Microdialysis: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: title, template type. Add: doi-access, pmc, pages, issue, volume, journal, doi, year, bibcode, pmid, s2cid, authors 1-2. Removed proxy/dead URL that duplicated identifier. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 426/762
Citation bot (talk | contribs)
Add: pmid, s2cid. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 2870/3850
Line 7:
== History ==
 
The microdialysis principle was first employed in the early 1960s, when [[Push-pull perfusion|push-pull canulas]]<ref>{{cite journal |doi=10.1113/jphysiol.1961.sp006651 |title=Proceedings of the Physiological Society |journal=The Journal of Physiology |volume=155 |pages=1–28 |year=1961 |s2cid=222200988 }}</ref> and dialysis sacs<ref name=pmid5924657>{{cite journal | vauthors = Bito L, Davson H, Levin E, Murray M, Snider N | title = The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog | journal = Journal of Neurochemistry | volume = 13 | issue = 11 | pages = 1057–67 | date = November 1966 | pmid = 5924657 | doi = 10.1111/j.1471-4159.1966.tb04265.x | s2cid = 32976369 }}</ref> were implanted into animal tissues, especially into rodent brains, to directly study the tissues' biochemistry.<ref name="chaurasia" /> While these techniques had a number of experimental drawbacks, such as the number of samples per animal or no/limited time resolution, the invention of continuously perfused dialytrodes in 1972 helped to overcome some of these limitations.<ref name="Delgado">{{cite journal | vauthors = Delgado JM, DeFeudis FV, Roth RH, Ryugo DK, Mitruka BM | title = Dialytrode for long term intracerebral perfusion in awake monkeys | journal = Archives Internationales de Pharmacodynamie et de Thérapie | volume = 198 | issue = 1 | pages = 9–21 | year = 1972 | pmid = 4626478 }}</ref> Further improvement of the dialytrode concept resulted in the invention of the "hollow fiber", a tubular semipermeable membrane with a diameter of ~200-300μm, in 1974.<ref>{{cite journal | vauthors = Ungerstedt U, Pycock C | title = Functional correlates of dopamine neurotransmission | journal = Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften | volume = 30 | issue = 1–3 | pages = 44–55 | date = July 1974 | pmid = 4371656 }}</ref> Today's most prevalent shape, the needle probe, consists of a shaft with a hollow fiber at its tip and can be inserted by means of a guide cannula into the brain and other tissues. An alternative method, [[Open flow microperfusion|open flow micro-perfusion]] (OFM), replaces the membrane with macroscopic openings which facilitates sampling of lipophilic<ref>{{Cite journal|last1=Li|first1=Tuo|last2=Yang|first2=Hui|last3=Li|first3=Xing|last4=Hou|first4=Yinzhu|last5=Zhao|first5=Yao|last6=Wu|first6=Wenjing|last7=Zhao|first7=Lingyu|last8=Wang|first8=Fuyi|last9=Zhao|first9=Zhenwen|date=2021|title=Open-flow microperfusion combined with mass spectrometry for in vivo liver lipidomic analysis|url=http://xlink.rsc.org/?DOI=D0AN02189J|journal=The Analyst|language=en|volume=146|issue=6|pages=1915–1923|doi=10.1039/D0AN02189J|pmid=33481970|bibcode=2021Ana...146.1915L|s2cid=231689183|issn=0003-2654}}</ref><ref>{{Cite journal|last1=Bodenlenz|first1=Manfred|last2=Höfferer|first2=Christian|last3=Magnes|first3=Christoph|last4=Schaller-Ammann|first4=Roland|last5=Schaupp|first5=Lukas|last6=Feichtner|first6=Franz|last7=Ratzer|first7=Maria|last8=Pickl|first8=Karin|last9=Sinner|first9=Frank|last10=Wutte|first10=Andrea|last11=Korsatko|first11=Stefan|date=August 2012|title=Dermal PK/PD of a lipophilic topical drug in psoriatic patients by continuous intradermal membrane-free sampling|url=https://linkinghub.elsevier.com/retrieve/pii/S0939641112001051|journal=European Journal of Pharmaceutics and Biopharmaceutics|language=en|volume=81|issue=3|pages=635–641|doi=10.1016/j.ejpb.2012.04.009|pmid=22554768}}</ref><ref>{{Cite journal|last1=Bodenlenz|first1=Manfred|last2=Höfferer|first2=Christian|last3=Magnes|first3=Christoph|last4=Schaller-Ammann|first4=Roland|last5=Schaupp|first5=Lukas|last6=Feichtner|first6=Franz|last7=Ratzer|first7=Maria|last8=Pickl|first8=Karin|last9=Sinner|first9=Frank|last10=Wutte|first10=Andrea|last11=Korsatko|first11=Stefan|date=August 2012|title=Dermal PK/PD of a lipophilic topical drug in psoriatic patients by continuous intradermal membrane-free sampling|url=http://dx.doi.org/10.1016/j.ejpb.2012.04.009|journal=European Journal of Pharmaceutics and Biopharmaceutics|volume=81|issue=3|pages=635–641|doi=10.1016/j.ejpb.2012.04.009|pmid=22554768|issn=0939-6411}}</ref> and hydrophilic compounds,<ref>{{Cite journal|last1=Altendorfer-Kroath|first1=Thomas|last2=Schimek|first2=Denise|last3=Eberl|first3=Anita|last4=Rauter|first4=Günther|last5=Ratzer|first5=Maria|last6=Raml|first6=Reingard|last7=Sinner|first7=Frank|last8=Birngruber|first8=Thomas|date=January 2019|title=Comparison of cerebral Open Flow Microperfusion and Microdialysis when sampling small lipophilic and small hydrophilic substances|url=http://dx.doi.org/10.1016/j.jneumeth.2018.09.024|journal=Journal of Neuroscience Methods|volume=311|pages=394–401|doi=10.1016/j.jneumeth.2018.09.024|pmid=30266621|s2cid=52883354|issn=0165-0270}}</ref> protein bound and unbound drugs,<ref>{{Cite journal|last1=Schaupp|first1=L.|last2=Ellmerer|first2=M.|last3=Brunner|first3=G. A.|last4=Wutte|first4=A.|last5=Sendlhofer|first5=G.|last6=Trajanoski|first6=Z.|last7=Skrabal|first7=F.|last8=Pieber|first8=T. R.|last9=Wach|first9=P.|authorlink8= Thomas Pieber|date=1999-02-01|title=Direct access to interstitial fluid in adipose tissue in humans by use of open-flow microperfusion|url=http://dx.doi.org/10.1152/ajpendo.1999.276.2.e401|journal=American Journal of Physiology. Endocrinology and Metabolism|volume=276|issue=2|pages=E401–E408|doi=10.1152/ajpendo.1999.276.2.e401|pmid=9950802|issn=0193-1849}}</ref><ref>{{Cite journal|last1=Ellmerer|first1=Martin|last2=Schaupp|first2=Lukas|last3=Brunner|first3=Gernot A.|last4=Sendlhofer|first4=Gerald|last5=Wutte|first5=Andrea|last6=Wach|first6=Paul|last7=Pieber|first7=Thomas R.|date=2000-02-01|title=Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion|url=http://dx.doi.org/10.1152/ajpendo.2000.278.2.e352|journal=American Journal of Physiology. Endocrinology and Metabolism|volume=278|issue=2|pages=E352–E356|doi=10.1152/ajpendo.2000.278.2.e352|pmid=10662720|s2cid=11616153 |issn=0193-1849}}</ref> [[neurotransmitter]]s, [[peptide]]s and [[protein]]s, [[Antibody|antibodies]],<ref>{{Cite journal|last1=Dragatin|first1=Christian|last2=Polus|first2=Florine|last3=Bodenlenz|first3=Manfred|last4=Calonder|first4=Claudio|last5=Aigner|first5=Birgit|last6=Tiffner|first6=Katrin Irene|last7=Mader|first7=Julia Katharina|last8=Ratzer|first8=Maria|last9=Woessner|first9=Ralph|last10=Pieber|first10=Thomas Rudolf|last11=Cheng|first11=Yi|date=2015-11-23|title=Secukinumab distributes into dermal interstitial fluid of psoriasis patients as demonstrated by open flow microperfusion|journal=Experimental Dermatology|volume=25|issue=2|pages=157–159|doi=10.1111/exd.12863|pmid=26439798|issn=0906-6705|doi-access=free}}</ref><ref>{{Cite journal|last1=Kolbinger|first1=Frank|last2=Loesche|first2=Christian|last3=Valentin|first3=Marie-Anne|last4=Jiang|first4=Xiaoyu|last5=Cheng|first5=Yi|last6=Jarvis|first6=Philip|last7=Peters|first7=Thomas|last8=Calonder|first8=Claudio|last9=Bruin|first9=Gerard|last10=Polus|first10=Florine|last11=Aigner|first11=Birgit|date=March 2017|title=β-Defensin 2 is a responsive biomarker of IL-17A–driven skin pathology in patients with psoriasis|journal=Journal of Allergy and Clinical Immunology|volume=139|issue=3|pages=923–932.e8|doi=10.1016/j.jaci.2016.06.038|pmid=27502297 |issn=0091-6749|doi-access=free}}</ref><ref>{{Cite journal|last1=Kleinert|first1=Maximilian|last2=Kotzbeck|first2=Petra|last3=Altendorfer-Kroath|first3=Thomas|last4=Birngruber|first4=Thomas|last5=Tschöp|first5=Matthias H.|last6=Clemmensen|first6=Christoffer|date=December 2019|title=Corrigendum to "Time-resolved hypothalamic open flow micro-perfusion reveals normal leptin transport across the blood–brain barrier in leptin resistant mice" [Molecular Metabolism 13 (2018) 77–82]|url=http://dx.doi.org/10.1016/j.molmet.2019.11.001|journal=Molecular Metabolism|volume=30|pages=265|doi=10.1016/j.molmet.2019.11.001|pmid=31767178|issn=2212-8778|pmc=6889745}}</ref> [[nanoparticle]]s and [[nanocarriers]], [[enzyme]]s and [[Vesicle (biology and chemistry)|vesicle]]s.
 
== Microdialysis probes ==
Line 17:
Due to the constant [[perfusion]] of the microdialysis probe with fresh perfusate, a total equilibrium cannot be established.<ref name="chaurasia" /> This results in dialysate concentrations that are lower than those measured at the distant sampling site. In order to correlate concentrations measured in the dialysate with those present at the distant sampling site, a calibration factor (recovery) is needed.<ref>{{cite journal |title=Methodological aspects of the use of a calibrator in in vivo microdialysis-further development of the retrodialysis method |year=1998|doi=10.1023/A:1011992125204|url=https://link.springer.com/article/10.1023/A:1011992125204|last1=Bouw|first1=M. René|last2=Hammarlund‐Udenaes|first2=Margareta|journal=Pharmaceutical Research|volume=15|issue=11|pages=1673–1679|pmid=9833986|s2cid=11177946}}</ref> The recovery can be determined at steady-state using the constant rate of analyte exchange across the microdialysis membrane. The rate at which an analyte is exchanged across the semipermeable membrane is generally expressed as the analyte’s extraction efficiency. The extraction efficiency is defined as the ratio between the loss/gain of analyte during its passage through the probe (C<sub>in</sub>−C<sub>out</sub>) and the difference in concentration between perfusate and distant sampling site (C<sub>in</sub>−C<sub>sample</sub>).
 
In theory, the extraction efficiency of a microdialysis probe can be determined by: 1) changing the drug concentrations while keeping the flow rate constant or 2) changing the flow rate while keeping the respective drug concentrations constant. At steady-state, the same extraction efficiency value is obtained, no matter if the analyte is enriched or depleted in the perfusate.<ref name="chaurasia" /> Microdialysis probes can consequently be calibrated by either measuring the loss of analyte using drug-containing perfusate or the gain of analyte using drug-containing sample solutions. To date, the most frequently used calibration methods are the low-flow-rate method, the no-net-flux method,<ref name = "Lönnroth">{{cite journal | vauthors = Lönnroth P, Jansson PA, Smith U | title = A microdialysis method allowing characterization of intercellular water space in humans | journal = The American Journal of Physiology | volume = 253 | issue = 2 Pt 1 | pages = E228-31 | date = August 1987 | pmid = 3618773 | doi = 10.1152/ajpendo.1987.253.2.E228 | s2cid = 5766876 }}</ref> the dynamic (extended) no-net-flux method,<ref name = "Olson">{{cite journal |doi=10.1021/ac00056a012 |pmid=8494171 |title=Quantitative microdialysis under transient conditions |journal=Analytical Chemistry |volume=65 |issue=8 |pages=1017–1022 |year=2002 | vauthors = Olson RJ, Justice JB }}</ref> and the retrodialysis method.<ref name = "Wang">{{cite journal | vauthors = Wang Y, Wong SL, Sawchuk RJ | title = Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus | journal = Pharmaceutical Research | volume = 10 | issue = 10 | pages = 1411–9 | date = October 1993 | pmid = 8272401 | doi = 10.1023/A:1018906821725 | s2cid = 20232288 }}</ref> The proper selection of an appropriate calibration method is critically important for the success of a microdialysis experiment. Supportive [[in vitro]] experiments prior to the use in animals or humans are therefore recommended.<ref name="chaurasia" /> In addition, the recovery determined in vitro may differ from the recovery in humans. Its actual value therefore needs to be determined in every in vivo experiment.<ref name="Stahl" />
 
=== Low-flow-rate method ===