Symmetric set: Difference between revisions

Content deleted Content added
m Examples: Typo
 
(30 intermediate revisions by 13 users not shown)
Line 1:
{{Short description|Property of group subsets (mathematics)}}
In [[mathematics]], a nonempty subset ''{{mvar|S''}} of a [[groupGroup (mathematics)|group]] ''{{mvar|G''}} is said to be '''symmetric''' if it contains the [[Inverse element|inverses]] of all of its elements.
:<math>S=S^{-1}</math>
where <math>S^{-1} = \{ x^{-1} : x \in G \}</math>. In other words, ''S'' is symmetric if <math>x^{-1} \in S</math> whenever <math>x \in S</math>.
 
== Definition ==
If ''S'' is a subset of a [[vector space]], then ''S'' is said to be symmetric if it is symmetric with respect to the additive group structure of the vector space; that is, if <math>S = -S = \{ -x : x \in S \}</math>.
 
In [[Set-builder notation|set notation]] a subset <math>S</math> of a group <math>G</math> is called {{em|symmetric}} if whenever <math>s \in S</math> then the inverse of <math>s</math> also belongs to <math>S.</math>
==Examples==
*So Inif '''R''',<math>G</math> examples of symmetricis setswritten aremultiplicatively intervals of the typethen <math>(-k, k)S</math> withis symmetric if and only if <math>kS >= 0S^{-1}</math>, and the sets '''Z''' andwhere <math>S^{-1} := \left\{ s^{-1,} 1: s \in S \right\}.</math>.
If <math>G</math> is written additively then <math>S</math> is symmetric if and only if <math>S = - S</math> where <math>- S := \{- s : s \in S\}.</math>
* Any vector subspace in a vector space is a symmetric set.
* If ''S'' is any subset of a group, then <math>SS^{-1}</math> and <math>S^{-1}S</math> are symmetric sets.
 
If ''<math>S''</math> is a subset of a [[vector space]], then ''<math>S''</math> is said to be a {{em|symmetric set}} if it is symmetric with respect to the [[additive group]] structure of the vector space; that is, if <math>S = - S,</math> =which \{happens -xif :and xonly \inif <math>- S \}subseteq S.</math>.
==References==
The {{em|symmetric hull}} of a subset <math>S</math> is the smallest symmetric set containing <math>S,</math> and it is equal to <math>S \cup - S.</math> The largest symmetric set contained in <math>S</math> is <math>S \cap - S.</math>
*R. Cristescu, Topological vector spaces, Noordhoff International Publishing, 1977.
*W. Rudin, Functional Analysis, McGraw-Hill Book Company, 1973.
 
== Sufficient conditions ==
{{planetmath|id=4528|title=symmetric set}}
 
Arbitrary [[Union (set theory)|unions]] and [[Intersection (set theory)|intersections]] of symmetric sets are symmetric.
 
* Any [[Linear subspace|vector subspace]] in a vector space is a symmetric set.
[[Category:Set theory]]
 
== Examples ==
 
In <math>\R,</math> examples of symmetric sets are intervals of the type <math>(-k, k)</math> with <math>k > 0,</math> and the sets <math>\Z</math> and <math>(-1, 1).</math>
{{Math-stub}}
 
* If ''<math>S''</math> is any subset of a group, then <math>SSS \cup S^{-1}</math> and <math>S \cap S^{-1}S</math> are symmetric sets.
 
Any [[Balanced set|balanced subset]] of a real or complex [[vector space]] is symmetric.
 
==See also==
 
* {{annotated link|Absolutely convex set}}
* {{annotated link|Absorbing set}}
* {{annotated link|Balanced function}}
* {{annotated link|Balanced set}}
* {{annotated link|Bounded set (topological vector space)}}
* {{annotated link|Convex set}}
* {{annotated link|Minkowski functional}}
* {{annotated link|Star domain}}
 
== References ==
{{refbegin}}
* R. Cristescu, Topological vector spaces, Noordhoff International Publishing, 1977.
* {{Rudin Walter Functional Analysis|edition=2}} <!-- {{sfn|Rudin|1991|p=}} -->
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!-- {{sfn|Narici|Beckenstein|2011|p=}} -->
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn|Schaefer|Wolff|1999|p=}} -->
* {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} -->
{{refend}}
{{planetmathPlanetMath attribution|id=4528|title=symmetric set}}
 
{{Functional analysis}}
{{Linear algebra}}
 
[[Category:SetGroup theory]]
 
 
{{Mathsettheory-stub}}