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Abstract. We present a general framework that converts certain types
of linear collision-resistant hash functions into one-time signatures. Our
generic construction can be instantiated based on both general and ideal
(e.g. cyclic) lattices, and the resulting signature schemes are provably
secure based on the worst-case hardness of approximating the short-
est vector (and other standard lattice problems) in the corresponding
class of lattices to within a polynomial factor. When instantiated with
ideal lattices, the time complexity of the signing and verification algo-
rithms, as well as key and signature size is almost linear (up to poly-
logarithmic factors) in the dimension n of the underlying lattice. Since
no sub-exponential (in n) time algorithm is known to solve lattice prob-
lems in the worst case, even when restricted to ideal lattices, our con-
struction gives a digital signature scheme with an essentially optimal
performance/security trade-off.

1 Introduction

Digital signature schemes, initially proposed in Diffie and Hellman’s seminal
paper [DH76] and later formalized by Goldwasser, Micali and Rivest, [GMR88],
are among the most important and widely used cryptographic primitives. Still,
our understanding of these intriguing objects is somehow limited. The definition
of digital signatures clearly fits within the public key cryptography framework,
yet their existence can be shown to be equivalent to the existence of symmetric
cryptographic primitives like pseudorandom generators, one-way hash functions,
private key encryption, or even just one-way functions [NY89,Rom90].

When efficiency is taken into account, however, digital signatures seem much
closer to public key primitives than to symmetric ones. In the symmetric setting,
functions are often expected to run in time which is linear or almost linear
in the security parameter k. However, essentially all known digital signatures
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with a supporting proof of security are based on algebraic functions that take
at least Ω(k2) time to compute, where 2k is the conjectured hardness of the
underlying problem. For example, all factoring-based schemes must use keys of
size approximately O(k3) to achieve k bits of security to counter the best known
sub-exponential time factoring algorithms, and modular exponentiation raises
the time complexity to over ω(k4) even when restricted to small k-bit exponents
and implemented with an asymptotically fast integer multiplication algorithm.

Digital signatures based on arbitrary one-way hash functions have also been
considered, due to the much higher speed of conjectured one-way functions (e.g.,
instantiated with common block ciphers as obtained from ad-hoc constructions)
compared to the cost of modular squaring or exponentiation operations typical of
number theoretic schemes. Still, the performance advantage of one-way functions
is often lost in the process of transforming them into digital signature schemes:
constructions of signature schemes from non-algebraic one-way functions almost
invariably rely on Lamport and Diffie’s [DH76] one-time signature scheme (and
variants thereof) which requires a number of one-way function applications es-
sentially proportional to the security parameter. So, even if the one-way function
can be computed in linear time O(k), the complexity of the resulting signature
scheme is again at least quadratic Ω(k2).

Therefore, a question of great theoretical and practical interest, is whether
digital signature schemes can be realized at essentially the same cost as symmet-
ric key cryptographic primitives. While a generic construction that transforms
any one-way function into a signature scheme with similar efficiency seems un-
likely, one may wonder if there are specific complexity assumptions that allow to
build more efficient digital signature schemes than currently known. Ideally, are
there digital signature schemes with O(k) complexity, which can be proved as
hard to break as solving a computational problem which is believed to require
2Ω(k) time?

1.1 Results and techniques

The main result in this paper is a construction of a provably-secure digital sig-
nature scheme with key size and computation time almost linear (up to poly-
logarithmic factors) in the security parameter. In other words, we give a new
digital signature scheme with complexity O(k logc k) which can be proved to be
as hard to break as a problem which is currently conjectured to require 2Ω(k)

time to solve. The signature scheme is a particular instantiation inside of a gen-
eral framework that we present for constructing one-time signatures from certain
types of linear collision-resistant hash functions.

We show how to instantiate our general framework with signature scheme
constructions based on standard lattice and coding problems. The lattice prob-
lem underlying our most efficient scheme is that of approximating the shortest
vector in a lattice with “cyclic” or “ideal” structure, as already used in [Mic07]
for the construction of efficient lattice-based one-way functions, and subsequently
extended to collision resistant functions in [PR06,LM06]. As in most previous



work on lattices, our scheme can be proved secure based on the worst case com-
plexity of the underlying lattice problems.

Since one-way functions are known to imply the existence of many other
cryptographic primitives (e.g., pseudorandom generators, digital signatures, pri-
vate key encryption, etc.), the efficient lattice-based one-way functions of [Mic07]
immediately yield corresponding cryptographic primitives based on the complex-
ity of cyclic lattices. However, the known generic constructions of cryptographic
primitives from one-way functions are usually very inefficient. So, it was left as
an open problem in [Mic07] to find direct constructions of other cryptographic
primitives from lattice problems with performance and security guarantees sim-
ilar to those of [Mic07]. For the case of collision resistant hash functions, the
problem was resolved in [PR06,LM06], which showed that various variants of
the one-way function proposed in [Mic07] are indeed collision resistant. In this
paper we build on the results of [Mic07,PR06,LM06] to build an asymptotically-
efficient lattice-based digital signature scheme.

Theorem 1.1. There exists a signature scheme (with security parameter k)
such that the signature of an n-bit message (for any message size n = kO(1)) is of
length Õ(k) and both the signing and verification algorithms take time Õ(n+k).
The scheme is strongly unforgeable in the chosen message attack model, assum-
ing the hardness of approximating the shortest vector problem in all ideal lattices
of dimension k to within a factor Õ(k2).

Our signature scheme is based on a standard transformation from one-time
signatures (i.e., signatures that allow to securely sign a single message) to gen-
eral signature schemes, together with a novel construction of a lattice-based
one-time signature. We remark that the same transformation from one-time sig-
natures to unrestricted signature schemes was also employed by virtually all
previous constructions of digital signatures from arbitrary one-way functions
(e.g., [Mer89,NY89,Rom90]). This transformation, which combines one-time sig-
natures together with a tree structure, is relatively efficient and allows one to sign
messages with only a logarithmic number of applications of a hash function and
a one-time signature scheme [Szy04]. The bottleneck in one-way function based
signature schemes is the construction of one-time signatures from one-way func-
tions. The reason for the slowdown is that the one-way function is typically used
to sign a k-bit message one bit at a time, so that the entire signature requires k
evaluations of the one-way function. In this paper we give a direct construction
of one-time signatures, where each signature just requires two applications of
the lattice-based collision-resistant function of [Mic07,PR06,LM06]. The same
lattice-based hash function can then be used to efficiently transform the one-
time signature into an unrestricted signature scheme with only a logarithmic
loss in performance.

One-time signature. The high level structure of our general framework is easily
explained (see Figure 1). The underlying hardness assumption is the collision
resistance of a certain linear hash function family mapping a subset S of Rm



to Rn, where R is some ring. The linear hash function can be represented by a
matrix H ∈ Rn×m and the secret key is a matrix K ∈ Rm×k. The public key
consists of the function H and the image K̂ = HK. To sign a message m ∈ Rk,
we simply compute s = Km. To verify that s is the signature of m, the verifier
checks that s is in S and that Hs = K̂m. To make sure that the scheme is
complete (i.e. valid signatures are accepted), we need to choose the domain of
the secret keys and messages so that Km is always in S.

Depending on the choice of the ring R, we obtain one-time signatures based
on different complexity assumptions. Choosing R = Zp results in schemes based
on the SIS problem, R = Z2 gives us a scheme based on the Small Codeword
Problem, and setting R = Z[x]/(xn+1) produces the most efficient scheme based
on the Ring-SIS problem.

Security proof. The security of our general framework relies on the assumption
that for a random H ∈ Rn×m it is hard to find two distinct elements s, s̃ ∈ S
such that Hs = Hs̃. In the security proof, when given a random H by the chal-
lenger, the simulator picks a valid secret key K and outputs H, K̂ = HK as the
public key. Since the simulator knows the secret key, she is able to compute the
signature, Km, of any message m. If an adversary is then able to produce a valid
signature s̃ of some message m̃, he will satisfy the equation Hs̃ = K̂m̃ = HKm̃.
Thus, unless s̃ = Km̃, we will have found a collision for H. The main technical
part of our proof (Theorem 3.2) clarifies the necessary condition so that the
probability of s̃ 6= Km̃ is non-negligible. Towards this end, we define a condition
called (ε, δ)-Hiding and then prove that if the domains of the hash function, key
space, and message space satisfy this requirement for a constant ε and a δ close
to 1, then the one-time signature scheme will be secure based on the hardness of
finding collisions in a random H. We remark that the (ε, δ)-Hiding property is
purely combinatorial, and so to prove security of different instantiations based
on SIS, Ring-SIS, or coding problems, we simply need to show that the sets used
in the instantiations of these schemes satisfy this condition.

1.2 Related work

Lamport showed the first construction of a one-time signature based on the exis-
tence of one-way functions. In that scheme, the public key consists of the values
f(x0), f(x1), where f is a one-way function and x0, x1 are randomly chosen el-
ements in its domain. The elements x0 and x1 are kept secret, and in order to
sign a bit i, the signer reveals xi. This construction requires one application of
the one-way function for every bit in the message. Since then, more efficient con-
structions have been proposed [Mer87,BC92,BM84,EGM96,BM96,HM02], but
there was always an inherent limitation in the number of bits that could be
signed efficiently with one application of the one-way function [GGKT05].

Provably secure cryptography based on lattice problems was pioneered by
Ajtai in [Ajt96], and attracted considerable attention within the complexity the-
ory community because of a remarkable worst-case/average-case connection: it
is possible to show that breaking the cryptographic function on the average is



at least as hard as solving the lattice problem in the worst-case. Unfortunately,
functions related to k-dimensional lattices typically involve a k-dimensional ma-
trix/vector multiplication, and therefore require k2 time to compute (as well as
k2 storage for keys). A fundamental step towards making lattice-based cryptog-
raphy more attractive in practice, was taken by Micciancio [Mic07] who proposed
a variant of Ajtai’s function which is much more efficient to compute (thanks to
the use of certain lattices with a special cyclic structure) and still admits a worst-
case/average-case proof of security. The performance improvement in [Mic07] (as
well as in subsequent work [PR06,LM06],) comes at a cost: the resulting function
is as hard to break as solving the shortest vector problem in the worst case over
lattices with a cyclic structure. Still, since the best known algorithms do not
perform any better on these lattices than on general ones, it seems reasonable
to conjecture that the shortest vector problem is still exponentially hard. It was
later shown in [PR06,LM06] that, while the function constructed in [Mic07] was
only one-way, it is possible to construct efficient collision-resistant hash functions
based on the hardness of problems in lattices with a similar algebraic structure.

1.3 Comparison to the proceedings version of this work

In the proceedings version of this work [LM08], we gave a direct construction of a
one-time signature scheme based on the hardness of the Ring-SIS problem. The
major difference of that scheme with the Ring-SIS scheme in this paper is the
key generation algorithm. In the current work, the secret key is simply chosen
according to the uniform distribution from some set. In [LM08], however, choos-
ing a secret key first involved selecting a “shell” with a geometrically degrading
probability and then picking a uniformly-random element from it. The security
proof in the current paper is also much more modular. In particular, we first
present an abstract framework for constructing one-time signatures of a particu-
lar type, and then show how this framework can be satisfied with instantiations
based on various problems such as SIS, Ring-SIS over the ring Z[x]/〈xn+1〉, and
the Small Codeword Problem. Essentially, this paper is a simpler, more modular,
and more general version of [LM08].

We also showed, in the proceedings version, constructions of a Ring-SIS sig-
nature scheme that worked over rings Z[x]/〈f(x)〉 for an arbitrary monic, irre-
ducible polynomial f(x). Since the main focus of the current paper is on abstract-
ing out the properties needed for constructions of one-time signatures from linear
collision-resistant hash functions, we choose not to complicate matters by also
presenting the various manners in which one could do these constructions based
on different forms of the Ring-SIS problem (some of which would require first
presenting some background from algebraic number theory). Below, we sketch
the different manners in which one could proceed to define and instantiate the
one-time signature using different rings. The main difference lies in the manner
in which the length of polynomials is defined and the domain and range of the
hash function H.

The simplest definition of length is the “coefficient embedding”, where it
is defined by taking the norm of the vector formed by the coefficients of the



polynomial. This is the approach taken in [LM08] and involves the use of the
“expansion factor” [LM06] which gives an upper bound on the size of the norm
of the product compared to the norm of the multiplicands. A different way to
define the norm of elements in Z[x]/〈f(x)〉 is the “canonical embedding”, which
is the norm of a vector formed by evaluating the polynomial on the n (complex)
roots of f(x). The advantage of this latter approach is that bounding the product
of the norm is very simple, and does not depend on the modulus f(x), because
multiplication is component-wise in the canonical embedding.

If one uses the canonical embedding to define the norm, then one also has
a choice as to the domain and range of the hash function H. Instead of being
restricted to the ring Z[x]/〈f(x)〉, one may follow the approach taken in [PR07]
and define collision-resistant hash functions over the ring of integers of num-
ber fields Q(ζ) where ζ is a primitive root of f(x). In the case that f(x) is a
cyclotomic polynomial and ζ is one of its roots (i.e. some root of unity), the
ring of integers of Q(ζ) is exactly Z[x]/〈f(x)〉, but in other cases, the ring of
integers may be a superset of Z[x]/〈f(x)〉 and more “compact”. Since keys need
to be sampled from the domain of H, it is important that the ring of integers of
Q(ζ) is efficiently samplable in practice - which is not known to be the case for
particularly compact choices. Another choice for the domain (and range) of H,
most applicable when f(x) is a cyclotomic polynomial, is the dual of the ring of
integers (see [LPR13a,LPR13b]). The idea here would be to have H and m be
elements of the primal ring, while having K come from the dual one, which is
sometimes a little bit more compact.

We point out that in the case of an irreducible f(x) of the form f(x) = xn+1,
the coefficient and canonical embeddings are simply rigid rotations (and scalings)
of each other. Also, the ring of integers of Q(ζ), where ζ is a root of xn + 1, is
exactly Z[x]/〈xn + 1〉, and the dual of this ring is the same ring scaled by an
integer. Therefore if we choose to work modulo xn + 1, all the above choices are
exactly equivalent.

2 Preliminaries

2.1 Signatures

We recall the definitions of signature schemes and what it means for a signature
scheme to be secure. In the next definition, G is called the key-generation al-
gorithm, S is the signing algorithm, V is the verification algorithm, and s and
G(s) are, respectively, the signing and verification keys.

Definition 2.1. A signature scheme consists of a triplet of polynomial-time al-
gorithms (G,S, V ) such that for any n-bit message m and secret key s (of length
polynomial in n), we have

V (G(s),m, S(s,m)) = 1

i.e., S(s,m) is a valid signature for message m with respect to public key G(s).



Notice that, for simplicity, we have restricted our definition to signature schemes
where the key generation and signing algorithms are deterministic, given the
scheme secret key as input. This is without loss of generality because any signa-
ture scheme can be made to satisfy these properties by using the key generation
randomness as secret key, and derandomizing the signing algorithm using a pseu-
dorandom function.

A signature scheme is said to be strongly unforgeable (under chosen message
attacks) if there is only a negligible probability that any (efficient) adversary,
after seeing any number of message/signature pairs for adaptively chosen mes-
sages of his choice, can produce a new message/signature pair. This is a stronger
notion of unforgeability than the standard one [GMR88], which requires the ad-
versary to produce a signature for a new message. In this paper we focus on
strong unforgeability because this stronger property is required in some applica-
tions, and all our schemes are easily shown to satisfy this stronger property. A
one-time signature scheme is a signature scheme that is meant to be used to sign
only a single message, and is only required to satisfy the above definition of secu-
rity under properly restricted advesaries that receive only one signature/message
pair. The formal definition is given below.

Definition 2.2. A one-time signature scheme (G,S, V ) is said to be strongly
unforgeable if for every polynomial-time (possibly randomized) adversary A, the
success probability of the following experiment is negligible: choose s uniformly
at random, compute v = G(s), pass the public key to the adversary to obtain a
query message m← A(v), produce a signature for the message s = S(s,m), pass
the signature to the adversary to obtain a candidate forgery (m̃, s̃) ← A(v, s),
and check that the forgery is valid, i.e., (m, s) 6= (m̃, s̃) and V (v, m̃, s̃) = 1.

2.2 Lattices and the SIS Problem

An n-dimensional integer lattice L is a subgroup of Zn. A lattice L can be
represented by a set of linearly independent generating vectors, called a basis.

Definition 2.3. For an n-dimensional lattice L and all 1 ≤ i ≤ n, p ∈ {Z+,∞},
the positive real numbers λpi (L) are defined as

λpi (L) = arg min
x∈R

(∃ i linearly independent vectors in L of `p-norm at most x).

Definition 2.4. The approximate search Shortest Vector Problem, SVPpγ(L)
asks to find a vector v ∈ L such that ‖v‖p ≤ γ · λp1(L).

Definition 2.5. For an n-dimensional lattice, the approximate search Short-
est Independent Vector Problem, SIVPpγ(L) asks to find n linearly independent
vectors v1, . . . ,vn ∈ L such that maxi ‖vi‖p ≤ γ · λpn(L).

Definition 2.6. In the Small Integer Solution problem (SIS∞p,n,m,β), one is given
a matrix H ∈ Zn×mp and is asked to find a non-zero vector s ∈ Zm such that
‖s‖∞ ≤ β and Hs = 0 (mod p).



Ajtai’s breakthrough result [Ajt96] and its subsequent improvements (e.g.
[MR07]) showed that if one can solve SIS in the average case, then one can also
solve the approximate Shortest Independent Vector Problem (SIVP) in every
lattice.

Theorem 2.7 ([MR07,GPV08,MP13]). For any β > 0 and modulus p ≥
β
√
mnΩ(1) with at most nO(1) factors less than β, solving the SIS∞p,n,m,β problem

(on the average, with nonnegligible probability n−Ω(1)) is at least as hard as
solving SIVPγ in the worst case on any n-dimensional lattice within a factor

γ = max{1, β2
√
m/p} · Õ(β

√
nm).

In particular, for any constant ε > 0, β ≤ nε, and p ≥ β
√
mnε, SIS∞p,n,m,β

is hard on average under the assumption that SIVPγ is hard in the worst case

for γ = Õ(β
√
nm).

2.3 Codes and the Small Codeword problem

Definition 2.8. In the Small Codeword (SCn,m,β) problem, one is given a ma-
trix H ∈ Zn×m2 and a positive integer β, and is asked to find a non-zero vector
s ∈ Zm2 such that ‖s‖1 ≤ β and Hs = 0(mod 2).

In this paper we will be interested in the above problem where m is a small
polynomial in n and β = Θ(n). If β is too big (e.g n/2), then the problem is
trivially solved by Gaussian elimination, but if β < n/4 (or really β < n/c for
any constant c > 2), the best algorithm seems to be the Generalized Birthday
attack [BKW03,Wag02] where one only has few samples, and so it runs in time
2Ω(n/ log logn) [Lyu05] when m > n1+ε for a constant ε.

2.4 Ring-SIS in the Ring Zp[x]/〈xn + 1〉

Let R be the ring Zp[x]/〈xn + 1〉 where n is a power of 2. Elements in R
have a natural representation as polynomials of degree n − 1 with coefficients
in the range

[
−p−12 , p−12

]
. For an element a = a0 + a1x + . . . + an−1x

n−1 ∈
R, we define ‖a‖∞ = maxi(|ai|). Similarly, for a tuple (a1, . . . ,am) ∈ Rm,
we define ‖(a1, . . . ,am)‖∞ = maxi (‖ai‖∞). Notice that ‖ · ‖∞ is not exactly
a norm because ‖αa‖∞ 6= α‖a‖∞ for all integers α (because of the reduc-
tion modulo p), but it still holds true that ‖a + b‖∞ ≤ ‖a‖∞ + ‖b‖∞ and
‖αa‖∞ ≤ α‖a‖∞. It can also be easily checked that for any a,b ∈ R, we have
‖ab mod xn + 1‖∞ ≤ n‖a‖∞ · ‖b‖∞ and if a only had w non-zero coefficients,
then ‖ab mod xn + 1‖∞ ≤ w‖a‖∞‖b‖∞.

Definition 2.9. Let R be the ring Zp[x]/〈xn+1〉. In the Small Integer Solution
over Rings problem (Ring-SISp,n,m,β), one is given a matrix H ∈ R1×m and is
asked to find a non-zero vector s ∈ Rm such that ‖s‖∞ ≤ β and Hs = 0 ( mod p).

Theorem 2.10 ([LM06]). For m > log p/ log (2β), γ = 16β ·m · n log2 n, and

p ≥ γ·
√
n

4 logn , solving the Ring-SISp,n,m,β problem in uniformly random matrices in

R1×m is at least as hard as solving SVP∞γ in any ideal in the ring Z[x]/〈xn+1〉.



Key Generation Sign(m) Verify(m, s)

Secret Key: K ∈ K Signature Check that m ∈M,

Public Key: H ∈ H, K̂ = HK s = Km s ∈ S, and Hs = K̂m

Fig. 1. The One-Time Signature Scheme

3 The One-Time Signature Scheme

In this section we present our one-time signature scheme. The security of the
scheme is based on the collision resistance properties of a linear (e.g., lattice
or coding based) hash function. The scheme can be instantiated with a num-
ber of different hash functions, leading to digital signature schemes that are
ultimately based on the worst-case hardness of approximating lattice problems
in various lattice families (ranging from arbitrary lattices, to ideal lattices,) or
similar (average-case) problems from coding theory.

The scheme is parametrized by

– integers m, k, n,
– a ring R
– Subsets of matrices H ⊆ Rn×m, K ⊆ Rm×k, and vectors M⊆ Rk, S ⊆ Rm.

The parameters should satisfy certain properties for the scheme to work and
be secure, but before stating the properties, we describe how the sets of matrices
are used to define the one-time signature scheme.

The scheme is defined by the following procedures (also see Figure 1):

– Setup: A random matrix H ∈ H ⊆ Rn×m is chosen and can be shared by
all users. The matrix H will be used as a hash function mapping (a subset
of) Rm to Rn, and extended to matrices in Rm×k in the obvious way.1

– Key Generation: A secret key K ∈ K ⊆ Rm×k is chosen uniformly at
random. The corresponding public key K̂ = HK ∈ K̂ = Rn×k is obtained
by hashing the secret key using H.

– Signing: Messages are represented as vectors m ∈M ⊂ Rk. On input secret
key K and message m ∈M, the signing algorithm outputs s = Km ∈ Rm.

– Verification: The verification algorithm, on input public key K̂, message
m and signature s, checks that s ∈ S and Hs = K̂m.

The correctness and security of the scheme is based on the following three
properties:

1 To make sure that someone does not choose H with a planted trapdoor, it could be
demanded that H = XOF(x) where XOF is some extendable output function (e.g.
SHAKE [NIS15]) and x is a public seed.



Fig. 2. (ε, δ)-Hiding Property. If DH(K,m) (respectively DH(K, m̃)) is defined to be
the set of secret keys consistent with the public key HK and signature Km (respectively
Km̃), then we do not want the grey region to be an overwhelming fraction ofDH(K,m).

1. (Closure) Km ∈ S for all K ∈ K and m ∈M.
2. (Collision Resistance) The function family {H : S → Rn | H ∈ H} is

collision resistant, i.e., any efficient adversary, on input a randomly chosen
H, outputs a collision (s 6= s̃, Hs = Hs̃) with at most negligible probability.

3. (ε, δ-Hiding) For any H ∈ H, K ∈ K and m ∈M, let

DH(K,m) = {K̃ ∈ K : HK = HK̃ ∧Km = K̃m}

be the set of secret keys that are consistent with the public key HK and
m-signature Km associated to K. The scheme is (ε, δ)-Hiding if for any
H ∈ H,

Pr
K∈K

[∀m 6= m̃, |DH(K,m) ∩ DH(K, m̃)| ≤ ε|DH(K,m)|] ≥ δ.

In the analysis of the schemes in this paper we will only use the (ε, δ-Hiding)
property with ε = 1/2 and δ ≈ 1. For notational simplicity, if a scheme is
(ε, δ-Hiding) for some δ = 1−n−ω(1) overwhelmingly close to 1, then we simply
say that it is (ε-Hiding). So, the signature schemes analyzed in this paper can
be described as being ( 1

2-Hiding).
The (Closure) and (Collision Resistance) properties are self-explanatory,

whereas the (ε, δ-Hiding) one could use some motivation. For concreteness, let
us use ( 1

2-Hiding) as an example. Recall from our proof sketch in Section 1.1
that we can find a collision to the challenge hash function H if the adversary
returns a signature s̃ of a message m̃ such that s̃ 6= Km̃, where K is our chosen
secret key with which we signed the message m. If the adversary is to output
a signature s̃ such that s̃ = Km̃, then K must be in the grey intersection in
Figure 2. The ( 1

2-Hiding) condition says that with probability ≈ 1, this grey
region will be at most half the size of the set DH(K,m). Since after seeing the
signature of m, the secret key is equally likely to be anywhere in DH(K,m), it
can be shown that even an all-powerful adversary has at most an 1

2 chance of



producing a signature s̃ which equals Km̃. Thus the reduction’s probability of
outputting a valid collision is 1− 1

2 = 1
2 .

Also note that the (Hiding) property precludes the message space M from
containing both m and c ·m, for any c ∈ R. Intuitively, this should be disallowed
because otherwise an adversary who sees the signature s of message m could
output a forgery s̃ = c · s on the message m̃ = c ·m. And indeed, this cannot
happen if the scheme satisfies the (ε, δ-Hiding) property for any ε < 1 and
δ > 0. In fact, if m and m̃ = c · m are both in M, then one can see that
DH(K,m) ⊆ DH(K, c ·m). Therefore |DH(K,m)∩DH(K, c ·m)| = |DH(K,m)|
and the (ε, δ-Hiding) property cannot hold for ε < 1 and δ > 0. Since m is a
vector, the most natural way to enforce that c ·m cannot be in M (which is
a necessary condition a secure scheme needs to have) is to force all vectors in
M to have 1 as their last component. This is in fact how the message space is
constructed in the examples in Section 4.

Lemma 3.1. If the (Closure) property holds, then the scheme is correct, i.e.,
the verification algorithm always accepts signatures produced by the legitimate
signer.

Proof. It immediately follows from the definition of the (Closure) property and
the signature verification algorithm.

Theorem 3.2. Assume the signature scheme satisfies the (ε, δ-Hiding) and
(Closure) properties. If there is an adversary A that succeeds in breaking the
strong unforgeability of the one-time signature scheme with probability γ, then
there exists an algorithm that can break the (Collision Resistance) property
with probability at least (γ+δ−1) ·(1−ε)/(2−ε) in essentially the same running
time as the forgery attack.

In particular, if the (Closure), (Collision Resistance) and (ε-Hiding)
properties hold true for any constant ε < 1, then the one-time signature scheme
is strongly unforgeable.

Proof. Let A be an efficient forger that can break the one-time signature scheme
with probability γ. We use A to build an attacker to the collision resistance of
H that works as follows:

1. Given an H ∈ H, pick a uniformly-random secret key K ∈ K.
2. Send the public key (H,HK) to A.
3. Obtain query message m← A(H,HK).
4. Check that m ∈M and send the signature s = Km to A.
5. Obtain a candidate forgery (m̃, s̃)← A(H,HK, s).
6. Output (Km̃, s̃) as a candidate collision to H.

By the (Closure) property, we may assume that s,Km̃ ∈ S are valid sig-
natures. In the rest of the proof we assume without loss of generality that A
always outputs syntactically valid messages m, m̃ ∈ M and a valid signature
s̃ ∈ S satisfying Hs̃ = HKm̃. (An adversary can always be modified to achieve



this property, while preserving the success probability of the attack, by checking
that (m̃, s̃) is a valid message/signature pair, and if not, output (m, s).) Under
these conventions, the collision finding algorithm always outputs a valid colli-
sion, and it is successful if and only if the collision is nontrivial, i.e., the following
event

Km̃ 6= s̃ (Collision)

is satisfied. Similarly, the forger A always outputs a valid message-signature pair
and it is successful if and only if the pair is nontrivial, i.e., the condition

(m, s) 6= (m̃, s̃) (Forgery)

holds true.
We know by assumption that this event has probability Pr{(Forgery)} = γ.

We need to bound the probability of (Collision). To this end, we replace step
6. in the above experiment with the following additional steps

7. Choose a random bit b ∈ {0, 1} with Pr{b = 0} = (1 − ε)/(2 − ε), and
Pr{b = 1} = 1− Pr{b = 0} = 1/(2− ε).

8. If b = 0, then set K̃ = K, and otherwise choose K̃ uniformly at random from
the set DH(K,m).

9. Output (K̃m̃, s̃) as an candidate collision to H.

Notice that the set DH(K,m) is always nonempty because it contains K. So,
step 8. is well defined. The success of the extended experiment is defined by the
event

K̃m̃ 6= s̃. (Collision’ )

Notice that this condition is identical to (Collision), except for the use of the
new key K̃ instead of the original one K. We remark that these additional steps
are just part of a mental experiment used in the analysis, and they are not
required to be efficiently computable.

We observe that the output of A only depends on its random coins and
the messages H,HK,Km received from the challenger. Moreover, by defini-
tion, DH is precisely the set of keys K̃ that are consistent with these mes-
sages H, HK̃ = HK, K̃m = Km. So, the conditional distribution of K given
H,HK,Km is precisely the uniform distribution over DH(K,m). This proves
that the (K̃m̃, s̃) is distributed identically to the output (Km̃, s̃) of the original
collision finding algorithm. In particular, the original and modified experiments
have exactly the same success probability Pr{(Collision’ )} = Pr{(Collision)}
at finding a nontrivial collision. So, in what follows, we will bound the probability
of (Collision’ ) rather than (Collision).

In order to bound the probability of (Collision’ ), we break the correspond-
ing event into three components:

Pr{(Collision’ )} = Pr{(Collision’ ) ∧ (m = m̃)}
+ Pr{(Collision’ ) ∧ (m 6= m̃) ∧ (Collision)}
+ Pr{(Collision’ ) ∧ (m 6= m̃) ∧ ¬(Collision)}



and observe that the bit b is chosen independently of m, m̃, s, s̃ and K, because
only K̃ depends on b. In particular, the events (b = 0) and (b = 1) are statistically
independent from (m = m̃), (m 6= m̃), the original (Collision) event Km̃ 6= s̃,
and the (Forgery) event (m, s) 6= (m̃, s̃).

First we consider the simple case when m = m̃, i.e., the adversary attempts
to forge a different signature s̃ 6= s for the same message m̃ = m. Formally, if
(Forgery) ∧ (m = m̃) ∧ (b = 0) holds true, then it must be that s 6= s̃, K̃ = K
and2

K̃m̃ = Km = s 6= s̃.

But K̃m̃ 6= s̃ is precisely the definition of (Collision’ ). So, (Forgery) ∧ (m =
m̃) ∧ (b = 0) implies (Collision’ ) ∧ (m = m̃), and

Pr{(Collision’ ) ∧ (m = m̃)} ≥ Pr{(Forgery) ∧ (m = m̃) ∧ (b = 0)}

= Pr{(Forgery) ∧ (m = m̃)} · 1− ε
2− ε

.

We now move on to the case where m 6= m̃ and the (Collision) nontriviality
property s̃ 6= Km̃ are satisfied, i.e., the adversary produces a forgery on a
different message m̃ that leads to a collision in the original game. If (m 6=
m̃) ∧ (Collision) ∧ (b = 0), then K̃ = K, and the (Collision’ ) property holds
true because (Collision) and (Collision’ ) are the same for K̃ = K. Therefore,

Pr{(Collision’ ) ∧ (m 6= m̃) ∧ (Collision)}
≥ Pr{(m 6= m̃) ∧ (Collision) ∧ (b = 0)}
= Pr{(m 6= m̃) ∧ (Collision)} · Pr{b = 0}

≥ Pr{(Forgery) ∧ (m 6= m̃) ∧ (Collision)} · 1− ε
2− ε

.

We remark that the last inequality is actually an equality because m 6= m̃
implies the (Forgery) property (m, s) 6= (m̃, s̃), but this makes no difference in
our proof.

For the last component, consider the set XH ⊆ K of all secret keys K satis-
fying the (ε-Hiding) property

XH = {K ∈ K : ∀m 6= m̃, |DH(K,m) ∩ DH(K, m̃)| ≤ ε|DH(K,m)|}.

We know that, by the (ε, δ-Hiding) assumption, for all H we have Pr{K ∈
XH} ≥ δ. Using the independence of b, and a union bound, we see that the
event

(m 6= m̃) ∧ ¬(Collision) ∧ (K ∈ XH) ∧ (b = 1) (X )

2 Notice that the following equality holds true also when b = 1, because K̃m = Km
for all K̃ ∈ DH(K,m). But this is not used in this step of the proof.



has probability

Pr{(X )} = Pr{b = 1} · Pr{(m 6= m̃) ∧ ¬(Collision) ∧ (K ∈ XH)}

≥ Pr{(m 6= m̃) ∧ ¬(Collision)} − Pr{K /∈ XH}
2− ε

≥ Pr{(Forgery) ∧ (m 6= m̃) ∧ ¬(Collision)} − 1 + δ

2− ε
.

Next, notice that the event (X ) implies ¬(Collision), i.e., s̃ = Km̃. So, given
(X ), the (Collision’ ) event K̃m̃ 6= s̃ is equivalent to K̃m̃ 6= Km̃. Therefore,
for all K̃ such that HK̃ = HK (in particular, for all K̃ ∈ DH(K,m)), and
conditioned on (X ), the (Collision’ ) property is satisfied if and only if K̃ /∈
DH(K, m̃), i.e.,

Pr{(Collision’ ) | (X )} = Pr{K̃ /∈ DH(K, m̃) | (X )}
= 1− Pr{K̃ ∈ DH(K, m̃) | (X )}

≥ 1− max
H,K∈XH,m 6=m̃

|DH(K,m) ∩ DH(K, m̃)|
|DH(K,m)|

≥ 1− ε

where, in the last inequality we have used the definition of XH. We can now
compute

Pr{(Collision’ ) ∧ (m 6= m̃) ∧ ¬(Collision)}
≥ Pr{(Collision’ ) ∧ (X )}
= Pr{(X )} · Pr{(Collision’ ) | (X )}

≥ (Pr{(Forgery) ∧ (m 6= m̃) ∧ ¬(Collision)} − 1 + δ) · 1− ε
2− ε

.

Adding up the three bounds gives

Pr{(Collision’ )} ≥

Pr{(Forgery)} − 1 + δ

 · 1− ε
2− ε

= (γ − 1 + δ) · 1− ε
2− ε

.

Finally, we observe that for any δ = 1 − n−ω(1) overwhelmingly close to 1
and constant ε < 1, we have (γ − 1 + δ)(1 − ε)/(2 − ε) = O(γ − n−ω(1)). So, if
the (Closure), (ε-Hiding) and (Collision Resistance) properties hold true,
then Pr{(Collision’ )} and γ are both negligible, and the signature scheme is
strongly unforgeable. ut

4 Instantiation With Lattices and Codes

In this section we describe instantiations of our general one-time signature
scheme based on various classes of lattices and linear codes over finite fields. All



schemes are proved secure showing that they satisfy the [Closure], [ 12 -Hiding]
and [Collision Resistance] properties, and then using Theorem 3.2. Throughout
this section, λ is a statistical security parameter that can be set, for example, to
λ = 128. The following simple lemma is used in the analysis of all schemes.

Lemma 4.1. Let h : X → Y be a deterministic function where X and Y are
finite sets and |X| ≥ 2λ|Y |. If x is chosen uniformly at random from X, then with
probability at least 1− 2−λ, there exists another x′ ∈ X such that h(x) = h(x′).

Proof. There are at most |Y | − 1 elements x in X for which there is no x′ such
that h(x) = h(x′). Therefore the probability that a randomly chosen x does
have a corresponding x′ for which h(x) = h(x′) is at least (|X| − |Y |+ 1)/|X| =
1− |Y |/|X|+ 1/|X| > 1− 2−λ. ut

4.1 One-time signature as hard as SIS

The lattice based signature scheme is defined by the sets in Figure 3 parametrized

R = Zp

H = Rn×m

K = {K ∈ Rm×k : ‖K‖∞ ≤ b}
M ⊆ {m ∈ {0, 1}k : ‖m‖1 = w}
S = {s ∈ Rm : ‖s‖∞ ≤ wb}.

Fig. 3. Instantiation of the one-time signature scheme based on general lattices. The
sets are parametrized by the integers n,m, k, p, w, b.

by integers n,m, k, p, w, and b which should satisfy certain relationships. The size
of the message space is

(
k
w

)
, and so we need to set k and w so that this number

is large enough. The choice of k and w offers a trade-off between security and
efficiency. Specifically, the size of both secret and public keys is linear in k, so
smaller values of k result in more efficient schemes. On the other hand, larger
values of w result in stronger security assumptions. For proving the security of

our scheme based on the SIS problem, we also need to have b =
⌈
pn/m2λ/m−1

2

⌉
.

For concreteness, the reader may assume m = d(λ + n log2 p)/ log2 3e, which
allows to set b = 1. In practice, larger values of b may also be interesting, as they
allow for smaller values of m. Again, this offers a trade-off between security and
efficiency, where smaller values of m result in shorter signatures, while smaller
values of b give better security guarantees.

Additionally, if we would like to preserve the connection between average-
case SIS and the worst-case SIVP problem from Theorem 2.7, then we will also
need to have p ≥ 2wb

√
mnΩ(1).

We now proceed to show that as defined above, our scheme satisfies the
[Closure], [Collision Resistance], and [ 12 -Hiding] properties defined in Section 3.



Lemma 4.2. The [Closure] property holds.

Proof. It is clear that for any secret key K and message m, we have ‖Km‖∞ ≤
‖K‖∞ · ‖m‖1 ≤ wb, and therefore Km ∈ S.

Lemma 4.3. The function family {H : S → Rn | H ∈ H} satisfies the [Colli-
sion Resistance] property based on the average-case hardness of the SIS∞n,m,p,2wb
problem. Furthermore, if p ≥ 2wb

√
mnΩ(1), then the property is satisfied based on

the worst-case hardness of SIVPγ in n-dimensional lattices for γ = Õ(wb
√
nm) ·

max{1, 4w2b2
√
m/p}.

Proof. The first part of the claim follows simply because if one can find x 6= x′ ∈
S for a random H from H such that Hx = Hx′, then one has that H(x−x′) = 0
and ‖x−x′‖∞ ≤ 2wb. The connection to SIVPγ follows directly from Theorem
2.7. ut

Before analyzing the [ 12 -Hiding] property, we prove a simple lemma that states
that with very high probability, for a randomly-chosen secret key K ∈ K, there
are other “similar-looking” possible secret keys K′ such that HK = HK′.

Lemma 4.4. Let b =
⌈
pn/m2λ/m−1

2

⌉
. For every H ∈ H, if K is chosen uniformly

at random from K, then with probability at least 1 − k2−λ, there exists a key
K′ ∈ K such that HK = HK′ and K′ 6= K differ in every column.

Proof. Consider H as a function mapping from domain X = {−b, . . . , b}m to
range Y = Znp . Notice that by our choice of b, we have |X| = (2b+ 1)m ≥ pn2λ;
and |Y | is exactly pn. By Lemma 4.1, we know that for a randomly chosen vector
x ∈ X, with probability at least 1−2−λ, there is another vector x′ ∈ X such that
Hx = Hx′. Thus we have that for any particular column Kj , with probability
at least 1−2−λ, there exists a column K′j such that HKj = HK′j and Kj 6= K′j .

Applying the union bound, we get that with probability at least 1−k2−λ this is
true for every column j = 1, . . . , k, giving a key K′ such that HK = HK′ and
Kj 6= K′j for all j. ut

Lemma 4.5. Let b =
⌈
pn/m2λ/m−1

2

⌉
as in Lemma 4.4. Then the scheme satisfies

the [ 12 -Hiding] property.

Proof. Fix a hash function H ∈ H. We know that with probability at least
1−k2−λ, a randomly-chosen key K has the property from Lemma 4.4, i.e., there
is another key K′ such that HK′ = HK and K′j 6= Kj for every j = 1, . . . , k.
We now proceed to show that for any such key K, and for any m 6= m′, we have

|DH(K,m) ∩ DH(K,m′)| ≤ |DH(K,m) \ DH(K,m′)|, (1)

or, equivalently,

|DH(K,m) ∩ DH(K,m′)| ≤ 1

2
· |DH(K,m)|,



which proves the lemma.
In order to prove (1), we give an injective function f from DH(K,m) ∩

DH(K,m′) toDH(K,m)\DH(K,m′). Since m′ 6= m, there must be a j such that
the jth coefficient is 0 in m and is 1 in m′. For any X ∈ DH(K,m)∩DH(K,m′),
we define X′ = f(X) as follows:

1. X′i = Xi for all i 6= j
2. X′j ∈ {Kj ,K

′
j} \ {Xj}. Notice that since Kj 6= K′j , at least one of them is

different from Xj . If they are both different, then X′j can be chosen between
them arbitrarily.

We need to show that X′ ∈ DH(K,m) \ DH(K,m′), and that f is injective.
For X′ ∈ DH(K,m) \ DH(K,m′), we need to verify the following three

conditions: HX′ = HK, X′m = Km and X′m′ 6= Km′, under the assumption
that HX = HK, Xm = Km and Xm′ = Km′. For each i = 1, . . . , k, we
have X′i ∈ {Xi,Ki,K

′
i}. Since HX = HK and HK′ = HK (by our choice of

K′), we have HX′ = HK, proving the first condition. The second condition
X′m = Km follows from the fact that X′m = Xm (because X′ and X differ
only in the jth column and mj = 0) and Xm = Km. Similarly, the third
condition X′m′ 6= Km′ follows from the fact that X′m′ 6= Xm′ (because X′

and X differ only in the jth column and m′j = 1) and Xm′ = Km′.
It remains to prove that f is injective. Assume for contradiction that f(X) =

f(X′) for some X 6= X′ both in DH(K,m)∩DH(K,m′). Then, by definition of f ,
Xi = X′i for all i 6= j. Therefore Xj and X′j must differ. But then Xm′ 6= X′m′

because m′j = 1, and so they cannot both be in DH(K,m′). ut

Combining the previous lemmas, and Theorem 3.2, we obtain the following
corollary.

Corollary 4.6. For any ε > 0, let p ≥ 2wb
√
mnε and b =

⌈
pn/m2λ/m−1

2

⌉
.

Then, the one-time signature scheme from Section 3, instantiated with the sets
in Figure 3, is strongly unforgeable under the assumption that SIVPγ is hard in

the worst case for γ = Õ(wb
√
nm) max{1, 2wb/nε}.

In particular, for m = d(λ + n log2 p)/ log2 3e, b = 1 and p ≥ 2w
√
mnε, the

scheme is strongly unforgeable under the assumption that SIVPγ is hard in the

worst case for γ = Õ(w
√
nm) max{1, 2w/nε}.

4.2 One-time signature as hard as Ring-SIS

Our one-time signature based on the Ring-SIS problem from Definition 2.9 is
parametrized by integers n,m, p, w, and b that must satisfy certain relationships.
The integer n is assumed to be a power of 2, so that the polynomial xn + 1 is
irreducible over Z[x]. The size of the message space M is at most

∑
i≤w 2i

(
n
i

)
,

and so we need to set n and w to sufficiently large integers. As usual, the choice
of n and w offers a trade-off between efficiency and security. For proving the
security of our scheme based on the Ring-SIS problem, we also need to have



b = b(|M|1/n2λ/np)1/me and p > 8wb. Notice that by choosing m large enough,
one can set b = 1, but higher values of b can offer improved efficiency at the cost
of stronger security assumptions. Additionally, if we would like to preserve the
connection between average-case Ring-SIS and the worst-case SVP problem in
ideal lattices from Theorem 2.10, then we will also need to have p = ω(n1.5mwb).

The scheme is parametrized by the sets in Figure 4. The message space is

R = Zp[x]/〈xn + 1〉
H = R1×m

K = {[k1,k2] ∈ Rm×2 : ‖k1‖∞ ≤ b, ‖k2‖∞ ≤ wb}
M ⊆ {m = [m1, 1]T ∈ R2, ‖m1‖∞ ≤ 1, ‖m1‖1 ≤ w}
S = {s ∈ Rm : ‖s‖∞ ≤ 2wb}.

Fig. 4. Instantiation of the one-time signature scheme based on ideal lattices.

set to an appropriate subset of all vectors with entries bounded by 1 in absolute
value, and at most w non-zero entries. The set M should be chosen in such a
way that messages can be efficiently encoded as elements of M.

Lemma 4.7. The function family {H : S → R | H ∈ H} satisfies the [Collision
Resistance] property based on the average-case hardness of the Ring-SISn,m,p,4wb

problem. Furthermore, for γ = 64wbmn log2 n and p ≥ γ
√
n

4 logn , the property is

satisfied based on the worst-case hardness of SVP∞γ in all n-dimensional ideals
of the ring Z[x]/〈xn + 1〉.

Proof. The first part of the claim follows simply because if one can find x 6= x′ ∈
S for a random H from H such that Hx = Hx′, then one has that H(x−x′) = 0
and ‖x− x′‖∞ ≤ 4wb. The connection to SVP∞γ follows directly from Theorem
2.10. ut

Lemma 4.8. The [Closure] property holds true.

Proof. Notice that for any secret key K = [k1,k2] and message m = [m1, 1]T ,

‖Km‖∞ = ‖k1m1 + k2‖∞ ≤ ‖k1m1‖∞ + ‖k2‖∞ ≤ wb+ wb = 2wb.

ut

Lemma 4.9. Let b = b(|M|1/n2λ/np)1/me. For every H ∈ H, if K is chosen
uniformly at random from K, then with probability at least 1 − 2−λ, for every
message m ∈ M there is another K′ ∈ K such that HK = HK′ and Km =
K′m.



Proof. For any H and m, consider (H,m) as a function that maps any element
K in K to the ordered pair (HK,Km). We will first show that the domain size
of this function is at least |M| · 2λ times larger than its range. The domain
size of this function is exactly |K| = (2b + 1)mn · (2wb + 1)mn. To bound the
size of the range, we first notice that by Lemma 4.8 we have ‖Km‖∞ ≤ 2wb.
Therefore, the number of possibilities for Km is at most (4wb+ 1)mn. We then
notice that while there are p2n possibilities for HK = [Hk1,Hk2] in general, if
we have already fixed H, m, Hk1, and Km, then Hk2 = HKm −Hk1m1 is
completely determined. Thus, there are only at most (4wb+1)mn ·pn possibilities
for (HK,Km). Therefore the ratio of the sizes of the domain and range of the
function (H,m) is at least

(2b+ 1)mn · (2wb+ 1)mn

(4wb+ 1)mn · pn
>

(2b+ 1)mn · (2wb+ 1)mn

(4wb+ 2)mn · pn
=

(
(b+ 1

2 )m

p

)n
.

Using b = b(|M|1/n2λ/np)1/me ≥ (|M|1/n2λ/np)1/m− 1
2 , we get that the ratio is

at least |M| · 2λ. Applying Lemma 4.1, we obtain that with probability at least
1−2−λ/|M| over the random choice of K ∈ K, there exists another K′ ∈ K such
that HK = HK′ and Km = K′m. Applying the union bound over all messages
in M concludes the proof. ut

Lemma 4.10. Let b = b(|M|1/n2λ/np)1/me and p > 8wb. Then the scheme
satisfies the [12 -Hiding] property.

Proof. Fix H. By Lemma 4.9, we know that with probability of at least 1− 2−λ

over the random choice of K, for every message m, the size of the set DH(K,m)
is at least 2. To complete the proof, we will show that for all H,K,m 6= m′, the
size of the set DH(K,m) ∩ DH(K,m′) is at most 1.

We prove that for any X,X′ ∈ DH(K,m)∩DH(K,m′), it must be X = X′.
By the definition of DH, we know that Xm = X′m and Xm′ = X′m′. Therefore,
(X−X′)(m−m′) = 0. But m−m′ = [m1, 1]T − [m′1, 1]T = [m1 −m′1, 0]T , and

(x1 − x′1)(m1 −m′1) = (X−X′)(m−m′) = 0 (2)

in the ring R. Now we observe that, since the product of ‖x1 − x′1‖∞ ≤ 2b and
‖m1 − m′1‖1 ≤ 2w is at most 4wb < p/2, no reduction modulo p takes place
during the multiplication of (x1−x′1) by (m1−m′1), and therefore (2) holds over
the ring Z[x]/〈xn + 1〉. Since Z[x]/〈xn + 1〉 is an integral domain and m1 6= m′1,
we can conclude that (2) is equivalent to x1 = x′1. This proves that the keys
X and X′ have the same first vector. But If x1 = x′1, then we also have have
x2 = Xm−x1m1 = X′m−x′1m1 = x′2, and so the two keys X,X′ are identical.

ut

Combining the previous lemmas, and Theorem 3.2, we obtain the following
corollary.

Corollary 4.11. Let b = b(|M|1/n2λ/np)1/me and p > 8wb. Then, the one-
time signature scheme from Section 3, instantiated with the sets in Figure 4, is



strongly unforgeable based on the assumed average-case hardness of the Ring-SISn,m,p,4wb

problem. Furthermore, for γ = 64wbmn log2 n and p ≥ γ
√
n

4 logn , the scheme is se-

cure based on the worst-case hardness of SVP∞γ in all n-dimensional ideals of
the ring Z[x]/〈xn + 1〉.

We remark that for the message spaceM to be superpolynomial size, we must
have w = ω(1). So, even using Ring-SIS average-case hardness assumptions, we
must have p = ω(1). The expression for b can be simplified by setting |M| = 2n

and λ = n. This gives b = b(4p)1/me, which, for m > (2 + log2 p)/(log2 3− 1) =
O(log p) is just b = 1. In practice, one may want to use higher values of b (and
smaller values of m), to improve the signature size and overall efficiency of the
scheme, at the cost of making stronger security assumptions.

When basing the problem on the worst-case hardness of SVP on ideal lattices,
one could set w = O(n/ log n), b = 1, m = O(log p), modulus p = n2.5 log n, and
worst-case approximation factor γ = O(n2 log2 n).

4.3 One-time signature as hard as the Small Codeword Problem

The code-based signature scheme is defined by instantiating the abstract con-
struction from Section 3 with the sets in Figure 5 parametrized by integers

R = Z2

H = Rn×m

K = {K ∈ Rm×k : ‖K‖1 ≤ b}
M ⊆ {m ∈ Rk : ‖m‖1 = w}
S = {s ∈ Rm : ‖s‖1 ≤ wb}

Fig. 5. Code-based instantiation of the one-time signature scheme, parametrized by
integers n,m, k, w, b.

n,m, k, w, and b which should satisfy certain relationships. The size of the mes-
sage space will be

(
k
w

)
and we will prove the security of our scheme based on the

hardness of the SCn,m,2wb problem from Definition 2.8.
Unlike for the lattice scheme in the previous section, we do not have as much

freedom in how to set the parameters. This is mostly due to the fact that the ring
in this scheme is fixed to Z2, whereas in the lattice scheme, we had a the freedom
to set the parameter p for R = Zp. For some constants c, c′, we instantiate the
scheme with parameters m = nc+1+cλ/n, b = n/(c log n), and w = c′ log n. These
values satisfy the relation

b∑
i=0

(
m

i

)
>

(
nc+1+cλ/n

n
c logn

)
>
(
nc(1+λ/n)

n
c logn

)
= 2n+λ,



which will be used to prove the security of the scheme based on the hardness
of SCn,m,2wb. Notice that for k = nΩ(1), the size of the message space size is

|M| =
(
k
w

)
= 2Ω(c′ log2 n), which is superpolynomial, but much smaller than

the exponential message space size of our lattice based schemes. Finally, for the
SCn,m,2wb problem to be hard (see Lemma 4.13), we need 2wb = 2nc′/c < n/4.
Thus we require c′ < c/8.

Lemma 4.12. The [Closure] property holds

Proof. It’s clear that for any secret key K and message m, we have ‖Km‖1 ≤ wb.

Lemma 4.13. The function family {H : S → Rn | H ∈ H} satisfies the [Col-
lision Resistance] property based on the average-case hardness of the SCn,m,2wb
problem.

Proof. If one can find x 6= X′ ∈ S for a random H from H such that Hx = Hx′,
then one has that H(x− x′) = 0 and ‖x− x′‖1 ≤ 2wb. ut

Lemma 4.14. For every H ∈ H, if K is chosen uniformly at random from
K, then with probability at least 1 − k2−λ, there exists a key K′ ∈ K such that
HK = HK′ and K′ 6= K differ in every column.

Proof. Consider H as a function mapping from domain X = {x ∈ Zm2 : ‖x‖1 ≤

b} to range Y = Zn2 . Notice that by our setup, |X| =
b∑
i=0

(
m
i

)
≥ 2n+λ and |Y | is

exactly 2n. By Lemma 4.1, we know that for a randomly chosen vector x ∈ X,
with probability at least 1 − 2−λ, there is another vector x′ ∈ X such that
Hx = Hx′. Thus we have that for any particular column Kj , with probability
at least 1−2−λ, there exists a column K′j such that HKj = HK′j and Kj 6= K′j .

Applying the union bound, we get that with probability at least 1−k2−λ this is
true for every column j = 1, . . . , k, giving a key K′ such that HK = HK′ and
Kj 6= K′j for all j. ut

Lemma 4.15. The [ 12 -Hiding] property holds true.

Proof. The proof is verbatim the proof of Lemma 4.5 except that references to
Lemma 4.4 should be replaced with references to Lemma 4.14.

Combining the previous lemmas, and Theorem 3.2, we obtain the following
corollary.

Corollary 4.16. Let m = nc+1+cλ/n, b = n/(c log n) and w = c′ log n for some
constants c > 8c′ > 0. The one-time signature scheme from Section 3, instan-
tiated with the set in Figure 5, is strongly unforgeable based on the assumed
average-case hardness of the SCn,m,p,2wb problem.



5 Conclusions and open problems

The main technical contribution of this work is a construction of a one-time
digital signature scheme that takes Õ(k) time to compute and has conjectured
security of 2Ω(k). Since its original publication, the techniques in this paper were
used as a starting point in constructions of more “advanced” lattice primitives
such as identification schemes [Lyu08,Lyu09], signature schemes (without the
“one-time” restriction) [Lyu09,Lyu12,DDLL13,BG14,DLL+17], blind signature
schemes [Rüc10], and ring signature schemes [MBB+13].3 The main conceptual
difference between the one-time signature in this paper and the schemes listed
above is that it is fine to leak a little information about the secret key in the
one-time construction as long as it does not information-theoretically reveal
the secret key. In the latter schemes, however, this leakage occurs with every
signature (not just once) and so will eventually reveal the entire key. To prevent
leakage while retaining efficiency, one needs to use the “Fiat-Shamir with Aborts”
technique introduced in [Lyu08,Lyu09] and refined in subsequent works.

Because the full digital signature schemes mentioned above are fairly compact
(signatures and public keys around 2KB for 128 bits of conjectured security
against quantum attackers), one might think that the one-time signature in this
paper would have even smaller parameters. Unfortunately, this is not the case.
Starting from [Lyu12], it was observed that the optimal way to set parameters
is to have the secret key K come from a domain for which there is a unique
K satisfying HK = K̂.4 The signature s = Km, on the other hand comes
from a domain for which there are multiple possible s′ satisfying Hs′ = K̂m.
The reason for setting parameters in this manner is due to the fact that the
hardest knapsack problems have density 1 [IN96] – that is if H : D → R is a
linear function and D′ ⊂ D is a subset of D with small coefficients, then finding
a pre-image s ∈ D′ satisfying Hs = t is hardest when |D′| ≈ |R| and gets
progressively easier as |D′| increases or decreases. Positioning both the key and
signature parameters around density 1 knapsacks (unlike in this paper where the
problem of recovering the key is close to a density 1 problem, whereas recovering
the signature is further away) therefore allows us to base the hardness of the
scheme on a harder problem.

In our current scheme, we crucially need that there exist multiple secret keys
K for every public key K̂, and so cannot use the smaller secret key domain
mentioned above. One may try to overcome this problem (and indeed this is
what was done in [Lyu12]) by using the indistinguishability of (H, K̂ = HK)
from uniform based on the hardness of the Learning with Errors problem to argue
that we can substitute a real public by one that comes from the domain we need

3 All the signature schemes are proved secure in the random oracle model.
4 We are just using the notation from this paper as an analogy. The actual keys in the

full-fledged signature are constructed a little differently. In particular, the (secret and
public) keys in this work actually comprise both the (secret and public) keys and the
“commit” step of the Σ-protocols underlying the full signature schemes. We refer
readers to [Lyu09] for a more in-depth disussion about the relationship of collision-
resistant hash functions, one-time signatures, Σ-protocols, and full signatures.



for the proof. But using this idea, we run into the problem that the reduction is
not able to generate a valid signature. In [Lyu12] this was not an issue because the
random oracle could be programmed so that valid signatures could be simulated
even with an invalid public key. Without a random oracle, we do not see how this
step could be accomplished. Even with a random oracle, it is not straightforward
to adapt our current construction so that is uses programming. In full-fledged
signatures, the distribution of the signature is independent of the secret key,
thus one could simulate a valid signature (using standard simulation techniques
for Σ-protocols) by first picking a signature from the correct distribution and
then filling in the other parts. In our case, however, the signature depends on
the secret key, and so the same simulation technique does not work. In short,
constructing a one-time signature scheme that is more practical than full-fledged
signatures in the random oracle model remains an open problem.

We mention that there was also recent work [Lyu16] that showed how to
construct digital signatures in the random oracle model based on the simultane-
ous hardness of the SIVP problem simultaneously in all rings Z[x]/〈f(x)〉. The
construction was built on top of a collision-resistant hash function defined over
the ring Z[x] in which finding collisions is as hard as solving the SIVP problem in
all rings. It is relatively straightforward to adapt our instantiation from Section
4.2 to this collision-resistant hash function.

An interesting question deals with improving the efficiency of the code-based
scheme in this paper. We show that it is possible to instantiate our general frame-
work based on the hardness of the Small Codeword Problem, but the resulting
scheme is quite inefficient. In particular, to get super-polynomial hardness, we
are only able to sign messages of length approximately log2 k and base the hard-
ness of our scheme on a problem that is only 2Ω(log2 k) hard. Interestingly, the
more practical hash-and-sign code-based signature scheme of Courtois et al.
[CFS01] is also asymptotically based on the hardness of a problem that is at

most 2O(log2 k) hard. Furthermore, technical reasons prevent us from instantiat-
ing the code-based scheme based on a problem allowing for a more structured
public key, analogous to Ring-SIS. Thus, the problem of constructing efficient
code-based one-time signatures without using random oracles remains open.

It would also be interesting to see if our general framework can be instantiated
using different assumptions, such as those from multivariate cryptography.
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