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I list several proofs of the celebrated identity:

((2) = 2= (1)

As it is clear that
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(1) is equivalent to
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Many of the proofs establish this latter identity first.

None of these proofs is original; most are well known, but some are not
as familiar as they might be. I shall try to assign credit the best I can, and
I would be grateful to anyone who could shed light on the origin of any of
these methods. I would like to thank Tony Lezard, José Carlos Santos and
Ralph Krause, who spotted errors in earlier versions, and Richard Carr for
pointing out an egregious solecism.

Added: 12/12/12

Many new proofs have been published in the last decade, but I have not
found the time to update this survey, and am unlikely to do so. If anyone
wishes to “take over” this survey, please let me know.



Proof 1: Note that
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and by the monotone convergence theorem we get
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We change variables in this by putting (u,v) = ((z+v)/2, (y —x)/2), so that

(x,y) = (u—v,u+v). Hence
_2// du dv
1 —u?+0?

where S is the square with vertices (0,0), (1/2,—-1/2), (1,0) and (1/2,1/2).
Exploiting the symmetry of the square we get
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4/0 1ﬁtan (ﬁ) du
+4 /1/2 \/%Qﬂtan_l (%) du.
Now tan~"(u/(vI—u2)) = sinu, and if § = tan™'((1 — u)/(v1 — u2))

then tan®6 = (1 — u)/(1 + u) and sec?d = 2/(1 + u). It follows that u =

2¢0s20 —1 =cos26 and so 0 = %cosf1 U = % — %silrf1 u. Hence
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B w2 . 2 a2 N 2
18 2 4 6 36
6

as required.



This is taken from an article in the Mathematical Intelligencer by Apostol
in 1983.

Proof 2: We start in a similar fashion to Proof 1, but we use (2). We get
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We make the substitution

[1—y? [1—a?
(u,v) <an T\ T g tan Ty 1—y2)

sinw sinv
(I, y) - ) *
COSvU COSU

so that

The Jacobian matrix is

d(z,y) cosu/ cosv sinusin v/ cos? v
O(u,v) sinusin v/ cos® u cosv/ cosu
1 sin® u sin? v
cos? u cos? v
= 1—2%7
Hence
= / / du dv
A

where

A={(u,v):u>0,v>0,ut+v<m/2}

has area 72/8, and again we get ((2) = 72/6.
This is due to Calabi, Beukers and Kock.

Proof 3: We use the power series for the inverse sine function:
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valid for |z| < 1. Putting z = sint we get
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B 2-4---2n  2n+1



for [t| < 7. Integrating from 0 to J and using the formula
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gives us
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which is (2).

This comes from a note by Boo Rim Choe in the American Mathematical
Monthly in 1987.

Proof 4: We use the L?-completeness of the trigonometric functions. Let
en(x) = exp(2minx) where n € Z. The e, form a complete orthonormal set in
L*[0,1]. If we denote the inner product in L?[0,1] by (, ), then Parseval’s

formula states that -
= > [fen)l

n=—oo

forall f € L?[0,1]. We apply this to f(z) = z. We easily compute (f, f) = £,
(f,e0) = 3 and (f,e,) = 5= for n # 0. Hence Parseval gives us
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and so ((2) = 7%/6.

Alternatively we can apply Parseval to g = xo,1/2). We get (g,9) = 3
(9,e0) = & and (g,e,) = ((—1)" — 1)/2min for n # 0. Hence Parseval gives
us
11 - 1
19y~
3= 122 Ay

=0
and using (2) we again get ((2) = 72/6.
This is a textbook proof, found in many books on Fourier analysis.

Proof 5: We use the fact that if f is continuous, of bounded variation on
[0,1] and f(0) = f(1), then the Fourier series of f converges to f pointwise.
Applying this to f(z) = z(1 — z) gives
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and putting z = 0 we get ((2) = 72/6. Alternatively putting z = 1/2 gives
2 0 (_1)n
12 Z n2

n=1

which again is equivalent to ((2) = 72/6.
Another textbook proof.

Proof 6: Consider the series

f(t) _ Z COSQnt.

n

n=1

This is uniformly convergent on the real line. Now if € > 0, then for ¢ €
[€,2m — €] we have
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and so this sum is bounded above in absolute value by
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Hence these sums are uniformly bounded on [€, 27 — ¢] and by Dirichlet’s

test the sum
i sin nt
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is uniformly convergent on [e, 27 — €]. It follows that for t € (0, 2m)
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By the fundamental theorem of calculus we have

Tt —Tr T

) = 10 = [ T = T
But f(0) =¢(2) and f(7) =27, (—1)"/n* = —((2)/2. Hence ((2) = 7?/6.

Alternatively we can put
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D(z) = 2.5,
the dilogarithm function. This is uniformly convergent on the closed unit
disc, and satisfies D'(z) = —(log(1 — 2))/z on the open unit disc. Note
that f(t) = Re D(e*™*). We may now use arguments from complex variable
theory to justify the above formula for f’(¢).
This is just the previous proof with the Fourier theory eliminated.

Proof 7: We use the infinite product

sin 7 = m:H (1 - —)

for the sine function. Comparing coefficients of 2° in the MacLaurin series of
sides immediately gives ((2) = 7%/6. An essentially equivalent proof comes
from considering the coefficient of x in the formula
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1 2z
e =—+ Y s
mcot - +n:1 R
The original proof of Euler!

Proof 8: We use the calculus of residues. Let f(z) = mz"?cot mz. Then f
has poles at precisely the integers; the pole at zero has residue —7?/3, and
that at a non-zero integer n has residue 1/n?. Let N be a natural number
and let C'y be the square contour with vertices (£1 £ 4)(/NV + 1/2). By the
calculus of residues

———1—22 — f(z)dz= Iy

27TZ Cx

say. Now if 72z = x + 1y a straightforward calculation yields

cos? x +sinh® y

| cot mz|? = — —
sin® x + sinh” y
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It follows that if z lies on the vertical edges of C,, then

sinh? y

—— <1
1 +sinh?y

|cot mz|* =

and if z lies on the horizontal edges of C),

1+ sinh® (N +1/2)

b (N 1 1/2) = coth? 7(N + 1/2) < coth® 7/2.
sinh® 7

| cot 2| <

Hence |cot mz| < K = coth % on Cy, and so | f(2)| < 7K/(N +1/2)% on Cl.
This estimate shows that

1 K

|In| < %m8(1\7+ 1/2)

and so Iy — 0 as N — co. Again we get ((2) = 72/6.
Another textbook proof, found in many books on complex analysis.

Proof 9: We first note that if 0 < z < g then sinz < z < tanz and so
cot’?xr < 72 <1+ cot?x. If n and N are natural numbers with 1 < n < N
this implies that

nm (2N +1)2 nm
t2 < <1+ cot? ——-
Nty T e T aN T
and so
2 al nm
cot?
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it suffices to show that limy_ o, Ay/N? = %



If1<n<Nand @ =nn/(2N +1), then sin(2N +1)6 = 0 but sinf # 0.

Now sin(2N + 1) is the imaginary part of (cosf + isin§)*¥ 1 and so
N
sin(2N +1)6 1 k(2N +1 AN—k) g i 2k+1
sin?V 1 g T sin?Vtg ;(_1) oN — 2k ) fsin 0
N
2N +1
_ )k (2(N=)
21 <2N - Qk) “
k=0
= f(cot?0)

say, where f(z) = 2N+1)aN — (21\g+1)x]v—1+, --. Hence the roots of f(z) =0
are cotQ(mr/(ZN—i— 1)) where 1 <n < N and so Ay = N(2N — 1)/3. Thus
Ayn/N? — 2 as required.

This is an exercise in Apostol’s Mathematical Analysis (Addison-Wesley,
1974).

Proof 10: Given an odd integer n = 2m + 1 it is well known that sinnz =
F,(sinz) where F), is a polynomial of degree n. Since the zeros of F,(y) are
the values sin(jm/n) (—m < j <m) and lim, ,o(F,(y)/y) = n then

—“yH< )
and so
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. . sin“ x
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Comparing the coefficients of 2 in the MacLaurin expansion of both sides
gives

=S
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and so
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Fix an integer M and let m > M. Then

1 1 - 1
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and using the inequality sinx > %x for 0 <x < 7, we get
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Letting m tend to infinity now gives

Hence

This comes from a note by Kortram in Mathematics Magazine in 1996.

Proof 11: Consider the integrals
w/2 /2
I, = / cos®™ x dx and J, = / 22 cos®" z dx.
0 0

By a well-known reduction formula
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If n > 0 then integration by parts gives

w/2
/2 . _
I, = [xcoszna:}o/ —|—2n/ xsinxcos? ' xdx
0

= n [:E2 sin x cog? ! x] 3/2
w/2
— n/ 7%(cos™ x — (2n — 1) sin® x cos®™ % 2) dx
0

= n(2n —1)J,_1 — 2n2J,.

Hence (2n)!
n)'m 5
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and so -t e 2
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Adding this up from n =1 to N gives

N
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Since Jy = 73 /24 it suffices to show that limy ., 4V N1?Jy/(2N)! = 0. But
the inequality » < Zsinz for 0 <z < 7 gives

2

2 T2 2I
Iy < %/ sin? z cos?N zdx = %([N —Iny1) = N
0
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and so
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This completes the proof.
This proof is due to Matsuoka (American Mathematical Monthly, 1961).

Proof 12: Consider the well-known identity for the Fejér kernel:

. N & , &
<s1nnx/ ) _ Z (n— [K])ei :n+22(n_k)coskx.
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sinx /2 =

Hence
™ (sinnz/2\’ nm? a i
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nm a — (=1)*
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If we let n = 2N with N an integer then

™ x (sinNz\’ 2 = 1 log N
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But since sin § > % for 0 < & < 7 then

T . 2 T
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Taking limits as N — oo gives

72 - 1
B =2 (2r +1)2

r=0

This proof is due to Stark (American Mathematical Monthly, 1969).

Proof 13: We carefully square Gregory’s formula

N
- (="
aN = Z 2n+ 1
n=—N
Let
N 1
by = —_—
2 Gy

By (2) it suffices to show that limy_... by = 72/4, so we shall show that
limpy o (a3 — by) = 0.
If n # m then

1 1 1 1
(2n+1)2m+1)  2(m —n) (2n—l—1 _2m+1)

and so

N N !
_1)m+n 1 1
2 —b — ( _
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B N N (_1)m+n
B _Z ; (2n+1)(m —n)

where the dash on the summations means that terms with zero denominators
are omitted, and

& e
Cn,N = Z —<m_n)

m=—N
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It is easy to see that c_, y = —c, v and so ¢y v = 0. If n > 0 then

\cCY

CnN = (_1)n+1 Z j

j=N-—-n+1

and so |c, n| < 1/(N —n + 1) as the magnitude of this alternating sum is
not more than that of its first term. Thus

2 - ! !
ay —by| < Z((zn_l)(]\f—n—i-l)+(2n+1)(N—n+1))

n=1
N

_Z 1 2 N 1
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N
1 2 1
+;2N+3 (2n+1+N—n+1)

(2+4log(2N +1) + 2+ 2log(N + 1))

<

2N +1

and so a3 — by — 0 as N — oo as required.
This is an exercise in Borwein & Borwein’s Pi and the AGM (Wiley,
1987).

Proof 14: This depends on the formula for the number of representations
of a positive integer as a sum of four squares. Let r(n) be the number of
quadruples (z,v, z,t) of integers such that n = 2% + y? + 22 + t2. Trivially
r(0) = 1 and it is well known that

for n > 0. Let R(N) = 32N r(n). It is easy to see that R(N) is asymptotic
to the volume of the 4-dimensional ball of radius v/N, i.e., R(N) ~ §N2.
But

RIN)=1+8> > m=1+8 Y m{%J:1+8(0(N)—49(N/4))

n=1 mn,4m m<N,4m

where



But

as x — 00. Hence

R(N) ~ %2]\72 ~4¢(2) (N2 — N{)

and so ((2) = m%/6.
This is an exercise in Hua’s textbook on number theory.

13



