Jump to content

Superconducting nanowire single-photon detector

From Wikipedia, the free encyclopedia
(Redirected from SNSPD)
Scanning electron micrograph of a superconducting nanowire single-photon detector.
False-color scanning electron micrograph of a superconducting nanowire single-photon detector (SNSPD). Image credit: NIST.
Superconducting nanowire single-photon detector in the DARPA Quantum Network laboratory at BBN, June 2005

The superconducting nanowire single-photon detector (SNSPD or SSPD) is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire.[1] It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001.[2][3] The first fully operational prototype was demonstrated in 2005 by the National Institute of Standards and Technology (Boulder), and BBN Technologies as part of the DARPA Quantum Network.[4][5][6][7]

As of 2023, a superconducting nanowire single-photon detector is the fastest single-photon detector (SPD) for photon counting.[8][9][10] It is a key enabling technology for quantum optics and optical quantum technologies. SNSPDs are available with very high detection efficiency, very low dark count rate and very low timing jitter, compared to other types of single-photon detectors. SNSPDs are covered by International Electrotechnical Commission (IEC) international standards.[11] As of 2023, commercial SNSPD devices are available in multichannel systems in a price range of 100,000 euros.

It was recently discovered that superconducting wires as wide as 1.5 μm can detect single infra-red photons.[12][13][14] This is important because optical lithography rather than electron lithography can be used in their construction. This reduces the cost for applications that require large photodetector areas. One application is in dark matter detection experiments, where the target is a scintillating GaAs crystal. GaAs suitably doped with silicon and boron is a luminous cryogenic scintillator that has no apparent afterglow and is available commercially in the form of large, high-quality crystals.[15][16][17]

Principle of operation

[edit]

The SNSPD consists of a thin (≈ 5 nm) and narrow (≈ 100 nm) superconducting nanowire. The length is typically hundreds of micrometers, and the nanowire is patterned in a compact meander geometry to create a square or circular pixel with high detection efficiency. The nanowire is cooled well below its superconducting critical temperature and biased with a DC current that is close to but less than the superconducting critical current of the nanowire. A photon incident on the nanowire breaks Cooper pairs and reduces the local critical current below that of the bias current. This results in the formation of a localized non-superconducting region, or hotspot, with finite electrical resistance. This resistance is typically larger than the 50 ohm input impedance of the readout amplifier, and hence most of the bias current is shunted to the amplifier. This produces a measurable voltage pulse that is approximately equal to the bias current multiplied by 50 ohms. With most of the bias current flowing through the amplifier, the non-superconducting region cools and returns to the superconducting state. The time for the current to return to the nanowire is typically set by the inductive time constant of the nanowire, equal to the kinetic inductance of the nanowire divided by the impedance of the readout circuit.[18] Proper self-resetting of the device requires that this inductive time constant be slower than the intrinsic cooling time of the nanowire hotspot.[19]

While the SNSPD does not match the intrinsic energy or photon-number resolution of the superconducting transition edge sensor, the SNSPD is significantly faster than conventional transition edge sensors and operates at higher temperatures. A degree of photon-number resolution can be achieved in SNSPD arrays,[20] through time-binning[21] or advanced readout schemes.[22] Most SNSPDs are made of sputtered niobium nitride (NbN), which offers a relatively high superconducting critical temperature (≈ 10 K) which enables SNSPD operation in the temperature range 1 K to 4 K (compatible with liquid helium or modern closed-cycle cryocoolers). The intrinsic thermal time constants of NbN are short, giving very fast cooling time after photon absorption (<100 picoseconds).[23]

The absorption in the superconducting nanowire can be boosted by a variety of strategies: integration with an optical cavity,[24] integration with a photonic waveguide[25] or addition of nanoantenna structures.[26] SNSPD cavity devices in NbN, NbTiN, WSi & MoSi have demonstrated fibre-coupled device detection efficiencies greater than 98% at 1550 nm wavelength[27] with count rates in the tens of MHz.[28] The detection efficiencies are optimized for a specific wavelength range in each detector. They vary widely, however, due to highly localized regions of the nanowires where the effective cross-sectional area for superconducting current is reduced.[29] SNSPD devices have also demonstrated exceptionally low jitter – the uncertainty in the photon arrival time – as low as 3 picoseconds at visible wavelengths.[30][31] Timing jitter increases as photon energy drops and has been verified out to 3.5 micrometres wavelength.[32] Timing jitter is an extremely important property for time-correlated single-photon counting (TCSPC)[33] applications. Furthermore, SNSPDs have extremely low rates of dark counts, i.e. the occurrence of voltage pulses in the absence of a detected photon.[34] In addition, the deadtime (time interval following a detection event during which the detector is not sensitive) is on the order of a few nanoseconds, this short deadtime translates into very high saturation count rates and enables antibunching measurements with a single detector.[35]

For the detection of longer wavelength photons, however, the detection efficiency of standard SNSPDs decreases significantly.[36] Recent efforts to improve the detection efficiency at near-infrared and mid-infrared wavelengths include studies of narrower (20 nm and 30 nm wide) NbN nanowires[37] as well as extensive studies of alternative superconducting materials[38] with lower superconducting critical temperatures than NbN (tungsten silicide,[39] niobium silicide,[40] molybdenum silicide[41] and tantalum nitride[42]). Single photon sensitivity up to 10 micrometer wavelength has recently been demonstrated in a tungsten silicide SNSPD.[43] Alternative thin film deposition techniques such as atomic layer deposition are of interest for extending the spectral range and scalability of SNSPDs to large areas.[44] High temperature superconductors have been investigated for SNSPDs[45][46] with some encouraging recent reports.[47][48] SNSPDs have been created from magnesium diboride with some single photon sensitivity in the visible and near infrared.[49][50]

There is considerable interest and effort in scaling up SNSPDs to large multipixel arrays and cameras.[51][52] A kilopixel SNSPD array has recently been reported.[53] A key challenge is readout,[54] which can be addressed via multiplexing[55][56] or digital readout using superconducting single flux quantum logic.[57]

Applications

[edit]

Many of the initial application demonstrations of SNSPDs have been in the area of quantum information,[58] such as quantum key distribution[59] and optical quantum computing.[60][61] Other current and emerging applications include imaging of infrared photoemission for defect analysis in CMOS circuitry,[62] single photon emitter characterization,[63] LIDAR,[64][65][66] on-chip quantum optics,[67][68] optical neuromorphic computing,[69][70] fibre optic temperature sensing,[71] optical time domain reflectometry,[72] readout for ion trap qubits,[73] quantum plasmonics,[74][75] single electron detection,[76] single α and β particle detection,[77] singlet oxygen luminescence detection,[78] deep space optical communication,[79][80] dark matter searches[81] and exoplanet detection.[82] A number of companies worldwide are successfully commercializing complete single-photon detection systems based on superconducting nanowires, including Single Quantum, Photon Spot, Scontel, Quantum Opus, ID Quantique, PhoTec and Pixel Photonics. Wider adoption of SNSPD technology is closely linked to advances in cryocoolers for 4 K and below, and SNSPDs have recently been demonstrated in miniaturized systems.[83][84]

References

[edit]
  1. ^ Natarajan, Chandra M.; Tanner, Michael G.; Hadfield, Robert H. (2012). "Superconducting nanowire single-photon detectors: Physics and applications". Superconductor Science and Technology. 25 (6): 063001. arXiv:1204.5560. Bibcode:2012SuScT..25f3001N. doi:10.1088/0953-2048/25/6/063001. S2CID 4893642.
  2. ^ Semenov, Alex D.; Gol'Tsman, Gregory N.; Korneev, Alexander A. (2001). "Quantum detection by current carrying superconducting film". Physica C: Superconductivity. 351 (4): 349–356. Bibcode:2001PhyC..351..349S. doi:10.1016/S0921-4534(00)01637-3.
  3. ^ Gol'Tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, Roman (2001). "Picosecond superconducting single-photon optical detector". Applied Physics Letters. 79 (6): 705–707. Bibcode:2001ApPhL..79..705G. doi:10.1063/1.1388868.
  4. ^ Chip Elliott, "The DARPA quantum network", Quantum physics of nature. Theory, experiment and interpretation. in collaboration with 6th European QIPC workshop, Austria, 2005.
  5. ^ Martin A. Jaspan, Jonathan L. Habif, Robert H. Hadfield, Sae Woo Nam, "Heralding of telecommunication photon pairs with a superconducting single photon detector", Applied Physics Letters 89(3):031112-031112-3, July 2006.
  6. ^ BBN Technologies, "DARPA Quantum Network Testbed", Final Technical Report, 2007.
  7. ^ Hadfield, Robert H.; Habif, Jonathan L.; Schlafer, John; Schwall, Robert E.; Nam, Sae Woo (2006-12-11). "Quantum key distribution at 1550nm with twin superconducting single-photon detectors". Applied Physics Letters. 89 (24): 241129. Bibcode:2006ApPhL..89x1129H. doi:10.1063/1.2405870. ISSN 0003-6951.
  8. ^ Francesco Marsili. "High Efficiency in the Fastest Single-Photon Detector System". 2013.
  9. ^ Hadfield, Robert H. (December 2009). "Single-photon detectors for optical quantum information applications". Nature Photonics. 3 (12): 696–705. Bibcode:2009NaPho...3..696H. doi:10.1038/nphoton.2009.230. ISSN 1749-4885.
  10. ^ Esmaeil Zadeh, Iman; Chang, J.; Los, Johannes W. N.; Gyger, Samuel; Elshaari, Ali W.; Steinhauer, Stephan; Dorenbos, Sander N.; Zwiller, Val (2021-05-10). "Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications". Applied Physics Letters. 118 (19): 190502. Bibcode:2021ApPhL.118s0502E. doi:10.1063/5.0045990. ISSN 0003-6951. S2CID 236573004.
  11. ^ "IEC 61788-22-3:2022 | IEC Webstore". webstore.iec.ch. Retrieved 2023-04-29.
  12. ^ Luskin et al. (2023). “Large active-area superconducting microwire detector array with single-photon sensitivity in the near-infrared”, Appl. Phys. Lett. 122, 243506. https://doi.org/10.1063/5.0150282
  13. ^ G.-Z. Xu et al. (2023). “Millimeter-scale active area superconducting microstrip single-photon detector fabricated by ultraviolet photolithography,” Optics Express, vol. 31, pp. 16348-16360.
  14. ^ Yabuno M.; China F.; Terai H.; Miki S. (2023). “Superconducting wide strip photon detector with high critical current bank structure”, Optica Quantum, 1: 26-34
  15. ^ Derenzo, S.; Bourret, E.; Hanrahan, S.; Bizarri, G. (2018). "Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter". Journal of Applied Physics. 123 (11): 114501. arXiv:1802.09171. Bibcode:2018JAP...123k4501D. doi:10.1063/1.5018343. S2CID 56118568
  16. ^ Vasiukov, S.; Chiossi, F.; Braggio, C.; Carugno, G.; Moretti, F.; Bourret, E.; Derenzo, S. (2019). "GaAs as a Bright Cryogenic Scintillator for the Detection of Low-Energy Electron Recoils from MeV/c2 Dark Matter". IEEE Transactions on Nuclear Science. 66 (11): 2333–2337. Bibcode:2019ITNS...66.2333V. doi:10.1109/TNS.2019.2946725. S2CID 208208697
  17. ^ Derenzo, S.; Bourret, E.; Frank-Rotsch, C.; Hanrahan, S.; Garcia-Sciveres, M. (2021). "How silicon and boron dopants govern the cryogenic scintillation properties of n-type GaAs". Nuclear Instruments and Methods in Physics Research Section A. 989: 164957. arXiv:2012.07550. Bibcode:2021NIMPA.98964957D. doi:10.1016/j.nima.2020.164957. S2CID 229158562
  18. ^ Kerman, Andrew J.; Dauler, Eric A.; Keicher, William E.; Yang, Joel K. W.; Berggren, Karl K.; Gol'Tsman, G.; Voronov, B. (2006). "Kinetic-inductance-limited reset time of superconducting nanowire photon counters". Applied Physics Letters. 88 (11): 111116. arXiv:physics/0510238. Bibcode:2006ApPhL..88k1116K. doi:10.1063/1.2183810. S2CID 53373647.
  19. ^ Annunziata, Anthony J.; Quaranta, Orlando; Santavicca, Daniel F.; Casaburi, Alessandro; Frunzio, Luigi; Ejrnaes, Mikkel; Rooks, Michael J.; Cristiano, Roberto; Pagano, Sergio; Frydman, Aviad; Prober, Daniel E. (2010). "Reset dynamics and latching in niobium superconducting nanowire single-photon detectors". Journal of Applied Physics. 108 (8): 084507–084507–7. arXiv:1008.0895. Bibcode:2010JAP...108h4507A. doi:10.1063/1.3498809. S2CID 13941277.
  20. ^ Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory (May 2008). "Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths". Nature Photonics. 2 (5): 302–306. doi:10.1038/nphoton.2008.51. ISSN 1749-4893.
  21. ^ Natarajan, Chandra M.; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N.; Zwiller, Val; Walmsley, Ian A.; Hadfield, Robert H. (2013-01-14). "Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths". Optics Express. 21 (1): 893–902. Bibcode:2013OExpr..21..893N. doi:10.1364/OE.21.000893. ISSN 1094-4087. PMID 23388983.
  22. ^ Zhu, Di; Colangelo, Marco; Chen, Changchen; Korzh, Boris A.; Wong, Franco N. C.; Shaw, Matthew D.; Berggren, Karl K. (2020-05-13). "Resolving Photon Numbers Using a Superconducting Nanowire with Impedance-Matching Taper". Nano Letters. 20 (5): 3858–3863. arXiv:1911.09485. Bibcode:2020NanoL..20.3858Z. doi:10.1021/acs.nanolett.0c00985. ISSN 1530-6984. PMID 32271591. S2CID 215726323.
  23. ^ Gousev, Yu.P.; Semenov, A.D.; Gol'Tsman, G.N.; Sergeev, A.V.; Gershenzon, E.M. (1994). "Electron-phonon interaction in disordered NBN films". Physica B: Condensed Matter. 194–196: 1355–1356. Bibcode:1994PhyB..194.1355G. doi:10.1016/0921-4526(94)91007-3.
  24. ^ Rosfjord, Kristine M.; Yang, Joel K. W.; Dauler, Eric A.; Kerman, Andrew J.; Anant, Vikas; Voronov, Boris M.; Gol'tsman, Gregory N.; Berggren, Karl K. (2006-01-23). "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating". Optics Express. 14 (2): 527–534. Bibcode:2006OExpr..14..527R. doi:10.1364/OPEX.14.000527. ISSN 1094-4087. PMID 19503367.
  25. ^ Pernice, W. H. P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. (2012-12-27). "High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits". Nature Communications. 3 (1): 1325. arXiv:1108.5299. Bibcode:2012NatCo...3.1325P. doi:10.1038/ncomms2307. ISSN 2041-1723. PMC 3535416. PMID 23271658.
  26. ^ Heath, Robert M.; Tanner, Michael G.; Drysdale, Timothy D.; Miki, Shigehito; Giannini, Vincenzo; Maier, Stefan A.; Hadfield, Robert H. (2015-02-11). "Nanoantenna Enhancement for Telecom-Wavelength Superconducting Single Photon Detectors". Nano Letters. 15 (2): 819–822. arXiv:1501.03333. Bibcode:2015NanoL..15..819H. doi:10.1021/nl503055a. ISSN 1530-6984. PMID 25575021. S2CID 16305859.
  27. ^ Reddy, Dileep V.; Nerem, Robert R.; Nam, Sae Woo; Mirin, Richard P.; Verma, Varun B. (2020-12-20). "Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm". Optica. 7 (12): 1649–1653. Bibcode:2020Optic...7.1649R. doi:10.1364/OPTICA.400751. ISSN 2334-2536.
  28. ^ Peng Hu; et al. (2020). "Detecting single infrared photons toward optimal system detection efficiency". Optics Express. 28 (24): 36884–36891. arXiv:2009.14690. Bibcode:2020OExpr..2836884H. doi:10.1364/OE.410025. PMID 33379772.
  29. ^ Andrew J Kerman; Eric A Dauler; Joel KW Yang; Kristine M Rosfjord; Vikas Anant; Karl K Berggren; Gregory N Gol'tsman; Boris M Voronov (2007). "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors". Applied Physics Letters. 90 (10): 101110. arXiv:physics/0611260. Bibcode:2007ApPhL..90j1110K. doi:10.1063/1.2696926. S2CID 118985342.
  30. ^ Korzh, Boris; Zhao, Qing-Yuan; Allmaras, Jason P.; Frasca, Simone; Autry, Travis M.; Bersin, Eric A.; Beyer, Andrew D.; Briggs, Ryan M.; Bumble, Bruce; Colangelo, Marco; Crouch, Garrison M. (April 2020). "Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector". Nature Photonics. 14 (4): 250–255. arXiv:1804.06839. Bibcode:2020NaPho..14..250K. doi:10.1038/s41566-020-0589-x. ISSN 1749-4893. S2CID 216455902.
  31. ^ Hadfield, Robert H. (April 2020). "Superfast photon counting". Nature Photonics. 14 (4): 201–202. Bibcode:2020NaPho..14..201H. doi:10.1038/s41566-020-0614-0. ISSN 1749-4893. S2CID 216178290.
  32. ^ Taylor, Gregor G.; MacKenzie, Ewan N.; Korzh, Boris; Morozov, Dmitry V.; Bumble, Bruce; Beyer, Andrew D.; Allmaras, Jason P.; Shaw, Matthew D.; Hadfield, Robert H. (2022-11-21). "Mid-infrared timing jitter of superconducting nanowire single-photon detectors". Applied Physics Letters. 121 (21): 214001. doi:10.1063/5.0128129. ISSN 0003-6951.
  33. ^ Becker, Wolfgang (2005). Advanced Time-Correlated Single Photon Counting Techniques. Springer Series in Chemical Physics. Vol. 81. Bibcode:2005atcs.book.....C. doi:10.1007/3-540-28882-1. ISBN 978-3-540-26047-9. ISSN 0172-6218.
  34. ^ Kitaygorsky, J.; Zhang, J.; Verevkin, A.; Sergeev, A.; Korneev, A.; Matvienko, V.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'Tsman, G.; Sobolewski, R. (2005). "Origin of Dark Counts in Nanostructured NBN Single-Photon Detectors". IEEE Transactions on Applied Superconductivity. 15 (2): 545–548. Bibcode:2005ITAS...15..545K. doi:10.1109/TASC.2005.849914. S2CID 10285736.
  35. ^ Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zadeh, Iman E.; Zwiller, Valery; Benson, Oliver (2012). "Measuring the quantum nature of light with a single source and a single detector". Physical Review A. 86 (5): 053814. arXiv:1107.1353. Bibcode:2012PhRvA..86e3814S. doi:10.1103/PhysRevA.86.053814. S2CID 119287808.
  36. ^ Korneev, A.; Matvienko, V.; Minaeva, O.; Milostnaya, I.; Rubtsova, I.; Chulkova, G.; Smirnov, K.; Voronov, V.; Gol'Tsman, G.; Slysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R. (2005). "Quantum Efficiency and Noise Equivalent Power of Nanostructured, NBN, Single-Photon Detectors in the Wavelength Range from Visible to Infrared". IEEE Transactions on Applied Superconductivity. 15 (2): 571–574. Bibcode:2005ITAS...15..571K. doi:10.1109/TASC.2005.849923. S2CID 20606230.
  37. ^ Marsili, Francesco; Najafi, Faraz; Dauler, Eric; Bellei, Francesco; Hu, Xiaolong; Csete, Maria; Molnar, Richard J.; Berggren, Karl K. (2011). "Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires". Nano Letters. 11 (5): 2048–2053. arXiv:1012.4149. Bibcode:2011NanoL..11.2048M. doi:10.1021/nl2005143. PMID 21456546. S2CID 7796191.
  38. ^ Holzman, Itamar; Ivry, Yachin (2019). "Superconducting Nanowires for Single-Photon Detection: Progress, Challenges, and Opportunities". Advanced Quantum Technologies. 2 (3–4): 1800058. arXiv:1807.09060. doi:10.1002/qute.201800058. ISSN 2511-9044. S2CID 119427730.
  39. ^ Baek, Burm; Lita, Adriana E.; Verma, Varun; Nam, Sae Woo (2011). "Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm". Applied Physics Letters. 98 (25): 251105. Bibcode:2011ApPhL..98y1105B. doi:10.1063/1.3600793.
  40. ^ Dorenbos, S. N.; Forn-Díaz, P.; Fuse, T.; Verbruggen, A. H.; Zijlstra, T.; Klapwijk, T. M.; Zwiller, V. (2011). "Low gap superconducting single photon detectors for infrared sensitivity". Applied Physics Letters. 98 (25): 251102. Bibcode:2011ApPhL..98y1102D. doi:10.1063/1.3599712.
  41. ^ Li, Jian; Kirkwood, Robert A.; Baker, Luke J.; Bosworth, David; Erotokritou, Kleanthis; Banerjee, Archan; Heath, Robert M.; Natarajan, Chandra M.; Barber, Zoe H. (2016-06-27). "Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires". Optics Express. 24 (13): 13931–13938. Bibcode:2016OExpr..2413931L. doi:10.1364/OE.24.013931. hdl:1983/502e0a88-986b-4e79-8905-2bbd3bd75afd. ISSN 1094-4087. PMID 27410555.
  42. ^ Engel, A.; Aeschbacher, A.; Inderbitzin, K.; Schilling, A.; Il'in, K.; Hofherr, M.; Siegel, M.; Semenov, A.; Hübers, H.-W. (2012-02-06). "Tantalum nitride superconducting single-photon detectors with low cut-off energy". Applied Physics Letters. 100 (6): 062601. arXiv:1110.4576. Bibcode:2012ApPhL.100f2601E. doi:10.1063/1.3684243. ISSN 0003-6951. S2CID 118674991.
  43. ^ Verma, V. B.; Korzh, B.; Walter, A. B.; Lita, A. E.; Briggs, R. M.; Colangelo, M.; Zhai, Y.; Wollman, E. E.; Beyer, A. D.; Allmaras, J. P.; Vora, H. (2021-05-01). "Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors". APL Photonics. 6 (5): 056101. arXiv:2012.09979. Bibcode:2021APLP....6e6101V. doi:10.1063/5.0048049. PMC 10448953. PMID 37621960. S2CID 229331770.
  44. ^ Taylor, Gregor G.; Morozov, Dmitry V.; Lennon, Ciaran T.; Barry, Peter S.; Sheagren, Calder; Hadfield, Robert H. (2021-05-10). "Infrared single-photon sensitivity in atomic layer deposited superconducting nanowires". Applied Physics Letters. 118 (19): 191106. Bibcode:2021ApPhL.118s1106T. doi:10.1063/5.0048799. ISSN 0003-6951.
  45. ^ Arpaia, R.; Ejrnaes, M.; Parlato, L.; Tafuri, F.; Cristiano, R.; Golubev, D.; Sobolewski, Roman; Bauch, T.; Lombardi, F.; Pepe, G.P. (2015-02-15). "High-temperature superconducting nanowires for photon detection". Physica C: Superconductivity and Its Applications. 509: 16–21. doi:10.1016/j.physc.2014.09.017. hdl:10278/5058324. ISSN 0921-4534.
  46. ^ Amari, P.; Kozlov, S.; Recoba-Pawlowski, E.; Velluire-Pellat, Z.; Jouan, A.; Couedo, F.; Ulysse, C.; Briatico, J.; Roditchev, D.; Bergeal, N.; Lesueur, J.; Feuillet-Palma, C. (2023-10-10). "Scalable nanofabrication of high-quality YBCO nanowires for single-photon detectors". Physical Review Applied. 2O: 044025. doi:10.1103/PhysRevApplied.20.044025. S2CID 263840977.
  47. ^ Merino, Rafael Luque; Seifert, Paul; Retamal, José Durán; Mech, Roop K; Taniguchi, Takashi; Watanabe, Kenji; Kadowaki, Kazuo; Hadfield, Robert H; Efetov, Dmitri K (2023-04-01). "Two-dimensional cuprate nanodetector with single telecom photon sensitivity at T = 20 K". 2D Materials. 10 (2): 021001. arXiv:2208.05044. Bibcode:2023TDM....10b1001M. doi:10.1088/2053-1583/acb4a8. hdl:10261/337040. ISSN 2053-1583. S2CID 256166805.
  48. ^ Charaev, I.; Bandurin, D. A.; Bollinger, A. T.; Phinney, I. Y.; Drozdov, I.; Colangelo, M.; Butters, B. A.; Taniguchi, T.; Watanabe, K.; He, X.; Božović, I.; Jarillo-Herrero, P.; Berggren, K. K. (2023). "Single-photon detection using high-temperature superconductors". Nature Nanotechnology. 18 (4): 343–349. arXiv:2208.05674. Bibcode:2023NatNa..18..343C. doi:10.1038/s41565-023-01325-2. PMID 36941357. S2CID 251493161.
  49. ^ Shibata, H.; Takesue, H.; Honjo, T.; Akazaki, T.; Tokura, Y. (2010-11-22). "Single-photon detection using magnesium diboride superconducting nanowires". Applied Physics Letters. 97 (21): 212504. Bibcode:2010ApPhL..97u2504S. doi:10.1063/1.3518723. ISSN 0003-6951.
  50. ^ Cherednichenko, Sergey; Acharya, Narendra; Novoselov, Evgenii; Drakinskiy, Vladimir (2021). "Low kinetic inductance superconducting MgB2 nanowires with a 130 ps relaxation time for single-photon detection applications". Superconductor Science and Technology. 34 (4): 044001. arXiv:1911.01480. Bibcode:2021SuScT..34d4001C. doi:10.1088/1361-6668/abdeda. ISSN 0953-2048. S2CID 234305489.
  51. ^ Steinhauer, Stephan; Gyger, Samuel; Zwiller, Val (2021-03-08). "Progress on large-scale superconducting nanowire single-photon detectors". Applied Physics Letters. 118 (10): 100501. Bibcode:2021ApPhL.118j0501S. doi:10.1063/5.0044057. ISSN 0003-6951.
  52. ^ Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M. (2017-07-17). "Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array". Applied Physics Letters. 111 (3): 032603. arXiv:1705.05345. Bibcode:2017ApPhL.111c2603D. doi:10.1063/1.4993779. ISSN 0003-6951. S2CID 119328620.
  53. ^ Wollman, Emma E.; Verma, Varun B.; Verma, Varun B.; Lita, Adriana E.; Farr, William H.; Shaw, Matthew D.; Mirin, Richard P.; Nam, Sae Woo (2019-11-25). "Kilopixel array of superconducting nanowire single-photon detectors". Optics Express. 27 (24): 35279–35289. arXiv:1908.10520. Bibcode:2019OExpr..2735279W. doi:10.1364/OE.27.035279. ISSN 1094-4087. PMID 31878700. S2CID 201651262.
  54. ^ McCaughan, Adam N (2018-04-01). "Readout architectures for superconducting nanowire single photon detectors". Superconductor Science and Technology. 31 (4): 040501. Bibcode:2018SuScT..31d0501M. doi:10.1088/1361-6668/aaa1b3. ISSN 0953-2048. PMC 6459399. PMID 30983702.
  55. ^ Allman, M. S.; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.; Mirin, R. (2015-05-11). "A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout". Applied Physics Letters. 106 (19): 192601. arXiv:1504.02812. Bibcode:2015ApPhL.106s2601A. doi:10.1063/1.4921318. ISSN 0003-6951. S2CID 119263216.
  56. ^ Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M. (2017-07-17). "Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array". Applied Physics Letters. 111 (3): 032603. arXiv:1705.05345. Bibcode:2017ApPhL.111c2603D. doi:10.1063/1.4993779. ISSN 0003-6951. S2CID 119328620.
  57. ^ Miyajima, Shigeyuki; Yabuno, Masahiro; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka (2018-10-29). "High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector". Optics Express. 26 (22): 29045–29054. Bibcode:2018OExpr..2629045M. doi:10.1364/OE.26.029045. ISSN 1094-4087. PMID 30470072.
  58. ^ Hadfield, Robert H.; Johansson, Göran, eds. (2016). Superconducting Devices in Quantum Optics. Bibcode:2016sdqo.book.....H. doi:10.1007/978-3-319-24091-6. ISBN 978-3-319-24089-3. ISSN 2364-9054. {{cite book}}: |journal= ignored (help)
  59. ^ H. Takesue et al., "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photonics 1, 343 (2007), doi:10.1038/nphoton.2007.75, arXiv:0706.0397
  60. ^ Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; Luo, Yi-Han; Qin, Jian; Wu, Dian; Ding, Xing; Hu, Yi; Hu, Peng (2020-12-18). "Quantum computational advantage using photons". Science. 370 (6523): 1460–1463. arXiv:2012.01625. Bibcode:2020Sci...370.1460Z. doi:10.1126/science.abe8770. ISSN 0036-8075. PMID 33273064. S2CID 227254333.
  61. ^ Silicon Photonic Quantum Computing - PsiQuantum at 2021 APS March Meeting, 13 April 2021, retrieved 2021-05-16
  62. ^ Mc Manus, M.K.; Kash, J.A.; Steen, S.E.; Polonsky, S.; Tsang, J.C.; Knebel, D.R.; Huott, W. (2000). "PICA: Backside failure analysis of CMOS circuits using Picosecond Imaging Circuit Analysis". Microelectronics Reliability. 40 (8–10): 1353–1358. Bibcode:2000MiRe...40.1353M. doi:10.1016/S0026-2714(00)00137-2.
  63. ^ Hadfield, Robert H.; Stevens, Martin J.; Gruber, Steven S.; Miller, Aaron J.; Schwall, Robert E.; Mirin, Richard P.; Nam, Sae Woo (2005-12-26). "Single photon source characterization with a superconducting single photon detector". Optics Express. 13 (26): 10846–10853. arXiv:quant-ph/0511030. Bibcode:2005OExpr..1310846H. doi:10.1364/OPEX.13.010846. ISSN 1094-4087. PMID 19503303. S2CID 11428224.
  64. ^ McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S. (2013). "Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection". Optics Express. 21 (7): 8904–8915. Bibcode:2013OExpr..21.8904M. doi:10.1364/OE.21.008904. PMID 23571981.
  65. ^ Taylor, Gregor G.; Morozov, Dmitry; Gemmell, Nathan R.; Erotokritou, Kleanthis; Miki, Shigehito; Miki, Shigehito; Terai, Hirotaka; Hadfield, Robert H. (2019-12-23). "Photon counting LIDAR at 2.3 μm wavelength with superconducting nanowires". Optics Express. 27 (26): 38147–38158. doi:10.1364/OE.27.038147. ISSN 1094-4087. PMID 31878586. S2CID 209489291.
  66. ^ Hadfield, Robert H.; Leach, Jonathan; Fleming, Fiona; Paul, Douglas J.; Tan, Chee Hing; Ng, Jo Shien; Henderson, Robert K.; Buller, Gerald S. (2023). "Single-photon detection for long-range imaging and sensing". Optica. 10 (9): 1124. Bibcode:2023Optic..10.1124H. doi:10.1364/optica.488853. hdl:20.500.11820/4d60bb02-3c2c-4f86-a737-f985cb8613d8. Retrieved 2023-08-29.
  67. ^ Reithmaier, G.; Kaniber, M.; Flassig, F.; Lichtmannecker, S.; Müller, K.; Andrejew, A.; Vučković, J.; Gross, R.; Finley, J. J. (2015). "On-Chip Generation, Routing, and Detection of Resonance Fluorescence". Nano Letters. 15 (8): 5208–5213. arXiv:1408.2275. Bibcode:2015NanoL..15.5208R. doi:10.1021/acs.nanolett.5b01444. PMID 26102603. S2CID 15612865.
  68. ^ Silverstone, J. W.; Bonneau, D.; Ohira, K.; Suzuki, N.; Yoshida, H.; Iizuka, N.; Ezaki, M.; Natarajan, C. M.; Tanner, M. G.; Hadfield, R. H.; Zwiller, V. (February 2014). "On-chip quantum interference between silicon photon-pair sources". Nature Photonics. 8 (2): 104–108. arXiv:1304.1490. Bibcode:2014NaPho...8..104S. doi:10.1038/nphoton.2013.339. ISSN 1749-4893. S2CID 21739609.
  69. ^ Shainline, Jeffrey M.; Buckley, Sonia M.; McCaughan, Adam N.; Chiles, Jeffrey T.; Jafari Salim, Amir; Castellanos-Beltran, Manuel; Donnelly, Christine A.; Schneider, Michael L.; Mirin, Richard P.; Nam, Sae Woo (2019-07-25). "Superconducting optoelectronic loop neurons". Journal of Applied Physics. 126 (4): 044902. Bibcode:2019JAP...126d4902S. doi:10.1063/1.5096403. ISSN 0021-8979.
  70. ^ Casaburi, Alessandro; Hadfield, Robert H. (October 2022). "Superconducting circuits that mimic the brain". Nature Electronics. 5 (10): 627–628. doi:10.1038/s41928-022-00855-2. ISSN 2520-1131. S2CID 253002403.
  71. ^ Tanner, Michael G.; Dyer, Shellee D.; Baek, Burm; Hadfield, Robert H.; Woo Nam, Sae (2011-11-14). "High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors". Applied Physics Letters. 99 (20): 201110. Bibcode:2011ApPhL..99t1110T. doi:10.1063/1.3656702. ISSN 0003-6951.
  72. ^ "News | Successful rocket test with ID Quantique photon counting OTDR". ID Quantique. 2020-10-28. Retrieved 2021-05-16.
  73. ^ Todaro, S. L.; Verma, V. B.; McCormick, K. C.; Allcock, D. T. C.; Mirin, R. P.; Wineland, D. J.; Nam, S. W.; Wilson, A. C.; Leibfried, D.; Slichter, D. H. (2021-01-06). "State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector". Physical Review Letters. 126 (1): 010501. arXiv:2008.00065. Bibcode:2021PhRvL.126a0501T. doi:10.1103/PhysRevLett.126.010501. PMID 33480763. S2CID 220936640.
  74. ^ Heeres, Reinier W.; Dorenbos, Sander N.; Koene, Benny; Solomon, Glenn S.; Kouwenhoven, Leo P.; Zwiller, Valery (2010). "On-Chip Single Plasmon Detection". Nano Letters. 10 (2): 661–664. arXiv:1001.2723. Bibcode:2010NanoL..10..661H. doi:10.1021/nl903761t. PMID 20041700. S2CID 20962227.
  75. ^ Heeres, Reinier W.; Kouwenhoven, Leo P.; Zwiller, Valery (2013). "Quantum interference in plasmonic circuits". Nature Nanotechnology. 8 (10): 719–722. arXiv:1309.6942. Bibcode:2013NatNa...8..719H. doi:10.1038/nnano.2013.150. PMID 23934097. S2CID 18196878.
  76. ^ Rosticher, M.; Ladan, F. R.; Maneval, J. P.; Dorenbos, S. N.; Zijlstra, T.; Klapwijk, T. M.; Zwiller, V.; Lupaşcu, A.; Nogues, G. (2010). "A high efficiency superconducting nanowire single electron detector" (PDF). Applied Physics Letters. 97 (18): 183106. Bibcode:2010ApPhL..97r3106R. doi:10.1063/1.3506692. S2CID 123559525.
  77. ^ Azzouz, Hatim; Dorenbos, Sander N.; De Vries, Daniel; Ureña, Esteban Bermúdez; Zwiller, Valery (2012). "Efficient single particle detection with a superconducting nanowire". AIP Advances. 2 (3): 032124. Bibcode:2012AIPA....2c2124A. doi:10.1063/1.4740074.
  78. ^ Gemmell, Nathan R.; McCarthy, Aongus; Liu, Baochang; Tanner, Michael G.; Dorenbos, Sander D.; Zwiller, Valery; Patterson, Michael S.; Buller, Gerald S.; Wilson, Brian C.; Hadfield, Robert H. (2013). "Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector". Optics Express. 21 (4): 5005–5013. arXiv:1302.6371. Bibcode:2013OExpr..21.5005G. doi:10.1364/OE.21.005005. PMID 23482033. S2CID 33116480.
  79. ^ Boroson, Don M.; Bondurant, Roy S.; Scozzafava, Joseph J. (2004). "Overview of high-rate deep-space laser communications options". In Mecherle, G. S; Young, Cynthia Y; Stryjewski, John S (eds.). Free-Space Laser Communication Technologies XVI. Vol. 5338. p. 37. doi:10.1117/12.543010. S2CID 122154440.
  80. ^ Deutsch, Leslie J. (September 2020). "Towards deep space optical communications". Nature Astronomy. 4 (9): 907. Bibcode:2020NatAs...4..907D. doi:10.1038/s41550-020-1193-1. ISSN 2397-3366. S2CID 225206152.
  81. ^ Hochberg, Yonit; Charaev, Ilya; Nam, Sae-Woo; Verma, Varun; Colangelo, Marco; Berggren, Karl K. (2019-10-10). "Detecting Sub-GeV Dark Matter with Superconducting Nanowires". Physical Review Letters. 123 (15): 151802. arXiv:1903.05101. Bibcode:2019PhRvL.123o1802H. doi:10.1103/PhysRevLett.123.151802. PMID 31702301. S2CID 84840364.
  82. ^ Wollman, Emma E.; Verma, Varun B.; Walter, Alexander B.; Chiles, Jeff; Korzh, Boris; Allmaras, Jason P.; Zhai, Yao; Lita, Adriana E.; McCaughan, Adam N.; Schmidt, Ekkehart; Frasca, Simone (January 2021). "Recent advances in superconducting nanowire single-photon detector technology for exoplanet transit spectroscopy in the mid-infrared". Journal of Astronomical Telescopes, Instruments, and Systems. 7 (1): 011004. Bibcode:2021JATIS...7a1004W. doi:10.1117/1.JATIS.7.1.011004. ISSN 2329-4124. S2CID 232484010.
  83. ^ Gemmell, N. R. (September 2017). "A miniaturized 4 K platform for superconducting infrared photon counting detectors". Superconductor Science and Technology. 30 (11): 11LT01. Bibcode:2017SuScT..30kLT01G. doi:10.1088/1361-6668/aa8ac7.
  84. ^ Cooper, Bernard E; Hadfield, Robert H (2022-06-28). "Viewpoint: Compact cryogenics for superconducting photon detectors". Superconductor Science and Technology. 35 (8): 080501. Bibcode:2022SuScT..35h0501C. doi:10.1088/1361-6668/ac76e9. ISSN 0953-2048. S2CID 249534834.