Jump to content

Torbern Bergman

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Yakikaki (talk | contribs) at 20:38, 25 February 2024 (External links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Torbern Bergman
Portrait by Ulrika Pasch
Born
Torbern Olaf Bergman

(1735-03-20)20 March 1735
Katrineberg, Låstad parish, Sweden
Died8 July 1784(1784-07-08) (aged 49)
Medevi, Sweden
NationalitySwedish
Alma materUniversity of Uppsala
Known forChemical affinity tables
SpouseMargareta Catharina Trast
Scientific career
FieldsChemist and mineralogist
InstitutionsUniversity of Uppsala
Doctoral advisorBengt Ferrner
Doctoral studentsJohann Afzelius

Torbern Olaf (Olof) Bergman (KVO) (20 March 1735 – 8 July 1784) was a Swedish chemist and mineralogist noted for his 1775 Dissertation on Elective Attractions, containing the largest chemical affinity tables ever published. Bergman was the first chemist to use the A, B, C, etc., system of notation for chemical species.

Early life and education

Torbern was born on 20 March 1735, the son of Barthold Bergman and Sara Hägg. He enrolled at the University of Uppsala at age 17. His father wished him to read either law or divinity, while he himself was anxious to study mathematics and natural science; in the effort to please both himself and his father, he overworked himself and harmed his health. During a period of enforced abstinence from study, he amused himself with field botany and entomology. He was able to send Linnaeus specimens of several new kinds of insects, and in 1756 he succeeded in proving that, contrary to the opinion of that naturalist, the so-called Coccus aquaticus was really the ovum of a kind of leech.[1] He returned to the university in 1758, and received his PhD in that year.

Career

Alchemical symbols in Bergman's 1775 Dissertation on Elective Affinities

Bergman lectured at the University of Uppsala on physics and mathematics, publishing papers on the rainbow, the aurora, the pyroelectric phenomena of tourmaline.[1] Upon the resignation of the celebrated Johan Wallerius, Bergman was a candidate for the professorship of chemistry and mineralogy. His competitors charged him with ignorance of the subject, because he had never written on it. To refute them, he shut himself up for some time in a laboratory, and prepared a treatise on the manufacture of alum, which became a standard work. Thanks to the influence of Gustav III, then crown prince and chancellor of the university, he was appointed a professor of chemistry, and remained at this position for the rest of his life.[1]

Bergman greatly contributed to the advancement of quantitative analysis, and he developed a mineral classification scheme based on chemical characteristics and appearance. He is noted for his research on the chemistry of metals, especially bismuth and nickel.

In 1764, Bergman was elected a member of the Royal Swedish Academy of Sciences. In April 1765 he was elected a Fellow of the Royal Society of London.[2] In 1773 he was elected a member of the American Philosophical Society.[3] In March 1782, he was elected Foreign Associate of the French Academy of Sciences.[4]

In 1771, six years after he first discovered carbonated water and four years after Joseph Priestley first created artificially carbonated water, Bergman perfected a process to make carbonated water from chalk by the action of sulphuric acid. He is also noted for his sponsorship of Carl Wilhelm Scheele, whom some deem to be Bergman's "greatest discovery". The translation into English of his book Physical and Chemical Essays was read widely and regarded as the first systematic method of chemical analysis.[5]

Personal life

In 1771, Bergman married Margareta Catharina Trast.

Legacy

In Bergman's honour, the uranium mineral torbernite and the lunar crater Bergman both bear his name.

Works

Opuscula physica et chemica, 1779
  • Physick Beskrifning Ofver Jordklotet. 1766.
  • Opuscula physica et chemica (in Latin). Vol. 1. Stockholm: Magnus Swederus. 1779.
  • Bergman, Torbern (1775). A Dissertation on Elective Attractions.
  • Essays, Physical and Chemical. 1779–1781.
  • Historiae chemiae medium seu obscurum aevum (in Italian). Firenze: Giuseppe Tofani. 1782.
  • Tekniska Museet

Notes

  1. ^ a b c Chisholm 1911.
  2. ^ "Library and Archive Catalog". Royal Society. Retrieved 13 December 2010.[permanent dead link]
  3. ^ "APS Member History".
  4. ^ Membres de l'académie du passé
  5. ^ Hamlin, Christopher. (1990) 'A Science of Impurity, water analysis in nineteenth century Britain', University of California Press

References

Further reading

  • Mostrom, Birgitta. (1957). Torbern Bergman: a bibliography of his works. Stockholm: Almqvist & Wiksell. Includes over 300 items, including translations printed up to 1956.
  • Schufle, J.A. (1985). Torbern Bergman : a man before his time. Lawrence, Kan.: Coronado Press.
  • Smeaton, W.A. (1970). "Bergman, Torbern Olaf". Dictionary of Scientific Biography. Vol. 2. New York: Charles Scribner's Sons. ISBN 0-684-10114-9.
  • Johannes Uray, Chemische Theorie und mineralogische Klassifikationssysteme von der chemischen Revolution bis zur Mitte des 19. Jahrhunderts. In: Berhard Hubmann, Elmar Schübl, Johannes Seidl (eds.), Die Anfänge geologischer Forschung in Österreich. Beiträge zur Tagung „10 Jahre Arbeitsgruppe Geschichte der Erdwissenschaften Österreichs" von 24. bis 26. April 2009 in Graz. Graz 2010, S 107–125.