IBM Quantum Platform: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
GreenC bot (talk | contribs)
Rescued 1 archive link. Wayback Medic 2.5 per WP:URLREQ#www-03.ibm.com
 
(22 intermediate revisions by 11 users not shown)
Line 1:
{{Short description|Cloud quantum computing platform}}
<!-- Deleted image removed: [[File:GHZstate IBMQExperience.png|thumb|right|A screen shot of a [[GHZ state]] programmed onto IBM's Quantum Composer]] -->
{{Infobox website
| name = IBM Quantum Platform
| logo = IBM Quantum Platform logo.svg
| logo_size =
| logo_alt =
| logo_caption =
| url = {{URL|https://quantum-computing.ibm.com/}}
| commercial =
| type = [[Cloud-based quantum computing]]
| registration = Required
| language =
| content_license =
| owner = [[IBM]]
| launch_date = {{start date and age|df=yes|2016|05}}
| current_status = Active
}}
 
The '''IBM Quantum Composer''' and the '''IBM Quantum LabPlatform''' (previously known collectively as the '''IBM Quantum Experience''') formis an online platform allowing public and premium access to [[cloud-based quantum computing]] services provided by [[IBM Quantum]]. This includes access to a set of IBM's prototype quantum processors, a set of tutorials on quantum computation, and access to an interactive textbook. As of February 2021, there are over 20 devices on the service, six of which are freely available for the public. This service can be used to run [[quantum algorithm|algorithms]] and [[experiments]], and explore [[tutorials]] and [[simulations]] around what might be possible with [[quantum computing]].
 
IBM's quantum processors are made up of [[Superconducting quantum computing|superconducting]] [[transmon]] [[qubits]], located in a [[dilution refrigerator]]s at the [[IBM Research]] headquarters at the [[Thomas J. Watson Research Center]]. Users interact with a quantum processor through the [[quantum circuit]] model of computation. Circuits can be created either using a [[graphical user interface|graphically]] with the Quantum Composer, or programmatically withinwith the [[Project_Jupyter|Jupyter notebooks]] of the Quantum Lab. Circuits are created using [[Qiskit]] and can be compiled down to [[OpenQASM]] for execution on real quantum systems.
quantum systems.
 
== History ==
* The service was launched in May 2016 as the IBM Quantum Experience<ref>{{cite web|title=IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation|url=https://www-03.ibm.com/press/us/en/pressrelease/49661.wss|archive-url=https://web.archive.org/web/20160504214945/http://www-03.ibm.com/press/us/en/pressrelease/49661.wss|url-status=dead|archive-date=May 4, 2016|date=2016-05-04}}</ref> with a five-qubit quantum processor and matching simulator connected in a star shaped pattern. At this time, users could only interact with the hardware through the quantum composer GUI. Quantum circuits were also limited to the specific two-qubit gates available on the hardware.
 
* The service was launched in May 2016 as the IBM Quantum Experience<ref>{{cite web|title=IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation|url=https://www-03.ibm.com/press/us/en/pressrelease/49661.wss|date=2016-05-04}}</ref> with a five-qubit quantum processor and matching simulator connected in a star shaped pattern. At this time, users could only interact with the hardware through the quantum composer GUI. Quantum circuits were also limited to the specific two-qubit gates available on the hardware.
 
* In July 2016, IBM launched the IBM Quantum Experience community forum. This was subsequently replaced by a Slack workspace.
 
* In January 2017, IBM made a number of additions to the IBM Quantum Experience,<ref>{{cite web |title=IBM Quantum Experience Update |url=https://quantumexperience.ng.bluemix.net/qstage/#/community/question?questionId=c7a17f4183104ea22ff8e3e8a95f794c |access-date=2017-04-06 |archive-date=2019-01-29 |archive-url=https://web.archive.org/web/20190129182024/https://quantumexperience.ng.bluemix.net/qstage/#/community/question?questionId=c7a17f4183104ea22ff8e3e8a95f794c |url-status=dead }}</ref> including increasing the set of two-qubit interactions available on the five-qubit quantum processor, expanding the simulator to custom topologies up to twenty qubits, and allowing users to interact with the device and simulator using quantum assembly language code.
 
* In March 2017, IBM released [[Qiskit]]<ref>{{cite web|title= Quantum computing gets an API and SDK|url= https://developer.ibm.com/dwblog/2017/quantum-computing-api-sdk-david-lubensky/|date= 2017-03-06}}</ref> to enable users to more easily write code and run experiments on the quantum processor and simulator. A user guide for beginners was also added.
 
* In May 2017, IBM made an additional 16-qubit processor available on the IBM Quantum service.<ref>{{cite web |title=Beta access our upgrade to the IBM QX |url=https://quantumexperience.ng.bluemix.net/qx/community/question?questionId=db5f64ac99c6edc78e34932dfe593f36&channel=news |access-date=2017-05-19 |archive-date=2019-01-31 |archive-url=https://web.archive.org/web/20190131201233/https://quantumexperience.ng.bluemix.net/qx/community/question?questionId=db5f64ac99c6edc78e34932dfe593f36&channel=news |url-status=dead }}</ref>
 
* In January 2018, IBM launched a quantum awards program, which it hosted on the IBM Quantum Experience.<ref>{{cite web|title=Now Open: Get quantum ready with new scientific prizes for professors, students and developers|website=[[IBM]] |url=https://www.ibm.com/blogs/research/2018/01/quantum-prizes/|date=2018-01-14}}</ref>
 
* In May 2019 a large overhaul of the service was made, including the addition of web-hosted Jupyter notebooks and integration with the online and interactive Qiskit textbook.<ref>{{cite web|title=IBM Unveils Beta of Next Generation Quantum Development Platform|website=[[IBM]] |url=https://www.ibm.com/blogs/research/2019/05/next-gen-ibmqx/|date=2021-02-10}}</ref>
 
* After a redesign in March 2021, a greater distinction was made between the composer GUI and the Jupyter notebooks. The ''IBM Quantum Experience'' name was retired in favour of the separate names ''IBM Quantum Composer'' and ''IBM Quantum Lab''.<ref>{{cite web|title=Announcement of IBM Quantum Composer and Lab|url=https://twitter.com/jaygambetta/status/1366787131151163395|date=2021-03-02}}</ref> Now its collectively called ''IBM Quantum Platform''.
 
== IBM Quantum Composer ==
[[File:GHZstate IBMQExperience results.png|thumb|right|Screenshot showing the result of running a [[GHZ state]] experiment using the IBM Quantum Composer]]
 
The Quantum Composer is a [[graphic user interface]] (GUI) designed by IBM to allow users to construct various [[quantum algorithm]]s or run other quantum experiments. Users may see the results of their quantum algorithms by either running it on a real quantum processor or by using a simulator. Algorithms developed in the Quantum Composer are referred to as a "quantum score", in reference to the Quantum Composer resembling a musical sheet.<ref>{{cite web | url=https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=59d2538efa783368715d988e06607b8c&pageIndex=0 | title=IBM Quantum experience | website=Quantum Experience | publisher=IBM | access-date=3 July 2017 | archive-date=25 May 2018 | archive-url=https://web.archive.org/web/20180525063152/https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=59d2538efa783368715d988e06607b8c&pageIndex=0 | url-status=dead }}</ref>
 
The composer can also be used in scripting mode, where the user can write programs in the [[OpenQASM]]-language instead. Below is an example of a very small program, built for IBMs 5-[[qubit]] computer. The program instructs the computer to generate thea [[quantum state]] <math>|\Psi\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle+|111\rangle\right)</math>, a 3-qubit [[Greenberger–Horne–Zeilinger state|GHZ state]], which can be thought of as a variant of the [[Bell state]], but with three qubits instead of two. It then measures the state, forcing it to [[Wave-function collapse|collapse]] to one of the two possible outcomes, <math>|000\rangle</math> or <math>|111\rangle</math>.
 
<syntaxhighlight lang="verilog">
Line 47 ⟶ 61:
</syntaxhighlight>
 
Every instruction in the QASM language is the application of a [[quantum gate]], initialization of the chips [[quantum register|registers]] to zero or [[measurement in quantum mechanics|measurement]] of these registers.
 
== Usage ==
* In 2018 IBM reported that there were over 80,000 users of the IBM Quantum Experience, who have collectively run over 3 million experiments.<ref>{{cite web|title=IBM Collaborating With Top Startups to Accelerate Quantum Computing|website=[[IBM]] |url=https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/|date=2018-04-05}}</ref>
 
* Many academic papers have been published by researchers who have conducted experiments using the service.<ref>{{cite web|title=QX Community papers|url=https://quantumexperience.ng.bluemix.net/qx/community?channel=papers}}</ref><ref>{{cite web|title=Reseach of the IBM Quantum Hub at the University of Melbourne|date=20 April 2021|url=https://www.unimelb.edu.au/quantumhub#research}}</ref><ref>{{cite journal|arxiv=1605.08922|last1=Rundle|first1=R. P.|last2=Tilma|first2=T.|last3=Samson|first3=J. H.|last4=Everitt|first4=M. J. |year=2017|title=Quantum state reconstruction made easy: a direct method for tomography|doi=10.1103/PhysRevA.96.022117|volume=96|issue=2|pages=022117|journal=Physical Review A|bibcode=2017PhRvA..96b2117R}}</ref><ref>{{cite arXiv|eprint=1606.09225|last=Corbett Moran |first=Christine |date=29 June 2016|title=Quintuple: a Python 5-qubit quantum computer simulator to facilitate cloud quantum computing |class=quant-ph }}</ref><ref>{{cite journal|last1=Huffman|first1=Emilie|last2=Mizel|first2=Ari|title=Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole|journal=Physical Review A|date=29 March 2017|volume=95|issue=3|pages=032131|doi=10.1103/PhysRevA.95.032131|bibcode=2017PhRvA..95c2131H|arxiv=1609.05957}}</ref><ref>{{Cite journal|arxiv=1609.07459|last=Deffner|first=Sebastian|date=23 September 2016|title=Demonstration of entanglement assisted invariance on IBM's Quantum Experience|journal=Heliyon|volume=3|issue=11|pages=e00444|doi=10.1016/j.heliyon.2017.e00444|pmid=29159322|pmc=5683883}}</ref><ref>{{cite journal|arxiv=1612.02886|date=9 December 2016|title=Homomorphic Encryption Experiments on IBM's Cloud Quantum Computing Platform|last1=Huang|first1=He-Liang|last2=Zhao|first2=You-Wei|last3=Li|first3=Tan|last4=Li|first4=Feng-Guang|last5=Du|first5=Yu-Tao|last6=Fu|first6=Xiang-Qun|last7=Zhang|first7=Shuo|last8=Wang|first8=Xiang|last9=Bao|first9=Wan-Su|journal=Frontiers of Physics|volume=12|issue=1|page=120305|doi=10.1007/s11467-016-0643-9|bibcode=2017FrPhy..12l0305H|s2cid=17770053}}</ref><ref>{{cite journal|last1=Wootton|first1=James R|title=Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment|journal=Quantum Science and Technology|date=1 March 2017|volume=2|issue=1|pages=015006|doi=10.1088/2058-9565/aa5c73|arxiv=1609.07774|bibcode=2017QS&T....2a5006W|s2cid=44370109}}</ref><ref>{{cite arXiv|eprint=1607.02398|date=8 July 2016|last=Fedortchenko|first=Serguei|title=A quantum teleportation experiment for undergraduate students|class=quant-ph}}</ref><ref>{{cite journal|last1=Berta|first1=Mario|last2=Wehner|first2=Stephanie|last3=Wilde|first3=Mark M|title=Entropic uncertainty and measurement reversibility|journal=New Journal of Physics|date=6 July 2016|volume=18|issue=7|pages=073004|doi=10.1088/1367-2630/18/7/073004|arxiv=1511.00267|bibcode=2016NJPh...18g3004B|s2cid=119186679}}</ref><ref>{{cite journal|arxiv=1611.07851|date=23 November 2016|title=Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience|last1=Li|first1=Rui|last2=Alvarez-Rodriguez|first2=Unai|last3=Lamata|first3=Lucas|last4=Solano|first4=Enrique|doi=10.1515/qmetro-2017-0001|volume=4|issue=1|journal=Quantum Measurements and Quantum Metrology|pages=1–7|bibcode=2017QMQM....4....1L|s2cid=108291239}}</ref><ref>{{Cite journal|arxiv=1701.02970|date=11 January 2017|title=Compressed quantum computation using the IBM Quantum Experience|journal=Phys. Rev. A|volume=95|issue=5|pages=052339|last1= Hebenstreit|first1=M.|last2= Alsina|first2=D.|last3= Latorre|first3=J. I.|last4= Kraus|author4-link=Barbara Kraus|first4=B.|doi=10.1103/PhysRevA.95.052339|s2cid=118958024}}</ref><ref>{{cite journal|last1=Alsina|first1=Daniel|last2=Latorre|first2=José Ignacio|title=Experimental test of Mermin inequalities on a five-qubit quantum computer|journal=Physical Review A|date=11 July 2016|volume=94|issue=1|pages=012314|doi=10.1103/PhysRevA.94.012314|arxiv=1605.04220|bibcode=2016PhRvA..94a2314A|s2cid=119189277}}</ref><ref>{{cite journal|last1=Linke|first1=Norbert M.|last2=Maslov|first2=Dmitri|last3=Roetteler|first3=Martin|last4=Debnath|first4=Shantanu|last5=Figgatt|first5=Caroline|last6=Landsman|first6=Kevin A.|last7=Wright|first7=Kenneth|last8=Monroe|first8=Christopher|title=Experimental comparison of two quantum computing architectures|journal=Proceedings of the National Academy of Sciences|date=28 March 2017|volume=114|issue=13|pages=3305–3310|doi=10.1073/pnas.1618020114|pmid=28325879|pmc=5380037|arxiv=1702.01852|doi-access=free}}</ref><ref>{{cite journal|last1=Devitt|first1=Simon J.|title=Performing quantum computing experiments in the cloud|journal=Physical Review A|date=29 September 2016|volume=94|issue=3|pages=032329|doi=10.1103/PhysRevA.94.032329|arxiv=1605.05709|bibcode=2016PhRvA..94c2329D|s2cid=119217150}}</ref><ref>{{Cite journal|arxiv=1612.08091|last1=Steiger|first1=Damian|last2=Haner|first2=Thomas|last3=Troyer|first3=Matthias |year=2018|title=ProjectQ: An Open Source Software Framework for Quantum Computing|journal=Quantum|volume=2|pages=49|doi=10.22331/q-2018-01-31-49|s2cid=6758479}}</ref><ref>{{cite journal|last1=Santos|first1=Alan C.|title=O Computador Quântico da IBM e o IBM Quantum Experience|journal=Revista Brasileira de Ensino de Física|date=2017|volume=39|issue=1|doi=10.1590/1806-9126-RBEF-2016-0155|arxiv=1610.06980}}</ref><ref>{{Cite journal|last1=Caicedo-Ortiz|first1=H. E.|last2=Santiago-Cortés|first2=E.|date=2017|title=Construyendo compuertas cuánticas con IBM's cloud quantum computer|trans-title=Building quantum gates with IBM’s cloud quantum computer|url=http://jci.uniautonoma.edu.co/2017/2017-7.pdf|journal=Journal de Ciencia e Ingeniería|language=es|volume=9|pages=42–56|doi=10.46571/JCI.2017.1.7|doi-access=free}}</ref>
 
* University professors have integrated examples and experiments based on the IBM Quantum service into their educational curricula.<ref>{{cite news|last1=Sheldon|first1=Sarah|title=Students try hand at cracking quantum code|url=https://www.ibm.com/blogs/research/2016/06/students-try-hand-cracking-quantum-code/|date=10 June 2016}}</ref>
 
* Dr. Christine Corbett Moran, a postdoctoral fellow at the [[California Institute of Technology]], used the IBM Quantum service while she was doing research in [[Antarctica]].<ref>{{cite news|last1=Nay|first1=Chris|title=Quantum Experiences: Q&A with Caltech's Christine Corbett Moran|url=https://www.ibm.com/blogs/research/2016/07/quantum-experiences-qa-caltechs-christine-corbett-moran/|date=26 July 2016}}</ref>
 
* Tara Tosic, a physics student at the [[École Polytechnique Fédérale de Lausanne]] (EPFL), used the IBM Quantum service while she was doing research in the [[Arctic]].<ref>{{Cite news|url=https://www.ibm.com/blogs/research/2018/11/ibm-q-arctic/|title=IBM Q in the Arctic: 76.4° North|last=Tosic|first=Tara|date=16 November 2018|work=IBM Research Blog}}</ref>
 
* Many academic papers have been published by researchers who have conducted experiments using the service.<ref>{{cite web|title=QX Community papers|url=https://quantumexperience.ng.bluemix.net/qx/community?channel=papers|access-date=2018-05-24|archive-date=2019-03-22|archive-url=https://web.archive.org/web/20190322211226/https://quantumexperience.ng.bluemix.net/qx/community?channel=papers|url-status=dead}}</ref><ref>{{cite web|title=ReseachResearch of the IBM Quantum Hub at the University of Melbourne|date=20 April 2021|url=https://www.unimelb.edu.au/quantumhub#research}}</ref><ref>{{cite journal|arxiv=1605.08922|last1=Rundle|first1=R. P.|last2=Tilma|first2=T.|last3=Samson|first3=J. H.|last4=Everitt|first4=M. J. |year=2017|title=Quantum state reconstruction made easy: a direct method for tomography|doi=10.1103/PhysRevA.96.022117|volume=96|issue=2|pages=022117|journal=Physical Review A|bibcode=2017PhRvA..96b2117R}}</ref><ref>{{cite arXiv|eprint=1606.09225|last=Corbett Moran |first=Christine |date=29 June 2016|title=Quintuple: a Python 5-qubit quantum computer simulator to facilitate cloud quantum computing |class=quant-ph }}</ref><ref>{{cite journal|last1=Huffman|first1=Emilie|last2=Mizel|first2=Ari|title=Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole|journal=Physical Review A|date=29 March 2017|volume=95|issue=3|pages=032131|doi=10.1103/PhysRevA.95.032131|bibcode=2017PhRvA..95c2131H|arxiv=1609.05957}}</ref><ref>{{Cite journal|arxiv=1609.07459|last=Deffner|first=Sebastian|date=23 September 2016|title=Demonstration of entanglement assisted invariance on IBM's Quantum Experience|journal=Heliyon|volume=3|issue=11|pages=e00444|doi=10.1016/j.heliyon.2017.e00444|doi-access=free |pmid=29159322|pmc=5683883}}</ref><ref>{{cite journal|arxiv=1612.02886|date=9 December 2016|title=Homomorphic Encryption Experiments on IBM's Cloud Quantum Computing Platform|last1=Huang|first1=He-Liang|last2=Zhao|first2=You-Wei|last3=Li|first3=Tan|last4=Li|first4=Feng-Guang|last5=Du|first5=Yu-Tao|last6=Fu|first6=Xiang-Qun|last7=Zhang|first7=Shuo|last8=Wang|first8=Xiang|last9=Bao|first9=Wan-Su|journal=Frontiers of Physics|volume=12|issue=1|page=120305|doi=10.1007/s11467-016-0643-9|bibcode=2017FrPhy..12l0305H|s2cid=17770053}}</ref><ref>{{cite journal|last1=Wootton|first1=James R|title=Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment|journal=Quantum Science and Technology|date=1 March 2017|volume=2|issue=1|pages=015006|doi=10.1088/2058-9565/aa5c73|arxiv=1609.07774|bibcode=2017QS&T....2a5006W|s2cid=44370109}}</ref><ref>{{cite arXiv|eprint=1607.02398|date=8 July 2016|last=Fedortchenko|first=Serguei|title=A quantum teleportation experiment for undergraduate students|class=quant-ph}}</ref><ref>{{cite journal|last1=Berta|first1=Mario|last2=Wehner|first2=Stephanie|last3=Wilde|first3=Mark M|title=Entropic uncertainty and measurement reversibility|journal=New Journal of Physics|date=6 July 2016|volume=18|issue=7|pages=073004|doi=10.1088/1367-2630/18/7/073004|arxiv=1511.00267|bibcode=2016NJPh...18g3004B|s2cid=119186679}}</ref><ref>{{cite journal|arxiv=1611.07851|date=23 November 2016|title=Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience|last1=Li|first1=Rui|last2=Alvarez-Rodriguez|first2=Unai|last3=Lamata|first3=Lucas|last4=Solano|first4=Enrique|doi=10.1515/qmetro-2017-0001|volume=4|issue=1|journal=Quantum Measurements and Quantum Metrology|pages=1–7|bibcode=2017QMQM....4....1L|s2cid=108291239}}</ref><ref>{{Cite journal|arxiv=1701.02970|date=11 January 2017|title=Compressed quantum computation using the IBM Quantum Experience|journal=Phys. Rev. A|volume=95|issue=5|pages=052339|last1= Hebenstreit|first1=M.|last2= Alsina|first2=D.|last3= Latorre|first3=J. I.|last4= Kraus|author4-link=Barbara Kraus|first4=B.|doi=10.1103/PhysRevA.95.052339|s2cid=118958024}}</ref><ref>{{cite journal|last1=Alsina|first1=Daniel|last2=Latorre|first2=José Ignacio|title=Experimental test of Mermin inequalities on a five-qubit quantum computer|journal=Physical Review A|date=11 July 2016|volume=94|issue=1|pages=012314|doi=10.1103/PhysRevA.94.012314|arxiv=1605.04220|bibcode=2016PhRvA..94a2314A|s2cid=119189277}}</ref><ref>{{cite journal|last1=Linke|first1=Norbert M.|last2=Maslov|first2=Dmitri|last3=Roetteler|first3=Martin|last4=Debnath|first4=Shantanu|last5=Figgatt|first5=Caroline|last6=Landsman|first6=Kevin A.|last7=Wright|first7=Kenneth|last8=Monroe|first8=Christopher|title=Experimental comparison of two quantum computing architectures|journal=Proceedings of the National Academy of Sciences|date=28 March 2017|volume=114|issue=13|pages=3305–3310|doi=10.1073/pnas.1618020114|pmid=28325879|pmc=5380037|arxiv=1702.01852|bibcode=2017PNAS..114.3305L |doi-access=free}}</ref><ref>{{cite journal|last1=Devitt|first1=Simon J.|title=Performing quantum computing experiments in the cloud|journal=Physical Review A|date=29 September 2016|volume=94|issue=3|pages=032329|doi=10.1103/PhysRevA.94.032329|arxiv=1605.05709|bibcode=2016PhRvA..94c2329D|s2cid=119217150}}</ref><ref>{{Cite journal|arxiv=1612.08091|last1=Steiger|first1=Damian|last2=Haner|first2=Thomas|last3=Troyer|first3=Matthias |year=2018|title=ProjectQ: An Open Source Software Framework for Quantum Computing|journal=Quantum|volume=2|pages=49|doi=10.22331/q-2018-01-31-49|bibcode=2018Quant...2...49S |s2cid=6758479}}</ref><ref>{{cite journal|last1=Santos|first1=Alan C.|title=O Computador Quântico da IBM e o IBM Quantum Experience|journal=Revista Brasileira de Ensino de Física|date=2017|volume=39|issue=1|doi=10.1590/1806-9126-RBEF-2016-0155|arxiv=1610.06980}}</ref><ref>{{Cite journal|last1=Caicedo-Ortiz|first1=H. E.|last2=Santiago-Cortés|first2=E.|date=2017|title=Construyendo compuertas cuánticas con IBM's cloud quantum computer|trans-title=Building quantum gates with IBM’s cloud quantum computer|url=http://jci.uniautonoma.edu.co/2017/2017-7.pdf|journal=Journal de Ciencia e Ingeniería|language=es|volume=9|pages=42–56|doi=10.46571/JCI.2017.1.7|doi-access=free}}</ref>
* People have also used the IBM Quantum service for various non-academic purposes. One user has begun developing games using the IBM Quantum service,<ref>{{cite web|last1=Wootton|first1=James|title=Why we need to make quantum games|url=https://medium.com/@decodoku/why-we-need-to-make-quantum-games-6f8c7bc4ace7#.hlkit1g23|date=12 March 2017}}</ref> including one titled "quantum battleships".<ref>{{cite web|last1=Wootton|first1=James|title=Quantum Battleships: The first multiplayer game for a quantum computer|url=https://medium.com/@decodoku/quantum-battleships-the-first-multiplayer-game-for-a-quantum-computer-e4d600ccb3f3#.7jthid6v1|date=7 March 2017}}</ref>
 
== References ==
Line 66 ⟶ 72:
 
== External links ==
* [https://quantum-computing.ibm.com/ IBM Quantum ExperiencePlatform]
{{IBM}}
{{quantum computing}}