cosinus: difference between revisions

Content deleted Content added
TongcyDai (talk | contribs)
m // Edit via Wikiplus
m replace <{{pl-p|kos-inus|a=Pl-cosinus.ogg|h=co.si.nus}}> with <{{pl-pr|kos-inus|a=Pl-cosinus.ogg|h=co.si.nus}}> ({{pl-p}} -> {{pl-pr}} in remaining DIFFERENT_IN_PHONEMES terms (manually assisted, from User:Vininn126))
 
(28 intermediate revisions by 6 users not shown)
Line 11:
#* {{quote-journal|en|by={{w|Victor Tatin}} in ''{{w|La Nature}}''|title=Aerial Navigation|journal=[[w:Scientific American|Scientific American: A Weekly Journal of Practical Information, Art, Science, Mechanics, Chemistry, and Manufactures]]|location=New York, N.Y.|publisher=[[w:Orson Desaix Munn|Munn & Co.]]|date=29 November 1884|volume=LI|issue=22|page=342|column=1|passage=So, in the helicopteron, as the helix is at the same time a sustaining plane, it should be likened to a surface moving horizontally, and in which, consequenty, the resistance to motion will be to the lifting power as the sinus is to the '''cosinus''' of the angle formed by such plane with the horizon.}}
#* {{quote-journal|en|journal=Contributions from the Astronomical Institute of the Charles University Prague|year=1949|page=38|passage=And according to our choice of a symmetrical conjunction or opposition, all the '''cosinuses''' are reduced to 1, namely to coefficients build up solely by scalar Keplerian elements ''a'', ''e''.}}
#* {{quote-book|en|author=Pentti Zetterberg|author2=; Matti Eronen|author3=; Markus Lindholm|chapter=Construction of a 7500-Year Tree-Ring Record for Scots Pine (''Pinus sylvestris'', L.) in Northern Fennoscandia and its Application to Growth Variation and Palaeoclimatic Studies|editors=Heinrich Spiecker,; Kari Mielikäinen,; Michael Köhl, and; Jens Peter Skovsgaard|title=Growth Trends in European Forests|series=European Forest Institute Research Report|seriesvolume=No. 5|publisher=[[w:Springer Science+Business Media|Springer-Verlag Berlin Heidelberg]]|year=1996|page=15|isbn=978-3-642-61178-0|passage=The variations are described in terms of cycles of sinuses and '''cosinuses'''.}}
#* {{quote-book|en|author=Vladimir G. Ivancevic|author2=; Tijana T. Ivancevic|chapter=Introduction: Human and Computational Mind|title=Computational Mind: A Complex Dynamics Perspective|series=Studies in Computational Intelligence|seriesvolume=60|publisher=[[w:Springer Science+Business Media|Springer-Verlag Berlin Heidelberg]]|year=2007|section=section 1 (Natural Intelligence and Human Mind)|pages=60–61|isbn=978-3-540-71465-1|lccn=2007925682|passage=Basically, the rotation of the matrix of the factor loadings L represents its post-multiplication, i.e. L* = LO by the rotation matrix O, which itself resembles one of the matrices included in the classical rotational Lie groups ''SO''(''m'') (containing the specific ''m''–fold combination of sinuses and '''cosinuses'''.}}
 
{{C|en|Trigonometric functions}}
----
 
==Catalan==
 
===Etymology===
From {{af|ca|co-|sinus}}.
 
===Pronunciation===
* {{ca-IPA|cossinus[cóssí]}}<!-- per GDLC -->
 
===Noun===
{{ca-noun|m|cosinus#}}
 
# {{lb|ca|trigonometry}} [[cosine]]
Line 33:
 
===Further reading===
* {{R:ca:IEC2}}
 
----
 
==Dutch==
Line 45 ⟶ 43:
===Pronunciation===
* {{IPA|nl|/ˈkoː.si.nʏs/}}
* {{audio|nl|Nl-cosinus.ogg|Audio}}
* {{hyphenation|nl|co|si|nus}}
 
Line 55 ⟶ 53:
====Related terms====
* {{l|nl|sinus}}
 
----
 
==French==
Line 62 ⟶ 58:
===Pronunciation===
* {{fr-IPA|co-sinuç}}
* {{audio|fr|LL-Q150 (fra)-Pamputt-cosinus.wav|Audio}}
 
===Noun===
{{fr-noun|m|cosinus}}
 
# {{lb|fr|trigonometry}} [[cosine]] (trigonometric function)
Line 77 ⟶ 73:
 
===Further reading===
* {{R:fr:TLFi}}
 
===Anagrams===
Line 85 ⟶ 81:
* {{l|fr|cuisson}}
* {{l|fr|sucions}}
 
----
 
==Norwegian Bokmål==
Line 97 ⟶ 91:
{{nb-noun-m1}}
 
# {{lb|nb|trigonometry}} {{l|en|[[cosine}}]]
 
====Related terms====
Line 104 ⟶ 98:
===References===
* {{R:Dokpro|lang=nb}}
 
----
 
==Norwegian Nynorsk==
Line 116 ⟶ 108:
{{nn-noun-m1}}
 
# {{lb|nn|trigonometry}} {{l|en|[[cosine}}]]
 
====Related terms====
Line 123 ⟶ 115:
===References===
* {{R:Dokpro|lang=nn}}
 
----
 
==Polish==
[[File:Cos.svg|thumb|cosinus]]
 
===Alternative forms===
* {{alt|pl|kosinus}}
 
===Etymology===
{{lbor|pl|NL.|cosinus}}.
 
===Pronunciation===
{{pl-ppr|kos-inus|a=Pl-cosinus.ogg|h=co.si.nus}}
 
===Noun===
{{pl-noun|m-in|adj=cosinusowy}}
 
# {{lb|pl|trigonometric function}} [[cosine]], {{l|en|cosinus}} {{gl|in a right triangle, the ratio of the length of the side adjacent to an acute angle to the length of the hypotenuse}}
# {{lb|pl|trigonometry}} [[cosine]]
#: {{hyper|pl|funkcja trygonometryczna}}
#: {{cot|pl|cosecans|cotangens|secans|sinus|tangens}}
 
====Declension====
{{pl-decl-noun-m-in|gens=cosinusa/cosinusu}}
|cosinus|cosinusy
|cosinusa|cosinusów
|cosinusowi|cosinusom
|cosinus|cosinusy
|cosinusem|cosinusami
|cosinusie|cosinusach
|cosinusie|cosinusy
}}
 
====DerivedRelated terms====
{{col-auto|pl|title=adjective|cosinusoidalny}}
* {{l|pl|kosinusowy}}, {{l|pl|kosinusoida}}
{{col-auto|pl|title=adverb|cosinusoidalnie}}
{{col-auto|pl|title=noun|cosinusoida}}
 
===Further reading===
* {{R:pl:WSJP}}
* {{R:pl:PWN}}
 
----
 
==Romanian==
Line 173 ⟶ 161:
====Declension====
{{ro-noun-n-uri}}
 
----
 
==Swedish==
Line 184 ⟶ 170:
 
====Declension====
{{sv-infl-noun-c-ar|genitive=}}