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ABSTRACT—Whereas it is widely deemed an impossible task to scale down One-

Time Pad (OTP) key length without sacrificing information theoretic security or network 

traffic, this project started with the attempt to develop a paradigm of Scalable One-Time 

Pad (S-OTP) ciphers based on information conservational computing/cryptography (ICC). 

This line of research, however,  hits a dead-end at the limitation of information entropy and 

computational precision for full information conservation when long messages are 

transmitted. The dead-end suggests a 2-phase study. First, to explore the boundaries of 

scalability with data compression to reduce a long message to a tiny minimum but 

assuming only partial information conservation. Second, to explore the possibility of 

scalability with full information conservation but with limited increase of network traffic 

for transmitting long messages with information theoretic security. This paper reports 

results of the first phase.  This study suggests two future directions of ICC: (1) using S-

OTP to scale down key length at the expense of limited increase of network traffic for full 

information conservation (See solution at https://eprint.iacr.org/2019/913.pdf ); (2) 

develop a type of quantum crypto machine for full information conservation.  

KEYWORDS: Black Hole Data Compression; Partial Information Conservational Security; Post-

Quantum Cryptography; Partially Scalable One-Time Pad 

 

1. INTRODUCTION 

1.1 Post-Quantum Cryptography 

Cryptography is essential for the security of digital communication. However, many 

commonly used cryptosystems will be completely broken by a quantum algorithm for 

integer factorization [1] once large quantum computers are commercially applicable. 

Post-quantum cryptography is to counter such quantum attacks and to keep digital com-

munication secure [2]. A key for success is to identify mathematical operations for 

which quantum algorithms offer little advantage in speed, and then to build crypto-

graphic systems around them. Although progress has been made most proposed methods 

incur serious costs, especially in network traffic. A major challenge is to reduce encryption 

key length.  

1.2 Information Theoretic Security 

One-Time Pad (OTP) [3] [4] is often regarded the only cipher with proven information 

theoretic security (ITS) [5]. A cryptosystem with ITS derives its security purely from in-

formation theory [6]. A key concept of information theory is entropy—a measure of disor-

der of a system that provides a basis for unicity distance [5]. The distance can be defined 

as the minimum amount of ciphertext required to permit a computationally unlimited ad-

versary to recover the unique encryption key in a brute force attack. 

An information theoretically secure system cannot be broken even if the adversary has 

unlimited computing power. Such a cryptosystem is considered cryptanalytically unbreak-

able. The concept of ITS was introduced in 1949 by American mathematician Claude 
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Shannon, the inventor of information theory, who used it to prove that the OTP cipher was 

secure [5]. ITS bas been used for the most sensitive communications, such diplomatic and 

high-level military communications to counter the great efforts enemy governments ex-

pend toward breaking them. 

OTP can now be used together with quantum key distribution (QKD)—a well-devel-

oped application of quantum cryptography. QKD uses quantum communication to estab-

lish a shared key between two parties— sender Alice and receiver Bob. The key is then 

shared. If a third party Eve tries to eavesdrop on the communication between Alice and 

Bob, the quantum communication will fail for security protection [8]. Once the key is es-

tablished, it is typically used as a symmetric key for digital communication such as using 

OTP. Since OTP is quantum proof to quantum factorization, it is a good candidate for post-

quantum cryptography [2]. Unfortunately, the key requirement of equal or greater length 

than the original message hinders the general application of OTP even though QKD is a 

well-developed partner technology. As a result, OTP is generally limited at present time to 

transmitting relatively short messages with high security requirement. 

1.3 Information Conservational Security 

History shows that, when Shannon invented OTP in 1946 [6], the first computer was 

not out yet. Since then, computing theory and technology have advanced beyond anyone’s 

imagination. Although it was proven [5] that any cipher with the perfect secrecy property 

must use keys with effectively the same requirements as OTP keys, these proofs, however, 

did not take later computing theories and technological development into consideration. 

For instance, when entropy became a key concept in information theory, information con-

servational computing/cryptography (ICC) with quantum intelligence [9,10,11,12] was not 

incepted yet. On other hand, before the first computer was put on the drawing board, IEEE 

binary64, 128, and 256 double-precision floating-point format for a wide dynamic range of 

numeric values was unimaginable. The wide dynamic range makes equilibrium-based ICC 

practical and opened the possibility of OTP scalability with partial or full information con-

servation and limited traffic increase. 

With the new theoretical and technological advances, the information conservational 

approach to security attempts to incorporate holistic and set-theoretic data compression 

into OTP as an extension to information theoretic security. In this approach, a partially 

scalable one-time pad (S-OTP) cipher does not attempt to falsify Shannon's theorem, it 

bypasses the assumptions of the theorem by reducing the message length to be enciphered 

with black-hole-like information conservational data compression but still enable the shar-

ing of holistic information such as document size, structure, and perhaps digest. This type 

of data compression is named black hole data compression (BHDC).  

Cryptosystems often compress the plaintext before encryption for added security. 

When properly implemented, compression greatly increases the unicity distance [5] by re-

moving patterns that might facilitate cryptanalysis. However, many ordinary lossless com-

pression algorithms produce headers, wrappers, or other predictable output that might in-

stead make cryptanalysis easier. Thus, cryptosystems must utilize compression algorithms 

that can hide these predictable patterns. BHDC is used to explore some limits. 

Now we have the question: Can S-OTP really make OTP partially scalable through 

BHDC? 

1.4 Approach and Organization 
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This paper presents S-OTP based on BHDC to explore some boundary assuming only 

partial or minimum information conservation. It is shown that, with ICC, BHDC can com-

press a large data set to a tiny minimum with partial information conservation. In this way, 

S-OTP makes OTP keys much shorter Partial information conservational security condi-

tions are established. Quantum-fuzzy collective precision is proposed. Quantum machinery 

development of S-OTP is briefly discussed. In general, some boundaries are explored for 

future study.  

This paper is organized in five sections. Section II presents the theoretical basis with 

illustrations BHDC and S-OTP. Section III examines some optimization of the S-OTP par-

adigm. Section IV presents an architectural design of S-OTP quantum dream machinery. 

Section V draws a few conclusions and identifies a number of major theoretical and prac-

tical challenges. 

2   THEORETICAL AND METHODOLOGICAL FORMULATION WITH IL-

LUSTRATION 

2.1 Theoretical Formulation 

It is shown [3] [4] that an OTP cipher is information theoretically secure and unbreak-

able [5] [6] provided that the message to be ciphered is unknown to attackers, and a cipher 

key meets the four conditions of OTP: (a) truly random; (b) never reused; (c) kept secret 

from all possible attackers; (d) of equal or greater length than the message. Based on the 

four security conditions, we consider the scalability and partial scalability of OTP. 

Definition 1a. Information conservational transformation (ICT) is referred to as a set 

of set-theoretic mathematical functions that forms an transformation T to transform the bit 

pattern of a long message in form F1 to another pattern in form F2 systematically such that 

there exists a reverse transformation T’ that can fully recover F1 from F2 without infor-

mation loss. Formally we have: T(F1): F1→F2 such that T’ and T’(F2): F2→F1. Partial 

information conservational transformation (PICT) is referred to as a set of set-theoretic 

mathematical functions that forms an transformation T to transform the bit pattern of a long 

message in form F1 to another significantly shorter pattern in form F2 systematically such 

that there exists a reverse transformation T’ that can partially or minimally recover F1 from 

F2. Formally we have: T(F1): F1→F2 such that T’ and T’(F2): F2→F3, where F1F3 results 

the partially reserved information including document size and structure. (Note: PICT is 

part of ICT.) 

Definition 1b. Scalability is referred to as using ICT once or multiple times systemat-

ically to transform a long message or large data set into one or a series of short forms such 

that cipher keys are reduced to a minimum for enciphering the short forms as OTP pads for 

secure transmission. In this case, An OTP pad is called a scalable OTP (S-OTP) pad. When 

PICT is used an S-OTP pad is called partially scalable. In S-OTP, a key is assumed reusable 

if the reuse can be concealed in another unbreakable S-OTP pad. 

Based on Definitions 1a and 1b, we extend information theoretic security (ITS) of OTP 

to information conservational security (ICS) of S-OTP and partial information conserva-

tional security (PICS).  

Definition 2a. An S-OTP cipher is said having ICS if full ICT is used. An S-OTP cipher 

is said having PICS if PICT is used. 

Definition 2b. Given 0<i<N, a minimum length form is a message form Fx = (X, {xi/X}) 

that cannot be further reduced in binary length through ICT/PICT in theory. An absolute 

minimum length form is the minimum form when N = 2. 

It could be argued that S-OTP is just OTP plus data compression, and there is nothing 

new. The counter argument is that: (1) Information conservation or preservation has been 
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a long sought goal in physics and information theory without a breakthrough until recently 

[11,12]; (2) The key length problem of OTP has been a well-known long standing impasse; 

(3) ICS is essentially information theoretic in nature that qualifies to be a systematic ex-

tension to ITS for further research [9,10]. 

The inception of ICS accounts for the new development in computing technology. Dou-

ble precision floating-point format of IEEE binary64, 128, or 256 is used as a technological 

basis for analysis that was not available when information theory was initially developed 

[6].  

Theorem 1a (Possibility Theorem). PICT for PICS is possible based upon OTP and 

IEEE binary64, 128, or 256. Formally, let {x} be the data set of a long integer L representing 

a sufficiently long message divided into sections, some set {xi}, 0<i<N, exists such that (X, 

{xi/X}) is significantly shorter than the long integer L, where X = ∑ 𝑥𝑖𝑖  is a math summation 

(not XOR), and {xi/X} a percentage distribution. However, The original message L can only 

be partially recovered from (X, {xi/X}) due to the limitation of double precision and infor-

mation loss.  

Proof. To show possibility, let L=16K bits divided into 32 of 512-bit sections or integers {xi}, 

0<i<32. That would leads to one 64, 128, or 256-bit double floating point summation X=∑ 𝑥𝑖𝑖  and 

32 of 64, 128, or 256-bit percentage distributions {xi/X}, respectively, total 8K+256, 4K+128, or 

2K+64 bits vs. 16K, a nearly 2-4-8-fold reduction of key length and network traffic. This could be 

further hierarchically scaled (reduced) to a minimum form or until the pair (X, {xi/X}) is short enough 

to be randomized and enciphered with a significantly shorter key. Thus, ICS is achievable. However 

full information conservation is achievable only when the message length is in the range of the effec-

tive digits for precision limited by double precision floating point formal of IEEE binary64, 128, or 

256, but not achievable in general.  (Note: Since a possibility theorem is not an optimality theorem, 

a generic example is sufficient for its proof. However, the possibility opened the door to partial scala-

bility of OTP.)  ∎ 

Theorem 1b (Minimum Length Theorem). For any message in an intermediate PICT 

transformation, given the number of data divisions N, a minimum length form Fx = (X, 

{xi/X}) exists in theory where length(X) = length(xi/X)—one double precision floating point 

number length, 0<i<N. An absolute minimum length also exists in theory, which equals 

length(three double precision floating point numbers), that would be 192, 384, or 768 bits 

for IEEE binay64, 128, and 256, respectively.   

Proof. Given any PICT  T, we must have a form in length Fx = (X, {xi/X}), 0<i<N, such that at 

certain point we must have T(Fx):Fx→Fy and length(Fy) = length(Fx) because (1) given 0<i<N, 

length({xi/X}) is irreducible; (2) if length(X)   length(one double precision floating point number) 

it becomes irreducible either.  Then we must have an absolute minimum length for N, where one 

double precision floating point number is for the summation, two are for the distribution in double 

precision floating point format, that would be three of them.   ∎ 

Theorem 1c (Reachability of Minimum). Given the number of data divisions N2, a 

minimum or absolute minimum length form can be reached through a recursive PICT 

T(T(X)) if sufficient computational power is available. 

Proof. It follows from the proof of Theorem 1b.  ∎ 

We name the above type of data compression Black Hole Data Compression (BHDC) 

for its ability to reach a condensed tiny minimum with recursive partial information con-

servational transformation. BHDC is fundamentally different from other lossless and math-

ematical data compressions widely used in computer coding and zip technologies, which 

are based on information theoretic modeling for near optimal character coding but cannot 

reach a holistic condensed tiny minimum with partial information conservation. Similarly, 

a data decompression process of BHDC can be named big bang information recovery 

(BBIR) recover the minimal partially reserved information. 
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Theorem 1d (Randomization Theorem). A bit pattern L with a tiny minimum number 

of bits resulted from BHDC can always be randomized with another bit pattern R in limited 

length for enhanced unicity distance regardless of any header, wrapper, or other predictable 

output in L. 

Proof. It follows from the commonsense that, if L is a tiny minimum, a small number of random 

bits in R can be inserted into L as paddings for enhanced unicity distance. Thus, any necessary head-

ers, wrappers, or other predictable output can be randomized before the text is enciphered that, 

otherwise, would be patterns facilitating cryptanalysis by attackers in a brute force attack [5]. The 

paddings can be removed by a receiver based on a key (e.g. Key code 0101080302R2 stands for 

“Pad 1 random bit at the beginning and insert 1 random bit for every 8 bits after bit position 3, then 

pad 2 random bits at the end. Repeat the padding with double distance that is: Pad 1 random bits at 

the beginning and insert 1 random bits for every 8 bits after bit position 3  2 = 6, then pad 2 random 

bits at the end.”)  ∎ 

2.2 Method1: Add, Divide, and Conquer 

The rationale of S-OTP is that, given an unsigned big integer L representing the long 

message or large data item D to be transmitted, L can be divided into a set of shorter long 

integers {xi} = x1, x2, .., xi, .. xn representing sectors or sections of D to be transmitted. The 

summation X = x1 + x2 +  ...+ xi+...+xn can be obtained which could be represented as a 

long integer or a floating-point decimal much shorter than L to transmit. The set of per-

centage distribution {xi/X} is a type of most primitive information conservational key that 

can be encrypted and transmitted together with X in ciphertext for recovering {xi} to L and 

then D in the receiver side. This leads to S-OTP-Method1—a one key cipher. 

S-OTP1-Method1 

Assume sender Alice and receiver Bob share a private key K distributed through QKD. 

Part I. Encryption 

Step 1. Let math summation X = ∑ 𝑥𝑖𝑖  (not XOR). 

Step 2. Calculate percentage distribution {xi/X}; 

Step 3. Encrypt the text U = {X, {xi/X}} with one key K to ciphertext E=KU where  is XOR (not 

math summation). 

Step 4. Alice Transmits E to Bob. 

Part II. Decryption   

Step 1. Use K to decipher E to obtain X and {xi/X}; 

Step 2. Use {xi/X} to decrypt the summation X and recover {xi}; 

Step 3. Recover transmitted message from {xi} with concatenation. 

2.3 Illustration of S-OTP1-Mehrod1 

Assuming the plaintext data D to be transmitted is represented by the big integer L = 

1048549998213983988, we divide L into the three sections 1048549, 998213, and 983988. 

Assume sender Alice and receiver Bob share a private key K distributed through QKD. 

Part I - Encryption 

(1) Let x1 = 1048549,  x2 = 998213, x3 = 983988, and  

(2) X = x1 + x2 +  x3 = 3030750; 

(3) Calculate percentage distribution {xi/X}={34.5970%, 32.9362%, 32.4668%}; 

(4) Encrypt the plaintext U={3030750, {34.5970%, 32.9362%, 32.4668%}} to result in ciphertext 

E=KU; 

(5) Transmit E to Bob; 

Part II - Decryption: 

(1) Use K to recover U={3030750, {34.5970%, 32.9362%, 32.4668%}}; 

(2) Use U to recover x1=1048549,  x2=998213, and x3=983988; 

(3) L = concatenate(x1, x2, x3) = 1048549998213983988; 

(4) Recover D from L. 
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It can be argued that S-OTP1-Mehrod1 does not reduce the key length. The counter 

argument is that, as a simple example the illustration is already in a minimum form. It does 

not really need S-OTP because a single OTP is sufficient. As proven in Theorem 1, S-OTP 

does reduce key length the same way with sufficiently long dada sections for partial infor-

mation conservation. The problem is precision. 

2.4 Method2—ICC with Collective Precision 

Percentage distribution has its own limitation due to sequential computation. When the 

math summation gets huge that is usually the case, the precision of a single percentage will 

be a problem. The computation of such a percentage can be avoided with the massive par-

allel collective precision property of ICC [9,10]. In ICC a big total can be divided into 

many subtotals or integers representing data sections. If each subtotal is further divided 

into bipolar import-export values, each can be normalized by its corresponding column 

subtotal. A information conservational matrix can then be derived through column-major 

normalization for massive parallelism and collective precision without using the grand to-

tal. 

ICC is made achievable with bipolar fuzzy sets [13-17]. Bipolar fuzzy set theory forms 

an equilibrium-based mathematical abstraction—a set theoretic or information theoretic 

extension to fuzzy set theory [18]. It is a generalization of truth-based computing which 

can still be used freely as long as equilibrium conditions are not violated. Bipolar fuzzy set 

theory was once rescued by Zadeh [19]. 

In this subsection, we show an ICC example. We then examine and explain the prop-

erties of the example in next two subsections. A key concept in ICC is an information 

conservational bipolar matrix M. With M an energy or information total or summation can 

be decrypted through equilibrium-based rebalancing to result in all the subtotals in parallel 

with percentage distribution built into M. This makes it possible to develop digital or quan-

tum machinery with massive parallelism in collective precision that is not achievable with 

linearly normalized percentage distribution.  

M consists of bipolar elements. The energy and/or information of a bipolar (import-

export) element or variable x = (a, b) is defined as the length of a bipolar interval where a 

is negative and b positive.  

Energy of x:  |x| = |(a, b)| = b – a = |a| + |b|.   (1) 

 For instance, |(-2.5, 3.5)|=3.5-2.5=2.5+3.5=6. 

A 3-partner US-China-EU trade example is used to illustrate the basic idea of ICC with 

collective precision. First, the 3-parners’ bipolar import-export data for 2014 are shown in 

Fig. 1a as a cognitive map (CM) in million Euros. The total energy/information in the trade 

scenario is characterized by the total import/export  

|(-3030750, +0)| = |(-0, +3030750)| = 3030750.  

Using collective bipolar interaction in ICC, accurate calculation can be carried out with 

the bipolar quantum cellular automaton (BQCA) E(t+1) = M  E(t) based on a column-

major normalized bipolar cognitive map matrix M that does not need the calculation of 

percentage distribution. (Note: The illustrations in this paper are in fix-point format for 

readability. In real computing, they are in floating-point format.)  

In this ICC example E(1) is the transpose of the initial bipolar column vector with cer-

tain total energy/information. A cognitive map (CM) C is referred to as a bipolar or unipo-

lar conceptual graph or an import/export network. M is obtained with column-major nor-

malization of an i/o-consistent interactive CM in which all elements are directly or indi-

rectly interrelated. In this example, 
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C(t) = [

(0, 0) (−420,079, +111,308) (−311,035, +206,127)
(−111,308, +420,079) (0, 0) (−164,777, +302,049)
(−206,127, +311,035) (−302,049, +164,777) (0, 0)

]. 

M = normalize(CT(t)) = [
(0.000 0.000) (−0.112 0.421) (−0.209 0.316)

(−0.401 0.106) (0.000 0.000) (−0.307 0.167)
(−0.297 0.197) (−0.165 0.303) (0.000 0.000)

]. 

Equilibrium-based rebalancing is illustrated in Fig. 1b and curved in Fig. 1c. Fig. 1d 

verifies such rebalancing with sequential computing. Fig. 1e shows 200% is balanced to a 

perfect percentage distribution built in M. Thus, matrix M can be deemed the encryption of 

a percentage distribution.  

While sequential computing does not support parallel processing, equilibrium-based 

rebalancing can balance a total to a perfectly equilibrium state with percentage distribution 

coded in M in an iterative and massively parallel process without the need for individual 

percentages. Although a perfect equilibrium-state may be neither practical nor desirable in 

economics, equilibrium-based rebalancing provides a new approach to post-quantum cryp-

tography. Most importantly, it finds a way for quantum-fuzzy collective precision. 

  
(a)                                                

  

(b)                                                         (c) 

  
(d)                                               (e) 

Figure 1. (a) Bipolar CM of 2014 US-China-EU trade (in Million Euros); (b) Rebalancing of total im-

port/export to an equilibrium state; (c) Curves of the rebalancing; (d) Digital computing; (e) Quantum-

fuzzy rebalancing of 200% 
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S-OTP1-Method2 

Assume key K1 is shared by sender Alice and receiver Bob through QKD. 

Part I. Encryption 

Step 1. Data Transformation. Given binary data D to be transmitted, let the unsigned integer number 

set {di} = {d1, d2, .., di, .., dn}, represent the data sections of D. Let the sum X=d1+d2+...+di ...+ 

dn. 

Step 2. Bipolar Cognitive Mapping. Construct an i/o-consistent BCM C based on {di} such that {di} 

is decomposed into an unbalanced relational data set {eij} = {(eij
-,eij

+)} where each bipolar link 

weight eij = (eij
-,eij

+) and |di|  ∑ ||𝑒𝑖𝑗  𝑗  (energy/information of row i) with ratio |eij
-|/|eij

+| > l, a 

threshold for non-zero bipolar elements. Thus, {eij} forms a BCM C with total information 

X=∑ |𝑑𝑖|. (Note: C is not unique – an area of further research where bipolar linguistic fuzzy sets 

can be used for the optimization of l and C.) 

Step 3. Bipolar Energy/Information Normalization. Normalize CT (transpose of C) to an infor-

mation conservational matrix M (a bipolar quantum-fuzzy logic gate (BQFLG) or a bipolar 

quantum-fuzzy cognitive map (BQFCM)) under the conditions of Eq. (3) such that the BQCA 

E(t+1)=M × E(t) is asymptotic to an equilibrium state [10,11].  

Step 4. Data Encryption. Use K1 to encipher U={X,M} to E=UK1 = {X,M}’.  

Step 5. Transmit the pair E={X,M}’. 

Part II. Decryption  

Step 1. Use K1 to decrypt E to {X,M}; use K2. 

Step 2. Use M to decipher and depolarize X to recover {di}; 

Step 3. Recover D from {di} with concatenation. 

Applying S-OTP1-Method2 we have the decryption example in Fig. 1. The total infor-

mation of the last row of Fig. 1b approximate to exactly the same result as that of S-OTP1-

Mehrod1: 

d1=||(-731114, +317435)=1048549;  

d2=||(-276085, +722128)=998213; 

d3=||(-508176, +475812)=983988  

D=Concatenate(d1, d2, d3)=1048549998213983988. 

2.5 The Quantum Nature of Information Conservation 

Given an nn square bipolar interactive matrix M and an n1 column bipolar vector 

E(t) such that E(t+1)=M × E(t), if ∀j, the absolute energy/information subtotal |εcol|M∗j(t) 

of each column j of M (but not necessarily each row) equals 1.0, or |εcol|M∗j(t)1.0, M is 

defined as an information conservational bipolar quantum logic gate (BQLG) matrix or a 

bipolar quantum-fuzzy cognitive map (BQFCM) [9,16], and we must have the bipolar 

quantum cellular automata (BQCA): 

|ε|E(t+1) = |ε|(M × E(t)) ≡ |ε|E(t).     (2) 

Eq. (2) leads to a general-purpose BQCA theory – an equilibrium-based unification of 

matter and antimatter for ICC. Computationally, a BQCA can be regulated to achieve in-

formation conservation, regeneration, degeneration and oscillation. BQCA is thus a type 

of quantum-cellular model (Fig. 2). This leads to Method2 and the theory of ICC. 

The transpose CT(t) is used to obtain its column-major normalized BQLG matrix M for 

ICC. The normalization follows Eq. (3). An i/o-consistent CM can always be designed and 

normalized to M for a BQCA to be asymptotic to a bipolar equilibrium state even though 

some link weights are weaker and need more iterations (t) to be balanced. This property 

provides a basis for quantum and post-quantum cryptography. 

M(i,j) =  (CT(i,j))/|εcol|(CT
∗j).       (3) 
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(a)              (b)              (c) 

Figure 2. A BQCA unification of matter and antimatter atoms (adapted from [11]) 

 In Eq. (3), the denominator |εcol|(CT
∗j) denotes the absolute energy/information subtotal 

of column j in CT. But the notation |εcol|(M∗j) denotes the normalized absolute 

energy/information subtotal of column j of matrix M. 

2.6 The Digital Nature of S-OTP-Method2 

Notably, S-OTP-Method2 is based on bipolar equilibrium-based rebalancing. Bipolar-

ity is a quantum feature that form the bipolar reality of negative-positive particles. The 

bipolar property, however, can be depolarized for digital cryptography.  

A unipolar CM can be revealed from a bipolar one with depolarization. Since a bipolar 

representation is a generalization of unipolar representation and subsumes unipolar cases, 

all the elements of a polarized map can simply have zero negative energy/information 

which leads to the simplified CM as in Fig. 3 coded as a unipolar matrix C(t)—a positive 

relation that does not distinguish import and export with symmetrical subtotals. 

Depolarization leads to a unipolar cipher named S-OTP1R1-Method2 that is basically 

the same as S-OTP1-Method2 except using a positive CM and a positive matrix M. Fig. 3 

shows a decryption example using S-OTP1R1-Method2 where in the last row we have the 

same result as for the bipolar case. 

d1 = ||(-0, +1048549) = 1048549;       

d2 = ||(-0, +998213) = 998213; 

d3 = ||(-0, +983988) = 983988;  

D = Concatenate(d1, d2, d3) = 1048549998213983988. 

   
(a)                                        (c) 

  
(b) 

Figure 3. Information-conservational unipolar rebalancing: (a) depolarized CM; (b) Positive distribution; 

(c) Positive curve (scaled) 

2.7  Two Puzzles Explained 

(A) How can matrix C(t) in symmetry (C(t)(i,j)= C(t)(j,i)) be used in cryptography? 

The answer is that, although matrix C(t) is symmetrical, a column-major normalized M can 
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be non-linear and asymmetrical because the normalization is by dividing its column sub-

total of CT(t) (data section subtotal), but not by the global total (corresponding to the overall 

summation). For instance, 

C(t) = [
0 531587 517162

531587 0 466826
517162 466826 0

];      M = 
0
1
2

[
0.000 0.532 0.526
0.507 0.000 0.474
0.493 0.468 0.000

];  

where C is symmetrical but M is not. The non-linear asymmetrical property of M can be 

characterized with a set of linear equations. Let the three subtotals (or data sections) be x, 

y, and z, respectively, for the 33 matrix M we have m10x – m01y = 0; m20x – m02z = 0; 

and m21y – m12z = 0; and mij  mji. The set of equations have infinite number of solutions 

because all column coefficients of M correlate non-linearly with each other due to non-

linear normalization based on different local column subtotals. This is fundamentally dif-

ferent from percentage distribution where all percentages are normalized with a global total 

and linearly independent.  

(B) If a unipolar positive matrix is sufficient, why do we need a bipolar equilibrium-

based matrix in cryptography? There are three top answers to this question: (1) The uni-

verse consists of negative-positive particles. Without bipolarity, there would be no bipolar 

information conservation and bipolar quantum computing [9,10]. Thus, bipolarity leads to 

a quantum model compatible to digital computing (further discussed later). (2) A bipolar 

matrix avoids large denominators, doubles the number of elements in a unipolar matrix, 

doubles the parallel computing power, and doubles collective precision with equilibrium-

based rebalancing (further discussed later). (3) Bipolarity is set-theoretically different from 

bilinearity or bijection [12]. One defines a 2-to-2 mapping of equilibrium-based non-linear 

bipolar dynamic entanglement with logically definable causality, another defines a 1-to-1 

mapping without non-linearity, entanglement, and definable causality. 

2.8  On the Security of Method1 and Method2 

Method1 is based on percentage distribution. It provides a basis for both theoretical analy-

sis and practical development. The goal is to search for secure information conservational 

S-OTP ciphers by analyzing different approaches that may or may not be secure. 

Theorem 2a. Under the conditions of Definition 2, S-OTP1-Method1 is information 

conservationally not secure. 

Proof. It follows from that the transmitted message consists of numerical meta data 

with fixed format. Such knowledge could potentially weaken the ITS of OTP. ∎ 

Based on the Randomization Theorem (Theorem 5d), The above problem can be re-

solved by adding random bits to the metadata as paddings before the text being enciphered. 

The paddings can be removed when being decrypted by receiver. This is made possible 

with BHDC that can compress a long message to a tiny minimum such that sufficient ran-

dom padding bits can be used for the randomization.  

Theorem 2b. Under the conditions of Definition 2, S-OTP1-Method1 would have PICS 

provided that a sufficient number of random bits are inserted as paddings to the metadata 

to be enciphered and removed when being decrypted by the receiver. Full ICS is possible 

if all data items are within the limits for 100% computational precision. 

Proof. With the provision, the conditions of S-OTP as defined in Definition 2 remain either intact 

or  partially intact. ∎ 

The one key version (S-OTP1) suggests that, two different keys (S-OTP2) might be 

considered for an information conservational solution.  

S-OTP2-Method1 and Its Revised Versions  
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(1) S-OTP2-Mehrod1: Use key K1 to encipher the summation X = ∑ 𝑥𝑖𝑖  to X’; Use key K2 to encipher 

the text of {𝑥𝑖/X} to {𝑥𝑖/X}’; Transmit the packaged pair {X’, {𝑥𝑖/X}’} without key reuse; 

(2) S-OTP2-2-Mehrod1: First, use a random number of bits specified in key K1 as random paddings 

for altering the numerical format of {X, {𝑥𝑖/X}} to {X, {𝑥𝑖/X}}’ (See Theorem 1d.);  Then, use K2 

as a key to encipher {X, {𝑥𝑖/X}}’ to {X, {𝑥𝑖/X}}’’;  Transmit {X, {𝑥𝑖/X}}’’. 

Theorem 3a. Under the conditions of Definition 2, S-OTP2-Mehrod1 is information 

conservationally not secure. 

Proof. It follows the proof of S-OTP1-Mehrod1.  ∎ 

Theorem 3b. Under the conditions of Definition 2, S-OTP2-2-Mehrod1 is information 

conservationally secure for ICS or PICS based on precision limitation.     
Proof. With sufficient random bits as paddings specified by the first key and a regular second 

key, the message and its format are randomized and concealed in an unbreakable pad that does not 

weaken the security of OTP. However, the message only partially preserve original information be-

yond the limit of precision.  ∎ 

Evidently, if a percentage distribution {𝑥𝑖/X} is replaced with an information conserva-

tional matrix M we will have different 1-key or 2-key versions of S-OTP-Mehrod2 with 

similar security conditions as that of S-OTP-Mehrod1. 

3  ANALYSIS AND OPTIMIZATION—TOWARD SECURE POST-QUANTUM 

CRYPTOGRAPHY 

3.1 Minimal BQCA Theorem  

Theorem 4. Mehtod1 is the minimal case of Method2.    
Proof. Mehtod2 entails an N𝑁 square matrix multiplied by a column vector in an information 

conservational BQCA. When N𝑁 is reduced to N1, the matrix becomes a column vector of per-

centage distributions 𝑤𝑖 = {𝑥𝑖/X} summing up to 1.0, the single number must be the summation X of 

N sections, such that the column vector multiplied by a single element matrix results in a column 

vector energy/information distribution {𝑥𝑖}.  The Matrix multiplication can be deemed the minimal 

BQCA which requires a final equilibrium state be reached in a single step with high precision such as 

(

𝑤0

𝑤1
𝑤𝑖+1

𝑤𝑛

) [𝑋] =  (

𝑥0

𝑥1
𝑥𝑖+1

𝑥𝑛

).  ∎ 

Theorem 4 proves that Method1 is suitable for reducing network traffic, and Method2 

can be used for computational precision. Theorems 1-4 provide a basis for applicability 

and efficiency analysis of a new crypto paradigm using either Method1 (percentage distri-

bution) or Method2 (information conservational matrix) or a combination of the two. Based 

on IEEE binary64-128-256 standard, double precision floating-point format provides us an 

upper limit for long messages. Major considerations are on the key length for enciphering 

both the math summation and the percentage distribution. According to IEEE binary64 

standard, exponents range from −1022 to +1023 that allows the representation of numbers 

between 10−308 and 10308, with full 15–17 decimal digits precision. By compromising pre-

cision, it allows even smaller values up to about 5 × 10−324. Using IEEE binary128 or 256, 

a significantly larger portion of the information can be preserved. 

3.2 Applicability and Efficiency of Method1  

Using S-OTP2-2-Method1, the percentage distribution {xi/X} needs to be enciphered, 

where each double precision floating-point number xi/X requires 64 bits for IEEE binary64. 

While a 1M = 220 bits message needs an impractical same length OTP key, if the 1M-bit 

message is divided into 512-bit sections, the division leads to N = 220/29 = 211 data sections 

with a math summation less than 512+11 = 523 bits. N = 211 double precision floating-

point numbers are needed for the percentage distribution {xi/X} that entails 21126 = 

217=128k-bit key length. A 128k+523-bit key is a nearly 8-fold reduction in key length 
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compared with the message length. The upper limit of the exponent is +1023 for signed 

integers based on IEEE binary64. At the limit, the key length saving approaches 16-fold. 

It seems to be a clean solusion. But, there are still unsolved problems. First, 128K+523 bits 

data plus K1 for random paddings is still too long to be a practical key length. Second, when 

the grand total is huge, the percentage distribution will have a precision problem because 

a percentage is normalized by the grand total as the denominator.  

3.3   Applicability and Efficiency of Method2 

While for 1M-bit long messages the key length requirement for OTP is not practical, it 

is much less a problem with percentage distribution using Method1, but still a problem 

with Method2. A 1M-bit message divided into 2K 512-bit sections would need a 211×211 

sparsely populated information conservational matrix M. Assuming each column has an 

average of no more than 8 non-zero elements in 64-bit double precision floating-point for-

mat plus one index that leads to 8×64=23×26 bits per column. A total of 8×64×211=220 bits 

plus a 513-bit summation need to be transmitted in ciphertext—more than the original 1M 

bits.  

While Method2 is inefficient and impractical, its information conservational property 

is still quite attractive. In terms of digital computing, its column-major normalization does 

not use the grand total but a much smaller section subtotal as the denominator and a much 

smaller sender designated percentage of a subtotal as the numerator. Remarkably, it can 

divide-and-conquer the high precision requirement into lower precision requirement. On 

the quantum side, its equilibrium-based rebalancing property reflects the bipolar reality of 

particle-antiparticle coexistence [9-12]. 

3.4 Hierarchical Optimization 

Without entirely enciphering both a summation and its percentage distribution or ma-

trix M, Method1 and Method2 cannot achieve ICS. Since enciphering matrix M does not 

reduce key length, S-OTP2-2-Method1 is a candidate for hierarchical scalability as in Fig. 

4 based on IEEE binary64. 

 
Figure 4. A 3-Level Hierarchy of S-OTPH for 1M bits 

First, we assume that 1M = 1048576 bits data divided into 1048 1000-bit sections. We 

would have a maximum of 1012-bit summation X  associated with a 104864 = (210 + 24) 

 26 = 216 + (24  26) = 64K + (16+8)  26  = 64K + 1K + 512 bits percentage distribution 

D. The summation can be converted to a 64-bit double precision floating-point number. 

The pair {X, D} would consists of 64K + 1K + 576  bits = 67136 bits.  Second, the 67136 

bits can be divided into 67 of 1002-1003-bit sections. That leads to 67 of 64-bit double 

precision floating-point numbers for the percentage distribution plus a maximum of 1008-

bit summation. Again, the summation can be converted to a 64-bit double precision float-

ing-point number. The 67+1 double precision numbers need 6864 = 212 + 256 = 4K + 256 

bits. Third, 4K + 256 bits can be further scaled to 1K-bits plus K1 as a less than1K-bit 

randomizer to result in a 2K-bit key K2. Evidently, due to the short length the two keys are 

no longer a drawback. Formally, we have S-OTPH-Method1. Similarly, 1 Gaga bits = 1K 

Mega bits that entails a larger hierarchy. 
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S-OTPH-Method1  

For every 1M bits of data to be transferred, assume sender Alice and receiver Bob share two private 

keys K1 and K2 distributed through QKD. 

Part I – Encryption: Use BHDC to achieve S-OTP 

(1) L=1; if the data length is short enough for an OTP cipher key, print message “Please use OTP 

without hierarchy”; 

(2) L=L+1; determine summation X ={ ∑ 𝑥𝑖}𝑖  and derive the percentage distribution D={𝑥𝑖/X};  

(3) If the data is too long for an OTP cipher key and its length is reducible (>minimum), go to Step 

(2);  

(4) If the data is too long for an OTP cipher key and its length is unreducible, stop and restart with 

different number of scalable pads;  

(5) Apply S-OTP2-2-Method1 to encipher {X,D,L} to {X,D,L}’’ with key K1 for sufficient random pad-

dings and K2 as a cipher key; 

(6) Transmit the ciphertext {X,D,L}’’ to the receiver.   

Part II – Decryption: Use BBIR to recover the message 

(1) Decipher {X,D,L}’’ to {X,D,L} with K2 and  K1; 

(2) Use X and D to find next layer {{𝑥𝑖}, D}, L = L-1, if L>1, repeat step (2) until L = 1; 

(3) Cast {xi} to string format {di};  

(4) Recover the original message or data set D by concatenating {di}. 

Theorem 5. Under the conditions of Definition 2, S-OTPH-Method1 has PICS or full 

ICS if computation is within precision limit. 

Proof. It follows from the proofs of Theorem 1d, 2b and the security of S-OTP2-2-Method1. ∎ 

3.5 Collective Precision 

While Method1 uses percentage distribution, Method2 uses information conservational 

encryption. In Method1 each data section depends on a single percentage resulted from 

linear normalization by a grand total. When the data length is long, Method1 will have a 

precision problem. In Method2, each data section depends on all columns of matrix M 

resulted from column-major normalization by much smaller subtotals where percentage 

distribution is not directly calculated using the grant total. If each column has an average 

of n > 2 non-zero numbers, the precision requirement is n-times smaller. The larger the 

number n the more parallelism in high precision decryption. When n equals N, Method2 

reaches maximum parallelism with N-fold precision enforcement for a positive matrix M 

and 2N-fold for a bipolar matrix M. This observation leads to the inception of information 

conservational collective precision.  

Observation 1: Asymptoticity. If M is information conservational, BQCA E(t+1) = M 

  E(t) is asymptotic to an equilibrium state determined by M [9,10].  

Observation 2: Information Conservational Computing and Cryptography. If an 

original message D is converted to an energy/information total E through a BQCA trans-

formation, the information conservational matrix M of the BQCA can serve as a key to 

decode the total information to the original message D in the receiver side [9]. However, 

to encrypt and transmit matrix M will cost more than to encrypt and transmit the original 

message. Thus, Method1 is more efficient than Method2 for encryption and transmission, 

but only Method2 can enable collective precision and efficient decryption. 

Theorem 6. If M is information conservational, BQCA E(t+1) = M   E(t) can be used 

to derive the percentage distribution in an equilibrium state determined by the BQCA. 

Proof. Given 100 (percent), Theorem 6 follows the asymptoticity theorem [9] directly (see exam-

ple in Fig. 1e ). ∎ 
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Theorem 7. A percentage distribution of N divisions can be converted to an NN (uni-

polar or bipolar) information conservational matrix M for collective precision with maxi-

mum parallelism such that M is information conservational and BQCA E(t+1) = M   E(t) 

is asymptotic to an equilibrium state. 

Proof.  Notice that M is normalized and information conservational but not unique. Theorem 7 

follows from  (

𝑤0

𝑤1
𝑤𝑖+1

𝑤𝑛

) [𝐸] =  (

𝑤0𝐸
𝑤1𝐸

𝑤(𝑖+1)𝐸

𝑤𝑛𝐸

)  because (

𝑤0

𝑤1
𝑤𝑖+1

𝑤𝑛

) is strictly proportional to  (

𝑤0𝐸
𝑤1𝐸

𝑤𝑖+1𝐸
𝑤𝑛𝐸

). That is, M 

can be derived from either of them  ∎ 

Based on the above findings we can conclude that, on the sender side, matrix M can be 

used for determining the percentage distribution with N-2N fold reduction of precision re-

quirement due to column-major normalization (Re. Eq. (3)). On the receiver side, M can 

be used to decrypt a big total to subtotals (or data sections) with collective precision in a 

reverse way (Fig. 1b and Fig. 3b). Thus, Method1 and Method2 can be used in a combi-

nation. Method2 focuses on collective precision with ICC; Method1 focuses on secure and 

efficient data transmission, that lead to the block diagram design in Fig. 5 impact factor 

followed by an optimized algorithm that combines the advantages of Method1 and 

Method2 while eliminating their drawbacks. 

 
Figure 4. Sender and Receiver 

S-OTPH-Method1+2  

For every 1M bits of data to be transferred, assume sender Alice and receiver Bob share two private 

keys K1 and K2  distributed through QKD. 

Part I – Sender Side: Use BHDC to achieve S-OTP 

(1) L=1; if the data length is short enough for an OTP cipher key, print message “Please use OTP” 

without hierarchy; 

(2) L=L+1, compute summation X ={ ∑ 𝑥𝑖}𝑖 , derive information conservational matrix M, and deter-

mine percentage distribution D={𝑥𝑖/X} with BQCA E(t+1) = ME(t) (see Fig. 1e);  

(3) If the data is too long for an OTP cipher key and its length is reducible (>minimum), go to Step 

(2);  

(4) If the data is too long for an OTP cipher key and its length is unreducible, go to Step (2) with a 

smaller N such that 0<i<N and N2;  

(5) Apply S-OTP2-2-Method1 to encipher {X,D,L} to {X,D,L}’’ with key K1 for sufficient random pad-

dings and K2 as a cipher key; 

(6) Transmit the ciphertext {X,D,L}’’ to the receiver.    

Part II – Receiver Side: Use BBIR to recover the message 

(1) Decipher {X,D,L}’’ to {X,D,L} with K2 and K1;  

(2) Construct information conservational matrix M from D; 

(3) Use X and M in a BQCA to find next layer {{𝑥𝑖},M}, L=L-1; 

if L>1, repeat step (3) until L=1; 
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(4) Cast {xi} to string format {di};  

(5) Recover the original message or data set D by concatenating {di}. 

Theorem 8. Under the conditions of Definition 2, S-OTPH-Method1+2 has PICS or 

full ICS if computation is kept within the precision limit. 

Proof. Since Method2 is only used for collective precision on the sender side and parallel de-

cryption on the receiver side, the theorem follows from the proof of Theorem 1d, 2b and the security 

of S-OTPH-Method1. ∎ 

3.6 Transmitting Large Dada Sets 

 With S-OTPH-Method1+2 a large data set can be serialized as a number of Mega bits 

S-OTP pads, and each Mega bits can be securely transmitted with a 2K-4K bit short key 

that is practical with QKD while a 1M bit key with the same length as the message  is 

obviously not practical.  

Furthermore, noticing that S-OTPH-Method1 and S-OTPH-Method1+2 are defined 

for every Mega bits of data. The data, however, can be original message or intermediate 

compressed data toward a tiny minimum. Thus, the methods can be hierarchically extended 

to work for every Gaga or every Tega bits of data.  

Theorem 9. A significantly larger data set does not necessarily require a significantly 

longer key for PICS with partial information conservation. 

Proof. It follows the Reachability of Minimum Theorem with BHDC.  ∎ 

3.7 A Consequence of Collective Precision 

Collective precision adds a number of new features to hierarchical S-OTP. On the 

sender side, it can be used for testing everything efficiently and precisely to guarantee that 

the receiver side will get the correct message or partial message. On the receiver side it can 

be used to decrypt a summation efficiently with collective precision and in massive paral-

lelism colluding with the sender side through public protocols based on data length and 

number of divisions N. These are necessary auxiliary functions.  

It can be observed that the percentage distribution {xi/X} is a major contributor to the 

key length requirement of S-OTP. If it does not have to be enciphered but transmitted in 

plaintext, we only need to cipher a short summation with a much shorter key. If 1Gaga bits 

divided into 1K mega divisions, each 1Mega division results in a 64-bit double precision 

summation, 1G bits with 1K such summations would only need 64K bits to be ciphered. 

Of course, the summations can be hierarchically scaled further to a minimum. 

 Now, with collective precision, we have the challenging question: Can the percentage 

distribution {xi/X} be securely transmitted in plaintext if {xi} are double precision floating-

point numbers due to the reuse of a double precision floating-point key in multiplication 

or division operation instead of XOR? 

Whereas this paper has assumed that a transmitted message as a long binary integer L 

is divided into smaller integers {xi}, and their summation is also an integer 𝑋 = ∑ 𝑥𝑖𝑖 . Ev-

idently, X can be guessed by attackers with a trial-error method to break S-OTP if an integer 

key is reused for {xi} without encrypting the percentage distribution {xi/X}. Now with col-

lective precision, floating point decimals can be used instead of integers.  

Collective precision makes it possible to use double precision floating-point decimals 

as a reusable key for non-linear multiplication, division, addition, and/or subtraction. Such 

non-linear operations lead to decimal precision that cannot be guessed without knowing 

the reusable key—a double precision floating-point decimal. The summation of these dec-

imals results in another double precision floating-point decimal that can be encrypted as an 

S-OTP pad. In this case, the percentage distribution {xi/X} could be misleading to attackers, 
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and the final summation could be unguessable with a trail-error method due to floating 

point decimal precision and non-linear operation with a decimal key.  This leads to the 

hypothesis for future research.  

Hypothesis: With double precision floating-point decimals for collective precision, the 

percentage distribution {xi/X} in S-OTP can be securely transmitted in plaintext provided 

that (a) {xi/X} is not the actual percentage distribution but a misleading to attackers; (b) 

the summation 𝑋 = ∑ 𝑥𝑖𝑖  is enciphered as an unbreakable summation. (Remark: This hy-

pothesis could close a loophole in the proof of Theorem 8 of ref. [9]. However, it may not 

reduce network traffic within the limit of computational precision.) 

4. QUANTUM CRYPTO MACHINERY  

While we so far only assumed partial information conservation, collective precision 

suggests that Method2 is suitable for research/development of bipolar quantum-digital ma-

chinery for full information conservation. While unipolar values are preferred by digital 

machines, the bipolar nature of S-OTP-Mehtod2 makes it suitable for developing quantum 

machinery with equilibrium-based bipolar quantum rebalancing and information conser-

vation (Fig. 6). Encryption would be unnecessary for quantum computing and communi-

cation [8].  The quantum machine in Fig. 6(a) can be used, theoretically, in decryption for 

digital communication. Each column of an NN matrix M may have a maximum of N non-

zero bipolar elements for maximum parallelism. If N=1K or 2K, a math distribution among 

N sectors can be determined in one procedure on the sender side; or an information total 

can be quantum rebalanced to N subtotals in parallel without using percentage distribution. 

While the bipolar quantum crypto machine seems to be “far-fetched” in terms of quan-

tum-digital compatibility, a newly reported discovery of a class of subatomic particles (fer-

mions) [20] named Angel Particles injected new life into this line of research. The new 

discovery is a family of particles that are their own antiparticles. These family of particles 

are expected to make quantum computing more practical and powerful. It strengthens the 

ontological basis of equilibrium-based bipolar quantum rebalancing. Fig. 6(a) shows the 

draft of a bipolar quantum-digital crypto machine. Fig. 6(b) shows bipolar quantum tele-

portation. Fig. 6(c) shows a bipolar qubit register. The dream machinery forms a quantum 

intelligence paradigm or S-OTPQ for further research. 
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) Bipolar quantum-digital (BQD) computing; (b) Bipolar quantum teleportation (BQT); (c) 

Bipolar qubit register [15,21] 
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5   CONCLUSIONS 

S-OTP has been presented based on ICC and BHDC. Security conditions have been 

established. Collective precision has been proposed. It has been shown that 

(1) BHDC can reduce key and data length to a tiny minimum with partial information con-

servation. 

(2) S-OTP makes it possible for transmitting long messages or large data sets with PICS for 

partial information conservation.  

(3) Full ICS is shown possible if computation is limited within 100% precision at the expense 

of network traffic. 

(4) Math summation without using big primes makes S-OTP quantum proof to quantum fac-

torization (cf. [1, 9, 22-27]). 

(5) ICC can be massively parallel, accurate, efficient, and suitable for developing quantum-

digital compatible machinery with collective precision for full information conservation. 

Whereas OTP is prevented from being widely used by its key length requirement, S-

OTP gets around the problem through ICC to explore some boundariess and possibilities. 

Thus, the S-OTP paradigm qualifies itself as a unique extension from ITS to ICS/PICS for 

post-quantum cryptography (Fig. 7) with full or partial information conservation. Its sig-

nificance lies in the opening of a different approach to a difficult problem. 

Floor-roof mysteries. According to the floor-roof theory of science [17], ITS of OTP 

is developed based on information theory rooted in probability and statistics—a floor of 

modern science; ICS/PICS of S-OTP is a set-theoretic development rooted in bipolar dy-

namic equilibrium—a roof of modern science. Thus, this work has opened some major 

challenges. Among them are the following floor-roof mysteries for future research:  

(1) Is ICS an information theoretic extension to ITS?  

(2) Is S-OTP just OTP plus data compression and there is nothing new? 

(3) Could S-OTP become fully scalable with quantum digital machinery? 

(4) Could modern science, such as modern physics and information theory [6], have been 

like a well-founded building with a floor of observable being and truth but with a missing 

roof for equilibrium and information conservation [9,10,16,17]? 

Floor-roof assertions. While the above mysteries are left for future research, we have 

the following floor-roof assertions: 

(1) Can the floor perform some functions not performed by the roof? The answer is definitely 

YES. 

(2) Can the roof perform some functions not performed by the floor? The answer is definitely 

YES. 

(3) Can information conservational security on the roof solve some unsolved problems by 

information theoretic security on the floor? The answer should be LOGICALY YES. 

The significance of this work lies in the opening of a holistic ICC approach. This study 

suggests two future directions of ICC: (1) scale the OTP key length at the expense of 

limited increase of network trafic for full information conservation; (2) develop a type of 

quantum cypto machinery for full information conservation (Fig. 7) 
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Figure 7. Road to information conservational security 
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