Variovorax paradoxus: Difference between revisions

Content deleted Content added
m Reverted edits by L.C.Reimer (talk) to last version by Yobot
m Role in the environment: clean up, url redundant with pmc, add pmc, and/or remove accessdate if no url
Line 29:
''V. paradoxus''’s diverse metabolic capabilities enable it to degrade a wide array of recalcitrant organic pollutants including 2,4-dinitrotoluene, aliphatic polycarbonates and polychlorinated biphenyls. Both its catabolic and anabolic capabilities have been suggested for biotechnological use, such as to neutralise or degrade pollutants at contaminated sites.<ref name=":2" />
 
The role of ''V. paradoxus'' in the plant root rhizosphere and surrounding soil has been investigated in several plant species, with implicated growth promoting mechanisms including reducing plant stress, increasing nutrient availability and inhibiting growth of plant pathogens; many of these mechanisms relate to the species catabolic capabilities.<ref name=":3" /> In the rhizosphere of pea plants (''Pisum sativum''), ''V. paradoxus'' was shown to increase both growth and yield by degrading the ethylene precursor molecule 1-aminocyclopropane-1-carboxylate (ACC), using a secreted ACC deaminase.<ref>{{Cite journal|last=Belimov|first=Andrey A.|last2=Dodd|first2=Ian C.|last3=Hontzeas|first3=Nikos|last4=Theobald|first4=Julian C.|last5=Safronova|first5=Vera I.|last6=Davies|first6=William J.|date=2009-01-01|title=Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling|url=http://www.ncbi.nlm.nih.gov/pubmed/19121036|journal=The New Phytologist|volume=181|issue=2|pages=413–423|doi=10.1111/j.1469-8137.2008.02657.x|issn=1469-8137|pmid=19121036}}</ref> Strains of ''V. paradoxus'' have also been identified that can degrade N-acyl homoserine-lactones (AHL), microbial signalling molecules involved in quorum sensing.<ref>{{Cite journal|last=Leadbetter|first=Jared R.|last2=Greenberg|first2=E. P.|date=2000-12-15|title=Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus|url=http://jb.asm.org/content/182/24/6921|journal=Journal of Bacteriology|language=en|volume=182|issue=24|pages=6921–6926|doi=10.1128/JB.182.24.6921-6926.2000|issn=0021-9193|pmid=11092851}}</ref> It is hypothesized that this ability could provide a host plant protection from pathogenic infection, with the impact of quorum quenching to reduce virulence in pathogenic strains present.<ref>{{Cite journal|last=Chen|first=Fang|last2=Gao|first2=Yuxin|last3=Chen|first3=Xiaoyi|last4=Yu|first4=Zhimin|last5=Li|first5=Xianzhen|date=2013-08-26|title=Quorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection|url=http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794736/|journal=International Journal of Molecular Sciences|volume=14|issue=9|pages=17477–17500|doi=10.3390/ijms140917477|issn=1422-0067|pmc=3794736|pmid=24065091}}</ref>
 
''V. paradoxus'' is involved in cycling numerous inorganic elements including arsenic,<ref name=":9">{{Cite journal|last=Macur|first=Richard E.|last2=Jackson|first2=Colin R.|last3=Botero|first3=Lina M.|last4=Mcdermott|first4=Timothy R.|last5=Inskeep|first5=William P.|date=2003-11-27|title=Bacterial Populations Associated with the Oxidation and Reduction of Arsenic in an Unsaturated Soil|url=http://pubs.acs.org/doi/abs/10.1021/es034455a|journal=Environmental Science & Technology|language=en|volume=38|issue=1|pages=104–111|doi=10.1021/es034455a}}</ref><ref>{{Cite journal|last=Bahar|first=Md Mezbaul|last2=Megharaj|first2=Mallavarapu|last3=Naidu|first3=Ravi|date=2013-11-15|title=Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene|url=http://www.sciencedirect.com/science/article/pii/S030438941201182X|journal=Journal of Hazardous Materials|volume=262|pages=997–1003|doi=10.1016/j.jhazmat.2012.11.064}}</ref> sulfur,<ref name=":5" /> manganese<ref>{{Cite journal|last=Yang|first=Weihong|last2=Zhang|first2=Zhen|last3=Zhang|first3=Zhongming|last4=Chen|first4=Hong|last5=Liu|first5=Jin|last6=Ali|first6=Muhammad|last7=Liu|first7=Fan|last8=Li|first8=Lin|title=Population Structure of Manganese-Oxidizing Bacteria in Stratified Soils and Properties of Manganese Oxide Aggregates under Manganese–Complex Medium Enrichment|url=http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073778|journal=PLoS ONE|volume=8|issue=9|doi=10.1371/journal.pone.0073778|pmc=3772008|pmid=24069232}}</ref><ref>{{Cite journal|last=Nogueira|first=M. A.|last2=Nehls|first2=U.|last3=Hampp|first3=R.|last4=Poralla|first4=K.|last5=Cardoso|first5=E. J. B. N.|date=2007-08-28|title=Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean|url=http://link.springer.com/article/10.1007/s11104-007-9379-1|journal=Plant and Soil|language=en|volume=298|issue=1-2|pages=273–284|doi=10.1007/s11104-007-9379-1|issn=0032-079X}}</ref> and rare earth elements<ref>{{Cite journal|last=Kamijo|first=Manjiroh|last2=Suzuki|first2=Tohru|last3=Kawai|first3=Keiichi|last4=Murase|first4=Hironobu|date=1998-01-01|title=Accumulation of yttrium by Variovorax paradoxus|url=http://www.sciencedirect.com/science/article/pii/S0922338X99800075|journal=Journal of Fermentation and Bioengineering|volume=86|issue=6|pages=564–568|doi=10.1016/S0922-338X(99)80007-5}}</ref> in a range of soil, freshwater and geological environments. In the case of arsenic, ''V. paradoxus'' is believed to oxidize As (III) to As (V) as a detoxification mechanism.<ref name=":9" /> ''V. paradoxus'' has been found in a range of rocky environments including carbonate caves, mine spoil and deep marine sediments, but the role of this organism within these environments is largely unstudied.<ref name=":6" /><ref name=":7" /><ref name=":8" /> The species is also tolerant of a large number of heavy metals including cadmium,<ref>{{Cite journal|last=Belimov|first=A. A.|last2=Hontzeas|first2=N.|last3=Safronova|first3=V. I.|last4=Demchinskaya|first4=S. V.|last5=Piluzza|first5=G.|last6=Bullitta|first6=S.|last7=Glick|first7=B. R.|date=2005-02-01|title=Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)|url=http://www.sciencedirect.com/science/article/pii/S003807170400286X|journal=Soil Biology and Biochemistry|volume=37|issue=2|pages=241–250|doi=10.1016/j.soilbio.2004.07.033}}</ref> chromium, cobalt, copper, lead, mercury, nickel, silver,<ref name=":8" /> zinc<ref>{{Cite journal|last=Malkoc|first=Semra|last2=Kaynak|first2=Elif|last3=Guven|first3=Kıymet|date=2015-07-27|title=Biosorption of zinc(II) on dead and living biomass of Variovorax paradoxus and Arthrobacter viscosus|url=http://dx.doi.org/10.1080/19443994.2015.1073181|journal=Desalination and Water Treatment|volume=0|issue=0|pages=1–10|doi=10.1080/19443994.2015.1073181|issn=1944-3994}}</ref> at mM concentrations.<ref>{{Cite journal|last=Abou-Shanab|first=R. a. I.|last2=van Berkum|first2=P.|last3=Angle|first3=J. S.|date=2007-06-01|title=Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale|url=http://www.ncbi.nlm.nih.gov/pubmed/17276484|journal=Chemosphere|volume=68|issue=2|pages=360–367|doi=10.1016/j.chemosphere.2006.12.051|issn=0045-6535|pmid=17276484}}</ref> Despite this, very little is known about the physiological adaptions ''V. paradoxus'' uses to support this tolerance. The sequenced genome of the endophytic strain ''V. paradoxus'' S110 provides some clues to the organism’s metal tolerance by identifying key molecular machinery in processing metals such as the arsenic reductase complex ArsRBC, metal transporting P1-type ATPases and a chemiosmotic antiporter efflux system similar to CzcCBA of ''Cupriavidus metallidurans''.<ref name=":3" /> ''Cupriavidus'' species, including ''C. metallidurans'', are well characterised in the field of microbe-metal interactions, and are found within the same order (Burkholderiales) as ''V. paradoxus''. Both the species ''C. necator and C. metallidurans'' (when not distinguished as separate species) were originally classified in the genera ''Alcaligenes'' along with ''V. paradoxus'' (''Alcaligenes eutrophus'' and ''Alicaligenes paradoxus'').<ref name=":1" /><ref>{{Cite journal|last=Vandamme|first=Peter|last2=Coenye|first2=Tom|date=2004-11-01|title=Taxonomy of the genus Cupriavidus: a tale of lost and found|url=http://www.ncbi.nlm.nih.gov/pubmed/15545472|journal=International Journal of Systematic and Evolutionary Microbiology|volume=54|issue=Pt 6|pages=2285–2289|doi=10.1099/ijs.0.63247-0|issn=1466-5026|pmid=15545472}}</ref> This relationship with other heavy metal resistant species may help to partially explain the evolutionary history of ''V. paradoxus''<nowiki/>'s metal tolerance.