Content deleted Content added
m →Examples: Typo |
m →References: {{refbegin}} |
||
(30 intermediate revisions by 13 users not shown) | |||
Line 1:
{{Short description|Property of group subsets (mathematics)}}
In [[mathematics]], a nonempty subset
== Definition ==
If ''S'' is a subset of a [[vector space]], then ''S'' is said to be symmetric if it is symmetric with respect to the additive group structure of the vector space; that is, if <math>S = -S = \{ -x : x \in S \}</math>.▼
In [[Set-builder notation|set notation]] a subset <math>S</math> of a group <math>G</math> is called {{em|symmetric}} if whenever <math>s \in S</math> then the inverse of <math>s</math> also belongs to <math>S.</math>
==Examples==▼
If <math>G</math> is written additively then <math>S</math> is symmetric if and only if <math>S = - S</math> where <math>- S := \{- s : s \in S\}.</math>
* Any vector subspace in a vector space is a symmetric set.▼
* If ''S'' is any subset of a group, then <math>SS^{-1}</math> and <math>S^{-1}S</math> are symmetric sets.▼
▲If
==References==▼
The {{em|symmetric hull}} of a subset <math>S</math> is the smallest symmetric set containing <math>S,</math> and it is equal to <math>S \cup - S.</math> The largest symmetric set contained in <math>S</math> is <math>S \cap - S.</math>
*R. Cristescu, Topological vector spaces, Noordhoff International Publishing, 1977.▼
== Sufficient conditions ==
{{planetmath|id=4528|title=symmetric set}}▼
Arbitrary [[Union (set theory)|unions]] and [[Intersection (set theory)|intersections]] of symmetric sets are symmetric.
[[Category:Set theory]]▼
▲== Examples ==
In <math>\R,</math> examples of symmetric sets are intervals of the type <math>(-k, k)</math> with <math>k > 0,</math> and the sets <math>\Z</math> and <math>(-1, 1).</math>
{{Math-stub}}▼
▲
Any [[Balanced set|balanced subset]] of a real or complex [[vector space]] is symmetric.
==See also==
* {{annotated link|Absolutely convex set}}
* {{annotated link|Absorbing set}}
* {{annotated link|Balanced function}}
* {{annotated link|Balanced set}}
* {{annotated link|Bounded set (topological vector space)}}
* {{annotated link|Convex set}}
* {{annotated link|Minkowski functional}}
* {{annotated link|Star domain}}
▲== References ==
{{refbegin}}
▲* R. Cristescu, Topological vector spaces, Noordhoff International Publishing, 1977.
* {{Rudin Walter Functional Analysis|edition=2}} <!-- {{sfn|Rudin|1991|p=}} -->
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!-- {{sfn|Narici|Beckenstein|2011|p=}} -->
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!-- {{sfn|Schaefer|Wolff|1999|p=}} -->
* {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} -->
{{refend}}
{{Functional analysis}}
{{Linear algebra}}
|