In mathematics, a Bessel process, named after Friedrich Bessel, is a type of stochastic process.
Formal definition
editThe Bessel process of order n is the real-valued process X given (when n ≥ 2) by
where ||·|| denotes the Euclidean norm in Rn and W is an n-dimensional Wiener process (Brownian motion). For any n, the n-dimensional Bessel process is the solution to the stochastic differential equation (SDE)
where W is a 1-dimensional Wiener process (Brownian motion). Note that this SDE makes sense for any real parameter (although the drift term is singular at zero).
Notation
editA notation for the Bessel process of dimension n started at zero is BES0(n).
In specific dimensions
editFor n ≥ 2, the n-dimensional Wiener process started at the origin is transient from its starting point: with probability one, i.e., Xt > 0 for all t > 0. It is, however, neighbourhood-recurrent for n = 2, meaning that with probability 1, for any r > 0, there are arbitrarily large t with Xt < r; on the other hand, it is truly transient for n > 2, meaning that Xt ≥ r for all t sufficiently large.
For n ≤ 0, the Bessel process is usually started at points other than 0, since the drift to 0 is so strong that the process becomes stuck at 0 as soon as it hits 0.
Relationship with Brownian motion
edit0- and 2-dimensional Bessel processes are related to local times of Brownian motion via the Ray–Knight theorems.[1]
The law of a Brownian motion near x-extrema is the law of a 3-dimensional Bessel process (theorem of Tanaka).
References
edit- ^ Revuz, D.; Yor, M. (1999). Continuous Martingales and Brownian Motion. Berlin: Springer. ISBN 3-540-52167-4.
- Øksendal, Bernt (2003). Stochastic Differential Equations: An Introduction with Applications. Berlin: Springer. ISBN 3-540-04758-1.
- Williams D. (1979) Diffusions, Markov Processes and Martingales, Volume 1 : Foundations. Wiley. ISBN 0-471-99705-6.