Jump to content

Proxima Centauri: Difference between revisions

Coordinates: Sky map 14h 29m 42.9487s, −62° 40′ 46.141″
From Wikipedia, the free encyclopedia
Content deleted Content added
Not an improvement. Undid revision 1187418408 by 128.234.120.93 (talk)
Habitability: no sentence
 
(63 intermediate revisions by 36 users not shown)
Line 1: Line 1:
{{short description|Star in the constellation Centaurus}}
{{short description|Nearest star to the Solar System}}
{{about|the star}}
{{about|the star}}
{{Use dmy dates|date=December 2020}}
{{Use dmy dates|date=December 2020}}
{{Use British English Oxford spelling|date=August 2016}}
{{Use British English Oxford spelling|date=August 2016}}
{{Featured article}}
{{Featured article}}
{{Sky|14|29|42.9487|-|62|40|46.141|4.25}}
{{Starbox begin
{{Starbox begin
| name = Proxima Centauri
| name = Proxima Centauri
Line 19: Line 18:
| pronounce = {{IPAc-en|ˌ|p|r|ɒ|k|s|ə|m|ə|_|s|ɛ|n|ˈ|t|ɔːr|i}} or<br>{{IPAc-en|ˈ|p|r|ɒ|k|s|ɪ|m|ə|_|s|ɛ|n|ˈ|t|ɔːr|aɪ}}<ref name=collinsdictionary>{{cite web
| pronounce = {{IPAc-en|ˌ|p|r|ɒ|k|s|ə|m|ə|_|s|ɛ|n|ˈ|t|ɔːr|i}} or<br>{{IPAc-en|ˈ|p|r|ɒ|k|s|ɪ|m|ə|_|s|ɛ|n|ˈ|t|ɔːr|aɪ}}<ref name=collinsdictionary>{{cite web
|url=https://www.collinsdictionary.com/dictionary/english/proxima-centauri |title=Collins English Dictionary |publisher=HarperCollins Publishers |access-date=30 September 2020}}</ref>
|url=https://www.collinsdictionary.com/dictionary/english/proxima-centauri |title=Collins English Dictionary |publisher=HarperCollins Publishers |access-date=30 September 2020}}</ref>
| ra = {{RA|14|29|42.946}}<ref name="Gaia3"/>
| ra = {{RA|14|29|42.94853}}<ref name="hipparcos">{{cite journal |bibcode=2007A&A...474..653V |title=Validation of the new Hipparcos reduction |journal=Astronomy and Astrophysics |volume=474 |issue=2 |pages=653–664 |last1=Van Leeuwen |first1=F. |year=2007 |doi=10.1051/0004-6361:20078357 |arxiv=0708.1752|s2cid=18759600 }}</ref>
| dec = {{DEC|−62|40|46.1631}}<ref name="hipparcos" />
| dec = {{DEC|−62|40|46.16}}<ref name="Gaia3"/>
| appmag_v = 10.43 – 11.11<ref name=Samus_et_al_2017/>
| appmag_v = 10.43 – 11.11<ref name=Samus_et_al_2017/>
}}
}}
{{Starbox character
{{Starbox character
| type = [[Main sequence]] ([[red dwarf]])
| type = [[Main sequence]]
| class = M5.5Ve<ref name=bessell>{{cite journal |bibcode=1991AJ....101..662B |title=The late-M dwarfs |journal=The Astronomical Journal |volume=101 |pages=662 |last1=Bessell |first1=M. S. |year=1991 |doi=10.1086/115714|doi-access=free }}</ref>
| class = M5.5Ve<ref name=bessell>{{cite journal |bibcode=1991AJ....101..662B |title=The late-M dwarfs |journal=The Astronomical Journal |volume=101 |pages=662 |last1=Bessell |first1=M. S. |year=1991 |doi=10.1086/115714|doi-access=free }}</ref>
| r-i = 2.04
| r-i = 2.04
Line 35: Line 34:
}}
}}
{{Starbox astrometry
{{Starbox astrometry
| radial_v = {{val|-22.204|0.032}}<ref name="KervellaThévenin2017">{{cite journal |last1=Kervella |first1=P. |last2=Thévenin |first2=F. |last3=Lovis |first3=C. |title=Proxima's orbit around α Centauri |journal=Astronomy & Astrophysics |volume=598 |year=2017 |pages=L7 |issn=0004-6361 |doi=10.1051/0004-6361/201629930 |arxiv=1611.03495 |bibcode=2017A&A...598L...7K|s2cid=50867264 }} Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.</ref>
| radial_v = {{val|−22.204|0.032}}<ref name="KervellaThévenin2017">{{cite journal |last1=Kervella |first1=P. |last2=Thévenin |first2=F. |last3=Lovis |first3=C. |title=Proxima's orbit around α Centauri |journal=Astronomy & Astrophysics |volume=598 |year=2017 |pages=L7 |issn=0004-6361 |doi=10.1051/0004-6361/201629930 |arxiv=1611.03495 |bibcode=2017A&A...598L...7K|s2cid=50867264 }} Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.</ref>
| prop_mo_ra = −3781.741<ref name="Gaia3"/>
| prop_mo_ra = −3781.741
| prop_mo_dec = 769.465<ref name="Gaia3"/>
| prop_mo_dec = 769.465
| pm_footnote = <ref name="Gaia3"/>
| parallax = 768.0665
| parallax = 768.0665
| p_error = 0.0499
| p_error = 0.0499
Line 65: Line 65:
| temperature = {{val|2992|49|47|fmt=commas}}<ref name="Pineda2021" />
| temperature = {{val|2992|49|47|fmt=commas}}<ref name="Pineda2021" />
| metal = <!-- generally, but not by everyone, assumed to be the same as Alpha Cen A/B -->
| metal = <!-- generally, but not by everyone, assumed to be the same as Alpha Cen A/B -->
| metal_fe = 0.21<ref name="aaa519_A105" />{{#tag:ref|If Proxima Centauri was a later capture into the Alpha Centauri star system then its metallicity and age could be quite different to that of Alpha Centauri A and B. Through comparing Proxima Centauri to other similar stars it was estimated that it had a lower metallicity, ranging from less than a third, to about the same, of our Sun's.<ref name="PasseggerWende-von Berg2016" /><ref name="FengJones2018" />|group="nb"|name="alternate estimated metallicities"}}
| metal_fe = 0.21<ref name="aaa519_A105" />{{#tag:ref|If Proxima Centauri was a later capture into the Alpha Centauri star system then its metallicity and age could be quite different to that of Alpha Centauri A and B. Through comparing Proxima Centauri to other similar stars it was estimated that it had a lower metallicity, ranging from less than a third, to about the same, of the Sun's.<ref name="PasseggerWende-von Berg2016" /><ref name="FengJones2018" />|group="nb"|name="alternate estimated metallicities"}}
| rotation = {{val|89.8|4}}<ref name="Klein2020">{{cite journal|title=The large-scale magnetic field of Proxima Centauri near activity maximum
| rotation = {{val|89.8|4}}<ref name="Klein2020">{{cite journal|title=The large-scale magnetic field of Proxima Centauri near activity maximum
| last1=Klein | first1=Baptiste | last2=Donati | first2=Jean-François
| last1=Klein | first1=Baptiste | last2=Donati | first2=Jean-François
Line 74: Line 74:
| volume=500 | issue=2 | pages=1844–1850
| volume=500 | issue=2 | pages=1844–1850
| date=January 2021 | doi=10.1093/mnras/staa3396
| date=January 2021 | doi=10.1093/mnras/staa3396
| arxiv=2010.14311 | bibcode=2021MNRAS.500.1844K }}</ref>&nbsp;days
| doi-access=free | arxiv=2010.14311 | bibcode=2021MNRAS.500.1844K }}</ref>&nbsp;days
| rotational_velocity = &lt;&nbsp;0.1<ref name="Collins2016">{{cite journal |title=Calculations of periodicity from Hα profiles of Proxima Centauri |journal=Astronomy & Astrophysics |first1=John M. |last1=Collins |first2=Hugh R. A. |last2=Jones |first3=John R. |last3=Barnes |volume=602 |at=A48 |date=June 2017 |doi=10.1051/0004-6361/201628827 |bibcode=2017A&A...602A..48C |arxiv=1608.07834|s2cid=18949162 }} See section 4: "the vsini is probably less than 0.1 km/s for Proxima Centauri".</ref>
| rotational_velocity = &lt;&nbsp;0.1<ref name="Collins2016">{{cite journal |title=Calculations of periodicity from Hα profiles of Proxima Centauri |journal=Astronomy & Astrophysics |first1=John M. |last1=Collins |first2=Hugh R. A. |last2=Jones |first3=John R. |last3=Barnes |volume=602 |at=A48 |date=June 2017 |doi=10.1051/0004-6361/201628827 |bibcode=2017A&A...602A..48C |arxiv=1608.07834|s2cid=18949162 }} See section 4: "the vsini is probably less than 0.1 km/s for Proxima Centauri".</ref>
| age_gyr = 4.85<ref name="ESO2003" />
| age_gyr = 4.85<ref name="ESO2003" />
Line 87: Line 87:
{{Starbox end}}
{{Starbox end}}


'''Proxima Centauri''' is a small, low-mass [[star]] located {{convert|4.2465|ly|pc|lk=on}} away from the [[Sun]] in the southern [[constellation]] of [[Centaurus]]. Its [[Latin language|Latin]] name means the 'nearest [star] of Centaurus'. It was discovered in 1915 by [[Robert T. A. Innes|Robert Innes]] and is the [[List of nearest stars and brown dwarfs|nearest-known star]] to the Sun. With a quiescent [[apparent magnitude]]&nbsp;of 11.13, it is too faint to be seen with the unaided eye. Proxima Centauri is a member of the [[Alpha Centauri]] [[star system]], being identified as component '''Alpha Centauri&nbsp;C''', and is 2.18° to the southwest of the Alpha Centauri&nbsp;AB pair. It is currently {{convert|12950|AU|ly|1|abbr=unit|lk=on}} from AB, which it orbits with a [[orbital period|period]] of about 550,000&nbsp;years.
'''Proxima Centauri''' is the nearest star to Earth after the [[Sun]], located 4.25 [[light-year]]s away in the southern [[constellation]] of [[Centaurus]]. This object was discovered in 1915 by [[Robert T. A. Innes|Robert Innes]]. It is a small, low-mass [[star]], too faint to be seen with the [[naked eye]], with an [[apparent magnitude]] of 11.13. Its [[Latin language|Latin]] name means the 'nearest [star] of Centaurus'. Proxima Centauri is a member of the [[Alpha Centauri]] [[star system]], being identified as component '''Alpha Centauri&nbsp;C''', and is 2.18° to the southwest of the Alpha Centauri&nbsp;AB pair. It is currently {{convert|12950|AU|ly|1|abbr=unit|lk=on}} from AB, which it orbits with a [[orbital period|period]] of about 550,000&nbsp;years.


Proxima Centauri is a [[red dwarf]] star with a mass about 12.5% of the Sun's mass ({{Solar mass|link=y}}), and average [[density]] about 33&nbsp;times that of the Sun. Because of Proxima Centauri's proximity to [[Earth]], its [[angular diameter]] can be measured directly. Its actual diameter is about one-seventh (14%) the diameter of the Sun. Although it has a very low average [[luminosity]], Proxima Centauri is a [[flare star]] that randomly undergoes dramatic increases in brightness because of [[magnetic activity]]. The star's [[magnetic field]] is created by [[convection]] throughout the stellar body, and the resulting flare activity generates a total [[X-ray]] emission similar to that produced by the Sun. The internal mixing of its fuel by convection through its core, and Proxima's relatively low energy-production rate, mean that it will be a [[main-sequence star]] for another four trillion years.
Proxima Centauri is a [[red dwarf]] star with a mass about 12.5% of the Sun's mass ({{Solar mass|link=y}}), and average [[density]] about 33&nbsp;times that of the Sun. Because of Proxima Centauri's proximity to [[Earth]], its [[angular diameter]] can be measured directly. Its actual diameter is about one-seventh (14%) the diameter of the Sun. Although it has a very low average [[luminosity]], Proxima Centauri is a [[flare star]] that randomly undergoes dramatic increases in brightness because of [[magnetic activity]]. The star's [[magnetic field]] is created by [[convection]] throughout the stellar body, and the resulting flare activity generates a total [[X-ray]] emission similar to that produced by the Sun. The internal mixing of its fuel by convection through its core and Proxima's relatively low energy-production rate, mean that it will be a [[main-sequence star]] for another four trillion years.


Proxima Centauri has two known [[exoplanet]]s and one candidate exoplanet: [[Proxima Centauri b|Proxima Centauri&nbsp;b]], [[Proxima Centauri d|Proxima Centauri&nbsp;d]] and the disputed [[Proxima Centauri c|Proxima Centauri&nbsp;c]].<ref group="nb">Extrasolar planet names are designated following the [[Astronomical naming conventions#Exoplanets|International Astronomical Union's naming conventions]] in alphabetical order according to their respective dates of discovery, with 'Proxima Centauri a' being the star itself.</ref> Proxima Centauri&nbsp;b orbits the star at a distance of roughly {{convert|0.05|AU|e6km|abbr=unit}} with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07&nbsp;times that of Earth.<ref name="FariaSuárezMascareñoSilva2022"/> Proxima&nbsp;b orbits within Proxima Centauri's [[habitable zone]]—the range where temperatures are right for liquid water to exist on its surface—but, because Proxima Centauri is a red dwarf and a flare star, the planet's [[Habitability of red dwarf systems|habitability]] is highly uncertain. A candidate [[super-Earth]], [[Proxima Centauri c|Proxima Centauri&nbsp;c]], roughly {{convert|1.5|AU|e6km|abbr=unit}} away from Proxima Centauri, orbits it every {{convert|1900|days|years|abbr=unit}}.<ref name="Damasso2020"/><ref name="BenedictMcArthur2020"/> A [[sub-Earth]], [[Proxima Centauri d|Proxima Centauri&nbsp;d]], roughly {{convert|0.029|AU|e6km|abbr=unit}} away, orbits it every 5.1 days.<ref name="FariaSuárezMascareñoSilva2022"/>
Proxima Centauri has one known [[exoplanet]] and two candidate exoplanets: [[Proxima Centauri b|Proxima Centauri&nbsp;b]], the candidate [[Proxima Centauri d|Proxima Centauri&nbsp;d]] and the disputed [[Proxima Centauri c|Proxima Centauri&nbsp;c]].<ref group="nb">Extrasolar planet names are designated following the [[Astronomical naming conventions#Exoplanets|International Astronomical Union's naming conventions]] in alphabetical order according to their respective dates of discovery, with 'Proxima Centauri a' being the star itself.</ref> Proxima Centauri&nbsp;b orbits the star at a distance of roughly {{convert|0.05|AU|e6km|abbr=unit}} with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07&nbsp;times that of Earth.<ref name="FariaSuárezMascareñoSilva2022"/> Proxima&nbsp;b orbits within Proxima Centauri's [[habitable zone]]—the range where temperatures are right for liquid water to exist on its surface—but, because Proxima Centauri is a red dwarf and a flare star, the planet's [[Habitability of red dwarf systems|habitability]] is highly uncertain. A candidate [[super-Earth]], [[Proxima Centauri c|Proxima Centauri&nbsp;c]], roughly {{convert|1.5|AU|e6km|abbr=unit}} away from Proxima Centauri, orbits it every {{convert|1900|days|years|abbr=unit}}.<ref name="Damasso2020"/><ref name="BenedictMcArthur2020"/> A candidate [[sub-Earth]], [[Proxima Centauri d|Proxima Centauri&nbsp;d]], roughly {{convert|0.029|AU|e6km|abbr=unit}} away, orbits it every 5.1 days.<ref name="FariaSuárezMascareñoSilva2022"/>


==General characteristics==
==General characteristics==
[[File:ProxCenLightCurve.png|thumb|left|Three [[Photometric_system#Photometric_letters|visual band]] [[light curves]] for Proxima Centauri are shown. Plot A shows a superflare which dramatically increased the star's brightness for a few minutes. Plot B shows the relative brightness variation over the course of the star's 83 day rotation period. Plot C shows variation over a 6.8 year period, which may be the length of the star's magnetic activity period. Adapted from Howard ''et al.'' (2018)<ref name=howard/> and Mascareño ''et al.'' (2016)<ref name="Masc2016"/>]]
[[File:ProxCenLightCurve.png|thumb|upright=1.6|left|Three [[Photometric_system#Photometric_letters|visual band]] [[light curves]] for Proxima Centauri are shown. Plot A shows a superflare which dramatically increased the star's brightness for a few minutes. Plot B shows the relative brightness variation over the course of the star's 83 day rotation period. Plot C shows variation over a 6.8 year period, which may be the length of the star's magnetic activity period. Adapted from Howard ''et al.'' (2018)<ref name=howard/> and Mascareño ''et al.'' (2016)<ref name="Masc2016"/>]]
Proxima Centauri is a [[red dwarf]], because it belongs to the [[main sequence]] on the [[Hertzsprung–Russell diagram]] and is of [[Stellar classification|spectral class M5.5]]. The M5.5 class means that it falls in the low-mass end of M-type [[dwarf star]]s,<ref name="ESO2003">{{cite news | last1=Kervella | first1=Pierre | last2=Thevenin | first2=Frederic |title=A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars |publisher=European Southern Observatory |date=March 15, 2003 |url=https://www.eso.org/public/news/eso0307/ |access-date=May 10, 2016}}</ref> with its hue shifted toward red-yellow<ref>{{cite book | title=Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration | first1=Paul A. | last1=Czysz | first2=Claudio | last2=Bruno | date=2009 | page=36 | publisher=Springer Berlin Heidelberg | isbn=9783540888147 | url=https://books.google.com/books?id=aI9QhDA4AVwC&pg=PA376 }}</ref> by an [[effective temperature]] of {{val|3000|u=K|fmt=commas|p=~}}.<ref name="aaa397" /> Its [[absolute visual magnitude]], or its visual magnitude as viewed from a distance of {{convert|10|pc|ly|0|abbr=out}}, is 15.5.<ref name="abs_mag">{{cite journal |last1=Kamper |first1=K. W. | last2=Wesselink | first2=A. J. |title=Alpha and Proxima Centauri |journal=Astronomical Journal |date=1978 |volume=83 |pages=1653–1659 |doi=10.1086/112378 |bibcode=1978AJ.....83.1653K|doi-access=free }}</ref> Its total luminosity over all [[wavelength]]s is only 0.16% that of the Sun,<ref name="Pineda2021">{{cite journal
Proxima Centauri is a [[red dwarf]], because it belongs to the [[main sequence]] on the [[Hertzsprung–Russell diagram]] and is of [[Stellar classification|spectral class M5.5]]. The M5.5 class means that it falls in the low-mass end of M-type [[dwarf star]]s,<ref name="ESO2003">{{cite news | last1=Kervella | first1=Pierre | last2=Thevenin | first2=Frederic |title=A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars |publisher=European Southern Observatory |date=March 15, 2003 |url=https://www.eso.org/public/news/eso0307/ |access-date=May 10, 2016}}</ref> with its hue shifted toward red-yellow<ref>{{cite book | title=Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration | first1=Paul A. | last1=Czysz | first2=Claudio | last2=Bruno | date=2009 | page=36 | publisher=Springer Berlin Heidelberg | isbn=9783540888147 | url=https://books.google.com/books?id=aI9QhDA4AVwC&pg=PA376 }}</ref> by an [[effective temperature]] of {{val|3000|u=K|fmt=commas|p=~}}.<ref name="aaa397" /> Its [[absolute visual magnitude]], or its visual magnitude as viewed from a distance of {{convert|10|pc|ly|0|abbr=out}}, is 15.5.<ref name="abs_mag">{{cite journal |last1=Kamper |first1=K. W. | last2=Wesselink | first2=A. J. |title=Alpha and Proxima Centauri |journal=Astronomical Journal |date=1978 |volume=83 |pages=1653–1659 |doi=10.1086/112378 |bibcode=1978AJ.....83.1653K|doi-access=free }}</ref> Its total luminosity over all [[wavelength]]s is only 0.16% that of the Sun,<ref name="Pineda2021">{{cite journal
| title=The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars
| title=The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars
Line 102: Line 102:
| volume=918 | issue=1 | id=40 | pages=23 | date=September 2021
| volume=918 | issue=1 | id=40 | pages=23 | date=September 2021
| doi=10.3847/1538-4357/ac0aea | arxiv=2106.07656
| doi=10.3847/1538-4357/ac0aea | arxiv=2106.07656
| bibcode=2021ApJ...918...40P | s2cid=235435757 | doi-access=free }}</ref> although when observed in the wavelengths of [[visible light]] the eye is most sensitive to, it is only 0.0056% as luminous as the Sun.<ref>{{cite book | last1=Binney | first1=James | first2=Scott | last2=Tremaine |title=Galactic dynamics |publisher=Princeton University Press |location=Princeton, New Jersey |date=1987 |isbn=978-0-691-08445-9 |page=8}}</ref> More than 85% of its radiated power is at [[infrared]] wavelengths.<ref>{{cite journal |last=Leggett |first=S. K. |title=Infrared colors of low-mass stars |journal=Astrophysical Journal Supplement Series |date=1992 |volume=82 |issue=1 |pages=351–394, 357 |doi=10.1086/191720 |bibcode=1992ApJS...82..351L}}</ref>
| bibcode=2021ApJ...918...40P | s2cid=235435757 | doi-access=free }}</ref> although when observed in the wavelengths of [[visible light]] to which the eye is most sensitive, it is only 0.0056% as luminous as the Sun.<ref>{{cite book | last1=Binney | first1=James | first2=Scott | last2=Tremaine |title=Galactic dynamics |publisher=Princeton University Press |location=Princeton, New Jersey |date=1987 |isbn=978-0-691-08445-9 |page=8}}</ref> More than 85% of its radiated power is at [[infrared]] wavelengths.<ref>{{cite journal |last=Leggett |first=S. K. |title=Infrared colors of low-mass stars |journal=Astrophysical Journal Supplement Series |date=1992 |volume=82 |issue=1 |pages=351–394, 357 |doi=10.1086/191720 |bibcode=1992ApJS...82..351L}}</ref>


In 2002, [[optical interferometry]] with the [[Very Large Telescope]] (VLTI) found that the [[angular diameter]] of Proxima Centauri is {{val|1.02|0.08|ul=mas}}. Because its distance is known, the actual diameter of Proxima Centauri can be calculated to be about 1/7 that of the Sun, or 1.5 times that of [[Jupiter]]. The star's mass, estimated from stellar theory, is {{Solar mass|12.2%|link=y}}, or 129 [[Jupiter mass]]es ({{Jupiter mass}}).<ref>{{cite web |title=How Small are Small Stars Really? |first=Didier |last=Queloz |date=November 29, 2002 |publisher=European Southern Observatory |url=https://www.eso.org/public/news/eso0232/ |access-date=September 5, 2016}}</ref> The mass has been calculated directly, although with less precision, from observations of [[microlensing]] events to be {{val|0.150|0.062|0.051|u=solar mass}}.<ref name=zurlo>{{cite journal |doi=10.1093/mnras/sty1805 |bibcode=2018MNRAS.480..236Z |title=The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event |journal=Monthly Notices of the Royal Astronomical Society |volume=480 |issue=1 |pages=236 |last1=Zurlo |first1=A. |last2=Gratton |first2=R. |last3=Mesa |first3=D. |last4=Desidera |first4=S. |last5=Enia |first5=A. |last6=Sahu |first6=K. |last7=Almenara |first7=J. -M. |last8=Kervella |first8=P. |last9=Avenhaus |first9=H.|last10=Girard|first10=J. |last11=Janson |first11=M. |last12=Lagadec |first12=E. |last13=Langlois |first13=M. |last14=Milli |first14=J. |last15=Perrot |first15=C. |last16=Schlieder |first16=J. -E. |last17=Thalmann |first17=C. |last18=Vigan |first18=A. |last19=Giro |first19=E.|last20=Gluck|first20=L. |last21=Ramos |first21=J. |last22=Roux |first22=A. |year=2018 |arxiv=1807.01318|s2cid=118971274 }}</ref>
In 2002, [[optical interferometry]] with the [[Very Large Telescope]] (VLTI) found that the [[angular diameter]] of Proxima Centauri is {{val|1.02|0.08|ul=mas}}. Because its distance is known, the actual diameter of Proxima Centauri can be calculated to be about 1/7 that of the Sun, or 1.5 times that of [[Jupiter]]. The star's mass, estimated from stellar theory, is {{Solar mass|12.2%|link=y}}, or 129 [[Jupiter mass]]es ({{Jupiter mass}}).<ref>{{cite web |title=How Small are Small Stars Really? |first=Didier |last=Queloz |date=November 29, 2002 |publisher=European Southern Observatory |url=https://www.eso.org/public/news/eso0232/ |access-date=September 5, 2016}}</ref> The mass has been calculated directly, although with less precision, from observations of [[microlensing]] events to be {{val|0.150|0.062|0.051|u=solar mass}}.<ref name=zurlo>{{cite journal |doi=10.1093/mnras/sty1805 |bibcode=2018MNRAS.480..236Z |title=The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event |journal=Monthly Notices of the Royal Astronomical Society |volume=480 |issue=1 |pages=236 |last1=Zurlo |first1=A. |last2=Gratton |first2=R. |last3=Mesa |first3=D. |last4=Desidera |first4=S. |last5=Enia |first5=A. |last6=Sahu |first6=K. |last7=Almenara |first7=J. -M. |last8=Kervella |first8=P. |last9=Avenhaus |first9=H.|last10=Girard|first10=J. |last11=Janson |first11=M. |last12=Lagadec |first12=E. |last13=Langlois |first13=M. |last14=Milli |first14=J. |last15=Perrot |first15=C. |last16=Schlieder |first16=J. -E. |last17=Thalmann |first17=C. |last18=Vigan |first18=A. |last19=Giro |first19=E.|last20=Gluck|first20=L. |last21=Ramos |first21=J. |last22=Roux |first22=A. |year=2018 |doi-access=free |arxiv=1807.01318|s2cid=118971274 }}</ref>


Lower mass main-sequence stars have higher mean [[density]] than higher mass ones,<ref>{{cite book |first=Martin V. |last=Zombeck |date=2007 |title=Handbook of space astronomy and astrophysics |url=https://archive.org/details/handbookspaceast00zomb_781 |url-access=limited |publisher=Cambridge University Press |edition=Third |pages=[https://archive.org/details/handbookspaceast00zomb_781/page/n122 109] |location=Cambridge, UK |isbn=978-0-521-78242-5}}</ref> and Proxima Centauri is no exception: it has a mean density of {{convert|47.1e3|kg/m3|g/cm3|abbr=on}}, compared with the Sun's mean density of {{convert|1.411e3|kg/m3|g/cm3|abbr=on}}.<ref group="nb" name="density">The density (''ρ'') is given by the mass divided by the volume. Relative to the Sun, therefore, the density is:
Lower mass main-sequence stars have higher mean [[density]] than higher mass ones,<ref>{{cite book |first=Martin V. |last=Zombeck |date=2007 |title=Handbook of space astronomy and astrophysics |url=https://archive.org/details/handbookspaceast00zomb_781 |url-access=limited |publisher=Cambridge University Press |edition=Third |pages=[https://archive.org/details/handbookspaceast00zomb_781/page/n122 109] |location=Cambridge, UK |isbn=978-0-521-78242-5}}</ref> and Proxima Centauri is no exception: it has a mean density of {{convert|47.1e3|kg/m3|g/cm3|abbr=on}}, compared with the Sun's mean density of {{convert|1.411e3|kg/m3|g/cm3|abbr=on}}.<ref group="nb" name="density">The density (''ρ'') is given by the mass divided by the volume. Relative to the Sun, therefore, the density is:
Line 122: Line 122:
*{{cite web | last1=Munsell | first1=Kirk | last2=Smith | first2=Harman | last3=Davis | first3=Phil | last4=Harvey | first4=Samantha |date=June 11, 2008 |url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric |title=Sun: facts & figures |work=Solar system exploration |publisher=NASA |access-date=July 12, 2008 |url-status=dead |archive-url=https://web.archive.org/web/20080102034758/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric |archive-date=January 2, 2008}}
*{{cite web | last1=Munsell | first1=Kirk | last2=Smith | first2=Harman | last3=Davis | first3=Phil | last4=Harvey | first4=Samantha |date=June 11, 2008 |url=http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric |title=Sun: facts & figures |work=Solar system exploration |publisher=NASA |access-date=July 12, 2008 |url-status=dead |archive-url=https://web.archive.org/web/20080102034758/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Sun&Display=Facts&System=Metric |archive-date=January 2, 2008}}
*{{cite book |last1=Bergman |first1=Marcel W. |last2=Clark |first2=T. Alan |last3=Wilson |first3=William J. F. |date=2007 |pages=220–221 |title=Observing projects using Starry Night Enthusiast |edition=8th |publisher=Macmillan |isbn=978-1-4292-0074-5}}</ref> The measured [[surface gravity]] of Proxima Centauri, given as the [[Base 10 logarithm|base-10 logarithm]] of the [[Gravitational acceleration|acceleration]] in [[cgs unit|units of cgs]], is 5.20.<ref name="aaa397" /> This is 162 times the [[Standard gravity|surface gravity]] on Earth.<ref group="nb" name="gravity">The standard surface gravity on the Earth is {{val|980.665|u=cm/s<sup>2</sup>}}, for a 'log g' value of 2.992. The difference in logarithms is 5.20 − 2.99 = 2.21, yielding a multiplier of 10<sup>2.21</sup> = 162. For the Earth's gravity, see:
*{{cite book |last1=Bergman |first1=Marcel W. |last2=Clark |first2=T. Alan |last3=Wilson |first3=William J. F. |date=2007 |pages=220–221 |title=Observing projects using Starry Night Enthusiast |edition=8th |publisher=Macmillan |isbn=978-1-4292-0074-5}}</ref> The measured [[surface gravity]] of Proxima Centauri, given as the [[Base 10 logarithm|base-10 logarithm]] of the [[Gravitational acceleration|acceleration]] in [[cgs unit|units of cgs]], is 5.20.<ref name="aaa397" /> This is 162 times the [[Standard gravity|surface gravity]] on Earth.<ref group="nb" name="gravity">The standard surface gravity on the Earth is {{val|980.665|u=cm/s<sup>2</sup>}}, for a 'log g' value of 2.992. The difference in logarithms is 5.20 − 2.99 = 2.21, yielding a multiplier of 10<sup>2.21</sup> = 162. For the Earth's gravity, see:
* {{cite book | page=29 | url=https://physics.nist.gov/cuu/pdf/sp330.pdf | title=The International System of Units (SI) | editor1-first=Barry N. | editor1-last=Taylor | work=NIST Special Publication 330 | year=2001 | publisher=United States Department of Commerce: National Institute of Standards and Technology | access-date=2012-03-08 }}</ref>
* {{cite book | page=29 | url=https://physics.nist.gov/cuu/pdf/sp330.pdf | title=The International System of Units (SI) | editor1-first=Barry N. | editor1-last=Taylor | year=2001 | publisher=United States Department of Commerce: National Institute of Standards and Technology | access-date=2012-03-08 }}</ref>


A 1998 study of [[photometry (astronomy)|photometric]] variations indicates that Proxima Centauri completes a full rotation once every 83.5 days.<ref name=McArthur1998>{{cite journal | last1=Benedict | first1=G. F. |title=Photometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: a search for periodic variations |journal=The Astronomical Journal |date=1998 |volume=116 |issue=1 |pages=429–439 |doi=10.1086/300420 |bibcode=1998AJ....116..429B |arxiv=astro-ph/9806276 | last2=McArthur | first2=B. |last3=Nelan |first3=E. |last4=Story |first4=D. |last5=Whipple |first5=A. L. |last6=Shelus |first6=P. J. |last7=Jefferys |first7=W. H. |last8=Hemenway |first8=P. D. |last9=Franz |first9=Otto G.|s2cid=15880053 }}</ref> A subsequent [[time series]] analysis of [[Chromosphere|chromospheric]] indicators in 2002 suggests a longer rotation period of {{val|116.6|0.7}}&nbsp;days.<ref>{{cite journal |title=Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators |last1=Suárez Mascareño |first1=A. |last2=Rebolo |first2=R. |last3=González Hernández |first3=J. I. |last4=Esposito |first4=M. |journal=Monthly Notices of the Royal Astronomical Society |volume=452 |issue=3 |pages=2745–2756 |date=September 2015 |doi=10.1093/mnras/stv1441 |bibcode=2015MNRAS.452.2745S |arxiv=1506.08039|s2cid=119181646 }}</ref> Later observations of the star's magnetic field subsequently revealed that the star rotates with a period of {{val|89.8|4}}&nbsp;days, consistent with a measurement of {{val|92.1|4.2|3.5}}&nbsp;days from radial velocity observations.<ref name="Klein2020"/><ref name="ArtigauCadieux2022"/>
A 1998 study of [[photometry (astronomy)|photometric]] variations indicates that Proxima Centauri completes a full rotation once every 83.5 days.<ref name=McArthur1998>{{cite journal | last1=Benedict | first1=G. F. |title=Photometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: a search for periodic variations |journal=The Astronomical Journal |date=1998 |volume=116 |issue=1 |pages=429–439 |doi=10.1086/300420 |bibcode=1998AJ....116..429B |arxiv=astro-ph/9806276 | last2=McArthur | first2=B. |last3=Nelan |first3=E. |last4=Story |first4=D. |last5=Whipple |first5=A. L. |last6=Shelus |first6=P. J. |last7=Jefferys |first7=W. H. |last8=Hemenway |first8=P. D. |last9=Franz |first9=Otto G.|s2cid=15880053 }}</ref> A subsequent [[time series]] analysis of [[Chromosphere|chromospheric]] indicators in 2002 suggests a longer rotation period of {{val|116.6|0.7}}&nbsp;days.<ref>{{cite journal |title=Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators |last1=Suárez Mascareño |first1=A. |last2=Rebolo |first2=R. |last3=González Hernández |first3=J. I. |last4=Esposito |first4=M. |journal=Monthly Notices of the Royal Astronomical Society |volume=452 |issue=3 |pages=2745–2756 |date=September 2015 |doi=10.1093/mnras/stv1441 |doi-access=free |bibcode=2015MNRAS.452.2745S |arxiv=1506.08039|s2cid=119181646 }}</ref> Later observations of the star's magnetic field subsequently revealed that the star rotates with a period of {{val|89.8|4}}&nbsp;days, consistent with a measurement of {{val|92.1|4.2|3.5}}&nbsp;days from radial velocity observations.<ref name="Klein2020"/><ref name="ArtigauCadieux2022"/>


== Structure and fusion ==
== Structure and fusion ==
Because of its low mass, the interior of the star is completely [[Convection zone|convective]],<ref name=Yadav2016/> causing energy to be transferred to the exterior by the physical movement of plasma rather than through [[Radiation zone|radiative processes]]. This convection means that the helium ash left over from the [[thermonuclear fusion]] of hydrogen does not accumulate at the core but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume nearly all of its fuel before the fusion of hydrogen comes to an end.<ref name="adams">{{cite conference |last1=Adams |first1=Fred C. |last2=Laughlin |first2=Gregory |last3=Graves |first3=Genevieve J. M. |title=Red dwarfs and the end of the main sequence |url=http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf |publisher=[[Revista Mexicana de Astronomía y Astrofísica]] |pages=46–49 |access-date=June 24, 2008 |work=Gravitational collapse: from massive stars to planets}}</ref>
Because of its low mass, the interior of the star is completely [[Convection zone|convective]],<ref name=Yadav2016/> causing energy to be transferred to the exterior by the physical movement of plasma rather than through [[Radiation zone|radiative processes]]. This convection means that the helium ash left over from the [[thermonuclear fusion]] of hydrogen does not accumulate at the core but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume nearly all of its fuel before the fusion of hydrogen comes to an end.<ref name="adams">{{cite conference |last1=Adams |first1=Fred C. |last2=Laughlin |first2=Gregory |last3=Graves |first3=Genevieve J. M. |title=Red dwarfs and the end of the main sequence |url=http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf |publisher=[[Revista Mexicana de Astronomía y Astrofísica]] |pages=46–49 |access-date=June 24, 2008 |work=Gravitational collapse: from massive stars to planets |archive-date=11 July 2019 |archive-url=https://web.archive.org/web/20190711072446/http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf |url-status=dead }}</ref>


Convection is associated with the generation and persistence of a [[Stellar magnetic field|magnetic field]]. The magnetic energy from this field is released at the surface through [[stellar flare]]s that briefly (as short as per ten seconds)<ref name=MacGregor_et_al_2021>{{cite journal |arxiv=2104.09519 |last1=MacGregor |first1=Meredith A. |last2=Weinberger |first2=Alycia J. |last3=Parke Loyd |first3=R. O. |last4=Shkolnik |first4=Evgenya |last5=Barclay |first5=Thomas |last6=Howard |first6=Ward S. |last7=Zic |first7=Andrew |last8=Osten |first8=Rachel A. |last9=Cranmer |first9=Steven R. |last10=Kowalski |first10=Adam F. |last11=Lenc |first11=Emil |last12=Youngblood |first12=Allison |last13=Estes |first13=Anna |last14=Wilner |first14=David J. |last15=Forbrich |first15=Jan |last16=Hughes |first16=Anna |last17=Law |first17=Nicholas M. |last18=Murphy |first18=Tara |last19=Boley |first19=Aaron |last20=Matthews |first20=Jaymie |title=Discovery of an Extremely Short Duration Flare from Proxima Centauri Using Millimeter through Far-ultraviolet Observations |journal=The Astrophysical Journal Letters |year=2021 |volume=911 |issue=2 |pages=L25 |doi=10.3847/2041-8213/abf14c |bibcode=2021ApJ...911L..25M |s2cid=233307258 |doi-access=free }}</ref> increase the overall luminosity of the star. On May 6, 2019, a flare event bordering Solar [[Solar_flare#Soft X-ray classification|M and X flare class]],<ref>{{citation|arxiv=2209.05490|year=2022|title=The Mouse That Squeaked: A Small Flare from Proxima Cen Observed in the Millimeter, Optical, and Soft X-Ray with Chandra and ALMA|doi=10.3847/1538-4357/ac9134 |last1=Howard |first1=Ward S. |last2=MacGregor |first2=Meredith A. |last3=Osten |first3=Rachel |last4=Forbrich |first4=Jan |last5=Cranmer |first5=Steven R. |last6=Tristan |first6=Isaiah |last7=Weinberger |first7=Alycia J. |last8=Youngblood |first8=Allison |last9=Barclay |first9=Thomas |last10=Parke Loyd |first10=R. O. |last11=Shkolnik |first11=Evgenya L. |last12=Zic |first12=Andrew |last13=Wilner |first13=David J. |journal=The Astrophysical Journal |volume=938 |issue=2 |page=103 |bibcode=2022ApJ...938..103H |s2cid=252211788 |doi-access=free }}</ref> briefly became the brightest ever detected, with a far ultraviolet emission of {{val|2|e=30|u=erg}}.<ref name=MacGregor_et_al_2021/> These flares can grow as large as the star and reach temperatures measured as high as 27&nbsp;million [[Kelvin|K]]<ref name=aaa416>{{cite journal |last1=Guedel |first1=M. | last2=Audard | first2=M. | last3=Reale | first3=F. | last4=Skinner | first4=S. L. | last5=Linsky | first5=J. L. |title=Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton |journal=Astronomy and Astrophysics |date=2004 |volume=416 |issue=2 |pages=713–732 |arxiv=astro-ph/0312297 |doi=10.1051/0004-6361:20031471 |bibcode=2004A&A...416..713G|s2cid=7725125 }}</ref>—hot enough to radiate [[X-ray]]s.<ref>{{cite web |url=http://chandra.harvard.edu/photo/2004/proxima/ |title=Proxima Centauri: the nearest star to the Sun |publisher=Harvard-Smithsonian Center for Astrophysics |date=August 30, 2006 |access-date=July 9, 2007}}</ref> Proxima Centauri's quiescent X-ray luminosity, approximately (4–16){{E-sp|26}}&nbsp;[[erg]]/s ((4–16){{E-sp|19}}&nbsp;[[watt|W]]), is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach {{10^|28}}&nbsp;erg/s ({{10^|21}}&nbsp;W).<ref name=aaa416/>
Convection is associated with the generation and persistence of a [[Stellar magnetic field|magnetic field]]. The magnetic energy from this field is released at the surface through [[stellar flare]]s that briefly (as short as per ten seconds)<ref name=MacGregor_et_al_2021>{{cite journal |arxiv=2104.09519 |last1=MacGregor |first1=Meredith A. |last2=Weinberger |first2=Alycia J. |last3=Parke Loyd |first3=R. O. |last4=Shkolnik |first4=Evgenya |last5=Barclay |first5=Thomas |last6=Howard |first6=Ward S. |last7=Zic |first7=Andrew |last8=Osten |first8=Rachel A. |last9=Cranmer |first9=Steven R. |last10=Kowalski |first10=Adam F. |last11=Lenc |first11=Emil |last12=Youngblood |first12=Allison |last13=Estes |first13=Anna |last14=Wilner |first14=David J. |last15=Forbrich |first15=Jan |last16=Hughes |first16=Anna |last17=Law |first17=Nicholas M. |last18=Murphy |first18=Tara |last19=Boley |first19=Aaron |last20=Matthews |first20=Jaymie |title=Discovery of an Extremely Short Duration Flare from Proxima Centauri Using Millimeter through Far-ultraviolet Observations |journal=The Astrophysical Journal Letters |year=2021 |volume=911 |issue=2 |pages=L25 |doi=10.3847/2041-8213/abf14c |bibcode=2021ApJ...911L..25M |s2cid=233307258 |doi-access=free }}</ref> increase the overall luminosity of the star. On May 6, 2019, a flare event bordering Solar [[Solar_flare#Soft X-ray classification|M and X flare class]],<ref>{{citation|arxiv=2209.05490|year=2022|title=The Mouse That Squeaked: A Small Flare from Proxima Cen Observed in the Millimeter, Optical, and Soft X-Ray with Chandra and ALMA|doi=10.3847/1538-4357/ac9134 |last1=Howard |first1=Ward S. |last2=MacGregor |first2=Meredith A. |last3=Osten |first3=Rachel |last4=Forbrich |first4=Jan |last5=Cranmer |first5=Steven R. |last6=Tristan |first6=Isaiah |last7=Weinberger |first7=Alycia J. |last8=Youngblood |first8=Allison |last9=Barclay |first9=Thomas |last10=Parke Loyd |first10=R. O. |last11=Shkolnik |first11=Evgenya L. |last12=Zic |first12=Andrew |last13=Wilner |first13=David J. |journal=The Astrophysical Journal |volume=938 |issue=2 |page=103 |bibcode=2022ApJ...938..103H |s2cid=252211788 |doi-access=free }}</ref> briefly became the brightest ever detected, with a far ultraviolet emission of {{val|2|e=30|u=erg}}.<ref name=MacGregor_et_al_2021/> These flares can grow as large as the star and reach temperatures measured as high as 27&nbsp;million [[Kelvin|K]]<ref name=aaa416>{{cite journal |last1=Guedel |first1=M. | last2=Audard | first2=M. | last3=Reale | first3=F. | last4=Skinner | first4=S. L. | last5=Linsky | first5=J. L. |title=Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton |journal=Astronomy and Astrophysics |date=2004 |volume=416 |issue=2 |pages=713–732 |arxiv=astro-ph/0312297 |doi=10.1051/0004-6361:20031471 |bibcode=2004A&A...416..713G|s2cid=7725125 }}</ref>—hot enough to radiate [[X-ray]]s.<ref>{{cite web |url=http://chandra.harvard.edu/photo/2004/proxima/ |title=Proxima Centauri: the nearest star to the Sun |publisher=Harvard-Smithsonian Center for Astrophysics |date=August 30, 2006 |access-date=July 9, 2007}}</ref> Proxima Centauri's quiescent X-ray luminosity, approximately (4–16){{E-sp|26}}&nbsp;[[erg]]/s ((4–16){{E-sp|19}}&nbsp;[[watt|W]]), is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach {{10^|28}}&nbsp;erg/s ({{10^|21}}&nbsp;W).<ref name=aaa416/>


Proxima Centauri's chromosphere is active, and its [[stellar spectrum|spectrum]] displays a strong [[Spectral line|emission line]] of singly ionized [[magnesium]] at a wavelength of 280&nbsp;[[Nanometre|nm]].<ref>{{cite journal |first1=Guinan |last1=E. F. |last2=Morgan |first2=N. D. |title=Proxima Centauri: rotation, chromospheric activity, and flares |journal=Bulletin of the American Astronomical Society |date=1996 |volume=28 |pages=942 |bibcode=1996AAS...188.7105G}}</ref> About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the [[solar cycle]]. Even during quiescent periods with few or no flares, this activity increases the [[stellar corona|corona]] temperature of Proxima Centauri to 3.5&nbsp;million K, compared to the 2&nbsp;million K of the Sun's corona,<ref>{{cite journal | last1=Wargelin | first1=Bradford J. | last2=Drake | first2=Jeremy J. |title=Stringent X-ray constraints on mass loss from Proxima Centauri |journal=The Astrophysical Journal |date=2002 |volume=578 |issue=1 |pages=503–514 |doi=10.1086/342270 |bibcode=2002ApJ...578..503W|doi-access=free }}</ref> and its total X-ray emission is comparable to the sun's.<ref name=apj547/> Proxima Centauri's overall activity level is considered low compared to other red dwarfs,<ref name=apj547>{{cite journal | last1=Wood | first1=B. E. | last2=Linsky | first2=J. L. | last3=Müller | first3=H.-R. | last4=Zank | first4=G. P. |title=Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using Hubble Space Telescope Lyα spectra |journal=The Astrophysical Journal |date=2001 |volume=547 |issue=1 |pages=L49–L52 |doi=10.1086/318888 |bibcode=2001ApJ...547L..49W |arxiv=astro-ph/0011153|s2cid=118537213 }}</ref> which is consistent with the star's estimated age of 4.85{{E-sp|9}}&nbsp;years,<ref name="ESO2003"/> since the activity level of a red dwarf is expected to steadily wane over billions of years as its [[stellar rotation]] rate decreases.<ref>{{cite journal |last1=Stauffer |first1=J. R. | last2=Hartmann | first2=L. W. |title=Chromospheric activity, kinematics, and metallicities of nearby M dwarfs |journal=Astrophysical Journal Supplement Series |date=1986 |volume=61 |issue=2 |pages=531–568 |bibcode=1986ApJS...61..531S |doi=10.1086/191123|doi-access=free }}</ref> The activity level appears to vary<ref>{{Cite news |last=Pulliam |first=Christine |url=http://insider.si.edu/2016/10/proxima-centauri-might-sunlike-thought/ |title=Proxima Centauri Might Be More Sunlike Than We Thought |date=October 12, 2016 |work=Smithsonian Insider |access-date=July 7, 2020}}</ref> with a period of roughly 442 days, which is shorter than the solar cycle of 11 years.<ref>{{cite journal | last1=Cincunegui | first1=C. | last2=Díaz | first2=R. F. | last3=Mauas | first3=P. J. D. |title=A possible activity cycle in Proxima Centauri |journal=Astronomy and Astrophysics |date=2007 |volume=461 |issue=3 |pages=1107–1113 |doi=10.1051/0004-6361:20066027 |bibcode=2007A&A...461.1107C |arxiv=astro-ph/0703514|s2cid=14672316 }}</ref>
Proxima Centauri's [[chromosphere]] is active, and its [[stellar spectrum|spectrum]] displays a strong [[Spectral line|emission line]] of singly ionized [[magnesium]] at a wavelength of 280&nbsp;[[Nanometre|nm]].<ref>{{cite journal |first1=Guinan |last1=E. F. |last2=Morgan |first2=N. D. |title=Proxima Centauri: rotation, chromospheric activity, and flares |journal=Bulletin of the American Astronomical Society |date=1996 |volume=28 |pages=942 |bibcode=1996AAS...188.7105G}}</ref> About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the [[solar cycle]]. Even during quiescent periods with few or no flares, this activity increases the [[stellar corona|corona]] temperature of Proxima Centauri to 3.5&nbsp;million K, compared to the 2&nbsp;million K of the Sun's corona,<ref>{{cite journal | last1=Wargelin | first1=Bradford J. | last2=Drake | first2=Jeremy J. |title=Stringent X-ray constraints on mass loss from Proxima Centauri |journal=The Astrophysical Journal |date=2002 |volume=578 |issue=1 |pages=503–514 |doi=10.1086/342270 |bibcode=2002ApJ...578..503W|doi-access=free }}</ref> and its total X-ray emission is comparable to the sun's.<ref name=apj547/> Proxima Centauri's overall activity level is considered low compared to other red dwarfs,<ref name=apj547>{{cite journal | last1=Wood | first1=B. E. | last2=Linsky | first2=J. L. | last3=Müller | first3=H.-R. | last4=Zank | first4=G. P. |title=Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using Hubble Space Telescope Lyα spectra |journal=The Astrophysical Journal |date=2001 |volume=547 |issue=1 |pages=L49–L52 |doi=10.1086/318888 |bibcode=2001ApJ...547L..49W |arxiv=astro-ph/0011153|s2cid=118537213 }}</ref> which is consistent with the star's estimated age of 4.85{{E-sp|9}}&nbsp;years,<ref name="ESO2003"/> since the activity level of a red dwarf is expected to steadily wane over billions of years as its [[stellar rotation]] rate decreases.<ref>{{cite journal |last1=Stauffer |first1=J. R. | last2=Hartmann | first2=L. W. |title=Chromospheric activity, kinematics, and metallicities of nearby M dwarfs |journal=Astrophysical Journal Supplement Series |date=1986 |volume=61 |issue=2 |pages=531–568 |bibcode=1986ApJS...61..531S |doi=10.1086/191123|doi-access=free }}</ref> The activity level appears to vary<ref>{{Cite news |last=Pulliam |first=Christine |url=http://insider.si.edu/2016/10/proxima-centauri-might-sunlike-thought/ |title=Proxima Centauri Might Be More Sunlike Than We Thought |date=October 12, 2016 |work=Smithsonian Insider |access-date=July 7, 2020}}</ref> with a period of roughly 442 days, which is shorter than the Sun's solar cycle of 11 years.<ref>{{cite journal | last1=Cincunegui | first1=C. | last2=Díaz | first2=R. F. | last3=Mauas | first3=P. J. D. |title=A possible activity cycle in Proxima Centauri |journal=Astronomy and Astrophysics |date=2007 |volume=461 |issue=3 |pages=1107–1113 |doi=10.1051/0004-6361:20066027 |bibcode=2007A&A...461.1107C |arxiv=astro-ph/0703514|s2cid=14672316 }}</ref>


Proxima Centauri has a relatively weak [[stellar wind]], no more than 20% of the mass loss rate of the [[solar wind]]. Because the star is much smaller than the Sun, the mass loss per unit surface area from Proxima Centauri may be eight times that from the solar surface.<ref>{{cite journal |last1=Wood |first1=B. E. | last2=Linsky | first2=J. L. | last3=Muller | first3=H.-R. | last4=Zank | first4=G. P. |title=Observational estimates for the mass-loss rates of Alpha Centauri and Proxima Centauri using Hubble Space Telescope Lyman-alpha spectra |journal=Astrophysical Journal |date=2000 |volume=537 |issue=2 |pages=L49–L52 |arxiv=astro-ph/0011153 |doi=10.1086/309026 |bibcode=2000ApJ...537..304W|s2cid=119332314 }}</ref>
Proxima Centauri has a relatively weak [[stellar wind]], no more than 20% of the mass loss rate of the [[solar wind]]. Because the star is much smaller than the Sun, the mass loss per unit surface area from Proxima Centauri may be eight times that from the Sun's surface.<ref>{{cite journal |last1=Wood |first1=B. E. | last2=Linsky | first2=J. L. | last3=Muller | first3=H.-R. | last4=Zank | first4=G. P. |title=Observational estimates for the mass-loss rates of Alpha Centauri and Proxima Centauri using Hubble Space Telescope Lyman-alpha spectra |journal=Astrophysical Journal |date=2000 |volume=537 |issue=2 |pages=L49–L52 |arxiv=astro-ph/0011153 |doi=10.1086/309026 |bibcode=2000ApJ...537..304W|s2cid=119332314 }}</ref>


== Life phases ==
== Life phases ==
A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming into a so-called [[Blue dwarf (red-dwarf stage)| "blue dwarf"]]. Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity ({{Solar luminosity|link=y}}) and warming up any orbiting bodies for a period of several billion years. When the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a helium [[white dwarf]] (without passing through the [[red giant]] phase) and steadily lose any remaining heat energy.<ref name="adams" /><ref>{{cite journal |last1=Adams |first1=Fred C. |last2=Laughlin |first2=Gregory |name-list-style=amp |year=1997 |title=A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects |journal=Reviews of Modern Physics |volume=69 |issue=2 |pages=337–372 |arxiv=astro-ph/9701131 |bibcode=1997RvMP...69..337A |doi=10.1103/RevModPhys.69.337 |s2cid=12173790}}</ref>
A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming into a so-called [[Blue dwarf (red-dwarf stage)|"blue dwarf"]]. Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity ({{Solar luminosity|link=y}}) and warming any orbiting bodies for a period of several billion years. When the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a helium [[white dwarf]] (without passing through the [[red giant]] phase) and steadily lose any remaining heat energy.<ref name="adams" /><ref>{{cite journal |last1=Adams |first1=Fred C. |last2=Laughlin |first2=Gregory |name-list-style=amp |year=1997 |title=A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects |journal=Reviews of Modern Physics |volume=69 |issue=2 |pages=337–372 |arxiv=astro-ph/9701131 |bibcode=1997RvMP...69..337A |doi=10.1103/RevModPhys.69.337 |s2cid=12173790}}</ref>


The [[Alpha Centauri]] system may form naturally through a low-mass star being dynamically captured by a more massive binary of {{Solar mass|1.5–2}} within their embedded star cluster before the cluster disperses.<ref>{{cite journal |last=Kroupa |first=Pavel |date=1995 |title=The dynamical properties of stellar systems in the Galactic disc |journal=MNRAS |volume=277 |issue=4 |pages=1507–1521 |arxiv=astro-ph/9508084 |bibcode=1995MNRAS.277.1507K |doi=10.1093/mnras/277.4.1507 |s2cid=15557806}}</ref> However, more accurate measurements of the radial velocity are needed to confirm this hypothesis.<ref name="apj132">{{cite journal |last1=Wertheimer |first1=Jeremy G. |last2=Laughlin |first2=Gregory |date=2006 |title=Are Proxima and α Centauri gravitationally bound? |journal=[[The Astronomical Journal]] |volume=132 |issue=5 |pages=1995–1997 |arxiv=astro-ph/0607401 |bibcode=2006AJ....132.1995W |doi=10.1086/507771 |s2cid=16650143}}</ref> If Proxima Centauri was bound to the Alpha Centauri system during its formation, the stars are likely to share the same [[chemical element|elemental]] composition. The gravitational influence of Proxima might have stirred up the Alpha Centauri [[protoplanetary disk]]s. This would have increased the delivery of [[Volatile (astrogeology)|volatiles]] such as water to the dry inner regions, so possibly enriching any [[terrestrial planet]]s in the system with this material.<ref name="apj132" />
The [[Alpha Centauri]] system may have formed through a low-mass star being dynamically captured by a more massive binary of {{Solar mass|1.5–2}} within their embedded star cluster before the cluster dispersed.<ref>{{cite journal |last=Kroupa |first=Pavel |date=1995 |title=The dynamical properties of stellar systems in the Galactic disc |journal=MNRAS |volume=277 |issue=4 |pages=1507–1521 |arxiv=astro-ph/9508084 |bibcode=1995MNRAS.277.1507K |doi=10.1093/mnras/277.4.1507 |doi-access=free |s2cid=15557806}}</ref> However, more accurate measurements of the radial velocity are needed to confirm this hypothesis.<ref name="apj132">{{cite journal |last1=Wertheimer |first1=Jeremy G. |last2=Laughlin |first2=Gregory |date=2006 |title=Are Proxima and α Centauri gravitationally bound? |journal=[[The Astronomical Journal]] |volume=132 |issue=5 |pages=1995–1997 |arxiv=astro-ph/0607401 |bibcode=2006AJ....132.1995W |doi=10.1086/507771 |s2cid=16650143}}</ref> If Proxima Centauri was bound to the Alpha Centauri system during its formation, the stars are likely to share the same [[chemical element|elemental]] composition. The gravitational influence of Proxima might have disturbed the Alpha Centauri [[protoplanetary disk]]s. This would have increased the delivery of [[Volatile (astrogeology)|volatiles]] such as water to the dry inner regions, so possibly enriching any [[terrestrial planet]]s in the system with this material.<ref name="apj132" />


Alternatively, Proxima Centauri may have been captured at a later date during an encounter, resulting in a highly eccentric orbit that was then stabilized by the [[galactic tide]] and additional stellar encounters. Such a scenario may mean that Proxima Centauri's planetary companions have had a much lower chance for orbital disruption by Alpha Centauri.<ref name="FengJones2018">{{cite journal |last1=Feng |first1=F. |last2=Jones |first2=H. R. A. |date=January 2018 |title=Was Proxima captured by Alpha Centauri A and B? |journal=Monthly Notices of the Royal Astronomical Society |volume=473 |issue=3 |pages=3185−3189 |arxiv=1709.03560 |bibcode=2018MNRAS.473.3185F |doi=10.1093/mnras/stx2576 |s2cid=55711316}}</ref> As the members of the Alpha Centauri pair continue to evolve and lose mass, Proxima Centauri is predicted to become unbound from the system in around 3.5&nbsp;billion years from the present. Thereafter, the star will steadily diverge from the pair.<ref>{{cite journal |last=Beech |first=M. |date=2011 |title=The Far Distant Future of Alpha Centauri |journal=Journal of the British Interplanetary Society |volume=64 |pages=387–395 |bibcode=2011JBIS...64..387B}}</ref>
Alternatively, Proxima Centauri may have been captured at a later date during an encounter, resulting in a highly eccentric orbit that was then stabilized by the [[galactic tide]] and additional stellar encounters. Such a scenario may mean that Proxima Centauri's planetary companions have had a much lower chance for orbital disruption by Alpha Centauri.<ref name="FengJones2018">{{cite journal |last1=Feng |first1=F. |last2=Jones |first2=H. R. A. |date=January 2018 |title=Was Proxima captured by Alpha Centauri A and B? |journal=Monthly Notices of the Royal Astronomical Society |volume=473 |issue=3 |pages=3185−3189 |arxiv=1709.03560 |bibcode=2018MNRAS.473.3185F |doi=10.1093/mnras/stx2576 |doi-access=free |s2cid=55711316}}</ref> As the members of the Alpha Centauri pair continue to evolve and lose mass, Proxima Centauri is predicted to become unbound from the system in around 3.5&nbsp;billion years from the present. Thereafter, the star will steadily diverge from the pair.<ref>{{cite journal |last=Beech |first=M. |date=2011 |title=The Far Distant Future of Alpha Centauri |journal=Journal of the British Interplanetary Society |volume=64 |pages=387–395 |bibcode=2011JBIS...64..387B}}</ref>


== Motion and location ==
== Motion and location ==
[[File:Alpha, Beta and Proxima Centauri (1).jpg|left|thumb|300x300px|[[Alpha Centauri]] A and B are the bright apparent star to the left, which are in a triple star system with Proxima Centauri, circled in red. The bright star system to the right is the unrelated [[Beta Centauri]].]]
[[File:Alpha, Beta and Proxima Centauri (1).jpg|left|thumb|upright=1.4|[[Alpha Centauri]] A and B are the bright apparent star to the left, which are in a triple star system with Proxima Centauri, circled in red. The bright star system to the right is the unrelated [[Beta Centauri]].]]


Based on a parallax of {{val|768.0665|0.0499|u=mas}}, published in 2020 in [[Gaia Data Release 3]], Proxima Centauri is {{convert|4.2465|ly|pc AU|lk=on}} from the Sun.<ref name="Gaia3" /> Previously published parallaxes include: {{val|768.5|0.2|u=mas}} in 2018 by Gaia DR2, {{val|768.13|1.04|u=mas}}, in 2014 by the [[Research Consortium On Nearby Stars]];<ref name="lurie2014">{{cite journal |last1=Lurie |first1=John C. |last2=Henry |first2=Todd J. |last3=Jao |first3=Wei-Chun |last4=Quinn |first4=Samuel N. |last5=Winters |first5=Jennifer G. |last6=Ianna |first6=Philip A. |last7=Koerner |first7=David W. |last8=Riedel |first8=Adric R. |last9=Subasavage |first9=John P. |year=2014 |title=The Solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry |journal=The Astronomical Journal |volume=148 |issue=5 |pages=91 |arxiv=1407.4820 |bibcode=2014AJ....148...91L |doi=10.1088/0004-6256/148/5/91 |s2cid=118492541}}</ref> {{val|772.33|2.42|u=mas}}, in the original [[Hipparcos]] Catalogue, in 1997;<ref name="aaa323_L49">{{cite journal |last1=Perryman |first1=M. A. C. |last2=Lindegren |first2=L. |last3=Kovalevsky |first3=J. |last4=Hoeg |first4=E. |last5=Bastian |first5=U. |last6=Bernacca |first6=P. L. |last7=Crézé |first7=M. |last8=Donati |first8=F. |last9=Grenon |first9=M. |last10=Grewing |first10=M. |last11=van Leeuwen |first11=F. |date=July 1997 |title=The Hipparcos catalogue |journal=Astronomy and Astrophysics |volume=323 |pages=L49–L52 |bibcode=1997A&A...323L..49P |last12=van der Marel |first12=H. |last13=Mignard |first13=F. |last14=Murray |first14=C. A. |last15=Le Poole |first15=R. S. |last16=Schrijver |first16=H. |last17=Turon |first17=C. |last18=Arenou |first18=F. |last19=Froeschlé |first19=M. |last20=Petersen |first20=C. S.}}</ref> {{val|771.64|2.60|u=mas}} in the Hipparcos New Reduction, in 2007;<ref name="hipparcos" /> and {{val|768.77|0.37|u=mas}} using the [[Hubble Space Telescope]]{{'s}} [[fine guidance sensor]]s, in 1999.<ref name="apj118" /> From Earth's vantage point, Proxima Centauri is separated from Alpha Centauri by 2.18 degrees,<ref name="apj121">{{cite journal |last1=Kirkpatrick |first1=J. D. |last2=Davy |first2=J. |last3=Monet |first3=David G. |last4=Reid |first4=I. Neill |last5=Gizis |first5=John E. |last6=Liebert |first6=James |last7=Burgasser |first7=Adam J. |year=2001 |title=Brown dwarf companions to G-type stars. I: Gliese 417B and Gliese 584C |journal=The Astronomical Journal |volume=121 |issue=6 |pages=3235–3253 |arxiv=astro-ph/0103218 |bibcode=2001AJ....121.3235K |doi=10.1086/321085 |s2cid=18515414}}</ref> or four times the angular diameter of the full [[Moon]].<ref>{{cite web |last=Williams |first=D. R. |date=February 10, 2006 |title=Moon Fact Sheet |url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html |access-date=October 12, 2007 |series=Lunar & Planetary Science |publisher=NASA}}</ref> Proxima Centauri has a relatively large proper motion—moving 3.85&nbsp;[[arcseconds]] per year across the sky.<ref>{{cite conference |last1=Benedict |first1=G. F. |last2=Mcarthur |first2=B. |last3=Nelan |first3=E. |last4=Story |first4=D. |last5=Jefferys |first5=W. H. |last6=Wang |first6=Q. |last7=Shelus |first7=P. J. |last8=Hemenway |first8=P. D. |last9=Mccartney |first9=J. |title=Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri |url=http://clyde.as.utexas.edu/SpAstNEW/Papers_in_pdf/%7BBen93%7DEarlyProx.pdf |pages=380–384 |access-date=July 11, 2007 |first10=Wm. F. |last10=Van Altena |first11=R. |last11=Duncombe |first12=O. G. |last12=Franz |first13=L. W. |last13=Fredrick |work=Proceedings of the HST calibration workshop}}</ref> It has a [[radial velocity]] toward the Sun of 22.2&nbsp;km/s.<ref name="KervellaThévenin2017" /> From Proxima Centauri, the Sun would appear as a bright 0.4-magnitude star in the constellation [[Cassiopeia (constellation)|Cassiopeia]], similar to that of [[Achernar]] or [[Procyon]] from [[Earth]].<ref group="nb">The coordinates of the Sun would be diametrically opposite Proxima Centauri, at α={{RA|02|29|42.9487}}, δ={{DEC|+62|40|46.141}}. The absolute magnitude ''M<sub>v</sub>'' of the Sun is 4.83, so at a parallax ''π'' of 0.77199 the apparent magnitude ''m'' is given by 4.83 − 5(log<sub>10</sub>(0.77199) + 1) = 0.40.
Based on a parallax of {{val|768.0665|0.0499|u=mas}}, published in 2020 in [[Gaia Data Release 3]], Proxima Centauri is {{convert|4.2465|ly|pc AU|lk=on}} from the Sun.<ref name="Gaia3" /> Previously published parallaxes include: {{val|768.5|0.2|u=mas}} in 2018 by Gaia DR2, {{val|768.13|1.04|u=mas}}, in 2014 by the [[Research Consortium On Nearby Stars]];<ref name="lurie2014">{{cite journal |last1=Lurie |first1=John C. |last2=Henry |first2=Todd J. |last3=Jao |first3=Wei-Chun |last4=Quinn |first4=Samuel N. |last5=Winters |first5=Jennifer G. |last6=Ianna |first6=Philip A. |last7=Koerner |first7=David W. |last8=Riedel |first8=Adric R. |last9=Subasavage |first9=John P. |year=2014 |title=The Solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry |journal=The Astronomical Journal |volume=148 |issue=5 |pages=91 |arxiv=1407.4820 |bibcode=2014AJ....148...91L |doi=10.1088/0004-6256/148/5/91 |s2cid=118492541}}</ref> {{val|772.33|2.42|u=mas}}, in the original [[Hipparcos]] Catalogue, in 1997;<ref name="aaa323_L49">{{cite journal |last1=Perryman |first1=M. A. C. |last2=Lindegren |first2=L. |last3=Kovalevsky |first3=J. |last4=Hoeg |first4=E. |last5=Bastian |first5=U. |last6=Bernacca |first6=P. L. |last7=Crézé |first7=M. |last8=Donati |first8=F. |last9=Grenon |first9=M. |last10=Grewing |first10=M. |last11=van Leeuwen |first11=F. |date=July 1997 |title=The Hipparcos catalogue |journal=Astronomy and Astrophysics |volume=323 |pages=L49–L52 |bibcode=1997A&A...323L..49P |last12=van der Marel |first12=H. |last13=Mignard |first13=F. |last14=Murray |first14=C. A. |last15=Le Poole |first15=R. S. |last16=Schrijver |first16=H. |last17=Turon |first17=C. |last18=Arenou |first18=F. |last19=Froeschlé |first19=M. |last20=Petersen |first20=C. S.}}</ref> {{val|771.64|2.60|u=mas}} in the Hipparcos New Reduction, in 2007;<ref name="hipparcos">{{cite journal |bibcode=2007A&A...474..653V |title=Validation of the new Hipparcos reduction |journal=Astronomy and Astrophysics |volume=474 |issue=2 |pages=653–664 |last1=Van Leeuwen |first1=F. |year=2007 |doi=10.1051/0004-6361:20078357 |arxiv=0708.1752|s2cid=18759600 }}</ref> and {{val|768.77|0.37|u=mas}} using the [[Hubble Space Telescope]]{{'s}} [[fine guidance sensor]]s, in 1999.<ref name="apj118" /> From Earth's vantage point, Proxima Centauri is separated from Alpha Centauri by 2.18 degrees,<ref name="apj121">{{cite journal |last1=Kirkpatrick |first1=J. D. |last2=Davy |first2=J. |last3=Monet |first3=David G. |last4=Reid |first4=I. Neill |last5=Gizis |first5=John E. |last6=Liebert |first6=James |last7=Burgasser |first7=Adam J. |year=2001 |title=Brown dwarf companions to G-type stars. I: Gliese 417B and Gliese 584C |journal=The Astronomical Journal |volume=121 |issue=6 |pages=3235–3253 |arxiv=astro-ph/0103218 |bibcode=2001AJ....121.3235K |doi=10.1086/321085 |s2cid=18515414}}</ref> or four times the angular diameter of the full [[Moon]].<ref>{{cite web |last=Williams |first=D. R. |date=February 10, 2006 |title=Moon Fact Sheet |url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html |access-date=October 12, 2007 |series=Lunar & Planetary Science |publisher=NASA}}</ref> Proxima Centauri has a relatively large proper motion—moving 3.85&nbsp;[[arcseconds]] per year across the sky.<ref>{{cite conference |last1=Benedict |first1=G. F. |last2=Mcarthur |first2=B. |last3=Nelan |first3=E. |last4=Story |first4=D. |last5=Jefferys |first5=W. H. |last6=Wang |first6=Q. |last7=Shelus |first7=P. J. |last8=Hemenway |first8=P. D. |last9=Mccartney |first9=J. |title=Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri |url=http://clyde.as.utexas.edu/SpAstNEW/Papers_in_pdf/%7BBen93%7DEarlyProx.pdf |pages=380–384 |access-date=July 11, 2007 |first10=Wm. F. |last10=Van Altena |first11=R. |last11=Duncombe |first12=O. G. |last12=Franz |first13=L. W. |last13=Fredrick |work=Proceedings of the HST calibration workshop}}</ref> It has a [[radial velocity]] towards the Sun of 22.2&nbsp;km/s.<ref name="KervellaThévenin2017" /> From Proxima Centauri, the Sun would appear as a bright 0.4-magnitude star in the constellation [[Cassiopeia (constellation)|Cassiopeia]], similar to that of [[Achernar]] or [[Procyon]] from [[Earth]].<ref group="nb">The coordinates of the Sun would be diametrically opposite Proxima Centauri, at α={{RA|02|29|42.9487}}, δ={{DEC|+62|40|46.141}}. The absolute magnitude ''M<sub>v</sub>'' of the Sun is 4.83, so at a parallax ''π'' of 0.77199 the apparent magnitude ''m'' is given by 4.83 − 5(log<sub>10</sub>(0.77199) + 1) = 0.40.
See: {{cite book |last=Tayler |first=Roger John |url=https://archive.org/details/starstheirstruct00tayl_311 |title=The Stars: Their Structure and Evolution |date=1994 |publisher=Cambridge University Press |isbn=978-0-521-45885-6 |page=[https://archive.org/details/starstheirstruct00tayl_311/page/n24 16] |url-access=limited}}</ref>
See: {{cite book |last=Tayler |first=Roger John |url=https://archive.org/details/starstheirstruct00tayl_311 |title=The Stars: Their Structure and Evolution |date=1994 |publisher=Cambridge University Press |isbn=978-0-521-45885-6 |page=[https://archive.org/details/starstheirstruct00tayl_311/page/n24 16] |url-access=limited}}</ref>


Line 152: Line 152:
=== Alpha Centauri ===
=== Alpha Centauri ===
{{Main|Alpha Centauri}}
{{Main|Alpha Centauri}}
[[File:Angular map of fusors around Sol within 9ly (large).png|300px|thumb|upright=2|A [[Plan position indicator|radar]] map of all stellar objects or [[star system|stellar systems]] within 9 light years (ly) from its center the Sun (Sol). Proxima Centauri is the unlabled mark just next to Alpha Centauri. The diamond-shapes are their positions entered according to [[right ascension]] in [[hour angle|hours angle]] (indicated at the edge of the map's reference disc), and according to their [[declination]]. The second mark shows each's distance from Sol, with the [[Concentric objects|concentric]] circles indicating the distance in steps of one ly.]]
[[File:Angular map of fusors around Sol within 9ly (large).png|thumb|upright=1.2|A [[Plan position indicator|radar]] map of all stellar objects or [[star system|stellar systems]] within 9 light years from its center the Sun (Sol). Proxima Centauri is the unlabled mark just next to Alpha Centauri. The diamond-shapes are their positions entered according to [[right ascension]] in [[hour angle|hours angle]] (indicated at the edge of the map's reference disc), and according to their [[declination]]. The second mark shows each object's distance from Sol, with the [[Concentric objects|concentric]] circles indicating the distance in steps of one light year.]]


Proxima Centauri has been suspected to be a companion of the Alpha Centauri [[binary star]] system since its discovery in 1915. For this reason, it is sometimes referred to as Alpha Centauri&nbsp;C. Data from the Hipparcos satellite, combined with ground-based observations, were consistent with the hypothesis that the three stars are a [[gravitationally bound]] system. Kervella et al. (2017) used high-precision radial velocity measurements to determine with a high degree of confidence that Proxima and Alpha Centauri are gravitationally bound.<ref name="KervellaThévenin2017" /> Proxima Centauri's orbital period around the Alpha Centauri&nbsp;AB [[barycenter]] is {{val|547000|6600|4000}} years with an eccentricity of {{val|0.5|0.08}}; it approaches Alpha Centauri to {{val|4300|1100|900|u=AU}} at [[periastron]] and retreats to {{val|13000|300|100|u=AU}} at [[apastron]].<ref name="KervellaThévenin2017" /> At present, Proxima Centauri is {{convert|12947|±|260|AU|e12km|2|abbr=unit}} from the Alpha Centauri&nbsp;AB barycenter, nearly to the farthest point in its orbit.<ref name="KervellaThévenin2017" />
Proxima Centauri has been suspected to be a companion of the Alpha Centauri [[binary star]] system since its discovery in 1915. For this reason, it is sometimes referred to as Alpha Centauri&nbsp;C. Data from the [[Hipparcos]] satellite, combined with ground-based observations, were consistent with the hypothesis that the three stars are a [[gravitationally bound]] system. Kervella et al. (2017) used high-precision radial velocity measurements to determine with a high degree of confidence that Proxima and Alpha Centauri are gravitationally bound.<ref name="KervellaThévenin2017" /> Proxima Centauri's orbital period around the Alpha Centauri&nbsp;AB [[barycenter]] is {{val|547000|6600|4000}} years with an eccentricity of {{val|0.5|0.08}}; it approaches Alpha Centauri to {{val|4300|1100|900|u=AU}} at [[periastron]] and retreats to {{val|13000|300|100|u=AU}} at [[apastron]].<ref name="KervellaThévenin2017" /> At present, Proxima Centauri is {{convert|12947|±|260|AU|e12km|2|abbr=unit}} from the Alpha Centauri&nbsp;AB barycenter, nearly to the furthest point in its orbit.<ref name="KervellaThévenin2017" />


Six single stars, two binary star systems, and a triple star share a common motion through space with Proxima Centauri and the Alpha Centauri system. (The co-moving stars include [[HD 4391]], [[Gamma2 Normae|γ<sup>2</sup> Normae]], and [[Gliese 676]].) The [[space velocity (astronomy)|space velocities]] of these stars are all within 10&nbsp;km/s of Alpha Centauri's [[peculiar motion]]. Thus, they may form a [[moving group]] of stars, which would indicate a common point of origin, such as in a [[star cluster]].<ref>{{cite journal |last1=Anosova |first1=J. |last2=Orlov |first2=V. V. |last3=Pavlova |first3=N. A. |year=1994 |title=Dynamics of nearby multiple stars. The α Centauri system |journal=Astronomy and Astrophysics |volume=292 |issue=1 |pages=115–118 |bibcode=1994A&A...292..115A}}</ref>
Six single stars, two binary star systems, and a triple star share a common motion through space with Proxima Centauri and the Alpha Centauri system. (The co-moving stars include [[HD 4391]], [[Gamma2 Normae|γ<sup>2</sup> Normae]], and [[Gliese 676]].) The [[space velocity (astronomy)|space velocities]] of these stars are all within 10&nbsp;km/s of Alpha Centauri's [[peculiar motion]]. Thus, they may form a [[moving group]] of stars, which would indicate a common point of origin, such as in a [[star cluster]].<ref>{{cite journal |last1=Anosova |first1=J. |last2=Orlov |first2=V. V. |last3=Pavlova |first3=N. A. |year=1994 |title=Dynamics of nearby multiple stars. The α Centauri system |journal=Astronomy and Astrophysics |volume=292 |issue=1 |pages=115–118 |bibcode=1994A&A...292..115A}}</ref>
Line 161: Line 161:
{{OrbitboxPlanet begin
{{OrbitboxPlanet begin
| name = Proxima Centauri
| name = Proxima Centauri
| table_ref=<ref name=Guillem2016>{{cite journal
| table_ref={{efn|<ref name=Guillem2016>{{cite journal
| bibcode = 2016Natur.536..437A
| bibcode = 2016Natur.536..437A
| title = A terrestrial planet candidate in a temperate orbit around Proxima Centauri
| title = A terrestrial planet candidate in a temperate orbit around Proxima Centauri
Line 235: Line 235:
| s2cid = 4451513
| s2cid = 4451513
| url=https://www.nature.com/articles/nature19106
| url=https://www.nature.com/articles/nature19106
}}</ref><ref name=Li-2017/><ref name="Damasso2020"/><ref name="KervellaArenou2020">{{cite journal|last1=Kervella|first1=Pierre|last2=Arenou|first2=Frédéric|last3=Schneider|first3=Jean|title=Orbital inclination and mass of the exoplanet candidate Proxima c|journal=Astronomy & Astrophysics|volume=635|year=2020|pages=L14|issn=0004-6361|arxiv=2003.13106|doi=10.1051/0004-6361/202037551|bibcode= 2020A&A...635L..14K|s2cid=214713486}}</ref><ref name="Suárez MascareñoFaria2020" /><ref name="BenedictMcArthur2020">{{cite journal |last1=Benedict |first1=G. Fritz |last2=McArthur |first2=Barbara E. |title=A Moving Target—Revising the Mass of Proxima Centauri c |journal=[[Research Notes of the AAS]] |date=16 June 2020 |volume=4 |issue=6 |page=86 |doi=10.3847/2515-5172/ab9ca9 |bibcode=2020RNAAS...4...86B |s2cid=225798015 |doi-access=free }}</ref><ref name="FariaSuárezMascareñoSilva2022"/>
}}</ref><ref name=Li-2017/><ref name="Damasso2020"/><ref name="KervellaArenou2020">{{cite journal|last1=Kervella|first1=Pierre|last2=Arenou|first2=Frédéric|last3=Schneider|first3=Jean|title=Orbital inclination and mass of the exoplanet candidate Proxima c|journal=Astronomy & Astrophysics|volume=635|year=2020|pages=L14|issn=0004-6361|arxiv=2003.13106|doi=10.1051/0004-6361/202037551|bibcode= 2020A&A...635L..14K|s2cid=214713486}}</ref><ref name="Suárez MascareñoFaria2020" /><ref name="BenedictMcArthur2020">{{cite journal |last1=Benedict |first1=G. Fritz |last2=McArthur |first2=Barbara E. |title=A Moving Target—Revising the Mass of Proxima Centauri c |journal=[[Research Notes of the AAS]] |date=16 June 2020 |volume=4 |issue=6 |page=86 |doi=10.3847/2515-5172/ab9ca9 |bibcode=2020RNAAS...4...86B |s2cid=225798015 |doi-access=free }}</ref><ref name="FariaSuárezMascareñoSilva2022"/>}}
}}
}}
{{OrbitboxPlanet
{{OrbitboxPlanet hypothetical
| exoplanet = [[Proxima Centauri d|d]]
| exoplanet = [[Proxima Centauri d|d]]
| mass_earth = {{Val|0.26|0.05|p=≥}}
| mass_earth = {{Val|0.26|0.05|p=≥}}
Line 263: Line 263:
| eccentricity = {{Val|0.04|0.01}}
| eccentricity = {{Val|0.04|0.01}}
| inclination ={{Val|133|1}}
| inclination ={{Val|133|1}}
| status = disputed<ref name="ArtigauCadieux2022">{{cite journal|last1=Artigau|first1=Étienne|last2=Cadieux|first2=Charles|last3=Cook|first3=Neil J.|last4=Doyon|first4=René|last5=Vandal|first5=Thomas|last6=Donati|first6=Jean-Françcois|last7=Moutou|first7=Claire|last8=Delfosse|first8=Xavier|last9=Fouqué|first9=Pascal|last10=Martioli|first10=Eder|last11=Bouchy|first11=François|last12=Parsons|first12=Jasmine|last13=Carmona|first13=Andres|last14=Dumusque|first14=Xavier|last15=Astudillo-Defru|first15=Nicola|last16=Bonfils|first16=Xavier|last17=Mignon|first17=Lucille|display-authors=5|title=Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry|journal=The Astronomical Journal|volume=164:84|issue=3|pages=18pp|arxiv=2207.13524|bibcode=2022AJ....164...84A|doi=10.3847/1538-3881/ac7ce6|doi-access=free|date=June 23, 2022|publication-date=August 8, 2022}}</ref><ref name="EPE">{{cite encyclopedia |title=Proxima Centauri c|encyclopedia=[[Extrasolar Planets Encyclopaedia]]|url=http://exoplanet.eu/catalog/proxima_centauri_c/ |access-date=July 30, 2022}}</ref>
| status = disputed<ref name="ArtigauCadieux2022">{{cite journal|last1=Artigau|first1=Étienne|last2=Cadieux|first2=Charles|last3=Cook|first3=Neil J.|last4=Doyon|first4=René|last5=Vandal|first5=Thomas|last6=Donati|first6=Jean-Françcois|last7=Moutou|first7=Claire|last8=Delfosse|first8=Xavier|last9=Fouqué|first9=Pascal|last10=Martioli|first10=Eder|last11=Bouchy|first11=François|last12=Parsons|first12=Jasmine|last13=Carmona|first13=Andres|last14=Dumusque|first14=Xavier|last15=Astudillo-Defru|first15=Nicola|last16=Bonfils|first16=Xavier|last17=Mignon|first17=Lucille|display-authors=5|title=Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry|journal=The Astronomical Journal|volume=164:84|issue=3|pages=18pp|arxiv=2207.13524|bibcode=2022AJ....164...84A|doi=10.3847/1538-3881/ac7ce6|doi-access=free|date=June 23, 2022|publication-date=August 8, 2022}}</ref><ref name="EPE">{{cite encyclopedia |title=Proxima Centauri c|url=https://exoplanet.eu/catalog/proxima_centauri_c--7082/ |encyclopedia=[[Extrasolar Planets Encyclopaedia]]|access-date=July 30, 2022}}</ref>
}}
}}
{{Orbitbox end}}
{{Orbitbox end}}
[[File:Proxima planetary system new.jpg|thumb|250x250px|Schematic of the three planets (d, b and c) of the Proxima Centauri system, with the [[habitable zone]] identified]]
[[File:Proxima planetary system new.jpg|thumb|upright=1.2|Schematic of the three planets (d, b and c) of the Proxima Centauri system, with the [[habitable zone]] identified]]
As of 2022, three planets (two confirmed and one candidate) have been detected in orbit around Proxima Centauri, with one being among the lightest ever detected by radial velocity ("d"), one close to Earth's size within the [[habitable zone]] ("b"), and a possible [[gas dwarf]] that orbits much farther out than the inner two ("c").
As of 2022, three planets (one confirmed and two candidates) have been detected in orbit around Proxima Centauri, with one possibly being among the lightest ever detected by radial velocity ("d"), one close to Earth's size within the [[habitable zone]] ("b"), and a possible [[gas dwarf]] that orbits much further out than the inner two ("c"), although its status remains disputed.


Searches for exoplanets around Proxima Centauri date back to the late 1970s. In the 1990s, multiple measurements of Proxima Centauri's radial velocity constrained the maximum mass that a detectable companion could possess.<ref name="apj118">{{cite journal |last1=Benedict |first1=G. Fritz |last2=Chappell |first2=D. W. |last3=Nelan |first3=E. |last4=Jefferys |first4=W. H. |last5=Van Altena |first5=W. |last6=Lee |first6=J. |last7=Cornell |first7=D. |last8=Shelus |first8=P. J. |date=1999 |title=Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: detection limits for substellar companions |journal=The Astronomical Journal |volume=118 |issue=2 |pages=1086–1100 |arxiv=astro-ph/9905318 |bibcode=1999AJ....118.1086B |doi=10.1086/300975 |s2cid=18099356}}</ref><ref name="aaal344">{{cite journal | last1=Kürster | first1=M. |title=Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion |journal=Astronomy & Astrophysics Letters |date=1999 |volume=344 |pages=L5–L8 |arxiv=astro-ph/9903010 |bibcode=1999A&A...344L...5K |last2=Hatzes |first2=A. P. |last3=Cochran |first3=W. D. |last4=Döbereiner |first4=S. |last5=Dennerl |first5=K. |last6=Endl |first6=M.}}</ref> The activity level of the star adds noise to the radial velocity measurements, complicating detection of a companion using this method.<ref>{{cite journal | last1=Saar | first1=Steven H. | last2=Donahue | first2=Robert A. |title=Activity-related Radial Velocity Variation in Cool Stars |journal=Astrophysical Journal |date=1997 |volume=485 |issue=1 |pages=319–326 |doi=10.1086/304392 |bibcode=1997ApJ...485..319S|s2cid=17628232 |url=http://pdfs.semanticscholar.org/f853/b15f7c178a7f9dd1735752d2601c6202ee63.pdf |archive-url=https://web.archive.org/web/20190309110644/http://pdfs.semanticscholar.org/f853/b15f7c178a7f9dd1735752d2601c6202ee63.pdf |url-status=dead |archive-date=2019-03-09 }}</ref> In 1998, an examination of Proxima Centauri using the [[Faint Object Spectrograph]] on board the Hubble Space Telescope appeared to show evidence of a companion orbiting at a distance of about 0.5&nbsp;AU.<ref>{{cite journal | last1=Schultz | first1=A. B. | last2=Hart | first2=H. M. | last3=Hershey | first3=J. L. | last4=Hamilton | first4=F. C. | last5=Kochte | first5=M. | last6=Bruhweiler | first6=F. C. | last7=Benedict | first7=G. F. | last8=Caldwell | first8=John | last9=Cunningham | first9=C. |
Searches for exoplanets around Proxima Centauri date to the late 1970s. In the 1990s, multiple measurements of Proxima Centauri's radial velocity constrained the maximum mass that a detectable companion could possess.<ref name="apj118">{{cite journal |last1=Benedict |first1=G. Fritz |last2=Chappell |first2=D. W. |last3=Nelan |first3=E. |last4=Jefferys |first4=W. H. |last5=Van Altena |first5=W. |last6=Lee |first6=J. |last7=Cornell |first7=D. |last8=Shelus |first8=P. J. |date=1999 |title=Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: detection limits for substellar companions |journal=The Astronomical Journal |volume=118 |issue=2 |pages=1086–1100 |arxiv=astro-ph/9905318 |bibcode=1999AJ....118.1086B |doi=10.1086/300975 |s2cid=18099356}}</ref><ref name="aaal344">{{cite journal | last1=Kürster | first1=M. |title=Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion |journal=Astronomy & Astrophysics Letters |date=1999 |volume=344 |pages=L5–L8 |arxiv=astro-ph/9903010 |bibcode=1999A&A...344L...5K |last2=Hatzes |first2=A. P. |last3=Cochran |first3=W. D. |last4=Döbereiner |first4=S. |last5=Dennerl |first5=K. |last6=Endl |first6=M.}}</ref> The activity level of the star adds noise to the radial velocity measurements, complicating detection of a companion using this method.<ref>{{cite journal | last1=Saar | first1=Steven H. | last2=Donahue | first2=Robert A. |title=Activity-related Radial Velocity Variation in Cool Stars |journal=Astrophysical Journal |date=1997 |volume=485 |issue=1 |pages=319–326 |doi=10.1086/304392 |bibcode=1997ApJ...485..319S|s2cid=17628232 |url=http://pdfs.semanticscholar.org/f853/b15f7c178a7f9dd1735752d2601c6202ee63.pdf |archive-url=https://web.archive.org/web/20190309110644/http://pdfs.semanticscholar.org/f853/b15f7c178a7f9dd1735752d2601c6202ee63.pdf |url-status=dead |archive-date=2019-03-09 }}</ref> In 1998, an examination of Proxima Centauri using the [[Faint Object Spectrograph]] on board the Hubble Space Telescope appeared to show evidence of a companion orbiting at a distance of about 0.5&nbsp;AU.<ref>{{cite journal | last1=Schultz | first1=A. B. | last2=Hart | first2=H. M. | last3=Hershey | first3=J. L. | last4=Hamilton | first4=F. C. | last5=Kochte | first5=M. | last6=Bruhweiler | first6=F. C. | last7=Benedict | first7=G. F. | last8=Caldwell | first8=John | last9=Cunningham | first9=C. |
last10=Wu | first10=Nailong | last11=Franz | first11=O. G. | last12=Keyes | first12=C. D. | last13=Brandt | first13=J. C. |title=A possible companion to Proxima Centauri |journal=Astronomical Journal |date=1998 |volume=115 |issue=1 |pages=345–350 |doi=10.1086/300176 |bibcode=1998AJ....115..345S| s2cid=120356725 }}</ref> A subsequent search using the [[Wide Field Planetary Camera 2]] failed to locate any companions.<ref name="apj119">{{cite journal | last1=Schroeder | first1=Daniel J. | last2=Golimowski | first2=David A. | last3=Brukardt | first3=Ryan A. | last4=Burrows | first4=Christopher J. | last5=Caldwell | first5=John J. | last6=Fastie | first6=William G. | last7=Ford | first7=Holland C. | last8=Hesman | first8=Brigette | last9=Kletskin | first9=Ilona | last10=Krist | first10=John E. | last11=Royle | first11=Patricia | last12=Zubrowski | first12=Richard. A. |title=A Search for Faint Companions to Nearby Stars Using the Wide Field Planetary Camera 2 |journal=The Astronomical Journal |date=2000 |volume=119 |issue=2 |pages=906–922 |doi=10.1086/301227 |bibcode=2000AJ....119..906S|doi-access=free }}</ref> [[Astrometry|Astrometric]] measurements at the [[Cerro Tololo Inter-American Observatory]] appear to rule out a [[Jupiter (planet)|Jupiter]]-sized planet with an orbital period of 2−12&nbsp;years.<ref>{{cite journal |last1=Lurie |first1=John C. |last2=Henry |first2=Todd J. |last3=Jao |first3=Wei-Chun |last4=Quinn |first4=Samuel N. |last5=Winters |first5=Jennifer G. |last6=Ianna |first6=Philip A. |last7=Koerner |first7=David W. |last8=Riedel |first8=Adric R. |last9=Subasavage |first9=John P. |title=The Solar Neighborhood. XXXIV. a Search for Planets Orbiting Nearby M Dwarfs Using Astrometry |journal=The Astronomical Journal |volume=148 |issue=5 |id=91 |pages=12 |date=November 2014 |doi=10.1088/0004-6256/148/5/91 |bibcode=2014AJ....148...91L |arxiv=1407.4820|s2cid=118492541 }}</ref>
last10=Wu | first10=Nailong | last11=Franz | first11=O. G. | last12=Keyes | first12=C. D. | last13=Brandt | first13=J. C. |title=A possible companion to Proxima Centauri |journal=Astronomical Journal |date=1998 |volume=115 |issue=1 |pages=345–350 |doi=10.1086/300176 |bibcode=1998AJ....115..345S| s2cid=120356725 }}</ref> A subsequent search using the [[Wide Field and Planetary Camera 2]] failed to locate any companions.<ref name="apj119">{{cite journal | last1=Schroeder | first1=Daniel J. | last2=Golimowski | first2=David A. | last3=Brukardt | first3=Ryan A. | last4=Burrows | first4=Christopher J. | last5=Caldwell | first5=John J. | last6=Fastie | first6=William G. | last7=Ford | first7=Holland C. | last8=Hesman | first8=Brigette | last9=Kletskin | first9=Ilona | last10=Krist | first10=John E. | last11=Royle | first11=Patricia | last12=Zubrowski | first12=Richard. A. |title=A Search for Faint Companions to Nearby Stars Using the Wide Field Planetary Camera 2 |journal=The Astronomical Journal |date=2000 |volume=119 |issue=2 |pages=906–922 |doi=10.1086/301227 |bibcode=2000AJ....119..906S|doi-access=free }}</ref> [[Astrometry|Astrometric]] measurements at the [[Cerro Tololo Inter-American Observatory]] appear to rule out a [[Jupiter (planet)|Jupiter]]-sized planet with an orbital period of 2−12&nbsp;years.<ref>{{cite journal |last1=Lurie |first1=John C. |last2=Henry |first2=Todd J. |last3=Jao |first3=Wei-Chun |last4=Quinn |first4=Samuel N. |last5=Winters |first5=Jennifer G. |last6=Ianna |first6=Philip A. |last7=Koerner |first7=David W. |last8=Riedel |first8=Adric R. |last9=Subasavage |first9=John P. |title=The Solar Neighborhood. XXXIV. a Search for Planets Orbiting Nearby M Dwarfs Using Astrometry |journal=The Astronomical Journal |volume=148 |issue=5 |id=91 |pages=12 |date=November 2014 |doi=10.1088/0004-6256/148/5/91 |bibcode=2014AJ....148...91L |arxiv=1407.4820|s2cid=118492541 }}</ref>


In 2017, a team of astronomers using the [[Atacama Large Millimeter/submillimeter Array]] reported detecting a belt of cold dust orbiting Proxima Centauri at a range of 1−4&nbsp;AU from the star. This dust has a temperature of around 40&nbsp;K and has a total estimated mass of 1% of the planet Earth. They tentatively detected two additional features: a cold belt with a temperature of 10&nbsp;K orbiting around 30&nbsp;AU and a compact emission source about 1.2&nbsp;arcseconds from the star. There was a hint at an additional warm dust belt at a distance of 0.4&nbsp;AU from the star.<ref name="Guillem2017" /> However, upon further analysis, these emissions were determined to be most likely the result of a large flare emitted by the star in March 2017. The presence of dust within 4 AU radius from the star is not needed to model the observations.<ref name="sd2018">{{cite news |date=February 26, 2018 |title=Proxima Centauri's no good, very bad day |work=Science Daily |url=https://www.sciencedaily.com/releases/2018/02/180226103341.htm |access-date=March 1, 2018}}</ref><ref name="MacGregor">{{cite journal |last1=MacGregor |first1=Meredith A. |last2=Weinberger |first2=Alycia J. |last3=Wilner |first3=David J. |last4=Kowalski |first4=Adam F. |last5=Cranmer |first5=Steven R. |year=2018 |title=Detection of a Millimeter Flare From Proxima Centauri |journal=Astrophysical Journal Letters |volume=855 |issue=1 |pages=L2 |arxiv=1802.08257 |bibcode=2018ApJ...855L...2M |doi=10.3847/2041-8213/aaad6b |s2cid=119287614 |doi-access=free }}</ref>
In 2017, a team of astronomers using the [[Atacama Large Millimeter Array]] reported detecting a belt of cold dust orbiting Proxima Centauri at a range of 1−4&nbsp;AU from the star. This dust has a temperature of around 40&nbsp;K and has a total estimated mass of 1% of the planet Earth. They tentatively detected two additional features: a cold belt with a temperature of 10&nbsp;K orbiting around 30&nbsp;AU and a compact emission source about 1.2&nbsp;arcseconds from the star. There was a hint at an additional warm dust belt at a distance of 0.4&nbsp;AU from the star.<ref name="Guillem2017" /> However, upon further analysis, these emissions were determined to be most likely the result of a large flare emitted by the star in March 2017. The presence of dust within 4 AU radius from the star is not needed to model the observations.<ref name="sd2018">{{cite news |date=February 26, 2018 |title=Proxima Centauri's no good, very bad day |work=Science Daily |url=https://www.sciencedaily.com/releases/2018/02/180226103341.htm |access-date=March 1, 2018}}</ref><ref name="MacGregor">{{cite journal |last1=MacGregor |first1=Meredith A. |last2=Weinberger |first2=Alycia J. |last3=Wilner |first3=David J. |last4=Kowalski |first4=Adam F. |last5=Cranmer |first5=Steven R. |year=2018 |title=Detection of a Millimeter Flare From Proxima Centauri |journal=Astrophysical Journal Letters |volume=855 |issue=1 |pages=L2 |arxiv=1802.08257 |bibcode=2018ApJ...855L...2M |doi=10.3847/2041-8213/aaad6b |s2cid=119287614 |doi-access=free }}</ref>


===Planet b===
===Planet b===
{{main|Proxima Centauri b}}
{{main|Proxima Centauri b}}


Proxima Centauri b, or Alpha Centauri Cb, orbits the star at a distance of roughly {{convert|0.05|AU|e6km|abbr=unit}} with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.17 times that of the [[Earth]].<ref name="BA2017">{{cite journal |last1=Bixel |first1=A. |last2=Apai |first2=D. |title=Probabilistic Constraints on the Mass and Composition of Proxima b |journal=The Astrophysical Journal Letters |date=February 21, 2017 |volume=836 |issue=2 |pages=L31 |doi=10.3847/2041-8213/aa5f51 |issn=2041-8205 |hdl=10150/623234 |arxiv=1702.02542|s2cid=119469149 |doi-access=free }}</ref> Moreover, the equilibrium temperature of Proxima Centauri&nbsp;b is estimated to be within the range where water could exist as liquid on its surface; thus, placing it within the [[habitable zone]] of Proxima Centauri.<ref name="Guillem2016" /><ref name="NYT-20160824">{{cite news |last=Chang |first=Kenneth |title=One star over, a planet that might be another Earth |url=https://www.nytimes.com/2016/08/25/science/earth-planet-proxima-centauri.html |date=August 24, 2016 |work=[[New York Times]] |access-date=August 24, 2016}}</ref><ref name="telegraph20160824">{{Cite news |last1=Knapton |first1=Sarah |title=Proxima b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system |url=https://www.telegraph.co.uk/science/2016/08/24/proxima-b-alien-life-could-exist-on-second-earth-found-orbiting/ |archive-url=https://ghostarchive.org/archive/20220112/https://www.telegraph.co.uk/science/2016/08/24/proxima-b-alien-life-could-exist-on-second-earth-found-orbiting/ |archive-date=12 January 2022 |url-access=subscription |url-status=live |work=The Telegraph |publisher=[[Telegraph Media Group]] |access-date=August 24, 2016 |date=August 24, 2016}}{{cbignore}}</ref>
Proxima Centauri b, or Alpha Centauri Cb, orbits the star at a distance of roughly {{convert|0.05|AU|e6km|abbr=unit}} with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07 times that of the [[Earth]].<ref name="FariaSuárezMascareñoSilva2022" /> Moreover, the equilibrium temperature of Proxima Centauri&nbsp;b is estimated to be within the range where water could exist as liquid on its surface; thus, placing it within the [[habitable zone]] of Proxima Centauri.<ref name="Guillem2016" /><ref name="NYT-20160824">{{cite news |last=Chang |first=Kenneth |title=One star over, a planet that might be another Earth |url=https://www.nytimes.com/2016/08/25/science/earth-planet-proxima-centauri.html |date=August 24, 2016 |work=[[New York Times]] |access-date=August 24, 2016}}</ref><ref name="telegraph20160824">{{Cite news |last1=Knapton |first1=Sarah |title=Proxima b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system |url=https://www.telegraph.co.uk/science/2016/08/24/proxima-b-alien-life-could-exist-on-second-earth-found-orbiting/ |archive-url=https://ghostarchive.org/archive/20220112/https://www.telegraph.co.uk/science/2016/08/24/proxima-b-alien-life-could-exist-on-second-earth-found-orbiting/ |archive-date=12 January 2022 |url-access=subscription |url-status=live |work=The Telegraph |publisher=[[Telegraph Media Group]] |access-date=August 24, 2016 |date=August 24, 2016}}{{cbignore}}</ref>


The first indications of the [[exoplanet]] Proxima Centauri b were found in 2013 by [[Mikko Tuomi]] of the [[University of Hertfordshire]] from archival observation data.<ref name="prd">{{cite web |url=https://palereddot.org/proxima-b-is-our-closest-neighbor-better-get-used-to-it/ |title=Proxima b is our neighbor&nbsp;... better get used to it! |date=August 24, 2016 |work=Pale Red Dot |access-date=August 24, 2016 |archive-date=13 May 2020 |archive-url=https://web.archive.org/web/20200513054609/https://palereddot.org/proxima-b-is-our-closest-neighbor-better-get-used-to-it/ |url-status=dead }}</ref><ref>Aron, Jacob. August 24, 2016. [https://www.newscientist.com/article/mg23130884-100-proxima-b-closest-earth-like-planet-discovered-right-next-door/ Proxima b: Closest Earth-like planet discovered right next door]. ''New Scientist''. Retrieved August 24, 2016.</ref> To confirm the possible discovery, a team of astronomers launched the Pale Red Dot<ref group="nb">Pale Red Dot is a reference to [[Pale Blue Dot]], a distant photo of Earth taken by [[Voyager 1]].</ref> project in January 2016.<ref>{{cite web |title=Follow a Live Planet Hunt! |url=https://www.eso.org/public/announcements/ann16002/ |date=January 15, 2016 |publisher=European Southern Observatory |access-date=August 24, 2016}}</ref> On August 24, 2016, the team of 31 scientists from all around the world,<ref>{{Cite news |url=https://www.washingtonpost.com/news/speaking-of-science/wp/2016/08/24/scientists-may-have-found-a-planet-orbiting-proxima-centauri-our-closest-star/ |title=Scientists say they've found a planet orbiting Proxima Centauri, our closest neighbor |newspaper=The Washington Post |last=Feltman |first=Rachel |date=August 24, 2016 }}</ref> led by Guillem Anglada-Escudé of [[Queen Mary University of London]], confirmed the existence of [[Proxima Centauri b|Proxima Centauri&nbsp;b]]<ref name="spacecom">{{cite web |url=http://www.space.com/33837-earth-like-planet-proxima-centauri-numbers.html |title=Proxima b By the Numbers: Possibly Earth-Like World at the Next Star Over |first1=Samantha |last1=Mathewson |date=August 24, 2016 |work=Space.com |access-date=August 25, 2016}}</ref> through a peer-reviewed article published in ''[[Nature (journal)|Nature]]''.<ref name="Guillem2016" /><ref name="Nature 24 August 2016">{{cite journal |last1=Witze |first1=Alexandra |title=Earth-sized planet around nearby star is astronomy dream come true |journal=Nature |date=August 24, 2016 |volume=536 |issue=7617 |pages=381–382 |doi=10.1038/nature.2016.20445 |pmid=27558041 |bibcode=2016Natur.536..381W|doi-access=free }}</ref> The measurements were performed using two spectrographs: [[High Accuracy Radial Velocity Planet Searcher|HARPS]] on the [[ESO 3.6 m Telescope]] at [[La Silla Observatory]] and [[Very Large Telescope#Instruments|UVES]] on the 8&nbsp;m [[Very Large Telescope]] at [[Paranal Observatory]].<ref name="Guillem2016" /> Several attempts to detect a [[Transit (astronomy)|transit]] of this planet across the face of Proxima Centauri have been made. A transit-like signal appearing on September 8, 2016, was tentatively identified, using the Bright Star Survey Telescope at the [[Zhongshan Station (Antarctica)|Zhongshan Station]] in Antarctica.<ref name="Liu2018">{{cite journal |title=Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result |last1=Liu |first1=Hui-Gen |last2=Jiang |first2=Peng |last3=Huang |first3=Xingxing |last4=Yu |first4=Zhou-Yi |last5=Yang |first5=Ming |last6=Jia |first6=Minghao |last7=Awiphan |first7=Supachai |last8=Pan |first8=Xiang |last9=Liu |first9=Bo | last10=Zhang | first10=Hongfei |last11=Wang |first11=Jian |last12=Li |first12=Zhengyang |last13=Du |first13=Fujia |last14=Li |first14=Xiaoyan |last15=Lu |first15=Haiping |last16=Zhang |first16=Zhiyong |last17=Tian |first17=Qi-Guo |last18=Li |first18=Bin |last19=Ji |first19=Tuo | last20=Zhang | first20=Shaohua |last21=Shi |first21=Xiheng |first22=Ji |last22=Wang |first23=Ji-Lin |last23=Zhou |first24=Hongyan |last24=Zhou |journal=The Astronomical Journal |volume=155 |issue=1 |id=12 |pages=10 |date=January 2018 |doi=10.3847/1538-3881/aa9b86 |bibcode=2018AJ....155...12L |arxiv=1711.07018|s2cid=54773928 |doi-access=free }}</ref>
The first indications of the [[exoplanet]] Proxima Centauri b were found in 2013 by [[Mikko Tuomi]] of the [[University of Hertfordshire]] from archival observation data.<ref name="prd">{{cite web |url=https://palereddot.org/proxima-b-is-our-closest-neighbor-better-get-used-to-it/ |title=Proxima b is our neighbor&nbsp;... better get used to it! |date=August 24, 2016 |work=Pale Red Dot |access-date=August 24, 2016 |archive-date=13 May 2020 |archive-url=https://web.archive.org/web/20200513054609/https://palereddot.org/proxima-b-is-our-closest-neighbor-better-get-used-to-it/ |url-status=dead }}</ref><ref>Aron, Jacob. August 24, 2016. [https://www.newscientist.com/article/mg23130884-100-proxima-b-closest-earth-like-planet-discovered-right-next-door/ Proxima b: Closest Earth-like planet discovered right next door]. ''New Scientist''. Retrieved August 24, 2016.</ref> To confirm the possible discovery, a team of astronomers launched the Pale Red Dot<ref group="nb">Pale Red Dot is a reference to [[Pale Blue Dot]], a distant photo of Earth taken by [[Voyager 1]].</ref> project in January 2016.<ref>{{cite web |title=Follow a Live Planet Hunt! |url=https://www.eso.org/public/announcements/ann16002/ |date=January 15, 2016 |publisher=European Southern Observatory |access-date=August 24, 2016}}</ref> On August 24, 2016, the team of 31 scientists from all around the world,<ref>{{Cite news |url=https://www.washingtonpost.com/news/speaking-of-science/wp/2016/08/24/scientists-may-have-found-a-planet-orbiting-proxima-centauri-our-closest-star/ |title=Scientists say they've found a planet orbiting Proxima Centauri, our closest neighbor |newspaper=The Washington Post |last=Feltman |first=Rachel |date=August 24, 2016 }}</ref> led by Guillem Anglada-Escudé of [[Queen Mary University of London]], confirmed the existence of [[Proxima Centauri b|Proxima Centauri&nbsp;b]]<ref name="spacecom">{{cite web |url=http://www.space.com/33837-earth-like-planet-proxima-centauri-numbers.html |title=Proxima b By the Numbers: Possibly Earth-Like World at the Next Star Over |first1=Samantha |last1=Mathewson |date=August 24, 2016 |work=Space.com |access-date=August 25, 2016}}</ref> through a peer-reviewed article published in ''[[Nature (journal)|Nature]]''.<ref name="Guillem2016" /><ref name="Nature 24 August 2016">{{cite journal |last1=Witze |first1=Alexandra |title=Earth-sized planet around nearby star is astronomy dream come true |journal=Nature |date=August 24, 2016 |volume=536 |issue=7617 |pages=381–382 |doi=10.1038/nature.2016.20445 |pmid=27558041 |bibcode=2016Natur.536..381W|doi-access=free }}</ref> The measurements were performed using two spectrographs: [[High Accuracy Radial Velocity Planet Searcher|HARPS]] on the [[ESO 3.6 m Telescope]] at [[La Silla Observatory]] and [[Very Large Telescope#Instruments|UVES]] on the 8&nbsp;m [[Very Large Telescope]] at [[Paranal Observatory]].<ref name="Guillem2016" /> Several attempts to detect a [[Transit (astronomy)|transit]] of this planet across the face of Proxima Centauri have been made. A transit-like signal appearing on September 8, 2016, was tentatively identified, using the Bright Star Survey Telescope at the [[Zhongshan Station (Antarctica)|Zhongshan Station]] in Antarctica.<ref name="Liu2018">{{cite journal |title=Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result |last1=Liu |first1=Hui-Gen |last2=Jiang |first2=Peng |last3=Huang |first3=Xingxing |last4=Yu |first4=Zhou-Yi |last5=Yang |first5=Ming |last6=Jia |first6=Minghao |last7=Awiphan |first7=Supachai |last8=Pan |first8=Xiang |last9=Liu |first9=Bo | last10=Zhang | first10=Hongfei |last11=Wang |first11=Jian |last12=Li |first12=Zhengyang |last13=Du |first13=Fujia |last14=Li |first14=Xiaoyan |last15=Lu |first15=Haiping |last16=Zhang |first16=Zhiyong |last17=Tian |first17=Qi-Guo |last18=Li |first18=Bin |last19=Ji |first19=Tuo | last20=Zhang | first20=Shaohua |last21=Shi |first21=Xiheng |first22=Ji |last22=Wang |first23=Ji-Lin |last23=Zhou |first24=Hongyan |last24=Zhou |journal=The Astronomical Journal |volume=155 |issue=1 |id=12 |pages=10 |date=January 2018 |doi=10.3847/1538-3881/aa9b86 |bibcode=2018AJ....155...12L |arxiv=1711.07018|s2cid=54773928 |doi-access=free }}</ref>
Line 286: Line 286:
{{main|Proxima Centauri c}}
{{main|Proxima Centauri c}}


Proxima Centauri c is a candidate [[super-Earth]] or [[gas dwarf]] about 7 Earth masses orbiting at roughly {{convert|1.5|AU|km}} every {{convert|1900|days|years}}.<ref name="SA-20190412" /> If Proxima Centauri b were the star's Earth, Proxima Centauri c would be equivalent to Neptune. Due to its large distance from Proxima Centauri, it is unlikely to be habitable, with a low equilibrium temperature of around 39 K.<ref name="ProximaC" /> The planet was first reported by Italian astrophysicist Mario Damasso and his colleagues in April 2019.<ref name="ProximaC">{{cite web |title=Possible 2nd Planet Spotted Around Proxima Centauri |url=https://www.space.com/proxima-centauri-possible-second-exoplanet.html |first=Mike |last=Wall |work=Space.com |date=April 12, 2019 |access-date=April 12, 2019}}</ref><ref name="SA-20190412">{{cite magazine |title=A Second Planet May Orbit Earth's Nearest Neighboring Star |url=https://www.scientificamerican.com/article/a-second-planet-may-orbit-earths-nearest-neighboring-star/ |magazine=Scientific American |first=Lee |last=Billings |date=April 12, 2019 |access-date=April 12, 2019}}</ref> Damasso's team had noticed minor movements of Proxima Centauri in the [[Methods of detecting exoplanets#Radial velocity|radial velocity]] data from the ESO's HARPS instrument, indicating a possible additional planet orbiting Proxima Centauri.<ref name="ProximaC" /> In 2020, the planet's existence was confirmed by Hubble [[astrometry]] data from {{Circa|1995}}.<ref name="McDonald">{{cite web |url=https://mcdonaldobservatory.org/news/releases/20200602 |title=Texas Astronomer Uses 25-year-old Hubble Data to Confirm Planet Proxima Centauri c |last=Benedict |first=Fritz |date=June 2, 2020 |website=McDonald Observatory |publisher=University of Texas}}</ref> A possible direct imaging counterpart was detected in the infrared with the [[Spectro-Polarimetric High-Contrast Exoplanet Research|SPHERE]], but the authors admit that they "did not obtain a clear detection." If their candidate source is in fact Proxima Centauri c, it is too bright for a planet of its mass and age, implying that the planet may have a [[ring system]] with a radius of around 5 {{Jupiter radius|link=y}}.<ref name="Gratton2020" /> In 2022, a study was published which disputed the radial velocity confirmation of the planet.<ref name="Artigau2022">{{cite journal|last1=Artigau|first1=Étienne|last2=Cadieux|first2=Charles|last3=Cook|first3=Neil J.|last4=Doyon|first4=René|last5=Vandal|first5=Thomas|last6=Donati|first6=Jean-Françcois|last7=Moutou|first7=Claire|last8=Delfosse|first8=Xavier|last9=Fouqué|first9=Pascal|last10=Martioli|first10=Eder|last11=Bouchy|first11=François|last12=Parsons|first12=Jasmine|last13=Carmona|first13=Andres|last14=Dumusque|first14=Xavier|last15=Astudillo-Defru|first15=Nicola|last16=Bonfils|first16=Xavier|last17=Mignon|first17=Lucille|display-authors=5|title=Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry|journal=The Astronomical Journal|volume=164:84|issue=3|pages=18pp|arxiv=2207.13524|bibcode=2022AJ....164...84A|doi=10.3847/1538-3881/ac7ce6|doi-access=free|date=June 23, 2022|publication-date=August 8, 2022}}</ref>
Proxima Centauri c is a candidate [[super-Earth]] or [[gas dwarf]] about 7 Earth masses orbiting at roughly {{convert|1.5|AU|km}} every {{convert|1900|days|years}}.<ref name="SA-20190412"/> If Proxima Centauri b were the star's Earth, Proxima Centauri c would be equivalent to Neptune. Due to its large distance from Proxima Centauri, it is unlikely to be habitable, with a low equilibrium temperature of around 39 K.<ref name="ProximaC" /> The planet was first reported by Italian astrophysicist Mario Damasso and his colleagues in April 2019.<ref name="ProximaC">{{cite web |title=Possible 2nd Planet Spotted Around Proxima Centauri |url=https://www.space.com/proxima-centauri-possible-second-exoplanet.html |first=Mike |last=Wall |work=Space.com |date=April 12, 2019 |access-date=April 12, 2019}}</ref><ref name="SA-20190412">{{cite magazine |title=A Second Planet May Orbit Earth's Nearest Neighboring Star |url=https://www.scientificamerican.com/article/a-second-planet-may-orbit-earths-nearest-neighboring-star/ |magazine=Scientific American |first=Lee |last=Billings |date=April 12, 2019 |access-date=April 12, 2019}}</ref> Damasso's team had noticed minor movements of Proxima Centauri in the [[Methods of detecting exoplanets#Radial velocity|radial velocity]] data from the ESO's HARPS instrument, indicating a possible additional planet orbiting Proxima Centauri.<ref name="ProximaC" /> In 2020, the planet's existence was confirmed by Hubble [[astrometry]] data from {{Circa|1995}}.<ref name="McDonald">{{cite web |url=https://mcdonaldobservatory.org/news/releases/20200602 |title=Texas Astronomer Uses 25-year-old Hubble Data to Confirm Planet Proxima Centauri c |last=Benedict |first=Fritz |date=June 2, 2020 |website=McDonald Observatory |publisher=University of Texas}}</ref> A possible direct imaging counterpart was detected in the infrared with the [[Spectro-Polarimetric High-Contrast Exoplanet Research|SPHERE]], but the authors admit that they "did not obtain a clear detection." If their candidate source is in fact Proxima Centauri c, it is too bright for a planet of its mass and age, implying that the planet may have a [[ring system]] with a radius of around 5 {{Jupiter radius|link=y}}.<ref name="Gratton2020" /> A 2022 study disputed the radial velocity confirmation of the planet.<ref name="ArtigauCadieux2022"/>


===Planet d===
===Planet d===
{{main|Proxima Centauri d}}
{{main|Proxima Centauri d}}


In 2019, a team of astronomers revisited the data from [[ESPRESSO]] about Proxima Centauri b to refine its mass. While doing so, the team found another radial velocity spike with a periodicity of 5.15 days. They estimated that if it were a planetary companion, it would be no less than 0.29 Earth masses.<ref name="Suárez MascareñoFaria2020" /> Further analysis confirmed the signal's existence leading up the discovery's announcement in February 2022.<ref name="FariaSuárezMascareñoSilva2022" />
In 2019, a team of astronomers revisited the data from [[ESPRESSO]] about Proxima Centauri b to refine its mass. While doing so, the team found another radial velocity spike with a periodicity of 5.15 days. They estimated that if it were a planetary companion, it would be no less than 0.29 Earth masses.<ref name="Suárez MascareñoFaria2020" /> Further analysis confirmed the signal's existence leading up to the announcement of the candidate planet in February 2022.<ref name="FariaSuárezMascareñoSilva2022" />


===Habitability===
===Habitability===
{{See also|Habitability of red dwarf systems}}
{{See also|Habitability of red dwarf systems}}
{{stack|[[File:Proxima Centauri and its planet compared to the Solar System.jpg|thumb|Overview and comparison of the orbital distance of the [[habitable zone]].|300x300px]]}}
{{stack|[[File:Proxima Centauri and its planet compared to the Solar System.jpg|thumb|upright=1.2|Overview and comparison of the orbital distance of the [[habitable zone]]]]}}
Prior to the discovery of Proxima Centauri b, the TV documentary ''[[Extraterrestrial (TV documentary)#Episode 1: Aurelia|Alien Worlds]]'' hypothesized that a life-sustaining planet could exist in orbit around Proxima Centauri or other red dwarfs. Such a planet would lie within the habitable zone of Proxima Centauri, about {{convert|0.023|–|0.054|AU|e6km|abbr=unit}} from the star, and would have an orbital period of 3.6–14&nbsp;days.<ref>{{cite conference |last1=Endl |first1=M. |last2=Kuerster |first2=M. |last3=Rouesnel |first3=F. |last4=Els |first4=S. |last5=Hatzes |first5=A. P. |last6=Cochran |first6=W. D. |editor1-first=Drake |editor1-last=Deming |title=Extrasolar terrestrial planets: can we detect them already? |work=Conference Proceedings, Scientific Frontiers in Research on Extrasolar Planets |pages=75–79 |date=June 18–21, 2002 |location=Washington, DC |arxiv=astro-ph/0208462 |bibcode=2003ASPC..294...75E}}</ref> A planet orbiting within this zone may experience [[tidal locking]] to the star. If the orbital eccentricity of this hypothetical planet is low, Proxima Centauri would move little in the planet's sky, and most of the surface would experience either day or night perpetually. The presence of an atmosphere could serve to redistribute the energy from the star-lit side to the far side of the planet.<ref name="tarter">{{cite journal |title=A reappraisal of the habitability of planets around M dwarf stars |journal=[[Astrobiology (journal)|Astrobiology]] |date=2007 |volume=7 |issue=1 |pages=30–65 |doi=10.1089/ast.2006.0124 |pmid=17407403 |bibcode=2007AsBio...7...30T |arxiv=astro-ph/0609799 | last1=Tarter | first1=Jill C. | last2=Mancinelli | first2=Rocco L. | last3=Aurnou | first3=Jonathan M. | last4=Backman | first4=Dana E. | last5=Basri | first5=Gibor S. | last6=Boss | first6=Alan P. | last7=Clarke | first7=Andrew | last8=Deming | first8=Drake|s2cid=10932355 }}</ref>
Prior to the discovery of Proxima Centauri b, the TV documentary ''[[Extraterrestrial (TV documentary)#Episode 1: Aurelia|Alien Worlds]]'' hypothesized that a life-sustaining planet could exist in orbit around Proxima Centauri or other red dwarfs. Such a planet would lie within the habitable zone of Proxima Centauri, about {{convert|0.023|–|0.054|AU|e6km|abbr=unit}} from the star, and would have an orbital period of 3.6–14&nbsp;days.<ref>{{cite conference |last1=Endl |first1=M. |last2=Kuerster |first2=M. |last3=Rouesnel |first3=F. |last4=Els |first4=S. |last5=Hatzes |first5=A. P. |last6=Cochran |first6=W. D. |editor1-first=Drake |editor1-last=Deming |title=Extrasolar terrestrial planets: can we detect them already? |work=Conference Proceedings, Scientific Frontiers in Research on Extrasolar Planets |pages=75–79 |date=June 18–21, 2002 |location=Washington, DC |arxiv=astro-ph/0208462 |bibcode=2003ASPC..294...75E}}</ref> A planet orbiting within this zone may experience [[tidal locking]] to the star. If the orbital eccentricity of this hypothetical planet were low, Proxima Centauri would move little in the planet's sky, and most of the surface would experience either day or night perpetually. The presence of an atmosphere could serve to redistribute heat from the star-lit side to the far side of the planet.<ref name="tarter">{{cite journal |title=A reappraisal of the habitability of planets around M dwarf stars |journal=[[Astrobiology (journal)|Astrobiology]] |date=2007 |volume=7 |issue=1 |pages=30–65 |doi=10.1089/ast.2006.0124 |pmid=17407403 |bibcode=2007AsBio...7...30T |arxiv=astro-ph/0609799 | last1=Tarter | first1=Jill C. | last2=Mancinelli | first2=Rocco L. | last3=Aurnou | first3=Jonathan M. | last4=Backman | first4=Dana E. | last5=Basri | first5=Gibor S. | last6=Boss | first6=Alan P. | last7=Clarke | first7=Andrew | last8=Deming | first8=Drake|s2cid=10932355 }}</ref>


Proxima Centauri's [[Solar flare|flare]] outbursts could erode the atmosphere of any planet in its habitable zone, but the documentary's scientists thought that this obstacle could be overcome. [[Gibor Basri]] of the [[University of California, Berkeley]] argued: "No one [has] found any showstoppers to habitability." For example, one concern was that the torrents of charged particles from the star's flares could strip the atmosphere off any nearby planet. If the planet had a strong magnetic field, the field would deflect the particles from the atmosphere; even the slow rotation of a tidally locked planet that spins once for every time it orbits its star would be enough to generate a magnetic field, as long as part of the planet's interior remained molten.<ref>{{cite journal |last=Alpert |first=Mark |date=November 2005 |title=Red star rising |journal=Scientific American |volume=293 |issue=5 |pages=28 |doi=10.1038/scientificamerican1105-28 |pmid=16318021 |bibcode=2005SciAm.293e..28A}}</ref>
Proxima Centauri's [[Solar flare|flare]] outbursts could erode the atmosphere of any planet in its habitable zone, but the documentary's scientists thought that this obstacle could be overcome. [[Gibor Basri]] of the [[University of California, Berkeley]] argued: "No one [has] found any showstoppers to habitability." For example, one concern was that the torrents of charged particles from the star's flares could strip the atmosphere off any nearby planet. If the planet had a strong magnetic field, the field would deflect the particles from the atmosphere; even the slow rotation of a tidally locked planet that spins once for every time it orbits its star would be enough to generate a magnetic field, as long as part of the planet's interior remained molten.<ref>{{cite journal |last=Alpert |first=Mark |date=November 2005 |title=Red star rising |journal=Scientific American |volume=293 |issue=5 |pages=28 |doi=10.1038/scientificamerican1105-28 |pmid=16318021 |bibcode=2005SciAm.293e..28A}}</ref>


Other scientists, especially proponents of the [[Rare Earth hypothesis|rare-Earth hypothesis]],<ref>{{cite book |first1=Peter D. |last1=Ward |author-link=Peter Ward (paleontologist) |last2=Brownlee |first2=Donald |author-link2=Donald E. Brownlee |date=2000 |title=Rare Earth: why complex life is uncommon in the universe |publisher=[[Springer Publishing]] |isbn=978-0-387-98701-9}}</ref> disagree that red dwarfs can sustain life. Any exoplanet in this star's habitable zone would likely be tidally locked, resulting in a relatively weak planetary [[magnetic moment]], leading to strong atmospheric erosion by [[coronal mass ejection]]s from Proxima Centauri.<ref name="Khodachenko">{{cite journal |title=Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones |journal=Astrobiology |date=2007 |volume=7 |issue=1 |pages=167–184 |doi=10.1089/ast.2006.0127 |pmid=17407406 |bibcode=2007AsBio...7..167K | last1=Khodachenko | first1=Maxim L. | last2=Lammer | first2=Helmut | last3=Grießmeier | first3=Jean-Mathias | last4=Leitner | first4=Martin | last5=Selsis | first5=Franck | last6=Eiroa | first6=Carlos | last7=Hanslmeier | first7=Arnold | last8=Biernat | first8=Helfried K. }}</ref> In December 2020, a candidate [[SETI]] radio signal [[BLC-1]] was announced as potentially coming from the star.<ref name="OCallaghan2000">{{Cite web
Other scientists, especially proponents of the [[Rare Earth hypothesis]],<ref>{{cite book |first1=Peter D. |last1=Ward |author-link=Peter Ward (paleontologist) |last2=Brownlee |first2=Donald |author-link2=Donald E. Brownlee |date=2000 |title=Rare Earth: why complex life is uncommon in the universe |publisher=[[Springer Publishing]] |isbn=978-0-387-98701-9}}</ref> disagree that red dwarfs can sustain life. Any exoplanet in this star's habitable zone would likely be tidally locked, resulting in a relatively weak planetary [[magnetic moment]], leading to strong atmospheric erosion by [[coronal mass ejection]]s from Proxima Centauri.<ref name="Khodachenko">{{cite journal |title=Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones |journal=Astrobiology |date=2007 |volume=7 |issue=1 |pages=167–184 |doi=10.1089/ast.2006.0127 |pmid=17407406 |bibcode=2007AsBio...7..167K | last1=Khodachenko | first1=Maxim L. | last2=Lammer | first2=Helmut | last3=Grießmeier | first3=Jean-Mathias | last4=Leitner | first4=Martin | last5=Selsis | first5=Franck | last6=Eiroa | first6=Carlos | last7=Hanslmeier | first7=Arnold | last8=Biernat | first8=Helfried K. }}</ref> In December 2020, a candidate [[SETI]] radio signal [[BLC-1]] was announced as potentially coming from the star.<ref name="OCallaghan2000">{{Cite web
| last=O'Callaghan | first=Jonathan | date=2020-12-18
| last=O'Callaghan | first=Jonathan | date=2020-12-18
| title=Alien Hunters Discover Mysterious Radio Signal from Proxima Centauri
| title=Alien Hunters Discover Mysterious Radio Signal from Proxima Centauri
Line 313: Line 313:


== Observational history ==
== Observational history ==
[[File:ProximaCentauriLocation.png|thumb|The location of Proxima Centauri (circled in red)|300x300px]]In 1915, the Scottish astronomer [[Robert T. A. Innes|Robert Innes]], director of the [[Union Observatory]] in [[Johannesburg]], [[South Africa]], discovered a star that had the same [[proper motion]] as [[Alpha Centauri]].<ref name="Innes1915">{{cite journal |last1=Innes |first1=R. T. A. |date=October 1915 |title=A Faint Star of Large Proper Motion |journal=Circular of the Union Observatory Johannesburg |volume=30 |pages=235–236 |bibcode=1915CiUO...30..235I}} This is the original Proxima Centauri discovery paper.</ref><ref name="afrsky11_39">{{cite journal |last=Glass |first=I. S. |date=July 2007 |title=The discovery of the nearest star |journal=[[African Skies (journal)|African Skies]] |volume=11 |page=39 |bibcode=2007AfrSk..11...39G}}</ref><ref>{{cite web |last=Queloz |first=Didier |date=November 29, 2002 |title=How Small are Small Stars Really? |url=https://www.eso.org/public/news/eso0232/ |access-date=January 29, 2018 |publisher=European Southern Observatory |id=eso0232; PR 22/02}}</ref> He suggested that it be named ''Proxima Centauri''<ref name="aj39_913_20">{{cite journal |last=Alden |first=Harold L. |date=1928 |title=Alpha and Proxima Centauri |journal=Astronomical Journal |volume=39 |issue=913 |pages=20–23 |bibcode=1928AJ.....39...20A |doi=10.1086/104871|doi-access=free }}</ref> (actually ''Proxima Centaurus'').<ref name="Innes1917">{{cite journal |last1=Innes |first1=R. T. A. |date=September 1917 |title=Parallax of the Faint Proper Motion Star Near Alpha of Centaurus. 1900. R.A. 14{{sup|h}}22{{sup|m}}55{{sup|s}}.-0s 6t. Dec-62° 15'2 0'8 t |journal=Circular of the Union Observatory Johannesburg |volume=40 |pages=331–336 |bibcode=1917CiUO...40..331I}}</ref> In 1917, at the [[Royal Observatory, Cape of Good Hope|Royal Observatory]] at the [[Cape of Good Hope]], the Dutch astronomer [[Joan Voûte]] measured the star's trigonometric [[parallax]] at {{val|0.755|0.028|ul=″}} and determined that Proxima Centauri was approximately the same distance from the Sun as Alpha Centauri. It was the lowest-[[luminosity]] star known at the time.<ref name="Voûte1917">{{cite journal |last=Voûte |first=J. |date=1917 |title=A 13th magnitude star in Centaurus with the same parallax as α Centauri |url=https://zenodo.org/record/1431901 |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=77 |issue=9 |pages=650–651 |bibcode=1917MNRAS..77..650V |doi=10.1093/mnras/77.9.650 |doi-access=free}}</ref> An equally accurate parallax determination of Proxima Centauri was made by American astronomer [[Harold Lee Alden|Harold L. Alden]] in 1928, who confirmed Innes's view that it is closer, with a parallax of {{val|0.783|0.005|u=″}}.<ref name="afrsky11_39" /><ref name="aj39_913_20" />
[[File:ProximaCentauriLocation.png|thumb|upright=1.5|The location of Proxima Centauri (circled in red)]]In 1915, the Scottish astronomer [[Robert T. A. Innes|Robert Innes]], director of the [[Union Observatory]] in [[Johannesburg]], [[South Africa]], discovered a star that had the same [[proper motion]] as [[Alpha Centauri]].<ref name="Innes1915">{{cite journal |last1=Innes |first1=R. T. A. |date=October 1915 |title=A Faint Star of Large Proper Motion |journal=Circular of the Union Observatory Johannesburg |volume=30 |pages=235–236 |bibcode=1915CiUO...30..235I}} This is the original Proxima Centauri discovery paper.</ref><ref name="afrsky11_39">{{cite journal |last=Glass |first=I. S. |date=July 2007 |title=The discovery of the nearest star |journal=[[African Skies (journal)|African Skies]] |volume=11 |page=39 |bibcode=2007AfrSk..11...39G}}</ref><ref>{{cite web |last=Queloz |first=Didier |date=November 29, 2002 |title=How Small are Small Stars Really? |url=https://www.eso.org/public/news/eso0232/ |access-date=January 29, 2018 |publisher=European Southern Observatory |id=eso0232; PR 22/02}}</ref> He suggested that it be named ''Proxima Centauri''<ref name="aj39_913_20">{{cite journal |last=Alden |first=Harold L. |date=1928 |title=Alpha and Proxima Centauri |journal=Astronomical Journal |volume=39 |issue=913 |pages=20–23 |bibcode=1928AJ.....39...20A |doi=10.1086/104871|doi-access=free }}</ref> (actually ''Proxima Centaurus'').<ref name="Innes1917">{{cite journal |last1=Innes |first1=R. T. A. |date=September 1917 |title=Parallax of the Faint Proper Motion Star Near Alpha of Centaurus. 1900. R.A. 14{{sup|h}}22{{sup|m}}55{{sup|s}}.-0s 6t. Dec-62° 15'2 0'8 t |journal=Circular of the Union Observatory Johannesburg |volume=40 |pages=331–336 |bibcode=1917CiUO...40..331I}}</ref> In 1917, at the [[Royal Observatory, Cape of Good Hope|Royal Observatory]] at the [[Cape of Good Hope]], the Dutch astronomer [[Joan Voûte]] measured the star's trigonometric [[parallax]] at {{val|0.755|0.028|ul=″}} and determined that Proxima Centauri was approximately the same distance from the Sun as Alpha Centauri. It was the lowest-[[luminosity]] star known at the time.<ref name="Voûte1917">{{cite journal |last=Voûte |first=J. |date=1917 |title=A 13th magnitude star in Centaurus with the same parallax as α Centauri |url=https://zenodo.org/record/1431901 |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=77 |issue=9 |pages=650–651 |bibcode=1917MNRAS..77..650V |doi=10.1093/mnras/77.9.650 |doi-access=free}}</ref> An equally accurate parallax determination of Proxima Centauri was made by American astronomer [[Harold Lee Alden|Harold L. Alden]] in 1928, who confirmed Innes's view that it is closer, with a parallax of {{val|0.783|0.005|u=″}}.<ref name="afrsky11_39" /><ref name="aj39_913_20" />

A size estimate for Proxima Centauri was obtained by the Canadian astronomer [[John Stanley Plaskett]] in 1925 using [[interferometry]]. The result was 207,000 miles (333,000 km), or approximately {{Solar radius|0.24}}.<ref>{{Cite journal |last=Plaskett |first=J. S. |date=1922 |title=The Dimensions of the Stars |url=https://www.jstor.org/stable/40668597 |journal=Publications of the Astronomical Society of the Pacific |volume=34 |issue=198 |pages=79–93 |doi=10.1086/123157 |jstor=40668597 |bibcode=1922PASP...34...79P |issn=0004-6280}}</ref>


In 1951, American astronomer [[Harlow Shapley]] announced that Proxima Centauri is a [[flare star]]. Examination of past photographic records showed that the star displayed a measurable increase in magnitude on about 8% of the images, making it the most active flare star then known.<ref>{{cite journal |last=Shapley |first=Harlow |date=1951 |title=Proxima Centauri as a flare star |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=37 |issue=1 |pages=15–18 |bibcode=1951PNAS...37...15S |doi=10.1073/pnas.37.1.15 |pmc=1063292 |pmid=16588985 |doi-access=free}}</ref><ref>{{cite journal |last1=Kroupa |first1=Pavel |last2=Burman |first2=R. R. |last3=Blair |first3=D. G. |date=1989 |title=Photometric observations of flares on Proxima Centauri |journal=PASA |volume=8 |issue=2 |pages=119–122 |bibcode=1989PASA....8..119K |doi=10.1017/S1323358000023122|s2cid=117977034 }}</ref>
In 1951, American astronomer [[Harlow Shapley]] announced that Proxima Centauri is a [[flare star]]. Examination of past photographic records showed that the star displayed a measurable increase in magnitude on about 8% of the images, making it the most active flare star then known.<ref>{{cite journal |last=Shapley |first=Harlow |date=1951 |title=Proxima Centauri as a flare star |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=37 |issue=1 |pages=15–18 |bibcode=1951PNAS...37...15S |doi=10.1073/pnas.37.1.15 |pmc=1063292 |pmid=16588985 |doi-access=free}}</ref><ref>{{cite journal |last1=Kroupa |first1=Pavel |last2=Burman |first2=R. R. |last3=Blair |first3=D. G. |date=1989 |title=Photometric observations of flares on Proxima Centauri |journal=PASA |volume=8 |issue=2 |pages=119–122 |bibcode=1989PASA....8..119K |doi=10.1017/S1323358000023122|s2cid=117977034 }}</ref>
Line 327: Line 329:
== Future exploration ==
== Future exploration ==
{{Main|Proxima Centauri in fiction|Interstellar travel}}
{{Main|Proxima Centauri in fiction|Interstellar travel}}
Because of the star's proximity to Earth, Proxima Centauri has been proposed as a flyby destination for interstellar travel.<ref name="gilster">{{cite book |last=Gilster |first=Paul |url=https://archive.org/details/centauridreamsim00gils |title=Centauri dreams: imagining and planning |date=2004 |publisher=Springer |isbn=978-0-387-00436-5}}</ref> If non-nuclear, conventional propulsion technologies are used, the flight of a spacecraft to Proxima Centauri and its planets would probably require thousands of years.<ref>{{cite journal |last=Crawford |first=I. A. |date=September 1990 |title=Interstellar Travel: A Review for Astronomers |journal=Quarterly Journal of the Royal Astronomical Society |volume=31 |pages=377–400 |bibcode=1990QJRAS..31..377C}}</ref> For example, ''[[Voyager 1]]'', which is now travelling {{convert|17|km/s|mph|abbr=on}}<ref>{{cite web |last=Peat |first=Chris |title=Spacecraft escaping the Solar System |url=http://www.heavens-above.com/SolarEscape.aspx |access-date=December 25, 2016 |work=Heavens Above}}</ref> relative to the Sun, would reach Proxima Centauri in 73,775 years, were the spacecraft travelling in the direction of that star. A slow-moving probe would have only several tens of thousands of years to catch Proxima Centauri near its closest approach, before the star would recede out of reach.<ref name="longshot">{{cite web |last1=Beals |first1=K. A. |last2=Beaulieu |first2=M. |last3=Dembia |first3=F. J. |last4=Kerstiens |first4=J. |last5=Kramer |first5=D. L. |last6=West |first6=J. R. |last7=Zito |first7=J. A. |date=1988 |title=Project Longshot, an Unmanned Probe to Alpha Centauri |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890007533_1989007533.pdf |access-date=June 13, 2008 |work=NASA-CR-184718 |publisher=U. S. Naval Academy}}</ref>
Because of the star's proximity to Earth, Proxima Centauri has been proposed as a flyby destination for interstellar travel.<ref name="gilster">{{cite book |last=Gilster |first=Paul |url=https://archive.org/details/centauridreamsim00gils |title=Centauri dreams: imagining and planning |date=2004 |publisher=Springer |isbn=978-0-387-00436-5}}</ref> If non-nuclear, conventional propulsion technologies are used, the flight of a spacecraft to Proxima Centauri and its planets would probably require thousands of years.<ref>{{cite journal |last=Crawford |first=I. A. |date=September 1990 |title=Interstellar Travel: A Review for Astronomers |journal=Quarterly Journal of the Royal Astronomical Society |volume=31 |pages=377–400 |bibcode=1990QJRAS..31..377C}}</ref> For example, ''[[Voyager 1]]'', which is now travelling {{convert|17|km/s|mph|abbr=on}}<ref>{{cite web |last=Peat |first=Chris |title=Spacecraft escaping the Solar System |url=http://www.heavens-above.com/SolarEscape.aspx |access-date=December 25, 2016 |work=Heavens Above}}</ref> relative to the Sun, would reach Proxima Centauri in 73,775 years, were the spacecraft travelling in the direction of that star and Proxima was standing still. Proxima's actual galactic orbit means a slow-moving probe would have only several tens of thousands of years to catch the star at its closest approach, before it recedes out of reach.<ref name="longshot">{{cite web |last1=Beals |first1=K. A. |last2=Beaulieu |first2=M. |last3=Dembia |first3=F. J. |last4=Kerstiens |first4=J. |last5=Kramer |first5=D. L. |last6=West |first6=J. R. |last7=Zito |first7=J. A. |date=1988 |title=Project Longshot, an Unmanned Probe to Alpha Centauri |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890007533_1989007533.pdf |access-date=June 13, 2008 |work=NASA-CR-184718 |publisher=U. S. Naval Academy}}</ref>


[[Nuclear pulse propulsion]] might enable such interstellar travel with a trip timescale of a century, inspiring several studies such as [[Project Orion (nuclear propulsion)|Project Orion]], [[Project Daedalus]], and [[Project Longshot]].<ref name="longshot" /> Project [[Breakthrough Starshot]] aims to reach the Alpha Centauri system within the first half of the 21st century, with microprobes travelling at 20% of the speed of light propelled by around 100 [[gigawatts]] of Earth-based lasers.<ref>{{cite journal |last=Merali |first=Zeeya |date=May 27, 2016 |title=Shooting for a star |journal=[[Science (journal)|Science]] |volume=352 |issue=6289 |pages=1040–1041 |doi=10.1126/science.352.6289.1040 |pmid=27230357}}</ref> The probes would perform a fly-by of Proxima Centauri to take photos and collect data of its planets' atmospheric compositions. It would take 4.25 years for the information collected to be sent back to Earth.<ref name="Popkin2017">{{cite journal |last=Popkin |first=Gabriel |date=February 2, 2017 |title=What it would take to reach the stars |journal=[[Nature (journal)|Nature]] |volume=542 |issue=7639 |pages=20–22 |bibcode=2017Natur.542...20P |doi=10.1038/542020a |pmid=28150784 |doi-access=free}}</ref>
[[Nuclear pulse propulsion]] might enable such interstellar travel with a trip timescale of a century, inspiring several studies such as [[Project Orion (nuclear propulsion)|Project Orion]], [[Project Daedalus]], and [[Project Longshot]].<ref name="longshot" /> Project [[Breakthrough Starshot]] aims to reach the Alpha Centauri system within the first half of the 21st century, with microprobes travelling at 20% of the speed of light propelled by around 100 [[gigawatts]] of Earth-based lasers.<ref>{{cite journal |last=Merali |first=Zeeya |date=May 27, 2016 |title=Shooting for a star |journal=[[Science (journal)|Science]] |volume=352 |issue=6289 |pages=1040–1041 |doi=10.1126/science.352.6289.1040 |pmid=27230357}}</ref> The probes would perform a fly-by of Proxima Centauri about 20 years after its launch, or possibly go into orbit after about 140 years if [[swing-by]]'s around Proxima Centauri or Alpha Centauri are to be employed.<ref name="Heller Hippke 2023 k319">{{cite web | last1=Heller | first1=René | last2=Hippke | first2=Michael | title=Full braking at Alpha Centauri | website=Max-Planck-Gesellschaft | date=July 11, 2023 | url=https://www.mpg.de/11019256/full-braking-at-alpha-centauri | access-date=December 3, 2023}}</ref> Then the probes would take photos and collect data of the planets of the stars, and their atmospheric compositions. It would take 4.25 years for the information collected to be sent back to Earth.<ref name="Popkin2017">{{cite journal |last=Popkin |first=Gabriel |date=February 2, 2017 |title=What it would take to reach the stars |journal=[[Nature (journal)|Nature]] |volume=542 |issue=7639 |pages=20–22 |bibcode=2017Natur.542...20P |doi=10.1038/542020a |pmid=28150784 |doi-access=free}}</ref>


== Explanatory notes==
== Explanatory notes==
{{Reflist|group="nb"}}
{{Reflist|group="nb"}}
{{notelist}}


==References==
==References==
Line 342: Line 345:
<ref name=Guillem2017>{{Cite journal |arxiv=1711.00578 |last1=Anglada |first1=Guillem |title=ALMA Discovery of Dust Belts Around Proxima Centauri |journal=The Astrophysical Journal |volume=850 |issue=1 |pages=L6 |last2=Amado |first2=Pedro J |last3=Ortiz |first3=Jose L |last4=Gómez |first4=José F |last5=Macías |first5=Enrique |last6=Alberdi |first6=Antxon |last7=Osorio |first7=Mayra |last8=Gómez |first8=José L | first9=Itziar | last9=de Gregorio-Monsalvo |last10=Pérez-Torres |first10=Miguel A |last11=Anglada-Escudé |first11=Guillem |last12=Berdiñas |first12=Zaira M |last13=Jenkins |first13=James S |last14=Jimenez-Serra |first14=Izaskun |last15=Lara |first15=Luisa M |author-link15=Luisa María Lara |last16=López-González |first16=Maria J |last17=López-Puertas |first17=Manuel |last18=Morales |first18=Nicolas |last19=Ribas |first19=Ignasi |last20=Richards |first20=Anita M. S |last21=Rodríguez-López |first21=Cristina |last22=Rodriguez |first22=Eloy |year=2017 |doi=10.3847/2041-8213/aa978b |url=http://zaguan.unizar.es/record/64319 |bibcode=2017ApJ...850L...6A|s2cid=13431834 |doi-access=free }}</ref>
<ref name=Guillem2017>{{Cite journal |arxiv=1711.00578 |last1=Anglada |first1=Guillem |title=ALMA Discovery of Dust Belts Around Proxima Centauri |journal=The Astrophysical Journal |volume=850 |issue=1 |pages=L6 |last2=Amado |first2=Pedro J |last3=Ortiz |first3=Jose L |last4=Gómez |first4=José F |last5=Macías |first5=Enrique |last6=Alberdi |first6=Antxon |last7=Osorio |first7=Mayra |last8=Gómez |first8=José L | first9=Itziar | last9=de Gregorio-Monsalvo |last10=Pérez-Torres |first10=Miguel A |last11=Anglada-Escudé |first11=Guillem |last12=Berdiñas |first12=Zaira M |last13=Jenkins |first13=James S |last14=Jimenez-Serra |first14=Izaskun |last15=Lara |first15=Luisa M |author-link15=Luisa María Lara |last16=López-González |first16=Maria J |last17=López-Puertas |first17=Manuel |last18=Morales |first18=Nicolas |last19=Ribas |first19=Ignasi |last20=Richards |first20=Anita M. S |last21=Rodríguez-López |first21=Cristina |last22=Rodriguez |first22=Eloy |year=2017 |doi=10.3847/2041-8213/aa978b |url=http://zaguan.unizar.es/record/64319 |bibcode=2017ApJ...850L...6A|s2cid=13431834 |doi-access=free }}</ref>


<ref name=Li-2017>{{cite journal |bibcode=2017RNAAS...1...49L |title=A Candidate Transit Event around Proxima Centauri |last1=Li |first1=Yiting |last2=Stefansson |first2=Gudmundur |last3=Robertson |first3=Paul |last4=Monson |first4=Andrew |last5=Cañas |first5=Caleb |last6=Mahadevan |first6=Suvrath |journal=[[Research Notes of the AAS]] |volume=1 |issue=1 |at=49 |date=December 14, 2017 |doi=10.3847/2515-5172/aaa0d5 |arxiv=1712.04483|s2cid=119034883 |doi-access=free }}</ref>
<ref name=Li-2017>{{cite journal |bibcode=2017RNAAS...1...49L |title=A Candidate Transit Event around Proxima Centauri |last1=Li |first1=Yiting |last2=Stefansson |first2=Gudmundur |last3=Robertson |first3=Paul |last4=Monson |first4=Andrew |last5=Cañas |first5=Caleb |last6=Mahadevan |first6=Suvrath |author6-link=Suvrath Mahadevan |journal=[[Research Notes of the AAS]] |volume=1 |issue=1 |at=49 |date=December 14, 2017 |doi=10.3847/2515-5172/aaa0d5 |arxiv=1712.04483|s2cid=119034883 |doi-access=free }}</ref>


<ref name="Masc2016">{{cite journal |last1=Mascareño |first1=A. Suárez |last2=Rebolo |first2=R. |last3=González Hernández |first3=J. I. |title=Magnetic cycles and rotation periods of late-type stars from photometric time series |journal=Astronomy & Astrophysics |date=October 2016 |volume=595 |page=A12 |doi=10.1051/0004-6361/201628586 |arxiv=1607.03049 |bibcode=2016A&A...595A..12S |s2cid=118555782 |url=https://ui.adsabs.harvard.edu/abs/2016A&A...595A..12S |access-date=30 November 2021}}</ref>
<ref name="Masc2016">{{cite journal |last1=Mascareño |first1=A. Suárez |last2=Rebolo |first2=R. |last3=González Hernández |first3=J. I. |title=Magnetic cycles and rotation periods of late-type stars from photometric time series |journal=Astronomy & Astrophysics |date=October 2016 |volume=595 |page=A12 |doi=10.1051/0004-6361/201628586 |arxiv=1607.03049 |bibcode=2016A&A...595A..12S |s2cid=118555782 |url=https://ui.adsabs.harvard.edu/abs/2016A&A...595A..12S |access-date=30 November 2021}}</ref>
Line 369: Line 372:
| volume=509 | issue=3 | pages=3798–3814
| volume=509 | issue=3 | pages=3798–3814
| date=January 2022 | doi=10.1093/mnras/stab3074
| date=January 2022 | doi=10.1093/mnras/stab3074
| arxiv=2110.10247 | bibcode=2022MNRAS.509.3798M }}
| doi-access=free | arxiv=2110.10247 | bibcode=2022MNRAS.509.3798M }}
*{{cite journal
*{{cite journal
| title=A radio technosignature search towards Proxima Centauri resulting in a signal of interest
| title=A radio technosignature search towards Proxima Centauri resulting in a signal of interest
Line 391: Line 394:
| volume=505 | issue=3 | pages=3537–3548
| volume=505 | issue=3 | pages=3537–3548
| date=August 2021 | doi=10.1093/mnras/stab1440
| date=August 2021 | doi=10.1093/mnras/stab1440
| arxiv=2102.01910 | bibcode=2021MNRAS.505.3537M }}
| doi-access=free | arxiv=2102.01910 | bibcode=2021MNRAS.505.3537M }}
*{{cite journal
*{{cite journal
| title=Planet-induced radio emission from the coronae of M dwarfs: the case of Prox Cen and AU Mic
| title=Planet-induced radio emission from the coronae of M dwarfs: the case of Prox Cen and AU Mic
Line 400: Line 403:
| volume=504 | issue=1 | pages=1511–1518 | display-authors=1
| volume=504 | issue=1 | pages=1511–1518 | display-authors=1
| date=June 2021 | doi=10.1093/mnras/stab929
| date=June 2021 | doi=10.1093/mnras/stab929
| arxiv=2103.16318 | bibcode=2021MNRAS.504.1511K }}
| doi-access=free | arxiv=2103.16318 | bibcode=2021MNRAS.504.1511K }}
*{{cite journal
*{{cite journal
| title=Monitoring the radio emission of Proxima Centauri
| title=Monitoring the radio emission of Proxima Centauri
Line 439: Line 442:
| volume=498 | issue=3 | pages=3658–3663
| volume=498 | issue=3 | pages=3658–3663
| date=November 2020 | doi=10.1093/mnras/staa2574
| date=November 2020 | doi=10.1093/mnras/staa2574
| arxiv=2008.07175 | bibcode=2020MNRAS.498.3658L }}
| doi-access=free | arxiv=2008.07175 | bibcode=2020MNRAS.498.3658L }}
*{{cite journal
*{{cite journal
| title=Flaring Activity of Proxima Centauri from TESS Observations: Quasiperiodic Oscillations during Flare Decay and Inferences on the Habitability of Proxima b
| title=Flaring Activity of Proxima Centauri from TESS Observations: Quasiperiodic Oscillations during Flare Decay and Inferences on the Habitability of Proxima b
Line 455: Line 458:
| volume=487 | issue=2 | pages=1653–1661
| volume=487 | issue=2 | pages=1653–1661
| date=August 2019 | doi=10.1093/mnras/stz1379
| date=August 2019 | doi=10.1093/mnras/stz1379
| arxiv=1906.08264 | bibcode=2019MNRAS.487.1653B }}
| doi-access=free | arxiv=1906.08264 | bibcode=2019MNRAS.487.1653B }}
*{{cite journal
*{{cite journal
| title=Temporal changes of the flare activity of Proxima Centauri
| title=Temporal changes of the flare activity of Proxima Centauri
Line 487: Line 490:
| volume=486 | issue=1 | pages=L31–L35 | display-authors=1
| volume=486 | issue=1 | pages=L31–L35 | display-authors=1
| date=June 2019 | doi=10.1093/mnrasl/slz054
| date=June 2019 | doi=10.1093/mnrasl/slz054
| arxiv=1904.06875 | bibcode=2019MNRAS.486L..31K }}
| doi-access=free | arxiv=1904.06875 | bibcode=2019MNRAS.486L..31K }}
*{{cite journal
*{{cite journal
| title=Dynamical evolution and stability maps of the Proxima Centauri system
| title=Dynamical evolution and stability maps of the Proxima Centauri system
Line 495: Line 498:
| volume=482 | issue=1 | pages=372–383
| volume=482 | issue=1 | pages=372–383
| date=January 2019 | doi=10.1093/mnras/sty2682
| date=January 2019 | doi=10.1093/mnras/sty2682
| arxiv=1809.08210 | bibcode=2019MNRAS.482..372M }}
| doi-access=free | arxiv=1809.08210 | bibcode=2019MNRAS.482..372M }}
*{{cite journal
*{{cite journal
| title=Exocomets in the Proxima Centauri system and their importance for water transport
| title=Exocomets in the Proxima Centauri system and their importance for water transport
Line 506: Line 509:
| volume=480 | issue=3 | pages=3595–3608 | display-authors=1
| volume=480 | issue=3 | pages=3595–3608 | display-authors=1
| date=November 2018 | doi=10.1093/mnras/sty2064
| date=November 2018 | doi=10.1093/mnras/sty2064
| arxiv=1711.04685 | bibcode=2018MNRAS.480.3595S }}
| doi-access=free | arxiv=1711.04685 | bibcode=2018MNRAS.480.3595S }}
*{{cite journal
*{{cite journal
| title=The First Naked-eye Superflare Detected from Proxima Centauri
| title=The First Naked-eye Superflare Detected from Proxima Centauri
Line 551: Line 554:
{{Authority control}}
{{Authority control}}
{{Alpha Centauri}}
{{Alpha Centauri}}
{{Sky|14|29|42.9487|-|62|40|46.141|4.25}}
{{nearest systems|1}}
{{nearest systems|1}}
{{Stars of Centaurus}}
{{Stars of Centaurus}}

Latest revision as of 22:52, 3 November 2024

Proxima Centauri

False color Hubble Space Telescope WFPC2 image taken in 2013. The bright lines are diffraction spikes.
Observation data
Epoch J2000.0      Equinox J2000.0 (ICRS)
Constellation Centaurus
Pronunciation /ˌprɒksəmə sɛnˈtɔːri/ or
/ˈprɒksɪmə sɛnˈtɔːr/[1]
Right ascension 14h 29m 42.946s[2]
Declination −62° 40′ 46.16″[2]
Apparent magnitude (V) 10.43 – 11.11[3]
Characteristics
Evolutionary stage Main sequence
Spectral type M5.5Ve[4]
U−B color index 1.26
B−V color index 1.82
V−R color index 1.68
R−I color index 2.04
J−H color index 0.522
J−K color index 0.973
Variable type UV Cet + BY Dra[3]
Astrometry
Radial velocity (Rv)−22.204±0.032[5] km/s
Proper motion (μ) RA: −3781.741 mas/yr[2]
Dec.: 769.465 mas/yr[2]
Parallax (π)768.0665 ± 0.0499 mas[2]
Distance4.2465 ± 0.0003 ly
(1.30197 ± 0 pc)
Absolute magnitude (MV)15.60[6]
Orbit[5]
PrimaryAlpha Centauri AB
CompanionProxima Centauri
Period (P)547000+6600
−4000
yr
Semi-major axis (a)8700+700
−400
 AU
Eccentricity (e)0.50+0.08
−0.09
Inclination (i)107.6+1.8
−2.0
°
Longitude of the node (Ω)126±5°
Periastron epoch (T)+283+59
−41
Argument of periastron (ω)
(secondary)
72.3+8.7
−6.6
°
Details
Mass0.1221±0.0022[5] M
Radius0.1542±0.0045[5] R
Luminosity (bolometric)0.001567±0.000020[7] L
Luminosity (visual, LV)0.00005[nb 1] L
Surface gravity (log g)5.20±0.23[8] cgs
Temperature2,992+49
−47
[7] K
Metallicity [Fe/H]0.21[9][nb 2] dex
Rotation89.8±4[12] days
Rotational velocity (v sin i)< 0.1[13] km/s
Age4.85[14] Gyr
Other designations
Alf Cen C, Alpha Centauri C, V645 Centauri, GJ 551, HIP 70890, CCDM J14396-6050C, LFT 1110, LHS 49, LPM 526, LTT 5721, NLTT 37460[15]
Database references
SIMBADdata
ARICNSdata

Proxima Centauri is the nearest star to Earth after the Sun, located 4.25 light-years away in the southern constellation of Centaurus. This object was discovered in 1915 by Robert Innes. It is a small, low-mass star, too faint to be seen with the naked eye, with an apparent magnitude of 11.13. Its Latin name means the 'nearest [star] of Centaurus'. Proxima Centauri is a member of the Alpha Centauri star system, being identified as component Alpha Centauri C, and is 2.18° to the southwest of the Alpha Centauri AB pair. It is currently 12,950 AU (0.2 ly) from AB, which it orbits with a period of about 550,000 years.

Proxima Centauri is a red dwarf star with a mass about 12.5% of the Sun's mass (M), and average density about 33 times that of the Sun. Because of Proxima Centauri's proximity to Earth, its angular diameter can be measured directly. Its actual diameter is about one-seventh (14%) the diameter of the Sun. Although it has a very low average luminosity, Proxima Centauri is a flare star that randomly undergoes dramatic increases in brightness because of magnetic activity. The star's magnetic field is created by convection throughout the stellar body, and the resulting flare activity generates a total X-ray emission similar to that produced by the Sun. The internal mixing of its fuel by convection through its core and Proxima's relatively low energy-production rate, mean that it will be a main-sequence star for another four trillion years.

Proxima Centauri has one known exoplanet and two candidate exoplanets: Proxima Centauri b, the candidate Proxima Centauri d and the disputed Proxima Centauri c.[nb 3] Proxima Centauri b orbits the star at a distance of roughly 0.05 AU (7.5 million km) with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07 times that of Earth.[16] Proxima b orbits within Proxima Centauri's habitable zone—the range where temperatures are right for liquid water to exist on its surface—but, because Proxima Centauri is a red dwarf and a flare star, the planet's habitability is highly uncertain. A candidate super-Earth, Proxima Centauri c, roughly 1.5 AU (220 million km) away from Proxima Centauri, orbits it every 1,900 d (5.2 yr).[17][18] A candidate sub-Earth, Proxima Centauri d, roughly 0.029 AU (4.3 million km) away, orbits it every 5.1 days.[16]

General characteristics

[edit]
Three visual band light curves for Proxima Centauri are shown. Plot A shows a superflare which dramatically increased the star's brightness for a few minutes. Plot B shows the relative brightness variation over the course of the star's 83 day rotation period. Plot C shows variation over a 6.8 year period, which may be the length of the star's magnetic activity period. Adapted from Howard et al. (2018)[19] and Mascareño et al. (2016)[20]

Proxima Centauri is a red dwarf, because it belongs to the main sequence on the Hertzsprung–Russell diagram and is of spectral class M5.5. The M5.5 class means that it falls in the low-mass end of M-type dwarf stars,[14] with its hue shifted toward red-yellow[21] by an effective temperature of ~3,000 K.[8] Its absolute visual magnitude, or its visual magnitude as viewed from a distance of 10 parsecs (33 ly), is 15.5.[22] Its total luminosity over all wavelengths is only 0.16% that of the Sun,[7] although when observed in the wavelengths of visible light to which the eye is most sensitive, it is only 0.0056% as luminous as the Sun.[23] More than 85% of its radiated power is at infrared wavelengths.[24]

In 2002, optical interferometry with the Very Large Telescope (VLTI) found that the angular diameter of Proxima Centauri is 1.02±0.08 mas. Because its distance is known, the actual diameter of Proxima Centauri can be calculated to be about 1/7 that of the Sun, or 1.5 times that of Jupiter. The star's mass, estimated from stellar theory, is 12.2% M, or 129 Jupiter masses (MJ).[25] The mass has been calculated directly, although with less precision, from observations of microlensing events to be 0.150+0.062
−0.051
 M
.[26]

Lower mass main-sequence stars have higher mean density than higher mass ones,[27] and Proxima Centauri is no exception: it has a mean density of 47.1×103 kg/m3 (47.1 g/cm3), compared with the Sun's mean density of 1.411×103 kg/m3 (1.411 g/cm3).[nb 4] The measured surface gravity of Proxima Centauri, given as the base-10 logarithm of the acceleration in units of cgs, is 5.20.[8] This is 162 times the surface gravity on Earth.[nb 5]

A 1998 study of photometric variations indicates that Proxima Centauri completes a full rotation once every 83.5 days.[28] A subsequent time series analysis of chromospheric indicators in 2002 suggests a longer rotation period of 116.6±0.7 days.[29] Later observations of the star's magnetic field subsequently revealed that the star rotates with a period of 89.8±4 days, consistent with a measurement of 92.1+4.2
−3.5
 days from radial velocity observations.[12][30]

Structure and fusion

[edit]

Because of its low mass, the interior of the star is completely convective,[31] causing energy to be transferred to the exterior by the physical movement of plasma rather than through radiative processes. This convection means that the helium ash left over from the thermonuclear fusion of hydrogen does not accumulate at the core but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume nearly all of its fuel before the fusion of hydrogen comes to an end.[32]

Convection is associated with the generation and persistence of a magnetic field. The magnetic energy from this field is released at the surface through stellar flares that briefly (as short as per ten seconds)[33] increase the overall luminosity of the star. On May 6, 2019, a flare event bordering Solar M and X flare class,[34] briefly became the brightest ever detected, with a far ultraviolet emission of 2×1030 erg.[33] These flares can grow as large as the star and reach temperatures measured as high as 27 million K[35]—hot enough to radiate X-rays.[36] Proxima Centauri's quiescent X-ray luminosity, approximately (4–16) × 1026 erg/s ((4–16) × 1019 W), is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach 1028 erg/s (1021 W).[35]

Proxima Centauri's chromosphere is active, and its spectrum displays a strong emission line of singly ionized magnesium at a wavelength of 280 nm.[37] About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the solar cycle. Even during quiescent periods with few or no flares, this activity increases the corona temperature of Proxima Centauri to 3.5 million K, compared to the 2 million K of the Sun's corona,[38] and its total X-ray emission is comparable to the sun's.[39] Proxima Centauri's overall activity level is considered low compared to other red dwarfs,[39] which is consistent with the star's estimated age of 4.85 × 109 years,[14] since the activity level of a red dwarf is expected to steadily wane over billions of years as its stellar rotation rate decreases.[40] The activity level appears to vary[41] with a period of roughly 442 days, which is shorter than the Sun's solar cycle of 11 years.[42]

Proxima Centauri has a relatively weak stellar wind, no more than 20% of the mass loss rate of the solar wind. Because the star is much smaller than the Sun, the mass loss per unit surface area from Proxima Centauri may be eight times that from the Sun's surface.[43]

Life phases

[edit]

A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming into a so-called "blue dwarf". Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity (L) and warming any orbiting bodies for a period of several billion years. When the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a helium white dwarf (without passing through the red giant phase) and steadily lose any remaining heat energy.[32][44]

The Alpha Centauri system may have formed through a low-mass star being dynamically captured by a more massive binary of 1.5–2 M within their embedded star cluster before the cluster dispersed.[45] However, more accurate measurements of the radial velocity are needed to confirm this hypothesis.[46] If Proxima Centauri was bound to the Alpha Centauri system during its formation, the stars are likely to share the same elemental composition. The gravitational influence of Proxima might have disturbed the Alpha Centauri protoplanetary disks. This would have increased the delivery of volatiles such as water to the dry inner regions, so possibly enriching any terrestrial planets in the system with this material.[46]

Alternatively, Proxima Centauri may have been captured at a later date during an encounter, resulting in a highly eccentric orbit that was then stabilized by the galactic tide and additional stellar encounters. Such a scenario may mean that Proxima Centauri's planetary companions have had a much lower chance for orbital disruption by Alpha Centauri.[11] As the members of the Alpha Centauri pair continue to evolve and lose mass, Proxima Centauri is predicted to become unbound from the system in around 3.5 billion years from the present. Thereafter, the star will steadily diverge from the pair.[47]

Motion and location

[edit]
Alpha Centauri A and B are the bright apparent star to the left, which are in a triple star system with Proxima Centauri, circled in red. The bright star system to the right is the unrelated Beta Centauri.

Based on a parallax of 768.0665±0.0499 mas, published in 2020 in Gaia Data Release 3, Proxima Centauri is 4.2465 light-years (1.3020 pc; 268,550 AU) from the Sun.[2] Previously published parallaxes include: 768.5±0.2 mas in 2018 by Gaia DR2, 768.13±1.04 mas, in 2014 by the Research Consortium On Nearby Stars;[48] 772.33±2.42 mas, in the original Hipparcos Catalogue, in 1997;[49] 771.64±2.60 mas in the Hipparcos New Reduction, in 2007;[50] and 768.77±0.37 mas using the Hubble Space Telescope's fine guidance sensors, in 1999.[6] From Earth's vantage point, Proxima Centauri is separated from Alpha Centauri by 2.18 degrees,[51] or four times the angular diameter of the full Moon.[52] Proxima Centauri has a relatively large proper motion—moving 3.85 arcseconds per year across the sky.[53] It has a radial velocity towards the Sun of 22.2 km/s.[5] From Proxima Centauri, the Sun would appear as a bright 0.4-magnitude star in the constellation Cassiopeia, similar to that of Achernar or Procyon from Earth.[nb 6]

Among the known stars, Proxima Centauri has been the closest star to the Sun for about 32,000 years and will be so for about another 25,000 years, after which Alpha Centauri A and Alpha Centauri B will alternate approximately every 79.91 years as the closest star to the Sun. In 2001, J. García-Sánchez et al. predicted that Proxima Centauri will make its closest approach to the Sun in approximately 26,700 years, coming within 3.11 ly (0.95 pc).[54] A 2010 study by V. V. Bobylev predicted a closest approach distance of 2.90 ly (0.89 pc) in about 27,400 years,[55] followed by a 2014 study by C. A. L. Bailer-Jones predicting a perihelion approach of 3.07 ly (0.94 pc) in roughly 26,710 years.[56] Proxima Centauri is orbiting through the Milky Way at a distance from the Galactic Centre that varies from 27 to 31 kly (8.3 to 9.5 kpc), with an orbital eccentricity of 0.07.[57]

Alpha Centauri

[edit]
A radar map of all stellar objects or stellar systems within 9 light years from its center the Sun (Sol). Proxima Centauri is the unlabled mark just next to Alpha Centauri. The diamond-shapes are their positions entered according to right ascension in hours angle (indicated at the edge of the map's reference disc), and according to their declination. The second mark shows each object's distance from Sol, with the concentric circles indicating the distance in steps of one light year.

Proxima Centauri has been suspected to be a companion of the Alpha Centauri binary star system since its discovery in 1915. For this reason, it is sometimes referred to as Alpha Centauri C. Data from the Hipparcos satellite, combined with ground-based observations, were consistent with the hypothesis that the three stars are a gravitationally bound system. Kervella et al. (2017) used high-precision radial velocity measurements to determine with a high degree of confidence that Proxima and Alpha Centauri are gravitationally bound.[5] Proxima Centauri's orbital period around the Alpha Centauri AB barycenter is 547000+6600
−4000
years with an eccentricity of 0.5±0.08; it approaches Alpha Centauri to 4300+1100
−900
 AU
at periastron and retreats to 13000+300
−100
 AU
at apastron.[5] At present, Proxima Centauri is 12,947 ± 260 AU (1.94 ± 0.04 trillion km) from the Alpha Centauri AB barycenter, nearly to the furthest point in its orbit.[5]

Six single stars, two binary star systems, and a triple star share a common motion through space with Proxima Centauri and the Alpha Centauri system. (The co-moving stars include HD 4391, γ2 Normae, and Gliese 676.) The space velocities of these stars are all within 10 km/s of Alpha Centauri's peculiar motion. Thus, they may form a moving group of stars, which would indicate a common point of origin, such as in a star cluster.[58]

Planetary system

[edit]
The Proxima Centauri planetary system[a]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
d (unconfirmed) ≥0.26±0.05 M🜨 0.02885+0.00019
−0.00022
5.122+0.002
−0.0036
0.04+0.15
−0.04
0.81±0.08 R🜨
b 1.07±0.06 M🜨 0.04857+0.00029
−0.00029
11.18418+0.00068
−0.00074
0.109+0.076
−0.068
≙1.30+1.20
−0.62
 R🜨
c (disputed[30][63]) 7±1 M🜨 1.489±0.049 1928±20 0.04±0.01 133±1°
Schematic of the three planets (d, b and c) of the Proxima Centauri system, with the habitable zone identified

As of 2022, three planets (one confirmed and two candidates) have been detected in orbit around Proxima Centauri, with one possibly being among the lightest ever detected by radial velocity ("d"), one close to Earth's size within the habitable zone ("b"), and a possible gas dwarf that orbits much further out than the inner two ("c"), although its status remains disputed.

Searches for exoplanets around Proxima Centauri date to the late 1970s. In the 1990s, multiple measurements of Proxima Centauri's radial velocity constrained the maximum mass that a detectable companion could possess.[6][64] The activity level of the star adds noise to the radial velocity measurements, complicating detection of a companion using this method.[65] In 1998, an examination of Proxima Centauri using the Faint Object Spectrograph on board the Hubble Space Telescope appeared to show evidence of a companion orbiting at a distance of about 0.5 AU.[66] A subsequent search using the Wide Field and Planetary Camera 2 failed to locate any companions.[67] Astrometric measurements at the Cerro Tololo Inter-American Observatory appear to rule out a Jupiter-sized planet with an orbital period of 2−12 years.[68]

In 2017, a team of astronomers using the Atacama Large Millimeter Array reported detecting a belt of cold dust orbiting Proxima Centauri at a range of 1−4 AU from the star. This dust has a temperature of around 40 K and has a total estimated mass of 1% of the planet Earth. They tentatively detected two additional features: a cold belt with a temperature of 10 K orbiting around 30 AU and a compact emission source about 1.2 arcseconds from the star. There was a hint at an additional warm dust belt at a distance of 0.4 AU from the star.[69] However, upon further analysis, these emissions were determined to be most likely the result of a large flare emitted by the star in March 2017. The presence of dust within 4 AU radius from the star is not needed to model the observations.[70][71]

Planet b

[edit]

Proxima Centauri b, or Alpha Centauri Cb, orbits the star at a distance of roughly 0.05 AU (7.5 million km) with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07 times that of the Earth.[16] Moreover, the equilibrium temperature of Proxima Centauri b is estimated to be within the range where water could exist as liquid on its surface; thus, placing it within the habitable zone of Proxima Centauri.[59][72][73]

The first indications of the exoplanet Proxima Centauri b were found in 2013 by Mikko Tuomi of the University of Hertfordshire from archival observation data.[74][75] To confirm the possible discovery, a team of astronomers launched the Pale Red Dot[nb 7] project in January 2016.[76] On August 24, 2016, the team of 31 scientists from all around the world,[77] led by Guillem Anglada-Escudé of Queen Mary University of London, confirmed the existence of Proxima Centauri b[78] through a peer-reviewed article published in Nature.[59][79] The measurements were performed using two spectrographs: HARPS on the ESO 3.6 m Telescope at La Silla Observatory and UVES on the 8 m Very Large Telescope at Paranal Observatory.[59] Several attempts to detect a transit of this planet across the face of Proxima Centauri have been made. A transit-like signal appearing on September 8, 2016, was tentatively identified, using the Bright Star Survey Telescope at the Zhongshan Station in Antarctica.[80]

In 2016, in a paper that helped to confirm Proxima Centauri b's existence, a second signal in the range of 60 to 500 days was detected. However, stellar activity and inadequate sampling causes its nature to remain unclear.[59]

Planet c

[edit]

Proxima Centauri c is a candidate super-Earth or gas dwarf about 7 Earth masses orbiting at roughly 1.5 astronomical units (220,000,000 km) every 1,900 days (5.2 yr).[81] If Proxima Centauri b were the star's Earth, Proxima Centauri c would be equivalent to Neptune. Due to its large distance from Proxima Centauri, it is unlikely to be habitable, with a low equilibrium temperature of around 39 K.[82] The planet was first reported by Italian astrophysicist Mario Damasso and his colleagues in April 2019.[82][81] Damasso's team had noticed minor movements of Proxima Centauri in the radial velocity data from the ESO's HARPS instrument, indicating a possible additional planet orbiting Proxima Centauri.[82] In 2020, the planet's existence was confirmed by Hubble astrometry data from c. 1995.[83] A possible direct imaging counterpart was detected in the infrared with the SPHERE, but the authors admit that they "did not obtain a clear detection." If their candidate source is in fact Proxima Centauri c, it is too bright for a planet of its mass and age, implying that the planet may have a ring system with a radius of around 5 RJ.[84] A 2022 study disputed the radial velocity confirmation of the planet.[30]

Planet d

[edit]

In 2019, a team of astronomers revisited the data from ESPRESSO about Proxima Centauri b to refine its mass. While doing so, the team found another radial velocity spike with a periodicity of 5.15 days. They estimated that if it were a planetary companion, it would be no less than 0.29 Earth masses.[62] Further analysis confirmed the signal's existence leading up to the announcement of the candidate planet in February 2022.[16]

Habitability

[edit]
Overview and comparison of the orbital distance of the habitable zone

Prior to the discovery of Proxima Centauri b, the TV documentary Alien Worlds hypothesized that a life-sustaining planet could exist in orbit around Proxima Centauri or other red dwarfs. Such a planet would lie within the habitable zone of Proxima Centauri, about 0.023–0.054 AU (3.4–8.1 million km) from the star, and would have an orbital period of 3.6–14 days.[85] A planet orbiting within this zone may experience tidal locking to the star. If the orbital eccentricity of this hypothetical planet were low, Proxima Centauri would move little in the planet's sky, and most of the surface would experience either day or night perpetually. The presence of an atmosphere could serve to redistribute heat from the star-lit side to the far side of the planet.[86]

Proxima Centauri's flare outbursts could erode the atmosphere of any planet in its habitable zone, but the documentary's scientists thought that this obstacle could be overcome. Gibor Basri of the University of California, Berkeley argued: "No one [has] found any showstoppers to habitability." For example, one concern was that the torrents of charged particles from the star's flares could strip the atmosphere off any nearby planet. If the planet had a strong magnetic field, the field would deflect the particles from the atmosphere; even the slow rotation of a tidally locked planet that spins once for every time it orbits its star would be enough to generate a magnetic field, as long as part of the planet's interior remained molten.[87]

Other scientists, especially proponents of the Rare Earth hypothesis,[88] disagree that red dwarfs can sustain life. Any exoplanet in this star's habitable zone would likely be tidally locked, resulting in a relatively weak planetary magnetic moment, leading to strong atmospheric erosion by coronal mass ejections from Proxima Centauri.[89] In December 2020, a candidate SETI radio signal BLC-1 was announced as potentially coming from the star.[90] The signal was later determined to be human-made radio interference.[91]

Observational history

[edit]
The location of Proxima Centauri (circled in red)

In 1915, the Scottish astronomer Robert Innes, director of the Union Observatory in Johannesburg, South Africa, discovered a star that had the same proper motion as Alpha Centauri.[92][93][94] He suggested that it be named Proxima Centauri[95] (actually Proxima Centaurus).[96] In 1917, at the Royal Observatory at the Cape of Good Hope, the Dutch astronomer Joan Voûte measured the star's trigonometric parallax at 0.755±0.028 and determined that Proxima Centauri was approximately the same distance from the Sun as Alpha Centauri. It was the lowest-luminosity star known at the time.[97] An equally accurate parallax determination of Proxima Centauri was made by American astronomer Harold L. Alden in 1928, who confirmed Innes's view that it is closer, with a parallax of 0.783″±0.005″.[93][95]

A size estimate for Proxima Centauri was obtained by the Canadian astronomer John Stanley Plaskett in 1925 using interferometry. The result was 207,000 miles (333,000 km), or approximately 0.24 R.[98]

In 1951, American astronomer Harlow Shapley announced that Proxima Centauri is a flare star. Examination of past photographic records showed that the star displayed a measurable increase in magnitude on about 8% of the images, making it the most active flare star then known.[99][100] The proximity of the star allows for detailed observation of its flare activity. In 1980, the Einstein Observatory produced a detailed X-ray energy curve of a stellar flare on Proxima Centauri. Further observations of flare activity were made with the EXOSAT and ROSAT satellites, and the X-ray emissions of smaller, solar-like flares were observed by the Japanese ASCA satellite in 1995.[101] Proxima Centauri has since been the subject of study by most X-ray observatories, including XMM-Newton and Chandra.[35]

Because of Proxima Centauri's southern declination, it can only be viewed south of latitude 27° N.[nb 8] Red dwarfs such as Proxima Centauri are too faint to be seen with the naked eye. Even from Alpha Centauri A or B, Proxima would only be seen as a fifth magnitude star.[102][103] It has apparent visual magnitude 11, so a telescope with an aperture of at least 8 cm (3.1 in) is needed to observe it, even under ideal viewing conditions—under clear, dark skies with Proxima Centauri well above the horizon.[104] In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalogue and standardize proper names for stars.[105] The WGSN approved the name Proxima Centauri for this star on August 21, 2016, and it is now so included in the List of IAU approved Star Names.[106]

In 2016, a superflare was observed from Proxima Centauri, the strongest flare ever seen. The optical brightness increased by a factor of 68× to approximately magnitude 6.8. It is estimated that similar flares occur around five times every year but are of such short duration, just a few minutes, that they have never been observed before.[19] On 2020 April 22 and 23, the New Horizons spacecraft took images of two of the nearest stars, Proxima Centauri and Wolf 359. When compared with Earth-based images, a very large parallax effect was easily visible. However, this was only used for illustrative purposes and did not improve on previous distance measurements.[107][108]

Future exploration

[edit]

Because of the star's proximity to Earth, Proxima Centauri has been proposed as a flyby destination for interstellar travel.[109] If non-nuclear, conventional propulsion technologies are used, the flight of a spacecraft to Proxima Centauri and its planets would probably require thousands of years.[110] For example, Voyager 1, which is now travelling 17 km/s (38,000 mph)[111] relative to the Sun, would reach Proxima Centauri in 73,775 years, were the spacecraft travelling in the direction of that star and Proxima was standing still. Proxima's actual galactic orbit means a slow-moving probe would have only several tens of thousands of years to catch the star at its closest approach, before it recedes out of reach.[112]

Nuclear pulse propulsion might enable such interstellar travel with a trip timescale of a century, inspiring several studies such as Project Orion, Project Daedalus, and Project Longshot.[112] Project Breakthrough Starshot aims to reach the Alpha Centauri system within the first half of the 21st century, with microprobes travelling at 20% of the speed of light propelled by around 100 gigawatts of Earth-based lasers.[113] The probes would perform a fly-by of Proxima Centauri about 20 years after its launch, or possibly go into orbit after about 140 years if swing-by's around Proxima Centauri or Alpha Centauri are to be employed.[114] Then the probes would take photos and collect data of the planets of the stars, and their atmospheric compositions. It would take 4.25 years for the information collected to be sent back to Earth.[115]

Explanatory notes

[edit]
  1. ^ From knowing the absolute visual magnitude of Proxima Centauri, , and the absolute visual magnitude of the Sun, , the visual luminosity of Proxima Centauri can therefore be calculated:
  2. ^ If Proxima Centauri was a later capture into the Alpha Centauri star system then its metallicity and age could be quite different to that of Alpha Centauri A and B. Through comparing Proxima Centauri to other similar stars it was estimated that it had a lower metallicity, ranging from less than a third, to about the same, of the Sun's.[10][11]
  3. ^ Extrasolar planet names are designated following the International Astronomical Union's naming conventions in alphabetical order according to their respective dates of discovery, with 'Proxima Centauri a' being the star itself.
  4. ^ The density (ρ) is given by the mass divided by the volume. Relative to the Sun, therefore, the density is:
    =
    = 0.122 · 0.154−3 · (1.41 × 103 kg/m3)
    = 33.4 · (1.41 × 103 kg/m3)
    = 4.71 × 104 kg/m3

    where is the average solar density. See:

    • Munsell, Kirk; Smith, Harman; Davis, Phil; Harvey, Samantha (11 June 2008). "Sun: facts & figures". Solar system exploration. NASA. Archived from the original on 2 January 2008. Retrieved 12 July 2008.
    • Bergman, Marcel W.; Clark, T. Alan; Wilson, William J. F. (2007). Observing projects using Starry Night Enthusiast (8th ed.). Macmillan. pp. 220–221. ISBN 978-1-4292-0074-5.
  5. ^ The standard surface gravity on the Earth is 980.665 cm/s2, for a 'log g' value of 2.992. The difference in logarithms is 5.20 − 2.99 = 2.21, yielding a multiplier of 102.21 = 162. For the Earth's gravity, see:
    • Taylor, Barry N., ed. (2001). The International System of Units (SI) (PDF). United States Department of Commerce: National Institute of Standards and Technology. p. 29. Retrieved 8 March 2012.
  6. ^ The coordinates of the Sun would be diametrically opposite Proxima Centauri, at α=02h 29m 42.9487s, δ=+62° 40′ 46.141″. The absolute magnitude Mv of the Sun is 4.83, so at a parallax π of 0.77199 the apparent magnitude m is given by 4.83 − 5(log10(0.77199) + 1) = 0.40. See: Tayler, Roger John (1994). The Stars: Their Structure and Evolution. Cambridge University Press. p. 16. ISBN 978-0-521-45885-6.
  7. ^ Pale Red Dot is a reference to Pale Blue Dot, a distant photo of Earth taken by Voyager 1.
  8. ^ For a star south of the zenith, the angle to the zenith is equal to the Latitude minus the Declination. The star is hidden from sight when the zenith angle is 90° or more, i.e., below the horizon. Thus, for Proxima Centauri:
    Highest latitude = 90° + (−62.68°) = 27.32°.
    See: Campbell, William Wallace (1899). The elements of practical astronomy. London: Macmillan. pp. 109–110. Retrieved 12 August 2008.

References

[edit]
  1. ^ "Collins English Dictionary". HarperCollins Publishers. Retrieved 30 September 2020.
  2. ^ a b c d e Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  3. ^ a b Samus', N. N; Kazarovets, E. V; Durlevich, O. V; Kireeva, N. N; Pastukhova, E. N (2017). "General catalogue of variable stars". Astronomy Reports. GCVS 5.1. 61 (1): 80. Bibcode:2017ARep...61...80S. doi:10.1134/S1063772917010085. S2CID 125853869.
  4. ^ Bessell, M. S. (1991). "The late-M dwarfs". The Astronomical Journal. 101: 662. Bibcode:1991AJ....101..662B. doi:10.1086/115714.
  5. ^ a b c d e f g h Kervella, P.; Thévenin, F.; Lovis, C. (2017). "Proxima's orbit around α Centauri". Astronomy & Astrophysics. 598: L7. arXiv:1611.03495. Bibcode:2017A&A...598L...7K. doi:10.1051/0004-6361/201629930. ISSN 0004-6361. S2CID 50867264. Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
  6. ^ a b c Benedict, G. Fritz; Chappell, D. W.; Nelan, E.; Jefferys, W. H.; Van Altena, W.; Lee, J.; Cornell, D.; Shelus, P. J. (1999). "Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: detection limits for substellar companions". The Astronomical Journal. 118 (2): 1086–1100. arXiv:astro-ph/9905318. Bibcode:1999AJ....118.1086B. doi:10.1086/300975. S2CID 18099356.
  7. ^ a b c Pineda, J. Sebastian; Youngblood, Allison; France, Kevin (September 2021). "The M-dwarf Ultraviolet Spectroscopic Sample. I. Determining Stellar Parameters for Field Stars". The Astrophysical Journal. 918 (1): 23. arXiv:2106.07656. Bibcode:2021ApJ...918...40P. doi:10.3847/1538-4357/ac0aea. S2CID 235435757. 40.
  8. ^ a b c Ségransan, Damien; Kervella, Pierre; Forveille, Thierry; Queloz, Didier (2003). "First radius measurements of very low mass stars with the VLTI". Astronomy and Astrophysics. 397 (3): L5–L8. arXiv:astro-ph/0211647. Bibcode:2003A&A...397L...5S. doi:10.1051/0004-6361:20021714. S2CID 10748478.
  9. ^ Schlaufman, K. C.; Laughlin, G. (September 2010). "A physically-motivated photometric calibration of M dwarf metallicity". Astronomy and Astrophysics. 519: A105. arXiv:1006.2850. Bibcode:2010A&A...519A.105S. doi:10.1051/0004-6361/201015016. S2CID 119260592.
  10. ^ Passegger, Vera Maria; Wende-von Berg, Sebastian; Reiners, Ansgar (March 2016). "Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models. I. Parameter accuracy and benchmark stars". Astronomy & Astrophysics. 587. A19. arXiv:1709.03560. Bibcode:2016A&A...587A..19P. doi:10.1051/0004-6361/201322261. ISSN 0004-6361. S2CID 10458151.
  11. ^ a b Feng, F.; Jones, H. R. A. (January 2018). "Was Proxima captured by Alpha Centauri A and B?". Monthly Notices of the Royal Astronomical Society. 473 (3): 3185−3189. arXiv:1709.03560. Bibcode:2018MNRAS.473.3185F. doi:10.1093/mnras/stx2576. S2CID 55711316.
  12. ^ a b Klein, Baptiste; et al. (January 2021). "The large-scale magnetic field of Proxima Centauri near activity maximum". Monthly Notices of the Royal Astronomical Society. 500 (2): 1844–1850. arXiv:2010.14311. Bibcode:2021MNRAS.500.1844K. doi:10.1093/mnras/staa3396.
  13. ^ Collins, John M.; Jones, Hugh R. A.; Barnes, John R. (June 2017). "Calculations of periodicity from Hα profiles of Proxima Centauri". Astronomy & Astrophysics. 602. A48. arXiv:1608.07834. Bibcode:2017A&A...602A..48C. doi:10.1051/0004-6361/201628827. S2CID 18949162. See section 4: "the vsini is probably less than 0.1 km/s for Proxima Centauri".
  14. ^ a b c Kervella, Pierre; Thevenin, Frederic (15 March 2003). "A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars". European Southern Observatory. Retrieved 10 May 2016.
  15. ^ "Proxima centauri". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 28 April 2022.—some of the data is located under "Measurements".
  16. ^ a b c d e Faria, J. P.; Suárez Mascareño, A.; Figueira, P.; Silva, A. M.; Damasso, M.; Demangeon, O.; Pepe, F.; Santos, N. C.; Rebolo, R.; Cristiani, S.; Adibekyan, V.; Alibert, Y.; Allart, R.; Barros, S. C. C.; Cabral, A.; D’Odorico, V.; Di Marcantonio, P.; Dumusque, X.; Ehrenreich, D.; González Hernández, J. I.; Hara, N.; Lillo-Box, J.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, N. J.; Pallé, E.; Poretti, E.; Sousa, S. G.; Sozzetti, A.; Tabernero, H.; Udry, S.; Zapatero Osorio, M. R. (2022). "A candidate short-period sub-Earth orbiting Proxima Centauri" (PDF). Astronomy & Astrophysics. 658. EDP Sciences: A115. arXiv:2202.05188. Bibcode:2022A&A...658A.115F. doi:10.1051/0004-6361/202142337.
  17. ^ a b Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem; Giacobbe, Paolo; Sozzetti, Alessandro; Morbidelli, Alessandro; Pojmanski, Grzegorz; Barbato, Domenico; Butler, R. Paul; Jones, Hugh R. A.; Hambsch, Franz-Josef; Jenkins, James S.; López-González, María José; Morales, Nicolás; Peña Rojas, Pablo A.; Rodríguez-López, Cristina; Rodríguez, Eloy; Amado, Pedro J.; Anglada, Guillem; Feng, Fabo; Gómez, Jose F. (15 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances. 6 (3). eaax7467. Bibcode:2020SciA....6.7467D. doi:10.1126/sciadv.aax7467. PMC 6962037. PMID 31998838.
  18. ^ a b Benedict, G. Fritz; McArthur, Barbara E. (16 June 2020). "A Moving Target—Revising the Mass of Proxima Centauri c". Research Notes of the AAS. 4 (6): 86. Bibcode:2020RNAAS...4...86B. doi:10.3847/2515-5172/ab9ca9. S2CID 225798015.
  19. ^ a b Howard, Ward S.; Tilley, Matt A.; Corbett, Hank; Youngblood, Allison; Loyd, R. O. Parke; Ratzloff, Jeffrey K.; Law, Nicholas M.; Fors, Octavi; Del Ser, Daniel; Shkolnik, Evgenya L.; Ziegler, Carl; Goeke, Erin E.; Pietraallo, Aaron D.; Haislip, Joshua (2018). "The First Naked-eye Superflare Detected from Proxima Centauri". The Astrophysical Journal. 860 (2): L30. arXiv:1804.02001. Bibcode:2018ApJ...860L..30H. doi:10.3847/2041-8213/aacaf3. S2CID 59127420.
  20. ^ Mascareño, A. Suárez; Rebolo, R.; González Hernández, J. I. (October 2016). "Magnetic cycles and rotation periods of late-type stars from photometric time series". Astronomy & Astrophysics. 595: A12. arXiv:1607.03049. Bibcode:2016A&A...595A..12S. doi:10.1051/0004-6361/201628586. S2CID 118555782. Retrieved 30 November 2021.
  21. ^ Czysz, Paul A.; Bruno, Claudio (2009). Future Spacecraft Propulsion Systems: Enabling Technologies for Space Exploration. Springer Berlin Heidelberg. p. 36. ISBN 9783540888147.
  22. ^ Kamper, K. W.; Wesselink, A. J. (1978). "Alpha and Proxima Centauri". Astronomical Journal. 83: 1653–1659. Bibcode:1978AJ.....83.1653K. doi:10.1086/112378.
  23. ^ Binney, James; Tremaine, Scott (1987). Galactic dynamics. Princeton, New Jersey: Princeton University Press. p. 8. ISBN 978-0-691-08445-9.
  24. ^ Leggett, S. K. (1992). "Infrared colors of low-mass stars". Astrophysical Journal Supplement Series. 82 (1): 351–394, 357. Bibcode:1992ApJS...82..351L. doi:10.1086/191720.
  25. ^ Queloz, Didier (29 November 2002). "How Small are Small Stars Really?". European Southern Observatory. Retrieved 5 September 2016.
  26. ^ Zurlo, A.; Gratton, R.; Mesa, D.; Desidera, S.; Enia, A.; Sahu, K.; Almenara, J. -M.; Kervella, P.; Avenhaus, H.; Girard, J.; Janson, M.; Lagadec, E.; Langlois, M.; Milli, J.; Perrot, C.; Schlieder, J. -E.; Thalmann, C.; Vigan, A.; Giro, E.; Gluck, L.; Ramos, J.; Roux, A. (2018). "The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event". Monthly Notices of the Royal Astronomical Society. 480 (1): 236. arXiv:1807.01318. Bibcode:2018MNRAS.480..236Z. doi:10.1093/mnras/sty1805. S2CID 118971274.
  27. ^ Zombeck, Martin V. (2007). Handbook of space astronomy and astrophysics (Third ed.). Cambridge, UK: Cambridge University Press. pp. 109. ISBN 978-0-521-78242-5.
  28. ^ Benedict, G. F.; McArthur, B.; Nelan, E.; Story, D.; Whipple, A. L.; Shelus, P. J.; Jefferys, W. H.; Hemenway, P. D.; Franz, Otto G. (1998). "Photometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: a search for periodic variations". The Astronomical Journal. 116 (1): 429–439. arXiv:astro-ph/9806276. Bibcode:1998AJ....116..429B. doi:10.1086/300420. S2CID 15880053.
  29. ^ Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.; Esposito, M. (September 2015). "Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators". Monthly Notices of the Royal Astronomical Society. 452 (3): 2745–2756. arXiv:1506.08039. Bibcode:2015MNRAS.452.2745S. doi:10.1093/mnras/stv1441. S2CID 119181646.
  30. ^ a b c Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (23 June 2022). "Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry". The Astronomical Journal. 164:84 (3) (published 8 August 2022): 18pp. arXiv:2207.13524. Bibcode:2022AJ....164...84A. doi:10.3847/1538-3881/ac7ce6.
  31. ^ Yadav, Rakesh K.; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja (December 2016). "Magnetic Cycles in a Dynamo Simulation of Fully Convective M-star Proxima Centauri". The Astrophysical Journal Letters. 833 (2): 6. arXiv:1610.02721. Bibcode:2016ApJ...833L..28Y. doi:10.3847/2041-8213/833/2/L28. S2CID 54849623. L28.
  32. ^ a b Adams, Fred C.; Laughlin, Gregory; Graves, Genevieve J. M. Red dwarfs and the end of the main sequence (PDF). Gravitational collapse: from massive stars to planets. Revista Mexicana de Astronomía y Astrofísica. pp. 46–49. Archived from the original (PDF) on 11 July 2019. Retrieved 24 June 2008.
  33. ^ a b MacGregor, Meredith A.; Weinberger, Alycia J.; Parke Loyd, R. O.; Shkolnik, Evgenya; Barclay, Thomas; Howard, Ward S.; Zic, Andrew; Osten, Rachel A.; Cranmer, Steven R.; Kowalski, Adam F.; Lenc, Emil; Youngblood, Allison; Estes, Anna; Wilner, David J.; Forbrich, Jan; Hughes, Anna; Law, Nicholas M.; Murphy, Tara; Boley, Aaron; Matthews, Jaymie (2021). "Discovery of an Extremely Short Duration Flare from Proxima Centauri Using Millimeter through Far-ultraviolet Observations". The Astrophysical Journal Letters. 911 (2): L25. arXiv:2104.09519. Bibcode:2021ApJ...911L..25M. doi:10.3847/2041-8213/abf14c. S2CID 233307258.
  34. ^ Howard, Ward S.; MacGregor, Meredith A.; Osten, Rachel; Forbrich, Jan; Cranmer, Steven R.; Tristan, Isaiah; Weinberger, Alycia J.; Youngblood, Allison; Barclay, Thomas; Parke Loyd, R. O.; Shkolnik, Evgenya L.; Zic, Andrew; Wilner, David J. (2022), "The Mouse That Squeaked: A Small Flare from Proxima Cen Observed in the Millimeter, Optical, and Soft X-Ray with Chandra and ALMA", The Astrophysical Journal, 938 (2): 103, arXiv:2209.05490, Bibcode:2022ApJ...938..103H, doi:10.3847/1538-4357/ac9134, S2CID 252211788
  35. ^ a b c Guedel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L. (2004). "Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton". Astronomy and Astrophysics. 416 (2): 713–732. arXiv:astro-ph/0312297. Bibcode:2004A&A...416..713G. doi:10.1051/0004-6361:20031471. S2CID 7725125.
  36. ^ "Proxima Centauri: the nearest star to the Sun". Harvard-Smithsonian Center for Astrophysics. 30 August 2006. Retrieved 9 July 2007.
  37. ^ E. F., Guinan; Morgan, N. D. (1996). "Proxima Centauri: rotation, chromospheric activity, and flares". Bulletin of the American Astronomical Society. 28: 942. Bibcode:1996AAS...188.7105G.
  38. ^ Wargelin, Bradford J.; Drake, Jeremy J. (2002). "Stringent X-ray constraints on mass loss from Proxima Centauri". The Astrophysical Journal. 578 (1): 503–514. Bibcode:2002ApJ...578..503W. doi:10.1086/342270.
  39. ^ a b Wood, B. E.; Linsky, J. L.; Müller, H.-R.; Zank, G. P. (2001). "Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using Hubble Space Telescope Lyα spectra". The Astrophysical Journal. 547 (1): L49–L52. arXiv:astro-ph/0011153. Bibcode:2001ApJ...547L..49W. doi:10.1086/318888. S2CID 118537213.
  40. ^ Stauffer, J. R.; Hartmann, L. W. (1986). "Chromospheric activity, kinematics, and metallicities of nearby M dwarfs". Astrophysical Journal Supplement Series. 61 (2): 531–568. Bibcode:1986ApJS...61..531S. doi:10.1086/191123.
  41. ^ Pulliam, Christine (12 October 2016). "Proxima Centauri Might Be More Sunlike Than We Thought". Smithsonian Insider. Retrieved 7 July 2020.
  42. ^ Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D. (2007). "A possible activity cycle in Proxima Centauri". Astronomy and Astrophysics. 461 (3): 1107–1113. arXiv:astro-ph/0703514. Bibcode:2007A&A...461.1107C. doi:10.1051/0004-6361:20066027. S2CID 14672316.
  43. ^ Wood, B. E.; Linsky, J. L.; Muller, H.-R.; Zank, G. P. (2000). "Observational estimates for the mass-loss rates of Alpha Centauri and Proxima Centauri using Hubble Space Telescope Lyman-alpha spectra". Astrophysical Journal. 537 (2): L49–L52. arXiv:astro-ph/0011153. Bibcode:2000ApJ...537..304W. doi:10.1086/309026. S2CID 119332314.
  44. ^ Adams, Fred C. & Laughlin, Gregory (1997). "A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects". Reviews of Modern Physics. 69 (2): 337–372. arXiv:astro-ph/9701131. Bibcode:1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337. S2CID 12173790.
  45. ^ Kroupa, Pavel (1995). "The dynamical properties of stellar systems in the Galactic disc". MNRAS. 277 (4): 1507–1521. arXiv:astro-ph/9508084. Bibcode:1995MNRAS.277.1507K. doi:10.1093/mnras/277.4.1507. S2CID 15557806.
  46. ^ a b Wertheimer, Jeremy G.; Laughlin, Gregory (2006). "Are Proxima and α Centauri gravitationally bound?". The Astronomical Journal. 132 (5): 1995–1997. arXiv:astro-ph/0607401. Bibcode:2006AJ....132.1995W. doi:10.1086/507771. S2CID 16650143.
  47. ^ Beech, M. (2011). "The Far Distant Future of Alpha Centauri". Journal of the British Interplanetary Society. 64: 387–395. Bibcode:2011JBIS...64..387B.
  48. ^ Lurie, John C.; Henry, Todd J.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Ianna, Philip A.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P. (2014). "The Solar neighborhood. XXXIV. A search for planets orbiting nearby M dwarfs using astrometry". The Astronomical Journal. 148 (5): 91. arXiv:1407.4820. Bibcode:2014AJ....148...91L. doi:10.1088/0004-6256/148/5/91. S2CID 118492541.
  49. ^ Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J.; Hoeg, E.; Bastian, U.; Bernacca, P. L.; Crézé, M.; Donati, F.; Grenon, M.; Grewing, M.; van Leeuwen, F.; van der Marel, H.; Mignard, F.; Murray, C. A.; Le Poole, R. S.; Schrijver, H.; Turon, C.; Arenou, F.; Froeschlé, M.; Petersen, C. S. (July 1997). "The Hipparcos catalogue". Astronomy and Astrophysics. 323: L49–L52. Bibcode:1997A&A...323L..49P.
  50. ^ Van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  51. ^ Kirkpatrick, J. D.; Davy, J.; Monet, David G.; Reid, I. Neill; Gizis, John E.; Liebert, James; Burgasser, Adam J. (2001). "Brown dwarf companions to G-type stars. I: Gliese 417B and Gliese 584C". The Astronomical Journal. 121 (6): 3235–3253. arXiv:astro-ph/0103218. Bibcode:2001AJ....121.3235K. doi:10.1086/321085. S2CID 18515414.
  52. ^ Williams, D. R. (10 February 2006). "Moon Fact Sheet". Lunar & Planetary Science. NASA. Retrieved 12 October 2007.
  53. ^ Benedict, G. F.; Mcarthur, B.; Nelan, E.; Story, D.; Jefferys, W. H.; Wang, Q.; Shelus, P. J.; Hemenway, P. D.; Mccartney, J.; Van Altena, Wm. F.; Duncombe, R.; Franz, O. G.; Fredrick, L. W. Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri (PDF). Proceedings of the HST calibration workshop. pp. 380–384. Retrieved 11 July 2007.
  54. ^ García-Sánchez, J.; Weissman, P. R.; Preston, R. A.; Jones, D. L.; Lestrade, J.-F.; Latham, . W.; Stefanik, R. P.; Paredes, J. M. (2001). "Stellar encounters with the solar system" (PDF). Astronomy and Astrophysics. 379 (2): 634–659. Bibcode:2001A&A...379..634G. doi:10.1051/0004-6361:20011330.
  55. ^ Bobylev, V. V. (March 2010). "Searching for stars closely encountering with the solar system". Astronomy Letters. 36 (3): 220–226. arXiv:1003.2160. Bibcode:2010AstL...36..220B. doi:10.1134/S1063773710030060. S2CID 118374161.
  56. ^ Bailer-Jones, C. A. L. (March 2015). "Close encounters of the stellar kind". Astronomy & Astrophysics. 575: 13. arXiv:1412.3648. Bibcode:2015A&A...575A..35B. doi:10.1051/0004-6361/201425221. S2CID 59039482. A35.
  57. ^ Allen, C.; Herrera, M. A. (1998). "The galactic orbits of nearby UV Ceti stars". Revista Mexicana de Astronomía y Astrofísica. 34: 37–46. Bibcode:1998RMxAA..34...37A.
  58. ^ Anosova, J.; Orlov, V. V.; Pavlova, N. A. (1994). "Dynamics of nearby multiple stars. The α Centauri system". Astronomy and Astrophysics. 292 (1): 115–118. Bibcode:1994A&A...292..115A.
  59. ^ a b c d e Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A. L.; de la Cueva, Ignacio; Dreizler, Stefan; Endl, Michael; Giesers, Benjamin; Jeffers, Sandra V.; Jenkins, James S.; Jones, Hugh R. A.; Kiraga, Marcin; Kürster, Martin; López-González, María J.; Marvin, Christopher J.; Morales, Nicolás; Morin, Julien; Nelson, Richard P.; Ortiz, José L.; Ofir, Aviv; Paardekooper, Sijme-Jan; Reiners, Ansgar; Rodríguez, Eloy; Rodríguez-López, Cristina; Sarmiento, Luis F.; Strachan, John P.; Tsapras, Yiannis; Tuomi, Mikko; Zechmeister, Mathias (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature. 536 (7617): 437–440. arXiv:1609.03449. Bibcode:2016Natur.536..437A. doi:10.1038/nature19106. PMID 27558064. S2CID 4451513.
  60. ^ Li, Yiting; Stefansson, Gudmundur; Robertson, Paul; Monson, Andrew; Cañas, Caleb; Mahadevan, Suvrath (14 December 2017). "A Candidate Transit Event around Proxima Centauri". Research Notes of the AAS. 1 (1). 49. arXiv:1712.04483. Bibcode:2017RNAAS...1...49L. doi:10.3847/2515-5172/aaa0d5. S2CID 119034883.
  61. ^ Kervella, Pierre; Arenou, Frédéric; Schneider, Jean (2020). "Orbital inclination and mass of the exoplanet candidate Proxima c". Astronomy & Astrophysics. 635: L14. arXiv:2003.13106. Bibcode:2020A&A...635L..14K. doi:10.1051/0004-6361/202037551. ISSN 0004-6361. S2CID 214713486.
  62. ^ a b Suárez Mascareño, A.; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; González Hernández, J. I.; Rebolo, R.; Cristiano, S.; Pepe, F.; Santos, N. C.; Zapatero Osorio, M. R.; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas, F.; Abreu, M. (2020). "Revisiting Proxima with ESPRESSO". Astronomy & Astrophysics. 639: A77. arXiv:2005.12114. Bibcode:2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. ISSN 0004-6361.
  63. ^ "Proxima Centauri c". Extrasolar Planets Encyclopaedia. Retrieved 30 July 2022.
  64. ^ Kürster, M.; Hatzes, A. P.; Cochran, W. D.; Döbereiner, S.; Dennerl, K.; Endl, M. (1999). "Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion". Astronomy & Astrophysics Letters. 344: L5–L8. arXiv:astro-ph/9903010. Bibcode:1999A&A...344L...5K.
  65. ^ Saar, Steven H.; Donahue, Robert A. (1997). "Activity-related Radial Velocity Variation in Cool Stars" (PDF). Astrophysical Journal. 485 (1): 319–326. Bibcode:1997ApJ...485..319S. doi:10.1086/304392. S2CID 17628232. Archived from the original (PDF) on 9 March 2019.
  66. ^ Schultz, A. B.; Hart, H. M.; Hershey, J. L.; Hamilton, F. C.; Kochte, M.; Bruhweiler, F. C.; Benedict, G. F.; Caldwell, John; Cunningham, C.; Wu, Nailong; Franz, O. G.; Keyes, C. D.; Brandt, J. C. (1998). "A possible companion to Proxima Centauri". Astronomical Journal. 115 (1): 345–350. Bibcode:1998AJ....115..345S. doi:10.1086/300176. S2CID 120356725.
  67. ^ Schroeder, Daniel J.; Golimowski, David A.; Brukardt, Ryan A.; Burrows, Christopher J.; Caldwell, John J.; Fastie, William G.; Ford, Holland C.; Hesman, Brigette; Kletskin, Ilona; Krist, John E.; Royle, Patricia; Zubrowski, Richard. A. (2000). "A Search for Faint Companions to Nearby Stars Using the Wide Field Planetary Camera 2". The Astronomical Journal. 119 (2): 906–922. Bibcode:2000AJ....119..906S. doi:10.1086/301227.
  68. ^ Lurie, John C.; Henry, Todd J.; Jao, Wei-Chun; Quinn, Samuel N.; Winters, Jennifer G.; Ianna, Philip A.; Koerner, David W.; Riedel, Adric R.; Subasavage, John P. (November 2014). "The Solar Neighborhood. XXXIV. a Search for Planets Orbiting Nearby M Dwarfs Using Astrometry". The Astronomical Journal. 148 (5): 12. arXiv:1407.4820. Bibcode:2014AJ....148...91L. doi:10.1088/0004-6256/148/5/91. S2CID 118492541. 91.
  69. ^ Anglada, Guillem; Amado, Pedro J; Ortiz, Jose L; Gómez, José F; Macías, Enrique; Alberdi, Antxon; Osorio, Mayra; Gómez, José L; de Gregorio-Monsalvo, Itziar; Pérez-Torres, Miguel A; Anglada-Escudé, Guillem; Berdiñas, Zaira M; Jenkins, James S; Jimenez-Serra, Izaskun; Lara, Luisa M; López-González, Maria J; López-Puertas, Manuel; Morales, Nicolas; Ribas, Ignasi; Richards, Anita M. S; Rodríguez-López, Cristina; Rodriguez, Eloy (2017). "ALMA Discovery of Dust Belts Around Proxima Centauri". The Astrophysical Journal. 850 (1): L6. arXiv:1711.00578. Bibcode:2017ApJ...850L...6A. doi:10.3847/2041-8213/aa978b. S2CID 13431834.
  70. ^ "Proxima Centauri's no good, very bad day". Science Daily. 26 February 2018. Retrieved 1 March 2018.
  71. ^ MacGregor, Meredith A.; Weinberger, Alycia J.; Wilner, David J.; Kowalski, Adam F.; Cranmer, Steven R. (2018). "Detection of a Millimeter Flare From Proxima Centauri". Astrophysical Journal Letters. 855 (1): L2. arXiv:1802.08257. Bibcode:2018ApJ...855L...2M. doi:10.3847/2041-8213/aaad6b. S2CID 119287614.
  72. ^ Chang, Kenneth (24 August 2016). "One star over, a planet that might be another Earth". New York Times. Retrieved 24 August 2016.
  73. ^ Knapton, Sarah (24 August 2016). "Proxima b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system". The Telegraph. Telegraph Media Group. Archived from the original on 12 January 2022. Retrieved 24 August 2016.
  74. ^ "Proxima b is our neighbor ... better get used to it!". Pale Red Dot. 24 August 2016. Archived from the original on 13 May 2020. Retrieved 24 August 2016.
  75. ^ Aron, Jacob. August 24, 2016. Proxima b: Closest Earth-like planet discovered right next door. New Scientist. Retrieved August 24, 2016.
  76. ^ "Follow a Live Planet Hunt!". European Southern Observatory. 15 January 2016. Retrieved 24 August 2016.
  77. ^ Feltman, Rachel (24 August 2016). "Scientists say they've found a planet orbiting Proxima Centauri, our closest neighbor". The Washington Post.
  78. ^ Mathewson, Samantha (24 August 2016). "Proxima b By the Numbers: Possibly Earth-Like World at the Next Star Over". Space.com. Retrieved 25 August 2016.
  79. ^ Witze, Alexandra (24 August 2016). "Earth-sized planet around nearby star is astronomy dream come true". Nature. 536 (7617): 381–382. Bibcode:2016Natur.536..381W. doi:10.1038/nature.2016.20445. PMID 27558041.
  80. ^ Liu, Hui-Gen; Jiang, Peng; Huang, Xingxing; Yu, Zhou-Yi; Yang, Ming; Jia, Minghao; Awiphan, Supachai; Pan, Xiang; Liu, Bo; Zhang, Hongfei; Wang, Jian; Li, Zhengyang; Du, Fujia; Li, Xiaoyan; Lu, Haiping; Zhang, Zhiyong; Tian, Qi-Guo; Li, Bin; Ji, Tuo; Zhang, Shaohua; Shi, Xiheng; Wang, Ji; Zhou, Ji-Lin; Zhou, Hongyan (January 2018). "Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result". The Astronomical Journal. 155 (1): 10. arXiv:1711.07018. Bibcode:2018AJ....155...12L. doi:10.3847/1538-3881/aa9b86. S2CID 54773928. 12.
  81. ^ a b Billings, Lee (12 April 2019). "A Second Planet May Orbit Earth's Nearest Neighboring Star". Scientific American. Retrieved 12 April 2019.
  82. ^ a b c Wall, Mike (12 April 2019). "Possible 2nd Planet Spotted Around Proxima Centauri". Space.com. Retrieved 12 April 2019.
  83. ^ Benedict, Fritz (2 June 2020). "Texas Astronomer Uses 25-year-old Hubble Data to Confirm Planet Proxima Centauri c". McDonald Observatory. University of Texas.
  84. ^ Gratton, R.; Zurlo, A.; Le Coroller, H.; Damasso, M.; Del Sordo, F.; Langlois, M.; Mesa, D.; Milli, J.; Chauvin, G.; Desidera, S.; Hagelberg, J.; Lagadec, E.; Vigan, A.; Boccaletti, A.; Bonnefoy, M.; Brandner, W.; Brown, S.; Cantalloube, F.; Delorme, P.; D'Orazi, V.; Feldt, M.; Galicher, R.; Henning, T.; Janson, M.; Kervella, P.; Lagrange, A. -M.; Lazzoni, C.; Ligi, R.; Maire, A. -L.; Ménard, F.; Meyer, M.; Mugnier, L.; Potier, A.; Rickman, E. L.; Rodet, L.; Romero, C.; Schmidt, T.; Sissa, E.; Sozzetti, A.; Szulágyi, J.; Wahhaj, Z.; Antichi, J.; Fusco, T.; Stadler, E.; Suarez, M.; Wildi, F. (June 2020). "Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT". Astronomy & Astrophysics. 638: A120. arXiv:2004.06685. Bibcode:2020A&A...638A.120G. doi:10.1051/0004-6361/202037594. S2CID 215754278.
  85. ^ Endl, M.; Kuerster, M.; Rouesnel, F.; Els, S.; Hatzes, A. P.; Cochran, W. D. (18–21 June 2002). Deming, Drake (ed.). Extrasolar terrestrial planets: can we detect them already?. Conference Proceedings, Scientific Frontiers in Research on Extrasolar Planets. Washington, DC. pp. 75–79. arXiv:astro-ph/0208462. Bibcode:2003ASPC..294...75E.
  86. ^ Tarter, Jill C.; Mancinelli, Rocco L.; Aurnou, Jonathan M.; Backman, Dana E.; Basri, Gibor S.; Boss, Alan P.; Clarke, Andrew; Deming, Drake (2007). "A reappraisal of the habitability of planets around M dwarf stars". Astrobiology. 7 (1): 30–65. arXiv:astro-ph/0609799. Bibcode:2007AsBio...7...30T. doi:10.1089/ast.2006.0124. PMID 17407403. S2CID 10932355.
  87. ^ Alpert, Mark (November 2005). "Red star rising". Scientific American. 293 (5): 28. Bibcode:2005SciAm.293e..28A. doi:10.1038/scientificamerican1105-28. PMID 16318021.
  88. ^ Ward, Peter D.; Brownlee, Donald (2000). Rare Earth: why complex life is uncommon in the universe. Springer Publishing. ISBN 978-0-387-98701-9.
  89. ^ Khodachenko, Maxim L.; Lammer, Helmut; Grießmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K. (2007). "Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones". Astrobiology. 7 (1): 167–184. Bibcode:2007AsBio...7..167K. doi:10.1089/ast.2006.0127. PMID 17407406.
  90. ^ O'Callaghan, Jonathan (18 December 2020). "Alien Hunters Discover Mysterious Radio Signal from Proxima Centauri". Scientific American. Retrieved 19 December 2020.
  91. ^ Witze, Alexandra (25 October 2021). "Mysterious 'alien beacon' was false alarm". Nature. 599 (7883): 20–21. Bibcode:2021Natur.599...20W. doi:10.1038/d41586-021-02931-7. PMID 34697482. S2CID 239887089.
  92. ^ Innes, R. T. A. (October 1915). "A Faint Star of Large Proper Motion". Circular of the Union Observatory Johannesburg. 30: 235–236. Bibcode:1915CiUO...30..235I. This is the original Proxima Centauri discovery paper.
  93. ^ a b Glass, I. S. (July 2007). "The discovery of the nearest star". African Skies. 11: 39. Bibcode:2007AfrSk..11...39G.
  94. ^ Queloz, Didier (29 November 2002). "How Small are Small Stars Really?". European Southern Observatory. eso0232; PR 22/02. Retrieved 29 January 2018.
  95. ^ a b Alden, Harold L. (1928). "Alpha and Proxima Centauri". Astronomical Journal. 39 (913): 20–23. Bibcode:1928AJ.....39...20A. doi:10.1086/104871.
  96. ^ Innes, R. T. A. (September 1917). "Parallax of the Faint Proper Motion Star Near Alpha of Centaurus. 1900. R.A. 14h22m55s.-0s 6t. Dec-62° 15'2 0'8 t". Circular of the Union Observatory Johannesburg. 40: 331–336. Bibcode:1917CiUO...40..331I.
  97. ^ Voûte, J. (1917). "A 13th magnitude star in Centaurus with the same parallax as α Centauri". Monthly Notices of the Royal Astronomical Society. 77 (9): 650–651. Bibcode:1917MNRAS..77..650V. doi:10.1093/mnras/77.9.650.
  98. ^ Plaskett, J. S. (1922). "The Dimensions of the Stars". Publications of the Astronomical Society of the Pacific. 34 (198): 79–93. Bibcode:1922PASP...34...79P. doi:10.1086/123157. ISSN 0004-6280. JSTOR 40668597.
  99. ^ Shapley, Harlow (1951). "Proxima Centauri as a flare star". Proceedings of the National Academy of Sciences of the United States of America. 37 (1): 15–18. Bibcode:1951PNAS...37...15S. doi:10.1073/pnas.37.1.15. PMC 1063292. PMID 16588985.
  100. ^ Kroupa, Pavel; Burman, R. R.; Blair, D. G. (1989). "Photometric observations of flares on Proxima Centauri". PASA. 8 (2): 119–122. Bibcode:1989PASA....8..119K. doi:10.1017/S1323358000023122. S2CID 117977034.
  101. ^ Haisch, Bernhard; Antunes, A.; Schmitt, J. H. M. M. (1995). "Solar-like M-class X-ray flares on Proxima Centauri observed by the ASCA satellite". Science. 268 (5215): 1327–1329. Bibcode:1995Sci...268.1327H. doi:10.1126/science.268.5215.1327. PMID 17778978. S2CID 46660210.
  102. ^ "Proxima Centauri UV flux distribution". ESA & The Astronomical Data Centre at CAB. Retrieved 11 July 2007.
  103. ^ Kaler, James B. (7 November 2016). "Rigil Kentaurus". STARS. University of Illinois. Retrieved 3 August 2008.
  104. ^ Sherrod, P. Clay; Koed, Thomas L. (2003). A complete manual of amateur astronomy: tools and techniques for astronomical observations. Courier Dover Publications. ISBN 978-0-486-42820-8.
  105. ^ "IAU Working Group on Star Names (WGSN)". International Astronomical Union. Retrieved 22 May 2016.
  106. ^ "Naming Stars". International Astronomical Union. Retrieved 3 March 2018.
  107. ^ "Seeing Stars in 3D: The New Horizons Parallax Program". pluto.jhuapl.edu. Johns Hopkins University Applied Physics Laboratory. 29 January 2020. Retrieved 25 May 2020.
  108. ^ "Parallax measurements for Wolf 359 and Proxima Centauri". German Aerospace Center. Retrieved 19 January 2021.
  109. ^ Gilster, Paul (2004). Centauri dreams: imagining and planning. Springer. ISBN 978-0-387-00436-5.
  110. ^ Crawford, I. A. (September 1990). "Interstellar Travel: A Review for Astronomers". Quarterly Journal of the Royal Astronomical Society. 31: 377–400. Bibcode:1990QJRAS..31..377C.
  111. ^ Peat, Chris. "Spacecraft escaping the Solar System". Heavens Above. Retrieved 25 December 2016.
  112. ^ a b Beals, K. A.; Beaulieu, M.; Dembia, F. J.; Kerstiens, J.; Kramer, D. L.; West, J. R.; Zito, J. A. (1988). "Project Longshot, an Unmanned Probe to Alpha Centauri" (PDF). NASA-CR-184718. U. S. Naval Academy. Retrieved 13 June 2008.
  113. ^ Merali, Zeeya (27 May 2016). "Shooting for a star". Science. 352 (6289): 1040–1041. doi:10.1126/science.352.6289.1040. PMID 27230357.
  114. ^ Heller, René; Hippke, Michael (11 July 2023). "Full braking at Alpha Centauri". Max-Planck-Gesellschaft. Retrieved 3 December 2023.
  115. ^ Popkin, Gabriel (2 February 2017). "What it would take to reach the stars". Nature. 542 (7639): 20–22. Bibcode:2017Natur.542...20P. doi:10.1038/542020a. PMID 28150784.

Further reading

[edit]
[edit]