Senescence: Difference between revisions

Content deleted Content added
m Fixed a pmc parameter and dates in citations. Please see Category:CS1 maint: PMC format and Category:CS1 errors: dates.
Citation bot (talk | contribs)
Alter: doi, title. Add: pmc, pmid, doi-access, page, authors 1-1. Removed URL that duplicated identifier. Removed access-date with no URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar
Line 25:
* disabled [[macroautophagy]]
* [[chronic inflammation]]
* [[dysbiosis]]<ref name="10.1016/j.cell.2022.11.001">{{cite journal |last1=López-Otín |first1=Carlos |last2=Blasco |first2=Maria A. |last3=Partridge |first3=Linda |last4=Serrano |first4=Manuel |last5=Kroemer |first5=Guido |title=Hallmarks of aging: An expanding universe |journal=Cell |date=19 January 2023 |volume=186 |issue=2 |pages=243–278 |doi=10.1016/j.cell.2022.11.001 |pmid=36599349 |s2cid=255394876 |url=https://www.cell.com/cell/fulltext/S0092-8674(22)01377-0 |language=English |issn=0092-8674 |url-access=subscription |access-date=17 February 2023 |archive-date=17 February 2023 |archive-url=https://web.archive.org/web/20230217232035/https://www.cell.com/cell/fulltext/S0092-8674(22)01377-0 |url-status=live |doi-access=free }}</ref>
 
The environment induces damage at various levels, e.g. [[DNA damage theory of aging|damage to DNA]], and damage to tissues and cells by oxygen [[radical (chemistry)|radicals]] (widely known as [[Free-radical theory|free radicals]]), and some of this damage is not repaired and thus accumulates with time.<ref name="pmid1383772">{{cite journal |vauthors=Holmes GE, Bernstein C, Bernstein H |title=Oxidative and other DNA damages as the basis of aging: a review |journal=Mutat. Res. |volume=275 |issue=3–6 |pages=305–15 |date=September 1992 |pmid=1383772 |doi= 10.1016/0921-8734(92)90034-m}}</ref> [[Cloning]] from [[somatic cell]]s rather than germ cells may begin life with a higher initial load of damage. [[Dolly the sheep]] died young from a contagious lung disease, but data on an entire population of cloned individuals would be necessary to measure mortality rates and quantify aging.{{citation needed|date=December 2019}}
Line 121:
=== Aging clocks ===
{{Expand section|date=March 2023}}
There is interest in an [[epigenetic clock]] as a biomarker of aging, based on its ability to predict human chronological age.<ref name="Horvath2013">{{cite journal | vauthors = Horvath S | title = DNA methylation age of human tissues and cell types | journal = Genome Biology | volume = 14 | issue = 10 | pages = R115 | year = 2013 | pmid = 24138928 | pmc = 4015143 | doi = 10.1186/gb-2013-14-10-r115 | doi-access = free }}</ref> Basic blood [[biochemistry]] and cell counts can also be used to accurately predict the chronological age.<ref name="pmid27191382">{{cite journal | vauthors = Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A | display-authors = 6 | title = Deep biomarkers of human aging: Application of deep neural networks to biomarker development | journal = Aging | volume = 8 | issue = 5 | pages = 1021–33 | date = May 2016 | pmid = 27191382 | pmc = 4931851 | doi = 10.18632/aging.100968 }}</ref> It is also possible to predict the human chronological age using transcriptomic aging clocks<ref>{{cite journal | vauthors = Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, Wilson YA, Kobes S, Tukiainen T, Ramos YF, Göring HH, Fornage M, Liu Y, Gharib SA, Stranger BE, De Jager PL, Aviv A, Levy D, Murabito JM, Munson PJ, Huan T, Hofman A, Uitterlinden AG, Rivadeneira F, van Rooij J, Stolk L, Broer L, Verbiest MM, Jhamai M, Arp P, Metspalu A, Tserel L, Milani L, Samani NJ, Peterson P, Kasela S, Codd V, Peters A, Ward-Caviness CK, Herder C, Waldenberger M, Roden M, Singmann P, Zeilinger S, Illig T, Homuth G, Grabe HJ, Völzke H, Steil L, Kocher T, Murray A, Melzer D, Yaghootkar H, Bandinelli S, Moses EK, Kent JW, Curran JE, Johnson MP, Williams-Blangero S, Westra HJ, McRae AF, Smith JA, Kardia SL, Hovatta I, Perola M, Ripatti S, Salomaa V, Henders AK, Martin NG, Smith AK, Mehta D, Binder EB, Nylocks KM, Kennedy EM, Klengel T, Ding J, Suchy-Dicey AM, Enquobahrie DA, Brody J, Rotter JI, Chen YD, Houwing-Duistermaat J, Kloppenburg M, Slagboom PE, Helmer Q, den Hollander W, Bean S, Raj T, Bakhshi N, Wang QP, Oyston LJ, Psaty BM, Tracy RP, Montgomery GW, Turner ST, Blangero J, Meulenbelt I, Ressler KJ, Yang J, Franke L, Kettunen J, Visscher PM, Neely GG, Korstanje R, Hanson RL, Prokisch H, Ferrucci L, Esko T, Teumer A, van Meurs JB, Johnson AD | display-authors = 6 | title = The transcriptional landscape of age in human peripheral blood | journal = Nature Communications | volume = 6 | pages = 8570 | date = October 2015 | pmid = 26490707 | pmc = 4639797 | doi = 10.1038/ncomms9570 | bibcode = 2015NatCo...6.8570. }}</ref><ref>{{Cite journal |lastlast1=Mamoshina |firstfirst1=Polina |last2=Volosnikova |first2=Marina |last3=Ozerov |first3=Ivan V. |last4=Putin |first4=Evgeny |last5=Skibina |first5=Ekaterina |last6=Cortese |first6=Franco |last7=Zhavoronkov |first7=Alex |date=2018 |title=Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification |url=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2018.00242 |journal=Frontiers in Genetics |volume=9 |page=242 |doi=10.3389/fgene.2018.00242/full |doi-access=free |pmid=30050560 |pmc=6052089 |issn=1664-8021}}</ref><ref>{{Cite journal |lastlast1=Fleischer |firstfirst1=Jason G. |last2=Schulte |first2=Roberta |last3=Tsai |first3=Hsiao H. |last4=Tyagi |first4=Swati |last5=Ibarra |first5=Arkaitz |last6=Shokhirev |first6=Maxim N. |last7=Huang |first7=Ling |last8=Hetzer |first8=Martin W. |last9=Navlakha |first9=Saket |date=2018-12-20 |title=Predicting age from the transcriptome of human dermal fibroblasts |url=https://doi.org/10.1186/s13059-018-1599-6 |journal=Genome Biology |volume=19 |issue=1 |pages=221 |doi=10.1186/s13059-018-1599-6 |doi-access=free |issn=1474-760X |pmc=6300908 |pmid=30567591}}</ref><ref>{{Cite journal |lastlast1=Meyer |firstfirst1=David H. |last2=Schumacher |first2=Björn |date=March 2021 |title=BiT age: A transcriptome‐basedtranscriptome-based aging clock near the theoretical limit of accuracy |url=https://onlinelibrary.wiley.com/doi/10.1111/acel.13320 |journal=Aging Cell |language=en |volume=20 |issue=3 |doi=10.1111/acel.13320 |pmid=33656257 |issn=1474-9718}}</ref>, and proteomic aging clocks<ref>{{Cite journal |lastlast1=Oh |firstfirst1=Hamilton Se-Hwee |last2=Rutledge |first2=Jarod |last3=Nachun |first3=Daniel |last4=Pálovics |first4=Róbert |last5=Abiose |first5=Olamide |last6=Moran-Losada |first6=Patricia |last7=Channappa |first7=Divya |last8=Urey |first8=Deniz Yagmur |last9=Kim |first9=Kate |last10=Sung |first10=Yun Ju |last11=Wang |first11=Lihua |last12=Timsina |first12=Jigyasha |last13=Western |first13=Dan |last14=Liu |first14=Menghan |last15=Kohlfeld |first15=Pat |date=December 2023 |title=Organ aging signatures in the plasma proteome track health and disease |url=https://www.nature.com/articles/s41586-023-06802-1 |journal=Nature |language=en |volume=624 |issue=7990 |pages=164–172 |doi=10.1038/s41586-023-06802-1 |pmid=38057571 |pmc=10700136 |issn=1476-4687}}</ref>. Indeed, it has been demonstrated that the fundamental signal underlying all current aging clocks is the accumulation of stochastic variation with age.<ref name=":1">{{Cite journal |lastlast1=Meyer |firstfirst1=David H. |last2=Schumacher |first2=Björn |date=2024-05-09 |title=Aging clocks based on accumulating stochastic variation |url=https://www.nature.com/articles/s43587-024-00619-x |journal=Nature Aging |language=en |pages=1–15 |doi=10.1038/s43587-024-00619-x |issn=2662-8465}}</ref> And that any dataset, even those consisting of just one biological sample, can be used to build aging clocks.<ref name=":1" />
 
There is research and development of further biomarkers, detection systems and software systems to measure biological age of different tissues or systems or overall. For example, a [[deep learning]] (DL) software using anatomic [[magnetic resonance image]]s estimated [[brain aging|brain age]] with relatively high accuracy, including detecting early signs of Alzheimer's disease and varying [[neuroanatomical]] patterns of neurological aging,<ref>{{cite journal |last1=Yin |first1=Chenzhong |last2=Imms |first2=Phoebe |last3=Cheng |first3=Mingxi |display-authors=et al. |title=Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment |journal=Proceedings of the National Academy of Sciences |date=10 January 2023 |volume=120 |issue=2 |pages=e2214634120 |doi=10.1073/pnas.2214634120 |pmid=36595679 |pmc=9926270 |bibcode=2023PNAS..12014634Y |language=en |issn=0027-8424 }}
Line 128:
* News article about the study: {{cite news |title=Tool that calculates immune system age could predict frailty and disease |url=https://newatlas.com/science/stanford-immune-system-age-biomarker-blood-test/ |access-date=26 July 2021 |work=New Atlas |date=13 July 2021 |archive-date=26 July 2021 |archive-url=https://web.archive.org/web/20210726110032/https://newatlas.com/science/stanford-immune-system-age-biomarker-blood-test/ |url-status=live }}</ref>
 
Aging clocks have been used to evaluate impacts of interventions on humans, including [[combination therapy|combination therapies]].<ref>{{cite journal |title=Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial |journal=Aging |year=2021 |pmid=33844651 |url=https://www.aging-us.com/article/202913/text |access-date=28 June 2021 |last1=Fitzgerald |first1=K. N. |last2=Hodges |first2=R. |last3=Hanes |first3=D. |last4=Stack |first4=E. |last5=Cheishvili |first5=D. |last6=Szyf |first6=M. |last7=Henkel |first7=J. |last8=Twedt |first8=M. W. |last9=Giannopoulou |first9=D. |last10=Herdell |first10=J. |last11=Logan |first11=S. |last12=Bradley |first12=R. |volume=13 |issue=7 |pages=9419–9432 |doi=10.18632/aging.202913 |pmc=8064200 |archive-date=2 June 2021 |archive-url=https://web.archive.org/web/20210602114006/https://www.aging-us.com/article/202913/text |url-status=live }}</ref>{{additional citation needed|date=March 2023}} Exmploying aging clocks to identify and evaluate longevity interventions represents a fundamental goal in aging biology research. However, achieving this goal requires overcoming numerous challenges and implementing additional validation steps.<ref>{{Cite journal |lastlast1=Moqri |firstfirst1=Mahdi |last2=Herzog |first2=Chiara |last3=Poganik |first3=Jesse R. |last4=Justice |first4=Jamie |last5=Belsky |first5=Daniel W. |last6=Higgins-Chen |first6=Albert |last7=Moskalev |first7=Alexey |last8=Fuellen |first8=Georg |last9=Cohen |first9=Alan A. |last10=Bautmans |first10=Ivan |last11=Widschwendter |first11=Martin |last12=Ding |first12=Jingzhong |last13=Fleming |first13=Alexander |last14=Mannick |first14=Joan |last15=Han |first15=Jing-Dong Jackie |date=August 2023 |title=Biomarkers of aging for the identification and evaluation of longevity interventions |url=https://doi.org/10.1016/j.cell.2023.08.003 |journal=Cell |volume=186 |issue=18 |pages=3758–3775 |doi=10.1016/j.cell.2023.08.003 |pmid=37657418 |issn=0092-8674}}</ref> <ref>{{Cite journal |lastlast1=Moqri |firstfirst1=Mahdi |last2=Herzog |first2=Chiara |last3=Poganik |first3=Jesse R. |last4=Ying |first4=Kejun |last5=Justice |first5=Jamie N. |last6=Belsky |first6=Daniel W. |last7=Higgins-Chen |first7=Albert T. |last8=Chen |first8=Brian H. |last9=Cohen |first9=Alan A. |last10=Fuellen |first10=Georg |last11=Hägg |first11=Sara |last12=Marioni |first12=Riccardo E. |last13=Widschwendter |first13=Martin |last14=Fortney |first14=Kristen |last15=Fedichev |first15=Peter O. |date=February 2024 |title=Validation of biomarkers of aging |url=https://pubmed.ncbi.nlm.nih.gov/38355974/ |journal=Nature Medicine |volume=30 |issue=2 |pages=360–372 |doi=10.1038/s41591-023-02784-9 |issn=1546-170X |pmid=38355974}}</ref>
 
==Genetic determinants of aging==