Checksums can be calculated for data pages aswell.1 It is done either during cluster

initialization or by running the v. ��pg_checksums2 utility when the server is stopped.3

In production systems, checksums must always be enabled, despite some (minor)

calculation and verification overhead. It raises the chance of timely corruption

discovery, even though some corner cases still remain:

• Checksum verification is performed only when the page is accessed, so data

corruption can go unnoticed for a long time, up to the point when it gets into

all backups and leaves no source of correct data.

• A zeroed page is considered correct, so if the file system zeroes out a page by

mistake, this issue will not be discovered.

• Checksums are calculated only for the main fork of relations; other forks and

files (such as transaction status in ����) remain unprotected.

Let’s take a look at the read-only data_checksums parameter to make sure that

checksums are enabled:

=> SHOW data_checksums;

data_checksums

−−−−−−−−−−−−−−−−

on

(1 row)

Now stop the server and zero out several bytes in the zero page of the main fork of

the table:

1 backend/storage/page/README
2 postgresql.org/docs/14/app-pgchecksums.html
3 commitfest.postgresql.org/27/2260
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=> SELECT pg_relation_filepath('wal');

pg_relation_filepath

−−−−−−−−−−−−−−−−−−−−−−

base/16391/16562

(1 row)

postgres$ pg_ctl stop

postgres$ dd if=/dev/zero of=/usr/local/pgsql/data/base/16391/16562 \

oflag=dsync conv=notrunc bs=1 count=8

8+0 records in

8+0 records out

8 bytes copied, 0,00765127 s, 1,0 kB/s

Start the server again:

postgres$ pg_ctl start -l /home/postgres/logfile

In fact, we could have left the server running—it is enough to write the page to

disk and evict it from cache (otherwise, the server will continue using its cached

version). But such a workflow is harder to reproduce.

Now let’s attempt to read the table:

=> SELECT * FROM wal LIMIT 1;

WARNING: page verification failed, calculated checksum 24386 but

expected 33119

ERROR: invalid page in block 0 of relation base/16391/16562

If the data cannot be restored from a backup, it makes sense to at least try to read

the damaged page (risking to get garbled output). For this purpose, you have to

enable theoff ignore_checksum_failure parameter:

=> SET ignore_checksum_failure = on;

=> SELECT * FROM wal LIMIT 1;

WARNING: page verification failed, calculated checksum 24386 but

expected 33119

id

−−−−

2

(1 row)

Everything went fine in this case because we have damaged a non-critical part of

the page header (the ��� of the latest ��� entry), not the data itself.
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Non-Atomic Writes

A database page usually takes � k�, but at the low level writing is performed by

blocks, which are often smaller (typically ��� bytes or � k�). Thus, if a failure oc-

curs, a page may be written only partially. It makes no sense to apply regular ���

entries to such a page during recovery.

To avoid partial writes, Postgre��� saves a full page image p. ���(���) in the ��� when

this page is modified for the first time after the checkpoint start. This behavior is

controlled by the onfull_page_writes parameter, but turning it off can lead to fatal data

corruption.

If the recovery process comes across an ��� in the ���, it will unconditionally write

it to disk (without checking its ���); just like any ��� entry, ���s are protected by

checksums, so their damage cannot go unnoticed. Regular ��� entries will then be

applied to this state, which is guaranteed to be correct.

There is no separate ��� entry type for setting hint bits p. ��: this operation is consid-

ered non-critical because any query that accesses a page will set the required bits

anew. However, any hint bit change will affect the page’s checksum. So if check-

sums are enabled (or if the offwal_log_hints parameter is on), hint bit modifications

are logged as ���s.1

Even though the logging mechanism excludes empty space from an ���,2 the size

of the generated ��� files still significantly increases. The situation can be greatly

improved if you enable ��� compression via the offwal_compression parameter.

Let’s run a simple experiment using the pgbench utility. We will perform a check-

point and immediately start a benchmark test with a hard-set number of transac-

tions:

=> CHECKPOINT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/43A58068

(1 row)

1 backend/storage/buffer/bufmgr.c, MarkBufferDirtyHint function
2 backend/access/transam/xloginsert.c, XLogRecordAssemble function
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postgres$ /usr/local/pgsql/bin/pgbench -t 20000 internals

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/450F0628

(1 row)

Here is the size of the generated ��� entries:

=> SELECT pg_size_pretty('0/450F0628'::pg_lsn - '0/43A58068'::pg_lsn);

pg_size_pretty

−−−−−−−−−−−−−−−−

23 MB

(1 row)

In this example, ���s take more than half of the total ��� size. You can see it for

yourself in the collected statistics that show the number of��� entries (N), the size

of regular entries (Record size), and the ��� size for each resource type (Type):

postgres$ /usr/local/pgsql/bin/pg_waldump --stats \

-p /usr/local/pgsql/data/pg_wal -s 0/43A58068 -e 0/450F0628

Type N (%) Record size (%) FPI size (%)

−−−− − −−− −−−−−−−−−−− −−− −−−−−−−− −−−

XLOG 1848 ( 1,51) 90552 ( 1,14) 14860928 ( 96,72)

Transaction 20001 ( 16,37) 680114 ( 8,53) 0 ( 0,00)

Storage 1 ( 0,00) 42 ( 0,00) 0 ( 0,00)

CLOG 1 ( 0,00) 30 ( 0,00) 0 ( 0,00)

Standby 2 ( 0,00) 96 ( 0,00) 0 ( 0,00)

Heap2 20221 ( 16,55) 1282112 ( 16,08) 16384 ( 0,11)

Heap 80047 ( 65,52) 5917982 ( 74,22) 273392 ( 1,78)

Btree 49 ( 0,04) 2844 ( 0,04) 213480 ( 1,39)

−−−−−− −−−−−−−− −−−−−−−−

Total 122170 7973772 [34,17%] 15364184 [65,83%]

This ratio will be smaller if data pages get modified between checkpoints several

times. It is yet another reason to perform checkpoints less often.

We will repeat the same experiment to see if compression can help.

=> ALTER SYSTEM SET wal_compression = on;

=> SELECT pg_reload_conf();

=> CHECKPOINT;
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=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/450F06D8

(1 row)

postgres$ /usr/local/pgsql/bin/pgbench -t 20000 internals

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45B94888

(1 row)

Here is the ��� size with compression enabled:

=> SELECT pg_size_pretty('0/45B94888'::pg_lsn - '0/450F06D8'::pg_lsn);

pg_size_pretty

−−−−−−−−−−−−−−−−

11 MB

(1 row)

postgres$ /usr/local/pgsql/bin/pg_waldump --stats \

-p /usr/local/pgsql/data/pg_wal -s 0/450F06D8 -e 0/45B94888

Type N (%) Record size (%) FPI size (%)

−−−− − −−− −−−−−−−−−−− −−− −−−−−−−− −−−

XLOG 1836 ( 1,50) 93636 ( 1,17) 2820704 ( 98,05)

Transaction 20001 ( 16,38) 680114 ( 8,53) 0 ( 0,00)

Storage 1 ( 0,00) 42 ( 0,00) 0 ( 0,00)

CLOG 1 ( 0,00) 30 ( 0,00) 0 ( 0,00)

Standby 3 ( 0,00) 150 ( 0,00) 0 ( 0,00)

Heap2 20220 ( 16,56) 1285090 ( 16,12) 244 ( 0,01)

Heap 80013 ( 65,54) 5911850 ( 74,16) 37188 ( 1,29)

Btree 15 ( 0,01) 906 ( 0,01) 18568 ( 0,65)

−−−−−− −−−−−−−− −−−−−−−−

Total 122090 7971818 [73,48%] 2876704 [26,52%]

To sum it up, when there is a large number of ���s caused by enabled checksums or

full_page_writes (that is, almost always), it makes sense to use compression despite

some additional ��� overhead.

11.3 WAL Levels

The main objective of write-ahead logging is to enable crash recovery. But if you

extend the scope of logged information, a ��� can be used for other purposes too.
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Postgre��� providesminimal, replica, and logical logging levels. Each level includes

everything that is logged on the previous one and adds some more information.

The level in use is defined by thereplica wal_level parameter; its modification requires a

server restart.

Minimal

The minimal level guarantees only crash recovery. To save space, the operations

on relations that have been created or truncated within the current transaction

are not logged if they incur insertion of large volumes of data (like in the case

of ������ ����� �� ������ and ������ ����� commands).1 Instead of being logged,

all the required data is immediately flushed to disk, and system catalog changes

become visible right after the transaction commit.

If such an operation is interrupted by a failure, the data that has already made it

to disk remains invisible and does not affect consistency. If a failure occurs when

the operation is complete, all the data required for applying the subsequent ���

entries is already saved to disk.

The volume of datav. �� that has to be written into a newly created relation for this

optimization to take effect is defined by the2MB wal_skip_threshold parameter.

Let’s see what gets logged at theminimal level.

By default,v. �� a higher replica level is used, which supports data replication. If you

choose the minimal level, you also have to set the allowed number of walsender

processes to zero in the10 max_wal_senders parameter:

=> ALTER SYSTEM SET wal_level = minimal;

=> ALTER SYSTEM SET max_wal_senders = 0;

The server has to be restarted for these changes to take effect:

postgres$ pg_ctl restart -l /home/postgres/logfile

Note the current ��� position:

=> SELECT pg_current_wal_insert_lsn();

1 include/utils/rel.h, RelationNeedsWAL macro
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pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45B96B70

(1 row)

Truncate the table and keep inserting new rows within the same transaction until

the wal_skip_threshold is exceeded:

=> BEGIN;

=> TRUNCATE TABLE wal;

=> INSERT INTO wal

SELECT id FROM generate_series(1,100000) id;

=> COMMIT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/45B96D18

(1 row)

Instead of creating a new table, I run the �������� command as it generates fewer ���

entries.

Let’s examine the generated ��� using the already familiar pg_waldump utility.

postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/45B96B70 -e 0/45B96D18#

rmgr: Storage len (rec/tot): 42/ 42, tx: 0, lsn:

0/45B96B70, prev 0/45B96B38, desc: CREATE base/16391/24784

rmgr: Heap len (rec/tot): 123/ 123, tx: 134966, lsn:

0/45B96BA0, prev 0/45B96B70, desc: UPDATE off 45 xmax 134966 flags

0x60 ; new off 48 xmax 0, blkref #0: rel 1663/16391/1259 blk 0

rmgr: Btree len (rec/tot): 64/ 64, tx: 134966, lsn:

0/45B96C20, prev 0/45B96BA0, desc: INSERT_LEAF off 176, blkref #0:

rel 1663/16391/2662 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 134966, lsn:

0/45B96C60, prev 0/45B96C20, desc: INSERT_LEAF off 147, blkref #0:

rel 1663/16391/2663 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 134966, lsn:

0/45B96CA0, prev 0/45B96C60, desc: INSERT_LEAF off 254, blkref #0:

rel 1663/16391/3455 blk 4

rmgr: Transaction len (rec/tot): 54/ 54, tx: 134966, lsn:

0/45B96CE0, prev 0/45B96CA0, desc: COMMIT 2022−09−19 14:54:24.911435

MSK; rels: base/16391/24783
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The first entry logs creation of a new file for the relation (since ��������p. ��� virtually

rewrites the table).

The next four entries are associated with system catalog operations. They reflect

the changes in the pg_class table and its three indexes.

Finally, there is a commit-related entry. Data insertion is not logged.

Replica

During crash recovery, ��� entries are replayed to restore the data on disk up to

a consistent state. Backup recovery works in a similar way, but it can also restore

the database state up to the specified recovery target point using a ��� archive.

The number of archived ��� entries can be quite high (for example, they can span

several days), so the recovery period will include multiple checkpoints. Therefore,

theminimal��� level is not enough: it is impossible to repeat an operation if it is

unlogged. For backup recovery, ��� files must include all the operations.

The same is true for replication: unlogged commands will not be sent to a replica

and will not be replayed on it.

Things get even more complicated if a replica is used for executing queries. First

of all, it needs to have the information on exclusive locksp. ��� acquired on the primary

server since they may conflict with queries on the replica. Second, it must be able

to capture snapshotsp. �� ,which requires the information on active transactions. When

we deal with a replica, both local transactions and those running on the primary

server have to be taken into account.

The only way to send this data to a replica is to periodically write it into ��� files.1

It is done by the bgwriter2 process, once in �� seconds (the interval is hard-coded).

The ability to perform data recovery from a backup and use physical replication is

guaranteed at the replica level.

1 backend/storage/ipc/standby, LogStandbySnapshot function
2 backend/postmaster/bgwriter.c
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The replica level v. ��is used by default, so we can simply reset the parameters config-

ured above and restart the server:

=> ALTER SYSTEM RESET wal_level;

=> ALTER SYSTEM RESET max_wal_senders;

postgres$ pg_ctl restart -l /home/postgres/logfile

Let’s repeat the same workflow as before (but now we will insert only one row to

get a neater output):

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/461B8330

(1 row)

=> BEGIN;

=> TRUNCATE TABLE wal;

=> INSERT INTO wal VALUES (42);

=> COMMIT;

=> SELECT pg_current_wal_insert_lsn();

pg_current_wal_insert_lsn

−−−−−−−−−−−−−−−−−−−−−−−−−−−

0/461B85F0

(1 row)

Check out the generated ��� entries.

Apart from what we have seen at the minimal level, we have also got the following

entries:

• replication-related entries of the Standby resource manager: �������_�����

(active transactions) and ����

• the entry that logs the ������+���� operation, which initializes a new page and

inserts a new row into this page
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postgres$ /usr/local/pgsql/bin/pg_waldump \

-p /usr/local/pgsql/data/pg_wal -s 0/461B8330 -e 0/461B85F0

rmgr: Standby len (rec/tot): 42/ 42, tx: 134968, lsn:

0/461B8330, prev 0/461B82B8, desc: LOCK xid 134968 db 16391 rel 16562

rmgr: Storage len (rec/tot): 42/ 42, tx: 134968, lsn:

0/461B8360, prev 0/461B8330, desc: CREATE base/16391/24786

rmgr: Heap len (rec/tot): 123/ 123, tx: 134968, lsn:

0/461B8390, prev 0/461B8360, desc: UPDATE off 49 xmax 134968 flags

0x60 ; new off 50 xmax 0, blkref #0: rel 1663/16391/1259 blk 0

rmgr: Btree len (rec/tot): 64/ 64, tx: 134968, lsn:

0/461B8410, prev 0/461B8390, desc: INSERT_LEAF off 178, blkref #0:

rel 1663/16391/2662 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 134968, lsn:

0/461B8450, prev 0/461B8410, desc: INSERT_LEAF off 149, blkref #0:

rel 1663/16391/2663 blk 2

rmgr: Btree len (rec/tot): 64/ 64, tx: 134968, lsn:

0/461B8490, prev 0/461B8450, desc: INSERT_LEAF off 256, blkref #0:

rel 1663/16391/3455 blk 4

rmgr: Heap len (rec/tot): 59/ 59, tx: 134968, lsn:

0/461B84D0, prev 0/461B8490, desc: INSERT+INIT off 1 flags 0x00,

blkref #0: rel 1663/16391/24786 blk 0

rmgr: Standby len (rec/tot): 42/ 42, tx: 0, lsn:

0/461B8510, prev 0/461B84D0, desc: LOCK xid 134968 db 16391 rel 16562

rmgr: Standby len (rec/tot): 54/ 54, tx: 0, lsn:

0/461B8540, prev 0/461B8510, desc: RUNNING_XACTS nextXid 134969

latestCompletedXid 134967 oldestRunningXid 134968; 1 xacts: 134968

rmgr: Transaction len (rec/tot): 114/ 114, tx: 134968, lsn:

0/461B8578, prev 0/461B8540, desc: COMMIT 2022−09−19 14:54:40.912861

MSK; rels: base/16391/24785; inval msgs: catcache 51 catcache 50

relcache 16562

Logical

Last but not least, the logical level enables logical decoding and logical replication.

It has to be activated on the publishing server.

If we take a look at ��� entries, we will see that this level is almost the same as

replica: it adds the entries related to replication sources and some arbitrary logical

entries that may be generated by applications. For the most part, logical decoding

depends on the information about active transactions (�������_�����) because it

requires capturing a snapshot to track system catalog changes.
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12
Relation-Level Locks

12.1 About Locks

Locks control concurrent access to shared resources.

Concurrent access implies that several processes try to get one and the same re-

source at the same time. It makes no difference whether these processes are ex-

ecuted in parallel (if the hardware permits) or sequentially in the time-sharing

mode. If there is no concurrent access, there is no need to acquire locks (for exam-

ple, shared buffer cache requires locking, while local cache can do without it).

Before accessing a resource, the process must acquire a lock on it; when the oper-

ation is complete, this lock must be released for the resource to become available

to other processes. If locks are managed by the database system, the established

order of operations is maintained automatically; if locks are controlled by the ap-

plication, the protocol must be enforced by the application itself.

At a low level, a lock is simply a chunk of sharedmemory that defines the lock status

(whether it is acquired or not); it can also provide some additional information,

such as the process number or acquisition time.

As you can guess, a shared memory segment is a resource in its own right. Concurrent

access to such resources is regulated by synchronization primitives (such as semaphores or

mutexes) provided by the operating system. They guarantee strictly consecutive execution

of the code that accesses a shared resource. At the lowest level, these primitives are based

on atomic ��� instructions (such as test-and-set or compare-and-swap).

In general, we can use locks to protect any resource as long as it can be unambigu-

ously identified and assigned a particular lock address.
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For example, we can lock a database object, such as a table (identified by oid in the

system catalog), a data page (identified by a filename and a position within this

file), a row version (identified by a page and an offset within this page). We can also

lock a memory structure, such as a hash table or a buffer (identified by an assigned

��). We can even lock an abstract resource that has no physical representation.

But it is not always possible to acquire a lock at once: a resource can be already

locked by someone else. Then the process either joins the queue (if it is allowed

for this particular lock type) or tries again some time later. Either way, it has to

wait for the lock to be released.

I would like to single out two factors that can greatly affect locking efficiency.

Granularity, or the “grain size” of a lock. Granularity is important if resources form

a hierarchy.

For example, a table consists of pages, which, in their turn, consist of tu-

ples. All these objects can be protected by locks. Table-level locks are coarse-

grained; they forbid concurrent access even if the processes need to get to

different pages or rows.

Row-level locks are fine-grained, so they do not have this drawback; however,

the number of locks grows. To avoid using too much memory for lock-related

metadata, Postgre��� can apply various methods, one of them being lock es-

calation: if the number of fine-grained locks exceeds a certain threshold, they

are replaced by a single lock of coarser granularity.

A set of modes in which a lock can be acquired.

As a rule, only two modes are applied. The exclusive mode is incompatible

with all the other modes, including itself. The shared mode allows a resource

to be locked by several processes at a time. The shared mode can be used for

reading, while the exclusive mode is applied for writing.

In general, there may be other modes too. Names of modes are unimportant,

it is their compatibility matrix that matters.

Finer granularity and support for multiple compatible modes give more opportu-

nities for concurrent execution.
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All locks can be classified by their duration.

Long-term locks are acquired for a potentially long time (inmost cases, till the end

of the transaction); they typically protect such resources as relations and rows.

These locks are usually managed by Postgre��� automatically, but a user still

has some control over this process.

Long-term locks offer multiple modes that enable various concurrent oper-

ations on data. They usually have extensive infrastructure (including such

features as wait queues, deadlock detection, and instrumentation) since its

maintenance is anyway much cheaper than operations on protected data.

Short-term locks are acquired for fractions of a second and rarely last longer than

several ��� instructions; they usually protect data structures in the shared

memory. Postgre��� manages such locks in a fully automated way.

Short-term locks typically offer very few modes and only basic infrastructure,

which may have no instrumentation at all.

Postgre��� supports various types of locks.1 Heavyweight locks (which are acquired

on relations and other objects) and row-level p. ���locks are considered long-term. Short-

term locks comprise various locks on memory structures p. ���. Besides, there is also a

distinct group of predicate locks p. ���, which, despite their name, are not locks at all.

12.2 Heavyweight Locks

Heavyweight locks are long-term ones. Acquired at the object level, they are mainly

used for relations, but can also be applied to some other types of objects. Heavy-

weight locks typically protect objects from concurrent updates or forbid their usage

during restructuring, but they can address other needs too. Such a vague definition

is deliberate: locks of this type are used for all kinds of purposes. The only thing

they have in common is their internal structure.

Unless explicitly specified otherwise, the term lock usually implies a heavyweight

lock.

1 backend/storage/lmgr/README
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Heavyweight locks are located in the server’s sharedmemory1 and can be displayed

in the pg_locks view. Their total number is limited by the64 max_locks_per_transaction

value multiplied by100 max_connections.

All transactions use a common pool of locks, so one transaction can acquire more

thanmax_locks_per_transaction locks. What really matters is that the total number

of locks in the systemdoes not exceed the defined limit. Since the pool is initialized

when the server is launched, changing any of these two parameters will require a

server restart.

If a resource is already locked in an incompatible mode, the process trying to ac-

quire another lock joins the queue. Waiting processes do not waste ��� time: they

fall asleep until the lock is released and the operating system wakes them up.

Two transactions can find themselves in a deadlockp. ��� if the first transaction is unable

to continue its operation until it gets a resource locked by the other transaction,

which, in its turn, needs a resource locked by the first transaction. This case is

rather simple; a deadlock can also involve more than two transactions. Since dead-

locks cause infinite waits, Postgre��� detects them automatically and aborts one

of the affected transactions to ensure that normal operation can continue.

Different types of heavyweight locks serve different purposes, protect different re-

sources, and support different modes, so we will consider them separately.

The following list provides the names of lock types as they appear in the locktype

column of the pg_locks view:

transactionid and virtualxid —a lockp. ��� on a transaction ��

relation —a relation-level lockp. ���

tuple —a lock acquired on a tuplep. ���

object —a lock on an objectp. ��� that is not a relation

extend —a relation extension lockp. ���

page —a page-level lockp. ��� used by some index types

advisory —an advisory lockp. ���

1 backend/storage/lmgr/lock.c
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Almost all heavyweight locks are acquired automatically as needed and are re-

leased automatically when the corresponding transaction completes. There are

some exceptions though: for example, a relation-level lock can be set explicitly,

while advisory locks are always managed by users.

12.3 Locks on Transaction IDs

Each transaction always holds an exclusive lock on its own �� (both virtual p. ��and real,

if available).

Postgre��� offers two locking modes for this purpose, exclusive and shared. Their

compatibility matrix is very simple: the shared mode is compatible with itself,

while the exclusive mode cannot be combined with any mode.

Shared Exclusive

Shared ×

Exclusive × ×

To track completion of a particular transaction, a process can request a lock on

this transaction’s ��, in any mode. Since the transaction itself is already holding

an exclusive lock on its own ��, another lock is impossible to acquire. The process

requesting this lock joins the queue and falls asleep. Once the transaction com-

pletes, the lock is released, and the queued process wakes up. Clearly, it will not

manage to acquire the lock because the corresponding resource has already disap-

peared, but this lock is not what is actually needed anyway.

Let’s start a transaction in a separate session and get the process �� (���) of the

backend:

=> BEGIN;

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

28991

(1 row)

The started transaction holds an exclusive lock on its own virtual ��:
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=> SELECT locktype, virtualxid, mode, granted

FROM pg_locks WHERE pid = 28991;

locktype | virtualxid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

virtualxid | 5/2 | ExclusiveLock | t

(1 row)

Here locktype is the type of the lock, virtualxid is the virtual transaction �� (which

identifies the locked resource), and mode is the locking mode (exclusive in this

case). The granted flag shows whether the requested lock has been acquired.

Once the transaction gets a real ��, the corresponding lock is added to this list:

=> SELECT pg_current_xact_id();

pg_current_xact_id

−−−−−−−−−−−−−−−−−−−−

134971

(1 row)

=> SELECT locktype, virtualxid, transactionid AS xid, mode, granted

FROM pg_locks WHERE pid = 28991;

locktype | virtualxid | xid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

virtualxid | 5/2 | | ExclusiveLock | t

transactionid | | 134971 | ExclusiveLock | t

(2 rows)

Now this transaction holds exclusive locks on both its ��s.

12.4 Relation-Level Locks

Postgre��� provides as many as eight modes in which a relation (a table, an index,

or any other object) can be locked.1 Such a variety allows you to maximize the

number of concurrent commands that can be run on a relation.

The next page shows the compatibility matrix extended with examples of com-

mands that require the corresponding locking modes. There is no point in mem-

orizing all these modes or trying to find the logic behind their naming, but it is

1 postgresql.org/docs/14/explicit-locking#LOCKING-TABLES.html
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definitely useful to look through this data, draw some general conclusions, and

refer to this table as required.

AS RS RE SUE S SRE E AE

Access Share × SELECT

Row Share × × SELECT FOR UPDATE/SHARE

Row Exclusive × × × × INSERT, UPDATE, DELETE

Share Update Exclusive × × × × × VACUUM, CREATE INDEX CONCURRENTLY

Share × × × × × CREATE INDEX

Share Row Exclusive × × × × × × CREATE TRIGGER

Exclusive × × × × × × × REFRESH MAT. VIEW CONCURRENTLY

Access Exclusive × × × × × × × × DROP, TRUNCATE, VACUUM FULL,

LOCK TABLE, REFRESH MAT. VIEW

The Access Share mode is the weakest one; it can be used with any other mode

except Access Exclusive, which is incompatible with all the modes. Thus, a ������

command can be run in parallel with almost any operation, but it does not let you

drop a table that is being queried.

The first four modes allow concurrent heap modifications, while the other four do

not. For example, the ������ ����� command uses the Share mode, which is com-

patible with itself (so you can create several indexes on a table concurrently) and

with the modes used by read-only operations. As a result, ������ commands can

run in parallel, while ������, ������, and ������ commands will be blocked.

Conversely, unfinished transactions that modify heap data block the ������ �����

command. Instead, you can call ������ ����� ������������, which uses a weaker

Share Update Exclusivemode: it takes longer to create an index (and this operation

can even fail), but in return, concurrent data updates are allowed.

The ����� ����� command has multiple flavors that use different locking modes

(Share Update Exclusive, Share Row Exclusive, Access Exclusive). All of them are

described in the documentation.1

1 postgresql.org/docs/14/sql-altertable.html
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Examples in this part of the book rely on the accounts table again:

=> TRUNCATE accounts;

=> INSERT INTO accounts(id, client, amount)

VALUES

(1, 'alice', 100.00),

(2, 'bob', 200.00),

(3, 'charlie', 300.00);

Wewill have to access the pg_locks table more than once, so let’s create a view that

shows all ��s in a single column, thus making the output more concise:

=> CREATE VIEW locks AS

SELECT pid,

locktype,

CASE locktype

WHEN 'relation' THEN relation::regclass::text

WHEN 'transactionid' THEN transactionid::text

WHEN 'virtualxid' THEN virtualxid

END AS lockid,

mode,

granted

FROM pg_locks

ORDER BY 1, 2, 3;

The transaction that is still running in the first session updates a row. This opera-

tion locks the accounts table and all its indexes, which results in two new locks of

the relation type acquired in the Row Exclusivemode:

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 28991;

locktype | lockid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | RowExclusiveLock | t

relation | accounts_pkey | RowExclusiveLock | t

transactionid | 134971 | ExclusiveLock | t

virtualxid | 5/2 | ExclusiveLock | t

(4 rows)
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12.5 Wait Queue

Heavyweight locks form a fair wait queue.1 Aprocess joins the queue if it attempts

to acquire a lock that is incompatible either with the current lock or with the locks

requested by other processes already in the queue.

While the first session is working on an update, let’s try to create an index on this

table in another session:

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29470

(1 row)

=> CREATE INDEX ON accounts(client);

The command hangs, waiting for the resource to be released. The transaction tries

to lock the table in the Sharemode but cannot do it:

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29470;

locktype | lockid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | ShareLock | f

virtualxid | 6/3 | ExclusiveLock | t

(2 rows)

Now let the third session start the ������ ���� command. It will also join the queue

because it requires the Access Exclusive mode, which conflicts with all the other

modes:

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29673

(1 row)

=> VACUUM FULL accounts;

1 backend/storage/lmgr/lock.c, LockAcquire function
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=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29673;

locktype | lockid | mode | granted

−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | AccessExclusiveLock | f

transactionid | 134975 | ExclusiveLock | t

virtualxid | 7/4 | ExclusiveLock | t

(3 rows)

All the subsequent contenders will now have to join the queue, regardless of their

locking mode. Even simple ������ queries will honestly follow ������ ����, al-

though they are compatible with the Row Exclusive lock held by the first session

performing an update.

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

29883

(1 row)

=> SELECT * FROM accounts;

=> SELECT locktype, lockid, mode, granted

FROM locks WHERE pid = 29883;

locktype | lockid | mode | granted

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−

relation | accounts | AccessShareLock | f

virtualxid | 8/3 | ExclusiveLock | t

(2 rows)

T1

UPDATE

relationT2

CREATE INDEX
T3

VACUUM FULL
T4

SELECT
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The v. �.�pg_blocking_pids function gives a high-level overview of all waits. It shows

the ��s of all processes queued before the specified one that are already holding or

would like to acquire an incompatible lock:

=> SELECT pid,

pg_blocking_pids(pid),

wait_event_type,

state,

left(query,50) AS query

FROM pg_stat_activity

WHERE pid IN (28991,29470,29673,29883) \gx

−[ RECORD 1 ]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pid | 28991

pg_blocking_pids | {}

wait_event_type | Client

state | idle in transaction

query | UPDATE accounts SET amount = amount + 100.00 WHERE

−[ RECORD 2 ]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pid | 29470

pg_blocking_pids | {28991}

wait_event_type | Lock

state | active

query | CREATE INDEX ON accounts(client);

−[ RECORD 3 ]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pid | 29673

pg_blocking_pids | {28991,29470}

wait_event_type | Lock

state | active

query | VACUUM FULL accounts;

−[ RECORD 4 ]−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pid | 29883

pg_blocking_pids | {29673}

wait_event_type | Lock

state | active

query | SELECT * FROM accounts;

To getmore details, you can review the information provided in the pg_locks table.1

Once the transaction is completed (either committed or aborted), all its locks are

released.2 The first process in the queue gets the requested lock and wakes up.

1 wiki.postgresql.org/wiki/Lock_dependency_information
2 backend/storage/lmgr/lock.c, LockReleaseAll & LockRelease functions
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Here the transaction commit in the first session leads to sequential execution of

all the queued processes:

=> ROLLBACK;

ROLLBACK

CREATE INDEX

VACUUM

id | client | amount

−−−−+−−−−−−−−−+−−−−−−−−

1 | alice | 100.00

2 | bob | 200.00

3 | charlie | 300.00

(3 rows)
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Row-Level Locks

13.1 Lock Design

Thanks to snapshot isolation, heap tuples do not have to be locked for reading.

However, two write transactions must not be allowed to modify one and the same

row at the same time. Rows must be locked in this case, but heavyweight locks are

not a very good choice for this purpose: each of them takes space in the server’s

shared memory (hundreds of bytes, not to mention all the supporting infrastruc-

ture), and Postgre��� internalmechanisms are not designed to handle a huge num-

ber of concurrent heavyweight locks.

Some database systems solve this problem by lock escalation: if row-level locks are

too many, they are replaced by a single lock of finer granularity (for example, by a

page-level or table-level lock). It simplifies the implementation, but can greatly

limit system throughput.

In Postgre���, the information on whether a particular row is locked is kept only

in the header of its current heap tuple. Row-level locks are virtually attributes in

heap pages rather than actual locks, and they are not reflected in ��� in any way.

A row is typically locked when it is being updated or deleted. p. ��In both cases, the

current version of the row is marked as deleted. The attribute used for this pur-

pose is the current transaction’s �� specified in the xmax field, and it is the same

�� (combined with additional hint bits) that indicates that the row is locked. If a

transaction wants to modify a row but sees an active transaction �� in the xmax

field of its current version, it has to wait for this transaction to complete. Once it

is over, all the locks are released, and the waiting transaction can proceed.

This mechanism allows locking as many rows as required at no extra cost.
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The downside of this solution is that other processes cannot form a queue, as ���

contains no information about such locks. Therefore, heavyweight locks are still

required: a process waiting for a row to be released requests a lock on the �� of the

transaction currently busy with this row. Once the transaction completes, the row

becomes available again. Thus, the number of heavyweight locks is proportional

to the number of concurrent processes rather than rows being modified.

13.2 Row-Level Locking Modes

Row-level locks support four modes.1 Two of them implement exclusive locks that

can be acquired by only one transaction at a time, while the other two provide

shared locks that can be held by several transactions simultaneously.

Here is the compatibility matrix of these modes:

Key Share Share
No Key

Update
Update

Key Share ×

Share × ×

No Key Update × × ×

Update × × × ×

Exclusive Modes

The Update mode allows modifying any tuple fields and even deleting the whole

tuple, while the No Key Update mode permits only those changes that do not in-

volve any fields related to unique indexes (in other words, foreign keys must not

be affected).

The ������ command automatically chooses the weakest locking mode possible;

keys usually remain unchanged, so rows are typically locked in the No Key Update

mode.

1 postgresql.org/docs/14/explicit-locking#LOCKING-ROWS.html
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Let’s create a function that uses pageinspect to display some tuple metadata that

we are interested in, namely the xmax field and several hint bits:

=> CREATE FUNCTION row_locks(relname text, pageno integer)

RETURNS TABLE(

ctid tid, xmax text,

lock_only text, is_multi text,

keys_upd text, keyshr text,

shr text

)

AS $$

SELECT (pageno,lp)::text::tid,

t_xmax,

CASE WHEN t_infomask & 128 = 128 THEN 't' END,

CASE WHEN t_infomask & 4096 = 4096 THEN 't' END,

CASE WHEN t_infomask2 & 8192 = 8192 THEN 't' END,

CASE WHEN t_infomask & 16 = 16 THEN 't' END,

CASE WHEN t_infomask & 16+64 = 16+64 THEN 't' END

FROM heap_page_items(get_raw_page(relname,pageno))

ORDER BY lp;

$$ LANGUAGE sql;

Now start a transaction on the accounts table to update the balance of the first

account (the key remains the same) and the �� of the second account (the key gets

updated):

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> UPDATE accounts SET id = 20 WHERE id = 2;

The page now contains the following metadata:

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 134980 | | | | |

(0,2) | 134980 | | | t | |

(2 rows)

The locking mode is defined by the keys_updated hint bit.

=> ROLLBACK;
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The ������ ��� command uses the same xmax field as a locking attribute, but in

this case the xmax_lock_only hint bit must also be set. This bit indicates that the

tuple is locked but not deleted, which means that it is still current:

=> BEGIN;

=> SELECT * FROM accounts WHERE id = 1 FOR NO KEY UPDATE;

=> SELECT * FROM accounts WHERE id = 2 FOR UPDATE;

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 134981 | t | | | |

(0,2) | 134981 | t | | t | |

(2 rows)

=> ROLLBACK;

Shared Modes

The Share mode can be applied when a row needs to be read, but its modification

by another transaction must be forbidden. The Key Share mode allows updating

any tuple fields except key attributes.

Of all the shared modes, the Postgre��� core uses only Key Share, which is applied

when foreign keys are being checked. Since it is compatible with the No Key Update

exclusive mode, foreign key checks do not interfere with concurrent updates of

non-key attributes. As for applications, they can use any shared modes they like.

Let me stress once again that simple ������ commands never use row-level locks.

=> BEGIN;

=> SELECT * FROM accounts WHERE id = 1 FOR KEY SHARE;

=> SELECT * FROM accounts WHERE id = 2 FOR SHARE;

Here is what we see in the heap tuples:

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 134982 | t | | | t |

(0,2) | 134982 | t | | | t | t

(2 rows)
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The xmax_keyshr_lock bit is set for both operations, but you can recognize the Share

mode by other hint bits.1

13.3 Multitransactions

As we have seen, the locking attribute is represented by the xmax field, which is set

to the �� of the transaction that has acquired the lock. So how is this attribute set

for a shared lock held by several transactions at a time?

When dealing with shared locks, Postgre��� applies so-called multitransactions

(multixacts).2 Amultitransaction is a group of transactions that is assigned a sepa-

rate ��. Detailed information on group members and their locking modes is stored

in files under the ������/pg_multixact directory. For faster access, locked pages are

cached in the shared memory of the server;3 all changes are logged to ensure fault

tolerance.

Multixact ��s have the same ��-bit length as regular transaction ��s, but they are

issued independently. It means that transactions and multitransactions can po-

tentially have the same ��s. To differentiate between the two, Postgre��� uses an

additional hint bit: xmax_is_multi.

Let’s add one more exclusive lock acquired by another transaction (Key Share and

No Key Updatemodes are compatible):

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT * FROM row_locks('accounts',0) LIMIT 2;

ctid | xmax | lock_only | is_multi | keys_upd | keyshr | shr

−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−

(0,1) | 1 | | t | | |

(0,2) | 134982 | t | | | t | t

(2 rows)

1 include/access/htup_details.h
2 backend/access/transam/multixact.c
3 backend/access/transam/slru.c

239

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/htup_details.h;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/multixact.c;hb=REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/transam/slru.c;hb=REL_14_STABLE


Chapter 13 Row-Level Locks

The xmax_is_multi bit shows that the first row uses a multitransaction �� instead

of a regular one.

Without going into further implementation details, let’s display the information

on all the possible row-level locks using the pgrowlocks extension:

=> CREATE EXTENSION pgrowlocks;

=> SELECT * FROM pgrowlocks('accounts') \gx

−[ RECORD 1 ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

locked_row | (0,1)

locker | 1

multi | t

xids | {134982,134983}

modes | {"Key Share","No Key Update"}

pids | {30434,30734}

−[ RECORD 2 ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

locked_row | (0,2)

locker | 134982

multi | f

xids | {134982}

modes | {"For Share"}

pids | {30434}

It looks a lot like querying the pg_locks view, but the pgrowlocks function has to

access heap pages, as ��� contains no information on row-level locks.

=> COMMIT;

=> ROLLBACK;

Since multixact ��s are ��-bit, they are subject to wraparoundp. ��� because of counter

limits, just like regular transaction ��s. Therefore, Postgre��� has to process mul-

tixact ��s in a way similar to freezing: oldmultixact ��s are replaced with new ones

(or with a regular transaction �� if only one transaction is holding the lock by that

time).1

But while regular transaction ��s are frozen only in the xmin field (as a non-empty

xmax indicates that the tuple is outdated and will soon be removed), it is the xmax

field that has to be frozen for multitransactions: the current row version may be

repeatedly locked by new transactions in a shared mode.

1 backend/access/heap/heapam.c, FreezeMultiXactId function
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Freezing of multitransactions can be managed by server parameters, which are

similar to those provided for regular freezing: vacuum_multixact_freeze_min_age,

vacuum_multixact_freeze_table_age, autovacuum_multixact_freeze_max_age, as well

as vacuum_multixact_failsafe_age v. ��.

13.4 Wait Queue

Exclusive Modes

Since a row-level lock is just an attribute, the queue is arranged in a not-so-trivial

way. When a transaction is about to modify a row, it has to follow these steps:1

� If the xmax field and the hint bits indicate that the row is locked in an incom-

patible mode, acquire an exclusive heavyweight lock on the tuple that is being

modified.

� If necessary, wait until all the incompatible locks are released by requesting a

lock on the �� of the xmax transaction (or several transactions if xmax contains

a mutixact ��).

� Write its own �� into xmax in the tuple header and set the required hint bits.

� Release the tuple lock if it was acquired in the first step.

A tuple lock is yet another kind of heavyweight locks, which has the tuple type (not

to be confused with a regular row-level lock).

It may seem that steps � and � are redundant and it is enough to simply wait until

all the locking transactions are over. However, if several transactions are trying

to update one and the same row, all of them will be waiting on the transaction

currently processing this row. Once it completes, theywill find themselves in a race

condition for the right to lock the row, and some “unlucky” transactions may have

to wait for an indefinitely long time. Such a situation is called resource starvation.

A tuple lock identifies the first transaction in the queue and guarantees that it will

be the next one to get the lock.

1 backend/access/heap/README.tuplock
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But you can see it for yourself. Since Postgre��� acquires many different locks

during its operation, and each of them is reflected in a separate row in the pg_locks

table, I am going to create yet another view on top of pg_locks. It will show this

information in a more concise form, keeping only those locks that we are currently

interested in (the ones related to the accounts table and to the transaction itself,

except for any locks on virtual ��s):

=> CREATE VIEW locks_accounts AS

SELECT pid,

locktype,

CASE locktype

WHEN 'relation' THEN relation::regclass::text

WHEN 'transactionid' THEN transactionid::text

WHEN 'tuple' THEN relation::regclass||'('||page||','||tuple||')'

END AS lockid,

mode,

granted

FROM pg_locks

WHERE locktype in ('relation','transactionid','tuple')

AND (locktype != 'relation' OR relation = 'accounts'::regclass)

ORDER BY 1, 2, 3;

Let’s start the first transaction and update a row:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

134985 | 30734

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

The transaction has completed all the four steps of theworkflowand is nowholding

a lock on the table:

=> SELECT * FROM locks_accounts WHERE pid = 30734;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30734 | relation | accounts | RowExclusiveLock | t

30734 | transactionid | 134985 | ExclusiveLock | t

(2 rows)

Start the second transaction and try to update the same row. The transaction will

hang, waiting on a lock:
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=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

134986 | 30805

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

T1

No Key Update

T2

tuple (0,1)

ctid xmin xmax data(0,1)
T1

The second transaction only gets as far as the second step. For this reason, apart

from locking the table and its own ��, it adds two more locks, which are also re-

flected in the pg_locks view: the tuple lock acquired at the first step and the lock of

the �� of the second transaction requested at the second step:

=> SELECT * FROM locks_accounts WHERE pid = 30805;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30805 | relation | accounts | RowExclusiveLock | t

30805 | transactionid | 134985 | ShareLock | f

30805 | transactionid | 134986 | ExclusiveLock | t

30805 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

The third transaction will get stuck on the first step. It will try to acquire a lock on

the tuple and will stop at this point:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

134987 | 30876

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;
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=> SELECT * FROM locks_accounts WHERE pid = 30876;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30876 | relation | accounts | RowExclusiveLock | t

30876 | transactionid | 134987 | ExclusiveLock | t

30876 | tuple | accounts(0,1) | ExclusiveLock | f

(3 rows)

The fourth and all the subsequent transactions trying to update this row will not

differ from the third transaction in this respect: all of them will be waiting on the

same tuple lock.

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

134988 | 30947

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

=> SELECT * FROM locks_accounts WHERE pid = 30876;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30876 | relation | accounts | RowExclusiveLock | t

30876 | transactionid | 134987 | ExclusiveLock | t

30876 | tuple | accounts(0,1) | ExclusiveLock | f

(3 rows)

T1

No Key Update

T2

tuple (0,1)T3

T4

ctid xmin xmax data(0,1)
T1

To get the full picture of the current waits, you can extend the pg_stat_activity view

with the information on locking processes:
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=> SELECT pid,

wait_event_type,

wait_event,

pg_blocking_pids(pid)

FROM pg_stat_activity

WHERE pid IN (30734,30805,30876,30947);

pid | wait_event_type | wait_event | pg_blocking_pids

−−−−−−−+−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−

30734 | Client | ClientRead | {}

30805 | Lock | transactionid | {30734}

30876 | Lock | tuple | {30805}

30947 | Lock | tuple | {30805,30876}

(4 rows)

If the first transaction is aborted, everything will work as expected: all the subse-

quent transactions will move one step further without jumping the queue.

And yet it is more likely that the first transaction will be committed. At the Repeat-

able Read or Serializable isolation levels, it would result in a serialization failure,

so the second transaction would have to be aborted1 (and all the subsequent trans-

actions in the queue would get aborted too). But at the Read Committed isolation

level the modified row will be re-read, and its update will be retried.

So, the first transaction is committed:

=> COMMIT;

The second transaction wakes up and successfully completes the third and the

fourth steps of the workflow:

UPDATE 1

=> SELECT * FROM locks_accounts WHERE pid = 30805;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30805 | relation | accounts | RowExclusiveLock | t

30805 | transactionid | 134986 | ExclusiveLock | t

(2 rows)

As soon as the second transaction releases the tuple lock, the third one also wakes

up, but it sees that the xmax field of the new tuple contains a different �� already.

1 backend/executor/nodeModifyTable.c, ExecUpdate function
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At this point, the above workflow is over. At the Read Committed isolation level,

onemore attempt to lock the row is performed,1 but it does not follow the outlined

steps. The third transaction is nowwaiting for the second one to complete without

trying to acquire a tuple lock:

=> SELECT * FROM locks_accounts WHERE pid = 30876;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30876 | relation | accounts | RowExclusiveLock | t

30876 | transactionid | 134986 | ShareLock | f

30876 | transactionid | 134987 | ExclusiveLock | t

(3 rows)

The fourth transaction does the same:

=> SELECT * FROM locks_accounts WHERE pid = 30947;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30947 | relation | accounts | RowExclusiveLock | t

30947 | transactionid | 134986 | ShareLock | f

30947 | transactionid | 134988 | ExclusiveLock | t

(3 rows)

Now both the third and the fourth transactions are waiting for the second one to

complete, risking to get into a race condition. The queue has virtually fallen apart.

T2

No Key Update

T3
T4

ctid xmin xmax data(0,1)
T1

(0,2) T1 T2

If other transactions had joined the queue while it still existed, all of them would

have been dragged into this race.

1 backend/access/heap/heapam_handler.c, heapam_tuple_lock function
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Conclusion: it is not a good idea to update one and the same table row in mul-

tiple concurrent processes. Under high load, this hotspot can quickly turn into a

bottleneck that causes performance issues.

Let’s commit all the started transactions.

=> COMMIT;

UPDATE 1

=> COMMIT;

UPDATE 1

=> COMMIT;

Shared Modes

Postgre��� acquires shared locks only for referential integrity checks. Using them

in a high-load application can lead to resource starvation, and a two-level locking

model cannot prevent such an outcome.

Let’s recall the steps a transaction should take to lock a row:

� If the xmax field and hint bits indicate that the row is locked in the exclusive

mode, acquire an exclusive heavyweight tuple lock.

� If required, wait for all the incompatible locks to be released by requesting a

lock on the �� of the xmax transaction (or several transactions if xmax contains

a multixact ��).

� Write its own �� into xmax in the tuple header and set the required hint bits.

� Release the tuple lock if it was acquired in the first step.

The first two steps imply that if the locking modes are compatible, the transaction

will jump the queue.

Let’s repeat our experiment from the very beginning.

=> TRUNCATE accounts;
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=> INSERT INTO accounts(id, client, amount)

VALUES

(1,'alice',100.00),

(2,'bob',200.00),

(3,'charlie',300.00);

Start the first transaction:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

134991 | 30734

(1 row)

The row is now locked in a shared mode:

=> SELECT * FROM accounts WHERE id = 1 FOR SHARE;

The second transaction tries to update the same row, but it is not allowed: Share

and No Key Updatemodes are incompatible:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

134992 | 30805

(1 row)

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;

Waiting for the first transaction to complete, the second transaction is holding the

tuple lock, just like in the previous example:

=> SELECT * FROM locks_accounts WHERE pid = 30805;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30805 | relation | accounts | RowExclusiveLock | t

30805 | transactionid | 134991 | ShareLock | f

30805 | transactionid | 134992 | ExclusiveLock | t

30805 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)
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T1

Share

T2

tuple (0,1)

ctid xmin xmax data(0,1)
T1

Now let the third transaction lock the row in a shared mode. Such a lock is com-

patible with the already acquired lock, so this transaction jumps the queue:

=> BEGIN;

=> SELECT txid_current(), pg_backend_pid();

txid_current | pg_backend_pid

−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−

134993 | 30876

(1 row)

=> SELECT * FROM accounts WHERE id = 1 FOR SHARE;

We have got two transactions locking the same row:

=> SELECT * FROM pgrowlocks('accounts') \gx

−[ RECORD 1 ]−−−−−−−−−−−−−−−

locked_row | (0,1)

locker | 2

multi | t

xids | {134991,134993}

modes | {Share,Share}

pids | {30734,30876}

T1
T3

Share

T2

tuple (0,1)

ctid xmin xmax data(0,1)
multi
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If the first transaction completes at this point, the second one will wake up to see

that the row is still locked and will get back to the queue—but this time it will find

itself behind the third transaction:

=> COMMIT;

=> SELECT * FROM locks_accounts WHERE pid = 30805;

pid | locktype | lockid | mode | granted

−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−

30805 | relation | accounts | RowExclusiveLock | t

30805 | transactionid | 134992 | ExclusiveLock | t

30805 | transactionid | 134993 | ShareLock | f

30805 | tuple | accounts(0,1) | ExclusiveLock | t

(4 rows)

And only when the third transaction completes will the second one be able to per-

form an update (unless other shared locks appear within this time interval).

=> COMMIT;

UPDATE 1

=> COMMIT;

Foreign key checks are unlikely to cause any issues, as key attributes usually remain

unchanged and Key Share can be used together with No Key Update. But in most

cases, you should avoid shared row-level locks in applications.

13.5 No-Wait Locks

S�� commands usually wait for the requested resources to be freed. But sometimes

it makes sense to cancel the operation if the lock cannot be acquired immediately.

For this purpose, commands like ������, ����, and ����� offer the ������ clause.

Let’s lock a row:

=> BEGIN;

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 1;
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The command with the ������ clause immediately completes with an error if the

requested resource is locked:

=> SELECT * FROM accounts

FOR UPDATE NOWAIT;

ERROR: could not obtain lock on row in relation "accounts"

Such an error can be captured and handled by the application code.

The ������ and ������ commands do not have the ������ clause. Instead, you can

try to lock the row using the ������ ��� ������ ������ command and then update

or delete it if the attempt is successful.

In some rare cases, it may be convenient to skip the already locked rows and start

processing the available ones right away. This is exactly what ������ ��� does when

run with the ���� ������ clause:

=> SELECT * FROM accounts

ORDER BY id

FOR UPDATE SKIP LOCKED

LIMIT 1;

id | client | amount

−−−−+−−−−−−−−+−−−−−−−−

2 | bob | 200.00

(1 row)

In this example, the first (already locked) row was skipped, and the query locked

and returned the second row.

This approach enables us to process rows in batches p. ���or set up parallel processing of

event queues. However, avoid inventing other use cases for this command—most

tasks can be addressed using much simpler methods.

Last but not least, you can avoid long waits by setting a timeout:

=> SET lock_timeout = '1s';

=> ALTER TABLE accounts DROP COLUMN amount;

ERROR: canceling statement due to lock timeout

The command completes with an error because it has failed to acquire a lock within

one second. A timeout can be set not only at the session level, but also at lower

levels, for example, for a particular transaction.
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This method prevents long waits during table processing when the command re-

quiring an exclusive lock is executed under load. If an error occurs, this command

can be retried after a while.

While statement_timeout limits the total time of operator execution, the lock_timeout pa-

rameter defines the maximum time that can be spent waiting on a lock.

=> ROLLBACK;

13.6 Deadlocks

A transaction may sometimes require a resource that is currently being used by

another transaction, which, in its turn, may be waiting on a resource locked by

the third transaction, and so on. Such transactions get queued using heavyweight

locks.

But occasionally a transaction already in the queuemay need yet another resource,

so it has to join the same queue again and wait for this resource to be released.

A deadlock1 occurs: the queue now has a circular dependency that cannot resolve

on its own.

For better visualization, let’s draw a wait-for graph. Its nodes represent active pro-

cesses, while the edges shown as arrows point from the processes waiting on locks

to the processes holding these locks. If the graph has a cycle, that is, a node can

reach itself following the arrows, it means that a deadlock has occurred.

The illustrations here show transactions rather than processes. This substitution is usually

acceptable because one transaction is executed by one process, and locks can only be

acquired within a transaction. But in general, it is more correct to talk about processes, as

some locks may not be released right away when the transaction is complete.

If a deadlock has occurred, and none of its participants has set a timeout, transac-

tions will be waiting on each other forever. That’s why the lock manager2 performs

automatic deadlock detection.

However, this check requires some effort, which should not be wasted each time a

lock is requested (after all, deadlocks do not happen too often). So if the process

1 postgresql.org/docs/14/explicit-locking#LOCKING-DEADLOCKS.html
2 backend/storage/lmgr/README
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T1

resource 1

T2

resource 2

T3

resource 3

makes an unsuccessful attempt to acquire a lock and falls asleep after joining the

queue, Postgre��� automatically sets a timeout as defined by the 1sdeadlock_timeout

parameter.1 If the resource becomes available earlier—great, then the extra cost

of the check will be avoided. But if the wait continues after the deadlock_timeout

units of time, the waiting process wakes up and initiates the check.2

This check effectively consists in building a wait-for graph and searching it for cy-

cles.3 To “freeze” the current state of the graph, Postgre��� stops any processing

of heavyweight locks for the whole duration of the check.

If no deadlocks are detected, the process falls asleep again; sooner or later its turn

will come.

If a deadlock is detected, one of the transactions will be forced to terminate, thus

releasing its locks and enabling other transactions to continue their execution. In

most cases, it is the transaction initiating the check that gets interrupted, but if

the cycle includes an autovacuum process that is not currently freezing tuples to

prevent wraparound, the server terminates autovacuum as having lower priority.

Deadlocks usually indicate bad application design. To discover such situations, you

have two things to watch out for: the server log will contain the corresponding

messages, and the deadlocks value in the pg_stat_database table will be increasing.

1 backend/storage/lmgr/proc.c, ProcSleep function
2 backend/storage/lmgr/proc.c, CheckDeadLock function
3 backend/storage/lmgr/deadlock.c
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Deadlocks by Row Updates

Although deadlocks are ultimately caused by heavyweight locks, it is mostly row-

level locks acquired in different order that lead to them.

Suppose a transaction is going to transfer $��� between two accounts. It starts by

drawing this sum from the first account:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 100.00 WHERE id = 1;

UPDATE 1

At the same time, another transaction is going to transfer $�� from the second

account to the first one. It begins by drawing this sum from the second account:

=> BEGIN;

=> UPDATE accounts SET amount = amount - 10.00 WHERE id = 2;

UPDATE 1

Now the first transaction attempts to increase the amount in the second account

but sees that the corresponding row is locked:

=> UPDATE accounts SET amount = amount + 100.00 WHERE id = 2;

Then the second transaction tries to update the first account but also gets locked:

=> UPDATE accounts SET amount = amount + 10.00 WHERE id = 1;

This circular wait will never resolve on its own. Unable to obtain the resource

within one second, the first transaction initiates a deadlock check and gets aborted

by the server:

ERROR: deadlock detected

DETAIL: Process 30434 waits for ShareLock on transaction 134999;

blocked by process 30734.

Process 30734 waits for ShareLock on transaction 134998; blocked by

process 30434.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,2) in relation "accounts"

Now the second transaction can continue. It wakes up and performs an update:
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UPDATE 1

Let’s complete the transactions.

=> ROLLBACK;

=> ROLLBACK;

The right way to perform such operations is to lock resources in the same order. For

example, in this particular case the accounts could have been locked in ascending

order based on their numbers.

Deadlocks Between Two UPDATE Statements

In some cases deadlocks seem impossible, and yet they do occur.

We usually assume that ��� commands are atomic, but is it really so? Let’s take a

closer look at ������: this command locks rows as they are being updated rather

than all at once, and it does not happen simultaneously. So if one ������ command

modifies several rows in one order while the other is doing the same in a different

order, a deadlock can occur.

Let’s reproduce this scenario. First, we are going to build an index on the amount

column, in descending order:

=> CREATE INDEX ON accounts(amount DESC);

To be able to observe the process, we can write a function that slows things down:

=> CREATE FUNCTION inc_slow(n numeric)

RETURNS numeric

AS $$

SELECT pg_sleep(1);

SELECT n + 100.00;

$$ LANGUAGE sql;

The first ������ command is going to update all the tuples. The execution plan

relies on a sequential scan of the whole table.
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=> EXPLAIN (costs off)

UPDATE accounts SET amount = inc_slow(amount);

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−

Update on accounts

−> Seq Scan on accounts

(2 rows)

To make sure that the heap page stores the rows in ascending order based on the

amount column, we have to truncate the table and insert the rows anew:

=> TRUNCATE accounts;

=> INSERT INTO accounts(id, client, amount)

VALUES

(1,'alice',100.00),

(2,'bob',200.00),

(3,'charlie',300.00);

=> ANALYZE accounts;

=> SELECT ctid, * FROM accounts;

ctid | id | client | amount

−−−−−−−+−−−−+−−−−−−−−−+−−−−−−−−

(0,1) | 1 | alice | 100.00

(0,2) | 2 | bob | 200.00

(0,3) | 3 | charlie | 300.00

(3 rows)

The sequential scan will update the rows in the same order (it is not always true

for large tablesp. ��� though).

Let’s start the update:

=> UPDATE accounts SET amount = inc_slow(amount);

Meanwhile, we are going to forbid sequential scans in another session:

=> SET enable_seqscan = off;

As a result, the planner chooses an index scan for the next ������ command.

=> EXPLAIN (costs off)

UPDATE accounts SET amount = inc_slow(amount)

WHERE amount > 100.00;
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QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Update on accounts

−> Index Scan using accounts_amount_idx on accounts

Index Cond: (amount > 100.00)

(3 rows)

The second and third rows satisfy the condition; since the index is descending, the

rows will get updated in the reverse order.

Let’s start the next update:

=> UPDATE accounts SET amount = inc_slow(amount)

WHERE amount > 100.00;

The pgrowlocks extension shows that the first operator has already updated the

first row (�,�), while the second one has managed to update the last row (�,�):

=> SELECT locked_row, locker, modes FROM pgrowlocks('accounts');

locked_row | locker | modes

−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−

(0,1) | 135005 | {"No Key Update"}

(0,3) | 135006 | {"No Key Update"}

(2 rows)

first
second

Another second passes. The first operator has updated the second row, and the

other one would like to do it too, but it is not allowed.

=> SELECT locked_row, locker, modes FROM pgrowlocks('accounts');

locked_row | locker | modes

−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−−−−−−−

(0,1) | 135005 | {"No Key Update"}

(0,2) | 135005 | {"No Key Update"}

(0,3) | 135006 | {"No Key Update"}

(3 rows)

the first one wins

Now the first operator would like to update the last table row, but it is already

locked by the second operator. A deadlock has occurred.

One of the transactions is aborted:
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ERROR: deadlock detected

DETAIL: Process 30805 waits for ShareLock on transaction 135005;

blocked by process 30734.

Process 30734 waits for ShareLock on transaction 135006; blocked by

process 30805.

HINT: See server log for query details.

CONTEXT: while updating tuple (0,2) in relation "accounts"

And the other completes its execution:

UPDATE 3

Although such situations seem impossible, they do occur in high-load systems

when batch row updates are performed.
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14.1 Non-Object Locks

To lock a resource that is not considered a relation, Postgre��� uses heavyweight

locks of the object type.1 You can lock almost anything that is stored in the sys-

tem catalog: tablespaces, subscriptions, schemas, roles, policies, enumerated data

types, and so on.

Let’s start a transaction that creates a table:

=> BEGIN;

=> CREATE TABLE example(n integer);

Now take a look at non-relation locks in the pg_locks table:

=> SELECT database,

(

SELECT datname FROM pg_database WHERE oid = database

) AS dbname,

classid,

(

SELECT relname FROM pg_class WHERE oid = classid

) AS classname,

objid,

mode,

granted

FROM pg_locks

WHERE locktype = 'object'

AND pid = pg_backend_pid() \gx

1 backend/storage/lmgr/lmgr.c, LockDatabaseObject & LockSharedObject functions
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−[ RECORD 1 ]−−−−−−−−−−−−−−

database | 16391

dbname | internals

classid | 2615

classname | pg_namespace

objid | 2200

mode | AccessShareLock

granted | t

The locked resource is defined here by three values:

database — the oid of the database that contains the object being locked (or zero

if this object is common to the whole cluster)

classid — the oid listed in pg_class that corresponds to the name of the system

catalog table defining the type of the resource

objid — the oid listed in the system catalog table referenced by classid

The database value points to the internals database; it is the database to which the

current session is connected. The classid column points to the pg_namespace table,

which lists schemas.

Now we can decipher the objid:

=> SELECT nspname FROM pg_namespace WHERE oid = 2200;

nspname

−−−−−−−−−

public

(1 row)

Thus, Postgre��� has locked the public schema tomake sure that no one can delete

it while the transaction is still running.

Similarly, object deletion requires exclusive locks on both the object itself and all

the resources it depends on.1

=> ROLLBACK;

1 backend/catalog/dependency.c, performDeletion function
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14.2 Relation Extension Locks

As the number of tuples in a relation grows, Postgre��� inserts new tuples into free

space in the already available pages whenever possible. But it is clear that at some

point it will have to add new pages, that is, to extend the relation. In terms of the

physical layout, new pages get added to the end of the corresponding file (which,

in turn, can lead to creation of a new file).

For new pages to be added by only one process at a time, this operation is protected

by a special heavyweight lock of the extend type.1 Such a lock is also used by index

vacuuming to forbid adding new pages during an index scan.

Relation extension locks behave a bit differently from what we have seen so far:

• They are released as soon as the extension is created, without waiting for the

transaction to complete.

• They cannot cause a deadlock, so they are not included into the wait-for graph.

However, a deadlock check will still be performed if the procedure of extending a relation

is taking longer than deadlock_timeout. It is not a typical situation, but it can happen if a

large number of processes performmultiple insertions concurrently. In this case, the check

can be called multiple times, virtually paralyzing normal system operation.

To minimize this risk, heap files v. �.�are extended by several pages at once (in proportion to

the number of processes awaiting the lock, but not more than ��� pages per operation).2

An exception to this rule is �-tree index files, which are extended by one page at a time.3

14.3 Page Locks

Apage-level heavyweight lock of the page type4 is applied only by ��� indexes, and

only in the following case.

1 backend/storage/lmgr/lmgr.c, LockRelationForExtension function
2 backend/access/heap/hio.c, RelationAddExtraBlocks function
3 backend/access/nbtree/nbtpage.c, _bt_getbuf function
4 backend/storage/lmgr/lmgr.c, LockPage function
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G�� indexes can speed up search of elements in compound values, such as words in

text documents. They can be roughly described as �-trees that store separatewords

rather than the whole documents. When a new document is added, the index has

to be thoroughly updated to include each word that appears in this document.

To improve performance, ��� indexes allow deferred insertion, which can be en-

abled using theon fastupdate storage parameter. New words are first quickly added

into an unordered pending list, and after a while all the accumulated entries are

moved into the main index structure. Since different documents are likely to con-

tain duplicate words, this approach proves to be quite cost-effective.

To avoid concurrent transfer of words by several processes, the index metapage is

locked in the exclusive mode until all the words are moved from the pending list

to the main index. This lock does not interfere with regular index usage.

Just like relation extension locks, page locks are released immediately when the

task is complete,withoutwaiting for the end of the transaction, so they never cause

deadlocks.

14.4 Advisory Locks

Unlike other heavyweight locks (such as relation locks), advisory locks1 are never

acquired automatically: they are controlled by the application developer. These

locks are convenient to use if the application requires dedicated locking logic for

some particular purposes.

Supposewe need to lock a resource that does not correspond to any database object

(which we could lock using ������ ��� or ���� ����� commands). In this case, the

resource needs to be assigned a numeric ��. If the resource has a unique name, the

easiest way to do it is to generate a hash code for this name:

=> SELECT hashtext('resource1');

hashtext

−−−−−−−−−−−

991601810

(1 row)

1 postgresql.org/docs/14/explicit-locking#ADVISORY-LOCKS.html
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Postgre��� provides a whole class of functions formanaging advisory locks.1 Their

names begin with the pg_advisory prefix and can contain the following words that

hint at the function purpose:

lock —acquire a lock

try —acquire a lock if it can be done without waits

unlock — release the lock

share —use a shared locking mode (by default, the exclusive mode is used)

xact —acquire a lock till the end of the transaction (by default, the lock is held till

the end of the session)

Let’s acquire an exclusive lock until the end of the session:

=> BEGIN;

=> SELECT pg_advisory_lock(hashtext('resource1'));

=> SELECT locktype, objid, mode, granted

FROM pg_locks WHERE locktype = 'advisory' AND pid = pg_backend_pid();

locktype | objid | mode | granted

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

advisory | 991601810 | ExclusiveLock | t

(1 row)

For advisory locks to actually work, other processes must also observe the estab-

lished order when accessing the resource; it must be guaranteed by the application.

The acquired lock will be held even after the transaction is complete:

=> COMMIT;

=> SELECT locktype, objid, mode, granted

FROM pg_locks WHERE locktype = 'advisory' AND pid = pg_backend_pid();

locktype | objid | mode | granted

−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−−−−+−−−−−−−−−

advisory | 991601810 | ExclusiveLock | t

(1 row)

Once the operation on the resource is over, the lock has to be explicitly released:

=> SELECT pg_advisory_unlock(hashtext('resource1'));

1 postgresql.org/docs/14/functions-admin#FUNCTIONS-ADVISORY-LOCKS.html
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14.5 Predicate Locks

The term predicate lock appeared as early as the first attempts to implement full

isolation based on locks.1 The problem confronted at that time was that locking

all the rows to be read and updated still could not guarantee full isolation. Indeed,

if new rows that satisfy the filter condition get inserted into the table, they will

become phantoms.p. ��

For this reason, it was suggested to lock conditions (predicates) rather than rows.

If you run a query with the a > 10 predicate, locking this predicate will not allow

adding new rows into the table if they satisfy this condition, so phantoms will be

avoided. The trouble is that if a query with a different predicate appears, such

as a < 20, you have to find out whether these predicates overlap. In theory, this

problem is algorithmically unsolvable; in practice, it can be solved only for a very

simple class of predicates (like in this example).

In Postgre���, the Serializable isolation level is implemented in a different way:

it uses the Serializable Snapshot Isolation (���) protocol.2 The term predicate lock

still remains, but its sense has radically changed. In fact, such “locks” do not lock

anything: they are used to track data dependencies between different transactions.

It is proved thatp. �� snapshot isolation at the Repeatable Read level allows no anoma-

lies except for the write skew and the read-only transaction anomaly. These two

anomalies result in certain patterns in the data dependence graph that can be dis-

covered at a relatively low cost.

The problem is that we must differentiate between two types of dependencies:

• Thefirst transaction reads a row that is later updated by the second transaction

(�� dependency).

• The first transactionmodifies a row that is later read by the second transaction

(�� dependency).

1 K. P. Eswaran, J. N. Gray, R. A. Lorie, I. L. Traiger. The notions of consistency and predicate locks in a

database system
2 backend/storage/lmgr/README-SSI

backend/storage/lmgr/predicate.c
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W� dependencies can be detected using regular locks, but �� dependencies have

to be tracked via predicate locks. Such tracking is turned on automatically at the

Serializable isolation level, and that’s exactly why it is important to use his level for

all transactions (or at least all the interconnected ones). If any transaction is run-

ning at a different level, it will not set (or check) predicate locks, so the Serializable

level will be downgraded to Repeatable Read.

I would like to stress once again that despite their name, predicate locks do not lock

anything. Instead, a transaction is checked for “dangerous” dependencies when it

is about to be committed, and if Postgre��� suspects an anomaly, this transaction

will be aborted.

Let’s create a table with an index that will span several pages (it can be achieved

by using a low fillfactor value):

=> CREATE TABLE pred(n numeric, s text);

=> INSERT INTO pred(n) SELECT n FROM generate_series(1,10000) n;

=> CREATE INDEX ON pred(n) WITH (fillfactor = 10);

=> ANALYZE pred;

If the query performs a sequential scan, a predicate lock is acquired on the whole

table (even if some of the rows do not satisfy the provided filter conditions).

=> SELECT pg_backend_pid();

pg_backend_pid

−−−−−−−−−−−−−−−−

34763

(1 row)

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n > 100;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Seq Scan on pred (actual rows=9900 loops=1)

Filter: (n > '100'::numeric)

Rows Removed by Filter: 100

(3 rows)
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Although predicate locks have their own infrastructure, the pg_locks view displays

them together with heavyweight locks. All predicate locks are always acquired in

the SIReadmode, which stands for Serializable Isolation Read:

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34763

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | relation | |

(1 row)

=> ROLLBACK;

You should bear in mind that predicate locks may be held longer than the trans-

action duration, as they are used to track dependencies between transactions. But

anyway, they are managed automatically.

If the query performs an index scan, the situation improves. For a �-tree index, it

is enough to set a predicate lock on the read heap tuples and on the scanned leaf

pages of the index. It will “lock” the whole range that has been read, not only the

exact values.

=> BEGIN ISOLATION LEVEL SERIALIZABLE;

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n BETWEEN 1000 AND 1001;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Index Scan using pred_n_idx on pred (actual rows=2 loops=1)

Index Cond: ((n >= '1000'::numeric) AND (n <= '1001'::numeric))

(2 rows)

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34763

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | tuple | 4 | 96

pred | tuple | 4 | 97

pred_n_idx | page | 28 |

(3 rows)
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The number of leaf pages corresponding to the already scanned tuples can change:

for example, an index page can be split when new rows get inserted into the table.

However, Postgre��� takes it into account and locks newly appeared pages too:

=> INSERT INTO pred

SELECT 1000+(n/1000.0) FROM generate_series(1,999) n;

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34763

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | tuple | 4 | 96

pred | tuple | 4 | 97

pred_n_idx | page | 28 |

pred_n_idx | page | 266 |

pred_n_idx | page | 267 |

pred_n_idx | page | 268 |

pred_n_idx | page | 269 |

(7 rows)

Each read tuple is locked separately, and there may be quite a few of such tuples.

Predicate locks use their own pool allocated at the server start. The total number

of predicate locks is limited by the 64max_pred_locks_per_transaction valuemultiplied

by 100max_connections (despite the parameter names, predicate locks are not being

counted per separate transactions).

Here we get the same problem as with row-level locks, but it is solved in a different

way: lock escalation is applied.1

As soon as the number of tuple locks related to one page exceeds v. ��the value of the

2max_pred_locks_per_page parameter, they are replaced by a single page-level lock.

=> EXPLAIN (analyze, costs off, timing off, summary off)

SELECT * FROM pred WHERE n BETWEEN 1000 AND 1002;

QUERY PLAN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Index Scan using pred_n_idx on pred (actual rows=3 loops=1)

Index Cond: ((n >= '1000'::numeric) AND (n <= '1002'::numeric))

(2 rows)

1 backend/storage/lmgr/predicate.c, PredicateLockAcquire function
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Instead of three locks of the tuple type we now have one lock of the page type:

=> SELECT relation::regclass, locktype, page, tuple

FROM pg_locks WHERE mode = 'SIReadLock' AND pid = 34763

ORDER BY 1, 2, 3, 4;

relation | locktype | page | tuple

−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−+−−−−−−−

pred | page | 4 |

pred_n_idx | page | 28 |

pred_n_idx | page | 266 |

pred_n_idx | page | 267 |

pred_n_idx | page | 268 |

pred_n_idx | page | 269 |

(6 rows)

=> ROLLBACK;

Escalation of page-level locks follows the same principlev. �� . If the number of such

locks for a particular relation exceeds the−2 max_pred_locks_per_relation value, they

get replaced by a single relation-level lock. (If this parameter is set to a negative

value, the threshold is calculated as64 max_pred_locks_per_transaction divided by the

absolute value of max_pred_locks_per_relation; thus, the default threshold is ��).

Lock escalation is sure to lead to multiple false-positive serialization errors, which

negatively affects system throughput. So you have to find an appropriate balance

between performance and spending the available ��� on locks.

Predicate locks support the following index types:

• �-trees

• hash indexes, �i��, and ���v. ��

If an index scan is performed, but the index does not support predicate locks, the

whole indexwill be locked. It is only to be expected that the number of transactions

aborted for no good reason will also increase in this case.

For more efficient operation at the Serializable level, it makes sense to explicitly

declare read-only transactions as such using the ���� ���� clause. If the lock man-

ager sees that a read-only transaction will not conflict with other transactions,1 it

1 backend/storage/lmgr/predicate.c, SxactIsROSafe macro
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can release the already set predicate locks and refrain from acquiring new ones.

And if such a transaction is also declared ����������, the read-only transaction p. ��

anomaly will be avoided too.
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15
Locks on Memory Structures

15.1 Spinlocks

To protect data structures in shared memory, Postgre��� uses several types of

lighter and less expensive locks rather than regular heavyweight ones.

The simplest locks are spinlocks. They are usually acquired for a very short time

interval (no longer than several ��� cycles) to protect particularmemory cells from

concurrent updates.

Spinlocks are based on atomic ��� instructions, such as compare-and-swap.1 They

only support the exclusive lockingmode. If the required resource is already locked,

the process busy-waits, repeating the command (it “spins” in the loop, hence the

name). If the lock cannot be acquiredwithin the specified time interval, the process

pauses for a while and then starts another loop.

This strategy makes sense if the probability of a conflict is estimated as very low,

so after an unsuccessful attempt the lock is likely to be acquired within several

instructions.

Spinlocks haveneither deadlock detectionnor instrumentation. From the practical

standpoint, we should simply know about their existence; the whole responsibility

for their correct implementation lies with Postgre��� developers.

1 backend/storage/lmgr/s_lock.c
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15.2 Lightweight Locks

Next, there are so-called lightweight locks, or lwlocks.1 Acquired for the time

needed to process a data structure (for example, a hash table or a list of pointers),

lightweight locks are typically short; however, they can take longer when used to

protect �/� operations.

Lightweight locks support twomodes: exclusive (for datamodification) and shared

(for read-only operations). There is no queue as such: if several processes are wait-

ing on a lock, one of them will get access to the resource in a more or less random

fashion. In high-load systems with multiple concurrent processes, it can lead to

some unpleasant effects.

Deadlock checks are not provided; we have to trust Postgre��� developers that

lightweight locks are implemented correctly. However, these locks do have instru-

mentation, so, unlike spinlocks, they can be observed.

15.3 Examples

To get some idea of how and where spinlocks and lightweight locks can be used,

let’s take a look at two shared memory structures: buffer cache and ��� buffers.

I will name only some of the locks; the full picture is too complex and is likely to

interest only Postgre��� core developers.

Buffer Cache

To access a hash table p. ���used to locate a particular buffer in the cache, the process

must acquire a BufferMapping lightweight lock either in the shared mode for

reading or in the exclusive mode if any modifications are expected.

1 backend/storage/lmgr/lwlock.c
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hash table

BufferMapping ×128

free buffers

clock hand

buffer strategy

BufferIO

BufferContent

buffer header

buffer
pin

The hash table is accessed very frequently, so this lock often becomes a bottleneck.

To maximize granularity, it is structured as a tranche of ��� individual lightweight

locks, each protecting a separate part of the hash table.1

A hash table lock was converted into a tranche of �� locks as early as ����, in Postgre���

�.�; ten years later, when version �.� was released, the size of the tranche was increased

to ���, but it may still be not enough for modern multi-core systems.

To get access to the buffer header, the process acquires a buffer header spinlock2

(the name is arbitrary, as spinlocks have no user-visible names). Some operations,

such as incrementing the usage counter, do not require explicit locks and can be

performed using atomic ��� instructions.

To read a page in a buffer, the process acquires a BufferContent lock in the header

of this buffer.3 It is usually held only while tuple pointers are being read; later on,

the protection provided by buffer pinningp. ��� will be enough. If the buffer content

has to be modified, the BufferContent lock must be acquired in the exclusive mode.

1 backend/storage/buffer/bufmgr.c

include/storage/buf_internals.h, BufMappingPartitionLock function
2 backend/storage/buffer/bufmgr.c, LockBufHdr function
3 include/storage/buf_internals.h
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When a buffer is read from disk (or written to disk), Postgre��� also acquires a

BufferIO lock in the buffer header; it is virtually an attribute used as a lock rather

than an actual lock.1 It signals other processes requesting access to this page that

they have to wait until the �/� operation is complete.

The pointer to free buffers and the clock hand of the eviction mechanism are pro-

tected by a single common buffer strategy spinlock.2

WAL Buffers

WALWrite

PrevBytePos

CurBytePos

insert position WALInsert ×8

WALBufMapping

hash table

W�� cache also uses a hash table to map pages to buffers. Unlike the buffer cache

hash table, it is protected by a single WALBufMapping lightweight lock because

��� cache is smaller (it usually takes 1

32
of the buffer cache size) and buffer access

is more ordered.3

Writing of ��� pages to disk is protected by a WALWrite lightweight lock, which

ensures that this operation is performed by one process at a time.

To create a ��� entry, the process first reserves some space within the ��� page

and then fills it with data. Space reservation is strictly ordered; the process must

acquire an insert position spinlock that protects the insertion pointer.4 But

1 backend/storage/buffer/bufmgr.c, StartBufferIO function
2 backend/storage/buffer/freelist.c
3 backend/access/transam/xlog.c, AdvanceXLInsertBuffer function
4 backend/access/transam/xlog.c, ReserveXLogInsertLocation function
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once the space is reserved, it can be filled by several concurrent processes. For this

purpose, each process must acquire any of the eight lightweight locks constituting

the WALInsert tranche.1

15.4 Monitoring Waits

Without doubt, locks are indispensable for correct Postgre��� operation, but they

can lead to undesirable waits. It is useful to track such waits to understand their

origin.

The easiest way to get an overview of long-term locks is to turn theoff log_lock_waits

parameter on; it enables extensive logging of all the locks that cause a transaction

to wait for more than1s deadlock_timeout. This data is displayed when a deadlock

checkp. ��� completes, hence the parameter name.

However, the pg_stat_activity viewv. �.� provides much more useful and complete in-

formation. Whenever a process—either a system process or a backend—cannot

proceed with its task because it is waiting for something, this wait is reflected in

the wait_event_type and wait_event fields, which show the type and name of the

wait, respectively.

All waits can be classified as follows.2

Waits on various locks constitute quite a large group:

Lock —heavyweight locks

LWLock — lightweight locks

BufferPin —pinned buffers

But processes can be waiting for other events too:

IO — input/output, when it is required to read or write some data

1 backend/access/transam/xlog.c, WALInsertLockAcquire function
2 postgresql.org/docs/14/monitoring-stats#WAIT-EVENT-TABLE.html
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Client —data sent by the client (psql spends most of the time in this state)

IPC —data sent by another process

Extension —a specific event registered by an extension

Sometimes a process simply does not perform any useful work. Such waits are usu-

ally “normal,”meaning that they do not indicate any issues. This group comprises

the following waits:

Activity —background processes in their main cycle

Timeout — timer

Locks of each wait type are further classified by wait names. For example, waits on

lightweight locks get the name of the lock or the corresponding tranche.1

You should bear in mind that the pg_stat_activity view displays only those waits

that are handled in the source code in an appropriate way.2 Unless the name of the

wait appears in this view, the process is not in the state of wait of any known type.

Such time should be considered unaccounted for; it does not necessarily mean that

the process is not waiting on anything—we simply do not know what is happening

at the moment.

=> SELECT backend_type, wait_event_type AS event_type, wait_event

FROM pg_stat_activity;

backend_type | event_type | wait_event

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

logical replication launcher | Activity | LogicalLauncherMain

autovacuum launcher | Activity | AutoVacuumMain

client backend | |

background writer | Activity | BgWriterMain

checkpointer | Activity | CheckpointerMain

walwriter | Activity | WalWriterMain

(6 rows)

Here all the background processes were idle when the view was sampled, while the

client backend was busy executing the query and was not waiting on anything.

1 postgresql.org/docs/14/monitoring-stats#WAIT-EVENT-LWLOCK-TABLE.html
2 include/utils/wait_event.h
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15.5 Sampling

Unfortunately, the pg_stat_activity view shows only the current information on

waits; statistics are not accumulated. The only way to collect wait data over time

is to sample the view at regular intervals.

We have to take into account the stochastic nature of sampling. The shorter the

wait as compared to the sampling interval, the lower the chance to detect this wait.

Thus, longer sampling intervals require more samples to reflect the actual state of

things (but as you increase the sampling rate, the overhead also rises). For the

same reason, sampling is virtually useless for analyzing short-lived sessions.

Postgre��� provides no built-in tools for sampling; however, we can still try it out

using the pg_wait_sampling1 extension. We just have to specify its library in the

shared_preload_libraries parameter and restart the server:

=> ALTER SYSTEM SET shared_preload_libraries = 'pg_wait_sampling';

postgres$ pg_ctl restart -l /home/postgres/logfile

Now let’s install the extension into the database:

=> CREATE EXTENSION pg_wait_sampling;

This extension can display the history of waits, which is saved in its ring buffer.

However, it is much more interesting to get the waiting profile—the accumulated

statistics for the whole duration of the session.

For example, let’s take a look at the waits during benchmarking. We have to start

the pgbench utility and determine its process �� while it is running:

postgres$ /usr/local/pgsql/bin/pgbench -T 60 internals

=> SELECT pid FROM pg_stat_activity

WHERE application_name = 'pgbench';

pid

−−−−−−−

36380

(1 row)

Once the test is complete, the waits profile will look as follows:

1 github.com/postgrespro/pg_wait_sampling
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=> SELECT pid, event_type, event, count

FROM pg_wait_sampling_profile WHERE pid = 36380

ORDER BY count DESC LIMIT 4;

pid | event_type | event | count

−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−

36380 | IO | WALSync | 4067

36380 | IO | WALWrite | 98

36380 | Client | ClientRead | 26

36380 | IO | DataFileRead | 4

(4 rows)

By default (set by the 10mspg_wait_sampling.profile_period parameter) samples are taken

��� times per second. So to estimate the duration of waits in seconds, you have to

divide the count value by ���.

In this particular case, v. ��most of the waits are related to flushing ��� entries to disk.

It is a good illustration of the unaccounted-for wait time: theWALSync event was

not instrumented until Postgre��� ��; for lower versions, a waits profile would not

contain the first row, although the wait itself would still be there.

And here is how the profile will look like if we artificially slow down the file system

for each �/� operation to take �.� seconds (I use slowfs1 for this purpose) :

postgres$ /usr/local/pgsql/bin/pgbench -T 60 internals

=> SELECT pid FROM pg_stat_activity

WHERE application_name = 'pgbench';

pid

−−−−−−−

36759

(1 row)

=> SELECT pid, event_type, event, count

FROM pg_wait_sampling_profile WHERE pid = 36759

ORDER BY count DESC LIMIT 4;

pid | event_type | event | count

−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−

36759 | IO | WALWrite | 3586

36759 | LWLock | WALWrite | 1842

36759 | IO | WALSync | 31

36759 | IO | DataFileExtend | 19

(4 rows)

1 github.com/nirs/slowfs
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Now �/� operations are the slowest ones—mainly those that are related to writing

��� files to disk in the synchronous mode. Since ��� writing is protected by a

WALWrite lightweight lock, the corresponding row also appears in the profile.

Clearly, the same lock is acquired in the previous example too, but since the wait is

shorter than the sampling interval, it either is sampled very few times or does not

make it into the profile at all. It illustrates once again that to analyze short waits

you have to sample them for quite a long time.
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