Multi-key Fully-Homomorphic Encryption in the Plain Model*

Prabhanjan Ananth!, Abhishek Jain?, Zhengzhong Jin?, and Giulio Malavolta?

!University of California Santa Barbara
2Johns Hopkins University
3Max Planck Institute for Security and Privacy

Abstract

The notion of multi-key fully homomorphic encryption (multi-key FHE) [Lépez-Alt, Tromer,
Vaikuntanathan, STOC’12] was proposed as a generalization of fully homomorphic encryption
to the multiparty setting. In a multi-key FHE scheme for n parties, each party can individually
choose a key pair and use it to encrypt its own private input. Given n ciphertexts computed in
this manner, the parties can homomorphically evaluate a circuit C' over them to obtain a new
ciphertext containing the output of C, which can then be decrypted via a decryption protocol.
The key efficiency property is that the size of the (evaluated) ciphertext is independent of the
size of the circuit.

Multi-key FHE with one-round decryption [Mukherjee and Wichs, Eurocrypt’16], has found
several powerful applications in cryptography over the past few years. However, an important
drawback of all such known schemes is that they require a trusted setup.

In this work, we address the problem of constructing multi-key FHE in the plain model. We
obtain the following results:

e A multi-key FHE scheme with one-round decryption based on the hardness of learning
with errors (LWE), ring LWE, and decisional small polynomial ratio (DSPR) problems.

e A variant of multi-key FHE where we relax the decryption algorithm to be non-compact —
i.e., where the decryption complexity can depend on the size of C' — based on the hardness
of LWE. We call this variant multi-homomorphic encryption (MHE). We observe that MHE
is already sufficient for some applications of multi-key FHE.

1 Introduction

Fully-homomorphic encryption [22] (FHE) allows one to compute on encrypted data. An important
limitation of FHE is that it requires all of the data to be encrypted under the same public key in
order to perform homomorphic evaluations. To circumvent this shortcoming, Lopez-Alt et al. [30]
proposed a multi-party extension of FHE, namely, multi-key FHE, where each party can sample a
key pair (sk;, pk;) locally and encrypt its message under its own public key. Then one can publicly
evaluate any (polynomially computable) circuit over the resulting ciphertexts ¢; = Enc(pk;, m;),
each encrypted under an independently sampled public key. Naturally, decrypting the resulting
multi-key ciphertext requires one to know all the secret keys for the parties involved.

In this work we are interested in multi-key FHE schemes with a one-round decryption protocol:
Given a multi-key ciphertext ¢ = Enc((pky, ..., pky), C(mi,...,mn)), the decryption consists of (i)

*This work subsumes [7].

a local phase, where each party independently computes a decryption share p; using its secret key
sk;, and a (ii) public phase, where the plaintext m can be publicly recovered from the decryption
shares (p1,...,PN)-

Other than being an interesting primitive on its own, multi-key FHE with one-round (also
referred to as “non-interactive”) decryption implies a natural solution for secure multi-party com-
putation (MPC) with optimal round complexity and communication complexity independent of the
size of the circuit being computed [32]. Additionally, multi-key FHE with one-round decryption
has proven to be a versatile tool to construct powerful cryptographic primitives, such as spooky en-
cryption [19], homomorphic secret sharing [12, 13], obfuscation and functional encryption combiners
[4, 5], multiparty obfuscation [26], homomorphic time-lock puzzles [31, 15], and ad-hoc multi-input
functional encryption [1].

To the best of our knowledge, all known multi-key FHE schemes with one-round decryption
assume a trusted setup [18, 32, 17, 33] or require non-standard assumptions, such as the existence
of sub-exponentially secure general-purpose obfuscation [19]. A major open question in this area
(stated in [32, 17]) is whether it is possible to avoid the use of a common setup and obtain a solution
in the plain model.

1.1 Our Results

We present the first construction of a multi-key FHE with one-round decryption in the plain model,
i.e. without a trusted setup, from standard assumptions over lattices. Specifically, we prove the
following main theorem:

Theorem 1.1 (Informal). Assuming,

- Two-round semi-malicious oblivious transfer in the plain model,

- Multi-key FHE with trusted setup and one-round decryption and,

- Multi-key FHE in the plain model but with arbitrary round decryption,
there exists multi-key FHE in the plain model with one-round decryption.

A multi-key FHE with one-round decryption in the common reference string (CRS) model can be
constructed assuming the hardness of the standard learning with errors (LWE) problem [18, 32].
Similarly, two-round semi-malicious oblivious transfer can also be instantiated assuming learning
with errors [14]. On the other hand, a multi-key FHE scheme without setup, but with complex
decryption, was proposed in [30] assuming the hardness of the Ring LWE and the decisional small
polynomial ratio (DSPR) problems,! Thus, we obtain the following implication:

Theorem 1.2 (Informal). Assuming that the LWE, Ring LWE, and DSPR problems are hard, there
exists a leveled multi-key FHE scheme in the plain model with one-round decryption. Additionally
assuming circular security of our scheme, there exists multi-key FHE in the plain model with one-
round decryption.

We remark that our compiler is completely generic in the choice of the scheme and thus can benefit
from future development in the realm of multi-key FHE with multi-round decryption. We also
point out that our construction achieves a relaxed security notion where, among other differences,

!These assumptions have been cryptanalyzed in [2, 28], which affects the concrete choice of the parameters of the
scheme. However, all known attacks (including these works) run in sub-exponential time. We refer the reader to [27]
for recommendations on the parameter choices for conjectured A-bits of security.

we require computational indistinguishability of simulated decryption shares, whereas the works of
[32, 17, 33] achieved statistical indistinguishability (see Section 4 for a precise statement). To the
best of our knowledge, this definition suffices for known applications of multi-key FHE.

Multiparty Homomorphic Encryption. As a stepping stone towards our main result, we
introduce the notion of multiparty homomorphic encryption (MHE). MHE is a variant of multi-
key FHE that retains its key virtue of communication efficiency but sacrifices on the efficiency of
final output computation step. Specifically, the reconstruction of the message from the decryption
shares is “non-compact”, i.e. its computational complexity might depend on the size of the evaluated
circuit. Crucially, we still require that the size of the (evaluated) ciphertexts is independent of size
of the circuit. As we discuss below, MHE suffices for some applications of multi-key FHE, including
a two-round MPC protocol where the first message depends only on the input of each party and
can be reused for arbitrarily many evaluations of different circuits.

Note that unlike the case of (single-key) FHE, allowing for non-compact output computation
does not trivialize the notion of MHE. Indeed, in the case of FHE, a trivial scheme with non-compact
output computation can be obtained via any public-key encryption scheme by simply considering
a decryption process that first recovers the plaintext and then evaluates the circuit to compute
the output. Such an approach, however, does not extend to the multiparty setting since it would
violate the security requirement of MHE (defined similarly to that of multi-key FHE).

We prove the following theorem:

Theorem 1.3 (Informal). Assuming the hardness of the LWE problem (with sub-exponential modulus-
to-noise ratio), there exists an MHE scheme in the plain model.

At a technical level, we develop a recursive self-synthesis transformation that lifts any one-time
MHE scheme (i.e. where the first message can be securely used only for the evaluation of a sin-
gle circuit) to an unbounded MHE. Our approach bears resemblance to and builds upon several
seemingly unrelated works dating as far back as the construction of pseudorandom functions from
pseudorandom generators [24], as well as recent constructions of indistinguishability obfuscation
from functional encryption [10, 6] (and even more recently, constructions of identity-based encryp-
tion [21, 16]).

Reusable MPC. A direct application of MHE is a two-round (semi-honest) MPC protocol in the
plain model with the following two salient properties:

e The first round of the protocol, which only depends on the inputs of the parties, can be reused
for an arbitrary number of computations. That is, after the completion of the first round, the
parties can execute the second round multiple times, each time with a different circuit Cy of
their choice, to learn the output of C, over their fixed inputs.

e The communication complexity of the protocol is independent of the circuit size (and only
depends on the circuit depth).

Alternately, we can use our multi-key FHE to achieve the same result with communication com-
plexity independent of the circuit size, albeit based on stronger assumptions.

Previously, such a protocol — obtained via multi-key FHE — was only known in the CRS model
[32]. Benhamouda and Lin [9] recently investigated the problem of two-round reusable MPC (with
circuit-size dependent communication) and give a construction for the same, in the plain model,
based on bilinear maps.? Our construction is based on a different assumption, namely, LWE, and
therefore can be conjectured to satisfy post-quantum security.

2The authors communicated their result statement privately to us. A public version of their paper was not available
at the time of first writing of this paper, but can now be found in [9].

Concurrent Work on Reusable MPC. The work of Bartusek et al. [8] investigate the question
of two-round MPC with reusable first message. They propose schemes assuming the hardness of
the DDH assumption over traditional groups. In contrast with our work, the resulting MPC is non-
compact, i.e. the communication complexity is proportional to the size of the circuit. Moreover,
unlike [8], our scheme can be conjectured to be secure against quantum adversaries.

1.2 Open Problems

Our work leaves open some interesting directions for future research. The most compelling problem
is to construct a multi-key FHE with one-round decryption assuming only the hardness of the (plain)
LWE problem. Another relevant direction is to improve the practical efficiency of our proposal and
to obtain a more “direct” construction of multi-key FHE from lattice assumptions.

2 Technical Overview

Towards constructing both multi-key FHE and MHE, we first consider a relaxed notion of MHE
where the evaluation algorithm is allowed to be private; we call this notion pMHE.

MHE with Private Evaluation (pMHE). An MHE scheme with private evaluation, associated
with n parties, consists of the following algorithms:

e Encryption: The i*" party, for i [n], on input x; produces a ciphertext ct; and secret key
Ski.

e Evaluation: The i** party on input all the ciphertexts cty, ..., cty, secret key sk;, and circuit
C, it evaluates the ciphertexts to obtain a partial decrypted value p;. We emphasize that the
ith party requires sk; for its evaluation and thus is not a public operation.

e Final Decryption: Given all the partial decrypted values (pi,...,pn) and the circuit C,
reconstruct the output C(z1,...,zyN).

Towards obtaining our main results, we will also sometimes consider a version of pMHE in the CRS
model, where the encryption, evaluation and the final decryption algorithms additionally take as
input a CRS, generated by a trusted setup. Furthermore, we will also consider pMHE schemes
with an efficiency property that we refer to as ciphertext succinctness. We postpone defining this
property to later in this section.

Roadmap of our Approach. Using the abstraction of pMHE, we achieve both of our results as
illustrated in Figure 1:

e The starting point of our approach is a one-time pMHE, namely, a pMHE scheme where
the initial ciphertexts, i.e., encryptions of z; for every ¢ € [n], can be evaluated upon only
once. The first step in our approach, involving the technical bulk of our work, is a reusability
transformation that takes a one-time pMHE in the CRS model and converts it into a pMHE
scheme (in the plain model), that allows for (unbounded) polynomially-many homomorphic
evaluations (of different circuits) over the initial ciphertexts. We outline this in Section 2.1.

e We next describe two different transformations: The first transformation converts a pMHE
scheme to multi-key FHE (Section 2.2) and the second transformation converts it to an MHE
scheme (Section 2.3).

e Finally, in Section 2.4, we discuss instantiation of one-time pMHE.

SRS

One-Time pMHE
with
ciphertext succinctness

Reusability Transformation (Section 7)

+ LFE (Section 9.1)

(Reusable)hpMHE + FHE (Section 9.2) (Reusable) MHE
wit

ciphertext succinctness

in plain model

+ [30] (Section 8)

Multi-key FHE
i plain model

Figure 1: Our Approach

2.1 Reusability Transformation

We now proceed to describe our reusability transformation from a one-time pMHE scheme in the
CRS model to a (reusable) pMHE scheme in the plain model. We will in fact first consider the
simpler problem of obtaining a pMHE scheme in the CRS model. Later, we show how we can
modify the transformation to get rid of the CRS.

Reusability: Naive Attempt. Let OneMHE denote a one-time pMHE scheme. Using two
instantiations of OneMHE that we call OneMHE, and OneMHE;, we first attempt to build an
pMHE scheme for a circuit class C = {Cp, C1 } that allows for only two decryption queries, denoted
by TwoMHE.

e The i** party, for i € [N], on input z;, produces two ciphertexts ct) and ct!, where ct}
is computed by encrypting x; using OneMHEq and ct; is computed by encrypting x; using
OneMHE;.

e To evaluate a circuit Cy, for b € {0,1}, run the evaluation procedure of OneMHE,; to obtain
the partial decrypted values.

e The final decryption on input C} and partial decrypted values produces the output.

It is easy to see that the above scheme supports two decryption queries. While the above template
can be generalized if C consists of polynomially many circuits; every circuit in C is associated with
an instantiation of OneMHE. However, it is clear that this approach does not scale when C consists
of exponentially many circuits.

Recursive Self-Synthesis. Instead of generating all the instantiations of OneMHE during the
encryption phase, as is done in TwoMHE, our main insight is to instead defer the generation of the

instantiations of OneMHE to the evaluation phase. The advantage of this approach is that, during
the evaluation phase, we know exactly which circuit is being evaluated and thus we can afford to be
frugal and only generate the instantiations of OneMHE that are necessary, based on the description
of this circuit. The idea of bootstrapping a ”one-time” secure scheme into a ”multi-time” secure
scheme is not new and has been studied in different contexts in cryptography; be it the classical
result on pseudorandom functions from pseudorandom generators [25] or the more recent results
on indistinguishability from functional encryption [6, 11, 29] and constructions of identity-based
encryption [21, 16, 20]. In particular, as we will see soon, our implementation of deferring the
executions of OneMHE and only invoke the instantiations as needed bears some resemblance to
techniques developed in these works, albeit in a very different context.

Illustration. Before explaining our approach to handle any polynomial number of decryption
queries, we start with the same example as before: The goal is to build pMHE scheme for a circuit
class C = {Cy, C1} that allows for 2 decryption queries. The difference, however, is, unlike before,
the approach we describe below will scale to exponentially many circuits.

We employ a tree-based approach to solve this problem. The tree associated with this scheme
consists of three nodes: a root and two leaves. The first leaf is associated with the circuit Cy and
the second leaf is associated with the circuit C1. Every node is associated with an instantiation of
the one-time pMHE scheme. Denote the one-time pMHE scheme associated with the root to be
OneMHE | , with the left leaf to be OneMHE[and the right leaf node to be OneMHE;.

Armed with the above notation, we now present an overview of construction of a pMHE scheme
for C = {Cy, C1} allowing for 2 decryption queries as follows:

e The i*" party, for i € [N], on input z;, produces the ciphertext ct’ , where ctiL is computed
by encrypting x; using OneMHE .

e To evaluate a circuit Cj, for b € {0,1}, the i*" party does the following:

— First run the evaluation procedure of OneMHE | on input circuit C'; (defined below) to
obtain the i*" partial decrypted value associated with OneMHE | .
Denote C to be the circuit® that takes as input (z1,...,2y) and produces: (i) GC;
wire labels for OneMHE, ciphertext of z; under the i*" party’s secret key, for every i,
and, (ii) GC;1 wire labels for OneMHE; ciphertext of z; under the i'* party’s secret key,
for every i.

— It computes a garbled circuit GC;; defined below.

Denote GC; ; to be the garbling of a circuit that takes as input OneMHE, ciphertexts of
x1,...,xN, performs evaluation of Cp using the it" secret key associated with OneMHE;,
and outputs the OneMHE,; partial decryption values.

Output the " partial decrypted value of OneMHE | and the garbled circuit GCip.
e The final decryption algorithm takes as input the OneMHE | partial decryption values from

all the parties, garbled circuits GC 4, ...,GCny, circuit C (to be evaluated) and performs
the following operations:

— It first runs the final decryption procedure of OneMHE to obtain the wire labels corre-
sponding to all the garbled circuits GC1p,...,GCnyp.

3We consider the setting where the circuit is randomized; this is without loss of generality since we can assume
that the randomness for this circuit is supplied by the parties

— It then evaluates all the garbled circuits to obtain the OneMHE, partial decryption
values.

— Using the OneMHE; partial decryption values, compute the final decryption procedure
of OneMHE; to obtain Cy(z1,...,xN).

Full-Fledged Tree-Based Approach. We can generalize the above approach to construct a
pMHE scheme for any circuit class and that handles any polynomially many queries. If s is the
maximum size of the circuit in the class of circuits, we consider a binary tree of depth s.

e Every edge in the tree is labeled. If an edge e is incident from the parent to its left child then
label it with 0 and if e is incident from the parent to its right child then label it with 1.

e Every node in the tree is labeled. The label is the concatenation of all the edge labels on the
path from the root to the node.

e Every leaf is associated with a circuit of size s.

With each node v, associate with v a new instantiation of a one-time pMHE scheme, that we denote
by OneMHE;(,), where 1(v) is the label associated with node v. If v is the root node 1(v) = L.

Informally, the encryption algorithm of pMHE generates OneMHE | encryption of z; under the
it" secret key. During the evaluation procedure, on input C, each party generates s garbled circuits,
one for every node on the path from the root to the leaf labeled with C. The role of these garbled
circuits is to delegate the computation of the partial decrypted values to the final decryption phase.
In more detail, the garbled circuit associated with the node v computes the partial decrypted values
associated with OneMHE;(,). The partial decryption values will be generated by homomorphically
evaluating the following circuit: (i) the wire labels, associated with OneMHEy, o encryptions of
Z1,...,oN, of all the N garbled circuits associated with the node v||0 and, (ii) the wire labels,
associated with OneMHE,,;; encryptions of z1,...,zn, of all the N garbled circuits associated
with the node v||1. Note that the homomorphic evaluation is performed inside the garbled circuit.

During the final decryption, starting from the root node, each garbled circuit (of every party)
is evaluated to obtain wire labels of the garbled circuit associated with the child node on the path
from the root to the leaf labelled with C. Finally, the garbled circuit associated with the leaf
labelled with C' is then evaluated to obtain the OneMHE partial decrypted values. These partial
decrypted values are then decoded to recover the final output C(z1,...,xN).

We give an overview of the final decryption process in Figure 2.

Efficiency Challenges. To argue that the above scheme is a pMHE scheme, we should at the
very least argue that the encryption, evaluation and final decryption algorithms can be executed
in polynomial time. Let us first argue that all the garbled circuits can be computed in polynomial
time by the i** party. The time to compute the garbled circuit associated with the root node
is polynomial in the time to compute OneMHEy and OneMHE; ciphertexts. Even if the time to
compute OneMHEy and OneMHE; ciphertexts only grows proportional to the depth of the circuits
being evaluated, the recursion would already blow up the size of the first garbled circuit to be
exponential in s! This suggests that we need to define a suitable succinctness property on OneMHE
in order to make the above transformation work.

Identifying the Necessary Efficiency for Recursion. To make the above recursion idea work,
we impose a stringent efficiency constraint on the encryption complexity of OneMHE. In particular,
we require two properties to hold:

|, K
GCiyp ! 15t party’s :

| . !
. partial de- '

(performs evaluation _:> cryptions |

of OneMHE,) ' | w.r.t. OneMHEg | GCro
1 1
| 1
! : {GCi,oo}ie[n] (performs evaluation
! ! wire labels of OneMHEg;)
: :—> fOI'
! ! (CTs of
; ! OneMHEqy) /
: + 5
1
: ! {GCio tiep)
' ! wire labels
: s for
1 : (CTS of
: : OneMHE01)
| 1
GChp \ nth party’s : \

1 . !
' partial de- !

(performs evaluation _:> cryptions !
1 1

of OneMHE) i | w.r.t. OneMHE, ! GCn01

1
\ 1
Smmmmmmmmmmmmm (performs evaluation

of OneMHE;)

Figure 2: A glimpse of the final decryption process of the reusable pMHE scheme when evaluated
upon the circuit with the boolean representation C' = 01---. During the evaluation process, the
ith party generates the garbled circuits GCi0,GCi01,- -+ ,GC; ¢ as part of the partial decrypted
values. The garbled circuit GC; ., associated with the prefix 1(v) of C, computes the evaluation
procedure of OneMHE,(,,. The output of final decryption of OneMHE,, are (i) the wire labels of
GCj1(v)||0, for every i € [n], of the encryptions of all the inputs of the parties, 1, ..., 2N generated
with respect to OneMHE(,)o and, (ii) the wire labels of GC; (1, for every i € [n], for the
encryptions of all the inputs of the parties, z1,...,zN generated with respect to OneMHE;,)|;.

1. The size of the encryption circuit is a polynomial in the security parameter A\, the number of
parties, the input length, and the depth of the circuit.

2. The depth of the encryption circuit OneMHE grows polynomially in A, the number of parties
and and the input length.

Put together, we refer to the above efficiency properties as ciphertext succinctness. It turns out
that if we have an OneMHE scheme with ciphertext succinctness, then the resulting reusable pMHE
scheme has polynomial efficiency and moreover, the ciphertext sizes in the resulting scheme are
polynomial in the security parameter alone.*

4An informed reader may wish to draw an analogy to recent works that devise recursive strategies to build
indistinguishability obfuscation from functional encryption [6, 11, 29]. These works show that a functional encryption
scheme with a sufficiently compact encryption procedure (roughly, where the complexity of encryption is sublinear in

Removing the CRS. Note that if we start with OneMHE in the CRS model, we end up with
reusable pMHE scheme still in the CRS model. However, our goal was to construct a pMHE in
the plain model. To fix this, we revisit the tree-based approach to construct pMHE and make two
important changes.

The first change is the following: Instead of instantiating the root node with a OneMHE scheme
satisfying ciphertext succinctness, we instantiate it by a OneMHE scheme that need not satisfy
any succinctness property (and thus can be instantiated by any semi-malicious MPC in the plain
model); if we work out the recursion analysis carefully it turns out that its not necessary that the
OneMHE scheme associated with the root node satisfy ciphertext succinctness. The intermediate
nodes, however, still need to satisfy ciphertext succinctness and thus need to be instantiated using
OneMHE in the CRS model.

Since the intermediate nodes still require a CRS, we make the parent node generate the CRS
for its children. That is, upon evaluating the partial decryption values output by a garbled circuit
associated with node v (see Figure 2 for reference), we obtain: (i) wire labels for crsy, o and the
Onel\/lHEl(U)HO ciphertexts computed with respect to the common reference string crsy,y o and,
(ii) wire labels for crsyy|1 and OneMHE,(,); ciphertexts computed with respect to the common
reference string crsy,|;- That is, the circuit being homomorphically evaluated by OneMHE,, first
generates crsy(y)||o, Crsy(v)||1, then generates the OneMHE (.0, OneMHE,,|; ciphertexts followed by
generating wire labels for these ciphertexts. This is the reason why we require the root node to be
associated with a OneMHE scheme in the plain model; if not, its unclear how we would be able to
generate the CRS for the root node.

2.2 From pMHE to Multi-key FHE

Once we obtain a reusable pMHE in the plain model, our main result follows from a simple boot-
strapping procedure. Our transformation lifts a multi-key FHE scheme in the plain model with
“complex” (i.e. not one-round) decryption to a multi-key FHE in the plain model with one-round
decryption, by additionally assuming the existence of a reusable pMHE. Plugging the scheme
from [30] into our compiler yields our main result.

The high-level idea of our transformation is to use the pMHE scheme to securely evaluate
the decryption circuit (no matter how complex is) of input the multi-key FHE. This allows us to
combine the compactness of the multi-key FHE and the one-round decryption of the pMHE into a
single scheme that inherits the best of both worlds. More concretely, our compiled scheme looks as
follows.

e Key Generation: The i-th party runs the key generation algorithm of the underlying multi-
key FHE to obtain a key pair (pk;,sk;), then computes the pMHE encryption of sk; to obtain
a ciphertext ct; and an secret evaluation key sk;. The public key is set to (pk;, ct;).

e Encryption: To encrypt a message m;, the i-th party simply runs the encryption algorithm
of the multi-key FHE scheme to obtain a ciphertext ct;.

e Evaluation: On input the ciphertexts cty,...,cty and a circuit C, the i-th party runs the
(deterministic) multi-key evaluation algorithm to obtain an evaluated ciphertext ct. Then
each party runs the evaluation algorithm of the pMHE scheme for the circuit

I'(sky,...,sky) = Dec((ski,...,sky),ct)

the size of the circuit) can be used to build an indistinguishability obfuscation scheme. In a similar vein, ciphertext
succinctness can be seen as the necessary efficiency notion for driving the recursion in our setting without blowing
up efficiency.

over the pMHE ciphertexts cty, ..., cty, where the value ct is hardwired in the circuit. The
i-th party returns the corresponding output p;.

e Final Decryption: Given the description of the circuit I' (which is known to all parties)
and the decryption shares (pi,...,pn), reconstruct the output using the final decryption
algorithm of pMHE.

We stress that, in order to achieve the functionality of a multi-key FHE scheme, it is imperative
that the underlying pMHE scheme has reusable ciphertexts, which was indeed the main challenge
for our construction. It is important to observe that even thought the pMHE scheme does not
have a compact decryption algorithm, this does not affect the compactness of the complied scheme.
This is because the size of the circuit I is independent of the size of the evaluated circuit C, by the
compactness of the underlying multi-key FHE scheme.

2.3 From pMHE to MHE

Equipped with pMHE, we discuss how to construct a full-fledged MHE scheme. There are two
hurdles we need to cross to obtain this application. The first being the fact that pMHE only
supports private evaluation and the second being that pMHE only satisfies ciphertext succinctness
and in particular, could have large partial decryption values.

We address the second problem by applying a compiler that generically transforms a pMHE
scheme with large partial decryption values into a scheme with succinct partial decryption values;
that is, one that only grows proportional to the input, output lengths and the depth of the circuit
being evaluated. Such compilers, that we refer to as low communication compilers were recently
studied in the context of two-round secure MPC protocols [34, 3] and we adapt them to our setting.
Once we apply such a compiler, we achieve our desired pMHE scheme that satisfies the required
efficiency property.

To achieve an MHE scheme with public evaluation, we use a (single-key) leveled FHE scheme.
Each party encrypts its secret key using FHE, that is, the i** party generates an FHE key pair
(pk;,sk;) and encrypts the i secret key of pMHE under pk;; we denote the resulting cipher-
text as FHE.ct;. The " party ciphertext of the MHE scheme (MHE.ct;) now consists of the
ith party ciphertext of the pMHE scheme (pMHE.ct;) along with FHE.ct;. The public evaluation
of MHE now consists of homomorphically evaluating the pMHE private evaluation circuit, with
(C,pMHE.cty,...,pMHE.cty) hardwired, on the ciphertext FHE.ct;. Since this is performed for
each party, there are N resulting FHE ciphertexts (FH/E.\ctl, e F@N). During the partial
decryption phase, the i party decrypts Fﬁlé?ci using sk; to obtain the partial decryption value

corresponds to the pMHE scheme. The final decryption of MHE is the same as the final decryption
of pMHE.

2.4 Instantiating One-Time pMHE in the CRS model

So far we have shown that one-time pMHE suffices to achieve both of our results. All that remains
is to instantiate the one-time pMHE in the CRS model. We instantiate this using the multi-key
FHE scheme with one-round decryption in the CRS model. A sequence of works [18, 32, 17] have
presented a construction of such a scheme based on the LWE problem.

10

3 Preliminaries

We denote the security parameter by A. We focus only on boolean circuits in this work. For any
circuit C, let C.in, C.out, C.depth be the input length, output length and depth of the circuit C,
respectively. Denote C.params = (C.in, C.out, C.depth).

For any totally ordered sets S1, S, ..., Sy, and any tuple (i},45,...,4%) € S1 X Sax--- X S, we

use the notation (i7,5,...,4") + 1 (resp. (i],45,...,7) — 1) to denote the lexicographical smallest
(resp. biggest) element in S; X Sg x -+ x S, that is lexicographical greater (resp. less) than
(i85, ..., i),

Pseudorandom Generators. We recall the definition of pseudorandom generators. A function
PRG), : {0, 1}PRGinx 10 1}PRG.outs g 3 pseduorandom generator, if for any PPT distinguisher D,
there exits a negligible function v(\) such that

’Pr [s « {0,1}PRGIm . (12 PRG, () = 1} —Pr [u < {0,11PRGouty . D(1A) = 1} ’ < (N

Learning with Errors. We recall the learning with errors (LWE) distribution.

Definition 3.1 (LWE distribution). For a positive integer dimension n and modulo q, the LWE
distribution Asy is oblained by sampling a < Zg, and an error e < x, then outputting (a,b =
st -a+e) el x Ly

Definition 3.2 (LWE problem). The decisional L\WE,, p, 4 problem is to distinguish the uniform

distribution from the distribution As ., where s <= Zy, and the distinguisher is given m samples.
Standard instantiation of LWE takes x to be a discrete Gaussian distribution.

Definition 3.3 (LWE assumption). Let n = n(A),m = m(\),q = q(\) and x = x(A\). The
Learning with Error (LWE) assumption states that for any PPT distinguisher D, there ezils a
negligible function v(\) such that

|Pr[D(1%, (A, sTA +e)) = 1] — Pr[D(1*, (A, n)) = 1]| < v())

where A < Zy*™,s <+ Ly, u < L' e < X"

3.1 Garbling Schemes
A garbling scheme [35] is a tuple of algorithms (GC.Garble, GC.Eval) defined as follows.

GC.Garble(1*, C,lab) On input the security parameter, a circuit C, and a set of labels lab = {lab;
Yie[c.in)pe{0,1}, Where lab;p, € {0, 1}, it outputs a garbled circuit C.

GC.Eval(C,lab) On input a garbled circuit C' and a set of labels lab = {lab; }icjcin]» it outputs a
value y.

We require the garbling scheme to satisfy the following properties.

Correctness For any circuit C, and any input 2 € {0,1}¢",

Prl- |ab:{|abi,b}(i,b)e[c.in]x{o,1}<—{~0,1}2w‘i", y=Cla)| =1
C+GC.Garble(1*,C\lab),y+GC.Eval(C,(lab; 2,)ic(cin) ~ 7 o

11

Simulation Security There exits a simulator Sim = (Simy, Simg) such that, for any input x, any
circuit C, and any non-uniform PPT distinguisher D, we have

’Pr [Iab « {0,110 & GC.Garble(1}, C, lab) : D(1*, lab,, C) = 1} —
Pr [(sts, lab) < Simy(1*, C.params), C' < Sims(stg, C(z)) : D(1*, lab, C) = 1} ‘ < v(A).

Theorem 3.4 ([35]). There exists a garbling scheme for all poly-sized circuits from one-way func-
tions.

Remark 3.5. For the ease of representation, for any labels lab = {lab; j }ic[n) bef0,1}, and any input
r € {0,1}", we denote lab, = {lab; 4, }ic[n)-

3.2 Laconic Function Evaluation

A laconic function evaluation (LFE) scheme [34] for a class of poly-sized circuits consists of four
PPT algorithms crsGen, Compress, Enc, Dec described below.

crsGen(1*, params) It takes as input the security parameter \, circuit parameters params and out-
puts a uniformly random common string crs.

Compress(crs, C') It takes as input the common random string crs, poly-sized circuit C' and outputs
a digest digest. This is a deterministic algorithm.

Enc(crs, digest, z) It takes as input the common random string crs, a digest digest, a message x
and outputs a ciphertext ct.

Dec(crs, C, ct) It takes as input the common random string crs, circuit C, ciphertext ct and outputs
a message y.

Correctness. We require the following to hold:

crs<—crsGen (1> ,params)
digest~<«+C (crs,C) . _ _
pr |desys Comresn)y o)) <1,
y<—Dec(crs,C\ct)

Efficiency. The size of CRS should be polynomial in A, the input, output lengths and the depth
of C. The size of digest, namely digest, should be polynomial in A, the input, output lengths and
the depth of C'. The size of the output of Enc(crs, digest) should be polynomial in A, the input,
output lengths and the depth of C.

Security. For every PPT adversary A, input x, circuit C', there exists a PPT simulator Sim such
that for every PPT distinguisher D, there exists a negligible function v(\) such that
Pr [1 «~ D (1)‘, crs, digest~, Enc(crs, digest, ac))} —

crs«—crsGen(1*,params)
digest <—Compress(crs,C')

Pr [1 «D (1>‘, crs, digest, Sim(crs, digest, C(:c)))] ‘ < v(A).
crs«—crsGen(1*,params)
digest«—Compress(crs,C')

Remark 3.6. A strong version of security, termed as adaptive security, was defined in [34]; for
our construction, selective security suffices.

Theorem 3.7 ([34]). Assuming the hardness of learning with errors, there exists a laconic function
evaluation protocol.

12

4 Multi-Key Fully Homomorphic Encryption

A multi-key FHE [30] allows one to compute functions over ciphertexts encrypted under different
and independently sampled keys. One can then decrypt the result of the computation by gathering
together the corresponding secret keys and run a decryption algorithm. In this work we explicitly
distinguish between two families of schemes, depending on structural properties of the decryption
algorithm.

e One-Round Decryption: The decryption algorithm consists of two subroutines (i) a local
phase (PartDec) where each party computes a decryption share of the ciphertext based only on
its secret key and (ii) a public phase (FinDec) where the plaintext can be publicly reconstructed
from the decryption shares. This variant is the focus of our work.

e Unstructured Decryption: The decryption is a (possibly interactive) protocol that takes
as input a ciphertext and all secret keys and returns the underlying plaintext. No special
structural requirements are imposed.

In this work we are interested in constructing the former. However, the latter is going to be a useful
building block in our transformation. More formally, a multi-key FHE is a tuple of algorithms
MKFHE = (KeyGen, Enc, Eval, Dec) defined as follows.

KeyGen(1*,7) On input the security parameter A\, and an index i € [N], it outputs a public-key
secret-key pair (pk;, sk;) for the i-th party.

Enc(pk;, z;) On input a public key pk; of the i-th party, and a message x;, it outputs a ciphertext
ct;.

Eval(C, (ctj)jein]) On input the circuit C' of size polynomial in A and the ciphertexts (ct;) e(n, it
outputs the evaluated ciphertext ct.

Dec((skj) je[n)s ct) On input a set of keys sky, ...,sky and the evaluated ciphertext ct, it outputs
a value y € {0,1}¢°". We say that a multi-key FHE has a one-round decryption if the

decryption protocol consists of the algorithms PartDec and FinDec with the following syntax.

PartDec(sk;, i,ct) On input the secret key sk; of i*" party, the index i, and the evaluated
ciphertext ct, it outputs the partial decryption p; of the i party.

FinDec(C, (gj)je[N]) On input all the partial decryptions (p;);e[n), it outputs a value y €
{0’ 1} .out_

We say that the scheme is fully homomorphic if it is homomorphic for P/poly.

Trusted Setup. We also consider multi-key FHE schemes in the presence of a trusted setup, in
which case we also include an algorithm Setup that, on input the security parameter 1%, outputs a
common reference string crs that is given as input to all algorithms.

Correctness. We define correctness for multi-key FHE with one-round decryption, the more
general notion can be obtained by modifying our definition in a natural way. Note that we only
define correctness for a single application (single-hop) of the homomorphic evaluation procedure.
It is well known that (multi-key) FHE schemes can be generically converted to satisfy the more
general notion of multi-hop correctness [23].

13

Definition 4.1 (Correctness). A scheme MKFHE = (KeyGen, Enc, Eval, PartDec, FinDec) is said to
satisfy the correctness of an MHE scheme if for any inputs ($i>ie[N]; and circuit C, the following
holds:
i€[N],(pk;,ski)< KeyGen(1* 4)
ct;<Enc(pk;,z;)
Pr cteEval(Cy(cty)jeny) 1y =C(x1,...,zN)| = 1.
p;PartDec(sk;,i,ct)
y«FinDec((p;)c[n))

Compactness. We say that a scheme is compact if the size of the evaluated ciphertexts does not
depend on the size of the circuit C' and only grows with the security parameter (and possibly the
number of keys N). Furthermore, we require that the runtime of the decryption algorithm (and of
its subroutines PartDec and FinDec) is independent of the size of the circuit C.

Reusable Semi-Malicious Security. We define the notion of reusable security for multi-key
FHE with one-round decryption. Intuitively, this notion says that the decryption share do not
reveal anything beyond the plaintext that they reconstruct to. In this work we present a unified
notion that combines semantic security and computational indistingushability of partial decryption
shares. This is a weakening of the definition given in [32], where the simulated decryption shares
were required to be statistically close to the honestly compute ones. To the best of our knowledge,
this weaker notion is sufficient for all applications of multi-key FHE. Note that by default we
consider a semi-malicious adversary, that is allowed to choose the random coins of the corrupted
parties arbitrarily.

We define security in the real/ideal world framework. The experiments are parameterized by
adversary A = (Aj,.Az), a PPT simulator Sim implemented as algorithms (Simy, Simz), the subset
of honest parties H C [N], and their input (z;);cy. For the simplicity, we denote H = [N]\ H.

ReaIA(]-)\aHa ($1)2€H) IdeaIA(lAaHa (ml)lEH)
for i € H, (sts, (P, cti)icnm) < Simi (1%, H)
(pk;, ski) + KeyGen(1%,4) (sta, (zi,ri,m)icq) < A1(1Y, (pky, cti)icn)
T4
ct; < Enc(pk;,x;) AS a ")(stA)
endfor return View 4
(St.Aa (miariar;)iefl) — Al(l)\a (pki7Cti)i€H)
for i € H,

(pk;,sk;) = KeyGen(l’\,i;ri)
ct; = Enc(pk;, z4; 7))
endfor
A
A7 (sta)

return View 4

0(1*,0) O'(1*, 0)
¢t + Eval(C, (ct;) e) (sts, (pi)ien) = Sima(sts, C, C((zi)iein)), (Tis 74, 71)ic r)
Update stg = stig

return (p;)ien

for i € H,p; < PartDec(sk;, i, ct)

return (p;)icH

Definition 4.2. A scheme MKFHE = (KeyGen, Enc, Eval, PartDec, FinDec) is said to satisfy the
reusable semi-malicious security if the following holds: there exists a simulator Sim = (Simy, Sims)

14

such that for any PPT adversary A, for any set of honest parties H C [N], any n.u. PPT distin-
guisher D, and any messages (z;)icH, there exists a negligible function v(\) such that

‘Pr [D (1*, Real*(1}, H, (xi),EH)> - 1} ~ P [D (1& ldeal (1%, H, (xi),EH)> - 1} ‘ <v(\).

5 Multiparty Homomorphic Encryption

We define the notion of multiparty homomorphic encryption (MHE) in this section. As mentioned
earlier, this notion can be seen as a variant of multi-key FHE [18, 32]; unlike multi-key FHE, this
notion does not require a trusted setup, however, the final decryption phase needs to take as input
the circuit being evaluated as input.

5.1 Definition

A multiparty homomorphic encryption is a tuple of algorithms MHE = (KeyGen, Enc, Eval, PartDec,
FinDec), which are defined as follows.

KeyGen(1*,i) On input the security parameter A\, and an index i € [N], it outputs a public-key
secret-key pair (pk;,sk;) for the i-th party.

Enc(pk;, z;) On input a public key pk; of the i-th party, and a message x;, it outputs a ciphertext
ct;.

Eval(C, (ct;) je(n]) On input the circuit C' of size polynomial in A and the ciphertexts (ct;);e(n, it
outputs the evaluated ciphertext ct.

PartDec(sk;, i, ct) On input the secret key sk; of i party, the index i, and the evaluated ciphertext
ct, it outputs the partial decryption p; of the i*" party.

FinDec(C, (p;)jein]) On input the circuit C', and all the partial decryptions (p;);e[n], it outputs a
value y € {0, 1}¢"out,

We require that a MHE scheme satisfies the properties of correctness, succinctness and reusable
simulation security.

Correctness. We require the following definition to hold.

Definition 5.1 (Correctness). A scheme MHE = (KeyGen, Enc, Eval, PartDec, FinDec) is said to
satisfy the correctness of an MHE scheme if for any inputs (x;);c[n), and circuit C, the following
holds:
i€[N],(pk;,sk;)<KeyGen(1*,i)
ct;<—Enc(pk;,z;)
Pr ct+—Eval(C,(ct;) je[n) cy=C(z1,...,zn)| = 1.
pﬁ—PartDec(ski,i,cAt)
yeFinDec(C,(pj)je[N])

Succinctness. We require that the size of the ciphertexts and the partial decrypted values to be

independent of the size of the circuit being evaluated. More formally,

Definition 5.2 (Succinctness). A scheme MHE = (KeyGen, Enc, Eval, PartDec, FinDec) is said to
satisfy the succinctness property of an MHE scheme if for any inputs (z;);cn), and circuit C, the
following holds: for any inputs (z;);c[n), and circuit C,

15

e Succinctness of Ciphertext: for j € [N], |ct;| = poly(A, |z;]).

e Succinctness of Partial Decryptions: for j € [N], |p;| = poly(A, N, C.in, C.out, C.depth), where
N is the number of parties, C.in is the input length of the circuit being evaluated, C.out is the
output length and C.depth is the depth of the circuit.

where, for every i € [N], (i) (pk;,sk;) + KeyGen(1*,4), (i) ct; < Enc(pk;,x;), (i) ct <
Eval(C, (ctj)jein]) and, (iv) p; < PartDec(sk;, 1, ct).

Remark 5.3. En route to constructing MHE schemes satisfying the above succinctness properties,
we also consider MHE schemes that satisfy the correctness and security (stated next) properties but
fail to satisfy the above succinctness definition. We refer to such schemes as non-succinct MHE
schemes.

5.2 Security

We define the security of MHE by real world-ideal world paradigm. We only consider the semi-
honest security notion.

In the real world, the adversary is given the public key pk; and ciphertext ct; for the honest
parties, and also the uniform randomness coins 74,7 for the dishonest parties, where r; is used for
the key generation, and 7} is used for the encryption. In addition, the adversary is given access to
an oracle O. Each time, the adversary can query O with a circuit C'. The oracle O firstly evaluates
C homomorphically over the ciphertexts (ct;);c|n], and obtains an evaluated ciphertext ct. Then
it outputs the partial decryption of ct of the honest parties.

In the ideal world, a simulator Sim; generates the pk; and ct; of honest parties, and also the
random coins (74, r;);c g of dishonest parties, and sends them the the adversary. Then, the adversary
is given access to an oracle (O'. For each query C made by the adversary, the oracle O’ executes
the stateful simulator Simg to obtain the simulating partial decryption messages (p;)iem of honest
parties. Then the oracle O" outputs (p;)icy-

Reusable Semi-Honest Security. We define the real and ideal experiments below. The ex-
periments are parameterized by adversary A, a PPT simulator Sim implemented as algorithms
(Sim1, Simy), the subset of honest parties H C [N], and the input (z;);cn). For the simplicity, we
denote H = [N]\ H.

ReaIA(lA, H,(x;)icH) IdeaIA(l)‘, H, (zi)icn)
for i € [N]7 (StSa (pkiﬂ Cti)i€H7 (T% T;)ieﬁ) — Sim1(1k7 H7 (xl)ZGH)
3 / * AR
e {0 A A;D o)(1'\, (Pkys Cti)ic s, (i 17)ic i)
(pk;,sk;) = KeyGen(1%,4;7;) return View 4

ct; = Enc(pk;, z4;77)
endfor
AP, (pky, cti)ien, (1 7)) e)
return View 4

O(1*,0) o'(1*,0)

ct « Eval(C, (ct;) je(n) (st (pi)iem) + Sima(sts, C, C((w)ie[n))
for i € H,p; < PartDec(sk;, i, ct) Update sts = sty

return (p;)icn return (p;)icH

16

Definition 5.4. A scheme (MHE.KeyGen, MHE.Enc, MHE.Eval, MHE.PartDec, MHE.FinDec) is said
to satisfy the reusable semi-honest security if the following holds: there exists a simulator MHE.Sim =
(MHE.Simy, MHE.Simg) such that for any PPT adversary A, for any set of honest parties H C [N],
any n.u. PPT distinguisher D, and any messages (z;);c(x), there exists a negligible function v(\)
such that

‘Pr [D (1& RealA(1*, H, (xi)ie[N])> - 1} R [D (1& ldealA(1*, H, (xi)ie[m)> - 1} ‘ < v(\).

Remark. Definition 5.4 directly captures the reusability property implied by the definition of
[32]. However, our definition is somewhat incomparable to [32] due to the following reasons: [32]
give a one-time (semi-malicious) statistical simulation security definition for threshold decryption,
which implies multi-use security via a standard hybrid argument. In contrast, Definition 5.4,
which guarantees (semi-honest) computational security, is given directly for the multi-use setting.
Second, [32] define security of threshold decryption only for n—1 corruptions® whereas our definition
captures any dishonest majority.

6 Intermediate Notion: MHE with Private Evaluation (pMHE)

Towards achieving MHE, we first consider a relaxation of the notion of MHE where we allow
the evaluation algorithm to be a private-key procedure. We call this notion MHE with private
evaluation, denoted by pMHE.

A multiparty homomorphic encryption with private evaluation (pMHE) is a tuple of algorithms
(Enc, PrivEval, FinDec), which are defined as follows.

Enc(1?, C.params, i, ;) On input the security parameter \, the parameters of a circuit C', C.params =
(C.in, C.out, C.depth), an index i, and an input z;, it outputs a ciphertext ct;, and a partial
decryption key sk;.

PrivEval(sk;, C, (ctj) ¢ N})6 On input the partial decryption key sk;, a circuit C, and the ciphertexts
(ctj) jeN], 1t outputs a partial decryption message p;.

FinDec(C, (]gj)je[N]) On input the circuit C' and the partial decryptions (p;);e(n), it outputs y €
{0’ 1} .out.

Correctness. For any input (J?Z')ie[N]» and any circuit C, we have

Vi (ct;,sk;)<Enc(1*,C.params,i,z;)
Pr| v piePrivaal(ski,C,(ctj)je[N]) Yy = C((xl)ZE[N]) =1.
y«FinDec(C,(p;)c[n))

Reusable Semi-Malicious Security. The experiments are parameterized by the adversary
A = (A, Az), the subset of honest parties H C [N], the inputs (x;)icr, and the PPT simulator
Sim implemented as algorithms (Simp,Simg). Denote H = [N]\ H.

®As such, counter-intuitively, additional work is required when using it in applications such as MPC, when less
than n — 1 parties may be corrupted. We refer the reader to [32] for details.

17

RealA(l)\,H, (xZ)ZEH) IdealA(l)\v-Hu (xZ)ZEH)

for i € H, (ct;,sk;) < Enc(1*, C.params, i, x;) (sts, (cti)ierr) < Simy (1%, H, C.params)
(sta, (@i, 7i)iem) A1(1Y, (ct)icn) (sta, (i, 74)ier) Ar(1Y, (ct)icn)

. ry _ A . . . ’ AL
for i € H, (ct;,sk;) = Enc(1", C.params, i, z;; ;) A? a ’)(stA)
Ag(lk*')(stA) return View 4
return View 4

o', 0)

A .
o@ro) (stl, (pi)ier) < Sima(sts, C, C((x:)icin)), (%i, Ti)ica)
for i € H,p; < PrivEval(sk;, C, (ct;) e(ny) Update sts = st
return (p;)icy return (p;)icu

Definition 6.1. A scheme pMHE = (Enc, PrivEval, FinDec) is said to satisfy the reusable semi-
malicious security if the following holds: there ezists a simulator Sim = (Simp,Simga) such that
for any PPT adversary A, for any set of honest parties H C [N], PPT distinguisher D, and any
messages (z;)icH, there exists a negligible function v(X) such that

‘Pr [D (1& Real*(1}, H, (mi)ieH)> - 1} ~ Pr [D (1& ldealA (1%, H, (mi)ieH)> = 1} ‘ <v(N).

6.1 CRS model

A pMHE in the common random /reference string model is a tuple of algorithms pMHE = (Setup, Enc,
PrivEval, FinDec), where the PrivEval, FinDec works the same way as in the plain model, while
Setup, Enc are defined as follows.

Setup(l)‘) On input the security parameter, it outputs a common reference string crs.

Enc(crs, C.params, i, x;) On input the common reference string crs, the parameters of C, an index
1, and an input z;, it output a ciphertext ct;, and a partial decryption key sk;.

6.2 One-Time pMHE

We consider a weak version of pMHE scheme called one-time pMHE.

Definition 6.2. A pMHE scheme is a one-time pMHE scheme, if the security holds for all n.u.
PPT adversary A that only query the oracle O at most once.

We will use a one-time pMHE scheme as a starting point in the reusability transformation.

Remark 6.3. In this setting, without loss of generality, we assume that the private evaluation
algorithm PrivEval is deterministic, and the secret key is the randomness used by Enc.

6.3 Ciphertext Succinctness

We define the notion of ciphertext succinctness associated with a pMHE scheme. Roughly, we
require the size of the encryption circuit to only grow with the depth of the circuits being ho-
momorphically evaluated. We additionally require the depth of the encryption circuit to be only
poly-logarithmically in the depth. We allow the depth of the encryption circuit to, however, grow

18

polynomially in the number of parties and input lengths. We impose similar efficiency requirements
on the setup procedure as well.

Note that this is an incomparable to the traditional succinctness property we defined for an
MHE scheme; on one hand, ciphertext succinctness imposes an additional requirement on the
encryption circuit whereas it doesn’t say anything about the size of the partial decryption values.
The succinctness property of MHE is about the size of the ciphertexts whereas the ciphertext
succinctness property is about the complexity of the encryption circuit.

Definition 6.4 (Ciphertext Succinctness). A pMHE scheme with a setup pMHE = (Setup, Enc,
PrivEval, FinDec) is said to satisfy strong ciphertext succinctness property if it satisfies the correct-
ness, strong semi-honest security, and in addition, satisfies the following properties:

e The size of the Setup circuit is poly(\, N, C.depth).

e The depth of the Setup circuit is poly(\, N, log(C.depth)).

e The size of the Enc circuit is poly(A, N, C.in, C.depth).

e The depth of the Enc circuit is poly(A, N, C.in,log(C.depth)).

where N is the number of parties, and (C.in, C.out, C.depth) are the parameters associated with the
circuits being evaluated.

Remark 6.5. The ciphertext succinctness property is incomparable with the succinctness property
of an MHE scheme; while there is no requirement on the size of the partial decryptions in the above
definitions, there is a strict requirement on the complexity of the encryption procedure in the above
definition as against a requirement on just the size of the ciphertexts as specified in the succinctness
definition of MHE.

6.4 Instantiation

We can instantiate any one-time pMHE scheme satisfying ciphertext succinctness in the CRS model
from the multi-key FHE in the CRS model [32]. Thus, have the following:

Theorem 6.6 (Ciphertext-Succinct One-Time pMHE with CRS from LWE). Let MKFHE =
(Setup, KeyGen, Enc, Eval, PartDec, FinDec) be the multi-key FHE scheme with a trusted setup in
[32]. There exists a pMHE scheme with a setup pMHE = (pMHE.Setup, pMHE.Enc, pMHE.PrivEval,
pMHEFinDec) satisfying ciphertext succinctness property.

Proof. We briefly describe the construction. Let pMHE.Setup, pMHE.FinDec be the Setup and
Dec in MKFHE scheme, respectively. For pMHE.Enc, to encrypt a message, it generates a public
key for MKFHE, and use MKFHE to encrypt the message. For pMHE.PrivEval, it uses Eval to
homomorphically evaluate the circuit on the ciphertext, and uses the PartDec of MKFHE to get the
partial decryption.

Now we prove the ciphertext succinctness property. For the Setup in [32, 33], it outputs a
uniform random string. Hence, its depth is O(1). For the Enc, the size of the encryption circuit is
poly(A, N, |m|, C.depth), where |m| is the size of the plaintext. Since the encryption scheme involved
in some matrix multiplications and additions that can be computed in parallel, the depth of Enc is
poly(A, N, log(C.depth)). O

19

7 Main Step: One-time pMHE in CRS — Reusable pMHE

In this section, we show how to bootstrap from a one-time pMHE with ciphertext succinctness
property into a (possibly non-succinct) reusable pMHE scheme.

Lemma 7.1 (Bootstrap from One-Time Ciphertext Succinctness Scheme to Reusable Scheme).
From the following primitives,

e pMHE' = (pMHE'.Setup, pMHE'.Enc, pMHE'.PrivEval, pMHE’.FinDec): a one-time ciphertext
succinct pMHE scheme in the CRS model.

e pMHE, = (pMHE,.Enc, pMHE,.PrivEval, pMHE.FinDec): a one-time delayed-function semi-
malicious pMHE scheme without setup. (Note: this pMHE scheme need not satisfy any
succinctness property)

e PRG: {0,1}PRGin _ £ 1}PRGout 4 yyseduorandom generator, where PRG.out = poly(PRG.in)
for some large polynomial poly. Moreover, we require the depth of PRG to be poly(\, log(PRG.out))
for some fized poly independent of PRG.out.

we can build a reusable semi-malicious pMHE scheme pMHE = (pMHE.Enc, pMHE.PrivEval, pMHE.FinDec)
without the trusted setup.

Construction. We present the construction below.

In our construction, each party generates a PRG seed k;, then in on the ¢-th level of the tree,
the i-th party uses k; to generate a pseudorandom string, which is divided into the following 5
parts.

1. (Iabi’tﬂ’b)be{o,l} is used as the labels of the children nodes.
2. (kffgl)be{m} are the PRG seeds for the children nodes.

3. (Tgtlb)be{(],l} is the randomness used to generate the two new ciphertexts for the children
nodes.

4. (nglb)be{o,l} is the randomness used to generate the garbled circuits for the children nodes.

D. (nglb)be{o,l} is the randomness used to generate the CRS of the children nodes. We will xor
the r; 35 for all the parties to achieve semi-malicious security.

pMHE.Enc(1%, C.params, i, x;):

e Randomly sample k; < {0, 1}PR&I" and random coins r;.
e (ct} sk!) < pMHE,.Enc(1*, NewEnc!.params, i, (2;, k;)), where NewEnc' is defined in Fig-
ure 3.

e Let ct; = ct; and sk; = (ski, (k;,7;)).

Output (ct;, sk;).

PMHE.PrivEval(sk;, C, (ct;) jen)):

o Parse sk; as (sk}, (ki, ;).

20

NewEnc! ((xjakj)jE[N])

e For any j S [N], parse PRG(’%‘) as (labj’t’bvk§,bv

t t t
T T2 T5,3.6)be{0,1}

For any b € {0,1}, crs, = pMHE'.Setup(1%; EBJE[N] 7“;73,17)

For any j € [N],b € {0,1},

(ct;p,skjp) = pMHE'.Enc(crsy, NewEnc/*!.params, j, (x4, k;-’b); 7“;-71,1,)

For any b € {0,1}, let ct, = (ct;p) je(n-

60 | Lpirts1
Output (labgy”, labgy;)ic(n)-

Figure 3: Description of NewEnc, for ¢ € [n].

Let id be the binary representation of the circuit C. Denote n = |id|.
For t € [n], Boot is defined as follows.
Boot'[fskﬂ (cth)
— Let pt = pMHE'.PrivEval(sk, NewEnc*! ct'), where NewEnc is defined in
Figures 3 and 4.

— Output p!.
Let p? = pMHE'.PrivEval(skj, NewEnc', (ct;) je(nyi 1), kY = ki
Foreacht=1,2,...,n,
Let b = id[t]. Parse PRG(kffl) as (labi’t7b/, kf,b”rf,l,b”T§,2,b’7rf,3,b’)b/€{071}

—_——

Let ski =71, ,, Boot} - GC.Garble(1*, Bootfskg], lab""?; 7t).

Let p; = (pgv (BOOtg)tE[n]a Cti)'
Output p;.

pPMHE.FinDec(C, (pi)ic[n)):

e~

e Let id be the binary representation of C. Parse p; as (p?, (Bootﬁ)te[n], ct;).

e Foreacht=1,2,...,n,
Let b = id[t].
If t =1, (lab™"?, lab™"1),c v} — pPMHE.FinDec(NewEnc’, (pi~1);c(n)-
Otherwise, (lab™"", lab™"!),cn] < pMHE’.FinDec(NewEnc', (p{™");c(n)-

—~—

For each i € [N], execute p! < GC.Eval(1*, Boot!, lab""'?).

21

NewEnc" " (5, k;) je(n)

e Let y = C((xj)je[N])-
e Output y.

Figure 4: Description of NewEnc™ ',

e Let y + pMHE’.FinDec(NewEnc" 1, (P})iein)-
e Output y.

7.1 Correctness
Lemma 7.2 (Correctness). The construction of pMHE is correct.
Proof. For any input (x;);e|n], any circuit C', and any i € [N, let (ct;, sk;) < pMHE.Enc(1*, C.params, i, z;).

Let p; = (pY, (Bootg)te[n},cti) < pMHE.PrivEval(sk;, C, i, (ct;) je[n))-
Now we consider each step in pMHE.FinDec(C, (p;);e|n]). For each t = 1,2,...,n, we prove by
induction the following claim.

Claim 7.3. For any t € [n],
Vj € [N], let (lab?"? kL vty ety o7t g beqo,1y = PRG(ESTT).
Vj € [N],¥b € {0,1}, let (ct;p,skjp) = pMHE'.Enc(crsy, NewEnc' ™ .params, j, (z;, KEy)irtas)
Vb € {0,1}, let cty = (ctjp)je(n-
Then we have
o (lab™", lab™"1);c) = (labgiy’, labZ seqy-
e For any j € [N], pl = pMHE’.PrivEval(sk!, NewEnc'*!, ctiqp).
We prove the claim by induction on ¢t. We now show that the claim holds for ¢t = 1.
o (lab®b0 Jab’tbl) = (Iabi’tlo’o, Iabi’tll’l) follows from the correctness of pMHE; scheme.

e From the correctness of the garbling scheme, we have

pi = Booty(ctign) = pPMHE'.PrivEval(sk;, NewEnc?, ctigp))

Now we assume the claim holds for t = t* — 1, and we now prove for the case of t = t*.

e From the induction hypothesis, we have pﬁ*_l = pMHE'.PrivaaI(skf*_l, NeWEnct*,ctid[t*,l]).

Then, (lab™"?, Iab’i’t’l)iew] = (Iabif(;o, Iabi’ttl’l)ie[m follows from the correctness of pMHE'.

22

e From the correctness of the garbling scheme, we have

Pl = Bootl[t:kt*](ctid[tﬂ) = pMHE’.PrivEval(sk! , NewEnc’ ™! ctig()

Thus, the claim holds for any t* € [n]. Hence, pI = pMHE’.PrivEval(sk!’, NewEnc" 1, Ctig[n)), and

n+1

Ctig[n) is obtained from pMHE'.Enc(crs, NewEnc" " .params, j, (z;, kZid[n})jE[N])’ for some crs. From

the correctness of pMHE', we have y = NewEnc" ™ ((x;, k?id[n})jG[N]) = C((z4)ien)- O

7.2 Security

Lemma 7.4 (Reusable Semi-Malicious Security). The construction of pMHE is reusable semi-
malicious secure.

We give a description of the simulator below.

pMHE.Sim; (1%, H)
Initialize the empty sets T, 7", T" = ¢.
(stl, (ct})icn) + pMHE,.Sim;(1*, H, NewEnc' .params)
Let st be the current state of pMHE.Sim;.
Output (st, (ct})icm).

PMHE.Sima(st, C, C((w4)iens (%4, (Kiy 7)) ie i)

o If Ay queries for the first time:
For each i € H, let (ct’,sk;) = pMHE,.Enc(1*, C.params, i, v;; (k;i, 7;)).
For each i € H, parse PRG(k;) as (Iabi’b7 Ki by Ti1,bs 702,05 T3,3,0)be{0,1}-
For any b € {0, 1}, (PMHE'.sty, crsy, (ct; p)ics) < pMHE’.Sim; (1%, H, NewEnc?.params),
and update 7" = T" U {b}.
For any i € H,b € {0,1}, let (ct;p,skip) = pMHE'.Enc(crsy, NewEnc?.params, 4, (z;, Kip)iring)-
For any b € {0, 1}, let ct, = (ct;p)jen]-
For any i € H,b € {0,1}, let (GC.st; , Iab’i’b) + GC.Sim;(1*, Boot! .params),
and update 7" = T" U {(i,b)}.
For any i € H,b € {0,1}, let lab™™® = lab%] .
(st’h, (0))icr) < pPMHE,.Sima(st’s, NewEnc!, (lab"?, Iab’i’l)iem, (i ki), mi)iciz)

e Execute the following for every query of the adversary Az (including the first one):
Let id be the binary representation of C, and let h = max(0 < h' < n |id[l...h'] € T).
Foreacht=h+1,h+2,...n,

Denote s =id[1...t], so =s00, s1 =sol.

Now we generate (p;s)icH-

Ift = n, let (pis)icyr < pPMHE'.Sima(pMHE.st,, NewEnc" ™, C((wi)iginy), (T, kis)s Tits)icm)-
If t < n, for each b € {0, 1},

let (pPMHE'sts,, crsp, (ctip)icn) < pMHE".Sim; (1%, H, NewEnc'™2 params),

and update T = T" U {sp}.

For any i € H,b € {0,1},

23

let (ct;p,skip) = pMHE’.Enc(crsy, NewEnc!™2 params, i, (x;, k:l-’id;,); Ti,l,id’b,)~

For any b € {0, 1}, let cty = (ctjp) e[n]-

For each i € H,b € {0,1}, let (GC.st’, lab’"?) <~ GC.Sim; (1%, Boot' ™! .params),
and update 77 = T" U {(i, sp) }.

For each i € H,b € {0,1}, let lab’® = lab’®

cty -

(pi,s)ierr < PMHE’.Sima(pMHE st,, NewEnc'™, (Iab™, lab™ 1) c(ny, (2, Kis), 7i1,8)ic i) -

P —_—

For each i € H, let Boot} +— GC.Sima(GC.st; s, p;.s), and Boot; s = Boot’.
Update 7" =T"\ {s}, T" =T'\ {(i,s)}, and T = T U {s}.
For each i € H,

—_—

For each t € [h], let Boot! = Boot; jq[1...4]-

P

Let pbi = (P?v (BOOtg)tG[n]a Ct'li)‘
Let st be the current state of pMHE.Sims.

Output (st, (pi)icm)-

Proof Sketch. We first sketch the proof at a high level before giving formal description of the
hybrids.

e First we simulate the messags of pMHE, at the root node of the tree, using the output of
NewEnc'. Recall that, the root node uses a pMHE scheme pPMHE, to jointly compute the
circuit NewEnc!. This corresponds to Hybrid,; we rephrase Hybrid; as another hybrid Hybrid,
that will be easier to work with.

e Next, instead of computing the output of pMHE, using a PRG, we now compute the output us-
ing a uniformly random string. This is performed using a sequence of hybrids Hybrid%_5, ceey Hybridé\g.
Moreover, we define Hybrid; such that it will be identical to Hybrid, 5.

e Next, we simulate the garbled circuit associated with the root node. Note that independent
of the number of times the initial ciphertexts are homomorphically evaluated, the garbled
circuit associated with the root node will always be computed with respect to the same
randomness and hence is fixed throughout the executions. This is covered by the hybrids
Hybrid3'2, Hybrid3's, .. ., Hybrid2'?, Hybrid}'s' .

e Next, generate the CRS for both the children of the root afresh. This corresponds to the
hybrid Hybrid,.

e Simulate the pMHE’ ciphertexts associated with the children of the root. This corresponds
to Hybrids.

e Let @ = Q(A) be the number of decryption queries made by the adversary. For each query
starting from the first, we simulate the partial decryption values returned to the adversary in
many steps.

Let us start with the first query. At this point, we have already simulated the garbled circuit
associated with the root node (Hybrids). We define the hybrid Hybrids to be the same as
Hybridg. In a sequence of hybrids, Hybrid(;’l, e Hybridg’”, we perform the steps described in
hybrids Hybrid,, ..., Hybrids for every garbled circuit along the path from the root to the leaf.
That is, Hybridg’h simulates all the garbled circuits until depth h and the rest of the garbled

24

circuits are generated honestly. Finally, we define Hybridé to be the same as Hybridg’"; note
that in this hybrid, the partial decryption values associated with the first query is completely
simulated.

Formal Details. For any set of honest parties H C [N], any input (z;)icm, and any PPT
adversary A = (Aj, Az) that queries the oracle O at most @@ = Q(\) times, we build the following
hybrids. For simplicity, we denote H = [N]\ H. Now we describe the hybrids in detail.

Hybrid, This hybrid is identical to the real execution Real*(1*, H, (x;)icrr)-
Hybrid; From Hybrid, to Hybrid,, we replace (ct});c[n) and (pY)ier with the messages generated by
the simulators of pMHE,.
For each i € H, randomly sample k; < {0, 1}PRGin,
(stly, (cti)icrr) < pMHE,.Simy (1%, H,NewEnc! params).
(StA’ ($i’ (kiv Ti)ieﬁ)) A A1(1>\7 (Ct;)iGH)
For each i € H, let (ct’,sk;) = pMHE,.Enc(1*, C.params, i, (z;, k;); ;).
(st&, (P)ienr) < PMHE,.Sima(stly, NewEnc', NewEnc! (i, ki)ic(n)), ((%iy ki), Ti)ie fr)-
oIt
AZW) (st0)

Output View 4.

PMHE.PrivEval(sk;, C, (ct}) je(n)
Let k) = k;.
Foreacht=1,2,...,n,
Let b= id[t]. Parse PRG(k{ ') as (lab™"" k!, vt) vty vty yeqon

—~—

Let skf = r! ,, Boot! - GC.Garble(1*, Bootfsk,;], Iabi’t’b;rizb).
Let ki = k!,

Let p; = (pgv (BOOtg)tG[n]a Cti)'
Output p;.

Hybrid, This hybrid is almost the same as Hybrid;, except that pMHE.PrivEval is replaced with the
following functions, and NewEnc!((z;, ki)icin]) is expanded in this hybrid.
For each i € H, randomly sample k; < {0, 1}PRGin,

and parse PRG(k;) as (Iabi’b, Ki b, Ti1.bs Ti.2.b5 Ti.3.)be{0.1} -

(stls, (cti)iem) + PMHE,.Simy (1%, H, NewEnc'.params)

(sta, (i, (ki ri)ieq)) + A1, (ct))ien)

For each i € H, let (ct’,sk;) = pMHE,.Enc(1*, C.params, i, (z;, k;); 7).
For each i € H, parse PRG(k;) as (1ab™, ki, 7510, 7526, Ti.3.6)be {011
For any b € {0, 1}, crs, = pMHE' Setup(1*; Dicin risb)-

For any j € [N],b € {0,1}, let (ct;p,sk;s) = pMHE'.Enc(crs,, NewEnc?.params, j, (2, kip);7j.1.5)-

For any b € {0,1}, let ct, = (ct;p) e[l

25

(st (0)icrr) < PMHE.Sima(st)s, NewEnc!, (lab%, |abi’t11)z'e[N]7 (w5, ki), mi)icm)

AZW) (st.4)

Output View 4.

pMHE.PrivEval(sk;, C, (ct}) je(n)

b .1 .1 1 1 _ ib
Let (lab" ™" k; 75 1 1 Tio s Tianbefoay = (1ab"7 Kip, i1, 62,6, Ti.3.0)be 0.1} -
Foreacht=1,2,...,n,

Let b = id[t]. Let sk! = r;l’b, Boot! « GC.Garble(1*, Bootfskﬂ, lab®t0: Tf,z,b)'
Let ki = ki,

t i t+1,0" 41 t+1 41 t+1
Parse PRG(k;) as (lab K T s T b Ty A)ie Hb'€{0.1}-

Let p; = (p?, (Bootﬁ)te[n], ct;).
Output p;.

Hybrid’;5, Vi* € {1,..., N} This hybrid is almost the same as Hybrid,, except that we replace the
output of the PRG with the uniform random string for each i € H one by one.

For each i € H, if ¢ < i*, then randomly sample (Iabi’b, Ki by Ti1.bs Ti.2.05 Ti.3.)be{0.1) -

Otherwise, sample k; + {0, 1}PRG'i", and parse PRG(k;) as (labi’b, i by Ti1.bs Ti.2.05 Ti.3.6)bef0.1) -

Hybrid; This hybrid is essentially identical to Hybridggl.

For each ¢ € H, randomly sample (Iabi7b, Kiby Tidbs Ti.2.05 Ti3.6)bef0.1} -

Hybridgjéb*, Vi* € {1,...,N},b* € {0,1} This hybrid is almost the same as Hybrid;, except that we
generate the labels and garbled circuit by GC.Sim.

We maintain a set 77 C [N] x {0,1}*. We put an element (i,s) € T”, if the labels lab’>* have
already been generated by GC.Simq, but Boot; ; haven’t been generated by GC.Sims.

Initialize an empty set T" = ¢.

For each i € H,b € {0,1}, if (4,b) < (i*,b*), randomly sample (k;p, 751, 7i.35)-

Otherwise, randomly sample (Iabl’b, Kib, TidbsTi2.b,Ti30)-

(stl, (ct})icnm) < pMHE,.Sim; (1%, H, NewEnc'.params)

(sta, (i, (ki 1i)ieq)) + AL, (ct))ien)

For each i € H, let (ct’,sk;) = pMHE,.Enc(1*, C.params, i, (z;, k;); ;).

For each i € H, parse PRG(k;) as (Iabi’b7 ki,bari,l,byTi,2,b>7'i,3,b)be{0,1}-

For any b € {0, 1}, crs, = pMHE'.Setup(1%; Dicv i)

For any j € [N],b € {0,1}, let (ct;,skj») = pMHE'.Enc(crsy, NewEnc?.params, j, (j,kip)iTinp)-
For any b € {0, 1}, let cty = (ct;p)jen]-

For any i € H,b € {0,1}, if (i,b) < (i*,b*), let (GC.st; 4, lab™") < GC.Sim;(1*, Boot'.params),
and update 77 = T" U {(i,b) }.

For any i € H,b € {0,1}, if (i,b) > (i*,b*), let lab™® = lab"

For any i € H,b € {0,1}, let lab™™® = lab%] .

26

(st§, (p))ierr) + PMHE.Sima(st’y, NewEnc', (Iab™, lab™1);c(ny, (2, ki), 74)ie i7)

A7 (st.)
Output View 4.

pPMHE.PrivEval(sk;, C, (ct/) jc(n))
Let b =id[1], and (7‘% b 111 b 112 b/)b/e{o 1} = (Riys a0, T2, v yeqo,1}-

If (4,0) < (4*,b*) and (i,b) ¢ T", let Booti = Boot; ;. We will define Boot; } soon.
If (i, b) (4*,b*) and (i,b) € T', let p;;, = pMHE'.PrivEval(sk} = 7;.1 5, NewEnc?, cty),

and BootZ < GC.Sima(GC.st; p, pip), define Boot; ,, = Egggt:, and update 7" = T" \ {(i,b)}.
If (i,b) > (i*,b*), let sk! = r;1,, Boot! = GC.Garble(1*, Boot! , ;71,,).

Parse PRG(k:i{b) as (|abi’2’b,,kzb/,TiLbuTﬁg,bu7}2’371)/)1;'6{0,1}-
Fort=2...n
Let b = id[t]. Let skﬁ = Tf‘,l,b? Bootf — GC.GarbIe(l)‘, BOOtl[tskﬁ]’

t i t+1,0 . t+1 t+1 t+1 +
Parse PRG(ki’b) as (lab Kb iy Tioy Tis, y)ieH,b'e{0,1}-

Let p; = (p?, (Bootﬁ)te[n], ct;).
Output p;.

i,t,b.
lab™"?; 7 5)-

Hybrid, This hybrid is almost the same as Hybrld(D+ , except that we do not sample ;3 for
any ¢ € H in this hybrid, and also sample crs,, dlrectly by pMHE’.Setup(1*).

Initialize an empty set T" = ¢.
For each i € H,b € {0, 1}, randomly sample (k;p,7;14).

(stl, (ct})icn) < pMHE,.Sim(1*, H, NewEnc' .params)

(sta, (i, (kisri)ien)) < A1, (ct])ien)

For each i € H, let (ct},sk;) = pMHE(.Enc(1*, C.params, i, ;; (ki, ;)).

For each i € H, parse PRG(k;) as (Iabi’b, ki,lnT’i,l,b7Tz‘,z,bari,s,b)be{oJ}-

For any b € {0, 1}, crs, + pMHE'.Setup(1*)

For any j € [N],b € {0,1}, let (ct;,sk;j) = pMHE'.Enc(crsy, NewEnc?.params, j, (@, kjp);Tiam)-

For any b € {0, 1}, let cty = (ct;p)jen]-
For any i € H,b € {0,1}, let (GC.st;, lab’®®) < GC.Sim;(1*, Boot!.params),
and update 7" = T" U {(4,b)}.

For any i € H,b € {0,1}, let lab’"* = lab’] .

cty

(st’s, (p9)ierr) < PMHE.Sima(stls, NewEnc!, (lab"?, lab’™ 1)Z6[N] (i ki), mi)ici)

AT (st4)
Output View 4.

27

PMHE.PrivEval(sk;, C, (ct}) je(n)
Let b =id[1], and (k. 7)1y 7oy veqony = (i Tidps Ti2p ve{o.}-
If (4,b) ¢ T, let Boot! = Boot, ;.
If (i,0) € T, let p;, = pMHE’ PrivEval(sk} = ;1 4, NewEnc?, cty),

and B;:til < GC.Sima(GC.st; 4, pip), define Boot; ;, = B/agtil, and update 7" =T\ {(i,b)}.

i,2,b"
Parse PRG(k:Z.{b) as (lab’ 7kz'2,b/7rz'2,1,b’7rz'2,2,b'=ri2,3,b/)b/€{0,1}'
Fort=2...n
Let b= id[t]. Let ski = r{ ;, Boot{ +- GC.Garble(1*, Boot{ s, lab™b5 7ty).
Let k! = k;b.

t i t+1,0" . t+1 t+1 t+1 t+1
Parse PRG(k; ;) as (lab ki T Tioy s Tis, b)ie H,b'e{0,1}-

Let p; = (pg, (Bootﬁ)te[n], Ctz').
Output p;.

Hybrid; This hybrid is almost the same as Hybrid,, except that we replace the (ct;p)icm pefo,1} and
(pi)icq with the messages generated by the simulator pMHE'.Sim.

To generate (p;);cy on the fly, we maintain a set 7" C {0,1}*. We put an element s € T,
if (ct;s)ien has already been generated by pMHE'.Simy, but the corresponding (p; s)icy has
not been generated by pMHE’.Sims.

Initialize two empty sets 77, 7" = ¢.

For each i € H,b € {0, 1}, randomly sample k; .

(stls, (cti)iem) + PMHE,.Simy (1%, H, NewEnc'.params)

(sta, (i, (kisri)ien)) + A1, (ct])ien)

For each i € H, let (ct’,sk;) = pMHE,.Enc(1*, C.params, i, v;; (k;, 7).
For each i € H, parse PRG(k;) as (Iabi’b, Ki by Ti1,bs 702,05 Ti,3,6)be{0,1}-

For any b € {0,1}, (bMHE'.sty, crsy, (ct; 3)icr) < pMHE’.Sim; (1, H, NewEnc? params),
and update 7" = T" U {b}.

For any i € H,b € {0,1}, let (ct; 4, sk;3) = pMHE’.Enc(crsy, NewEnc?.params, 4, (s, kip); 7i.1.5)-

For any b € {0, 1}, let cty = (ctjp) e[n]-
For any i € H,b € {0,1}, let (GC.st;p, lab®*) «~ GC.Sim;(1*, Boot!.params),
and update 7" =T" U {(4,0) }.

For any i € H,b € {0,1}, let lab’"® = lab’] .

cty -
(st§, (p))ierr) + PMHE.Sima(st’y, NewEnc', (Iab™, lab™1);c(ny, (2, ki), 74)ie i7)
A9 (st.4)
Output View 4.
Oracle O(1*,C)
Let b = id[1].

IfbeT" let (pig)icn < pMHE'.Simy(pMHE' .sty, NewEnc? NewEnc?((;, k;p) icin),
(4 ki) miab)jeqm), and update T = T" \ {b}.

28

For each i € H, let p; <~ pMHE.PrivEval(sk;, C, (ct}) jen))-
Output (pi)ien
pMHE.PrivEval(sk;, C, (ct;)jE[N])

Let b = id[1], and (k;il,b”Tz'l,l,b”ril,2,b')b’€{0,1} = (ki s Ti, 10, Ti,2,0)b e{0,1}

If (i,b) ¢ T", let Boot! — Booty.

If (i, b) € T'. let Boot! ¢ GC.Sima(GC.st, 4, pis), Boot,, = Boot,, update T’ = T/ \ {(i,b)}.

Parse PRG(k:iljb) as (Iabi’2’b/,kib,,rilyb,,rilb,,ri37b,)b/€{071}.

Fort=2...n
Let b = id[t]. Let sk! = 7“;171), g(_);t/f < GC.Garble(1?, Bootfskﬂ,
Let k! = kt,.

t i,t+1,0" 1 t+1 t+1 t+1 t+1
Parse PRG(k:Lb) as (lab ,k:l b o Ti Ly Tiows s, W)icH.b '{0,1}-

i,t,b. .t
lab ,ri,%).

—_—~—

Let p; = (ngv (BOOtg)tG[n]a Ct’i)'
Output p;.

Hybridg* This hybrid is almost the same as Hybrids, except that the oracle O is replaced with the
following oracle.

We maintain a set 7' C {0,1}"™. We put an element s € T, if there exists a query C' such that
s is a prefix of the binary presentation of C'. We initialize the empty set T = ¢.

For the simplicity, for any i € H, we recursively define (lab; s, , ki,s, , 74,1555 76,2,50 74,3,)be{0,1} =
PRG(k; s).

Oracle O(1*,C)

Let ¢ be the number of times that O(1%,-) is invoked.

Let id be the binary representation of C, and let h = max(0 < h' <n |id[l...h'] €T).

Case 1: ¢ < ¢*. In this case, we answer the query by simulation.
Foreacht=h+1,h+2,...n
Denote s =id[1...t], so =500, 1 =so01.
Now we generate (p;s)icH-
Ift = n, let (pis)icm < PMHE'.Simy(pMHE.st,, NewEnc™ !, C((xi)ieqny), (25, Kjs) mi,1s) jeir)-
If t < n, for each b € {0,1},
let (pPMHE'sts, , crsp, (ctip)icn) < pMHE'.Simq (1%, H, NewEnc'™2 params),
and update T = T" U {sp }.
Forany i € H,b € {0,1}, let (ct; , sk) = pMHE".Enc(crsy, NewEnc'™2 params, 4, (x;, kiﬁd;,); ri71,id2/).
For any b € {0, 1}, let cty = (ctjp) e[n]-
For each i € H,b € {0,1}, let (GC.st! ,lab"") +— GC.Sim; (1%, Boot'*!.params),
and update 77 = T" U {(, sp) }.
For each i € H,b € {0,1}, let lab"® = lab’®

cty -

(pi.s)ierr < PMHE'.Simg(pMHE.st,, NewEnc!™2, (lab’"?, Iab’i’l)ie[N], (i, Kis)sTin,s)ich)

29

e P

For each i € H, let Boot! < GC.Simy(GC.st; 4, pi s), and Boot; s = Boot!.
Update 7" =T"\ {s}, T" =T"\ {(i,s)}, and T =T U {s}.
For i € H,b € {0,1}, randomly sample k; 5, < {0, 1}PRGin,

For: e H,

For t € [h], let Boot! = Boot; id1...¢)-

—_~—

Let p; = (pY, (Boot})sepy], Ct}).-
Output (p;)ien-

Case 2: ¢ > ¢*. In this case, we answer the query by real execution.
Denote b =id[h + 1], s =id[1...h + 1].

If seT" let (pis)icy + PMHE".Sima(pMHE' sts, NewEnc" 2, NewEnc"+2((x;, ki s)iein))s
(%3, kis) 7i1,s)icir), and update T" = T\ {s}.

For each 1 € H,
Let k't = k.

If (i,b) ¢ T', let Boot; = Boot, .
—_~— —1

If (i,b) € T', let Boot; + GC.Sim2(GC.st; 4, pip), Boot;, = Boot;
update 7" =T"\ {(i,b)}.
Parse PRG(K]'[!) as (lab™ 2V kG2 p b2 pd2 v 2)01y

Foreacht=h+2...n

—_—

Let b =id[t]. Let skj =r! ,, Boot] + GC.Garble(1*, Bootf - 2 ab""¥rt).
Let k! = kf,.
Parse PRG(kL,) as (lab™ MY kT 4 it ri ey

Fori e H,

For t € [h], let Boot! = Boot; jqj1...¢-

—_—~—

Let p; = (pga (BOOtg)tG[n]v Ct;)'
Output (pi)icn-

Hybridg*’h* This hybrid is almost the same as Hybridg.

Oracle O(1*,C)
Let ¢ be the number of times that O is invoked.
Let id be the binary representation of C, and let h = max(0 < h' <n |id[l...h] €T).

Case 1: g < ¢*. In this case, we answer the query by simulation. The oracle does the same
thing as the case 1 in Hybridg.

Case 2: ¢ = ¢* In this case, we simulate the Bootf fort=h+1,2,...,h", and get the Bootf
for t = h* 4+ 1,...n from the real execution.

30

Foreacht=h+1,...,h":
Denote s = id[1..

t],80 =500, 1 =sol.

Ift = n, let (pis)icu + PMHE'.Sima(pMHE' sty, NewEnc" ™, C((@:)ieqny), (@i kirs) s 7i1,s)icir)-

If t < n, for each b € {0,1},

let (pMHE' st , crsy, (ctip)icn) < pMHE’.Simy (1%, H, NewEnc! 2

and update T = T" U {sp}.

Forany i € H,b € {0,1}, let (ct; p, ski») = pMHE'.Enc(crsy, NewEnc/*?

For any b € {0,1}, let ct, = (ct;p) e(n-

.params),

.params, 4, (x;, ki,idg,); 7”2',1,id;,)-

For each i € H,b € {0,1}, let (GC.st!,lab"") + GC.Simy (1%, Boot'*!.params),

and update 7" = T" U {(i, sp) }.
For each i € H,b € {0,1}, let lab’® =

labb%

cty -

(pi.s)icrr < pMHE'.Simg(pMHE.st,;, NewEnc'™2, (lab?, Iab'i’l)iE[N], (i kis),Tit,s)ich)-

P

For each i € H, let Boot§ — GC.Simy(GC.st; 4, pi), and Boot; s = Bootf.

Update T"
Denote b = id[h* +

— T// \ {3}7 T/

1], s =id[1...h* +1].

=T\ {(i,s)}, and T =T U {s}.

Ifbe T let (pis)icn < pPMHE'.Simg(pMHE'.st,, NewEnc" 2 NewEnc" +2((x;, kjs)icny)s

((25,kjs);7i1,s)jem), and update "
For each i € H,
Let k" T = k.

If (i,b) ¢ T', let Boot] = Boot, ;.

P

If (i,b) € T', let Boot} < GC.Simy(GC.st;, p;), Boot;, = Boot; ,

update T" =

=T"\ {(i,b)}.

h*+1 i h* 42,6 R 2 +
Parse PRG(k;","") as (lab” k i1 b Tiat o Tigp

> Vb
Foreacht:h*—i-Z...

—_~—

Let b = id[t]. Let sk} = TZ Lo Boot! + GC.Garble(1*, Boot!

Let kf = ki,
Parse PRG(k:;b) as
Fori e H,

(labz A+1,0 kt-i-l

P

For t € [h], let Boot! = Boot,; jq[1..4-

P

Let bi = (P?v (BOOtg)tG[n]a Ct'li)‘
Output (p;)icn-

Case 3: ¢ > ¢*.
same thing as case 2 in Hybridg.

Hybridg This hybrid is identical to Hybrid{@*)")*!

31

t+1 ptl
2Ry T 1 T 260 zsb’)b’€{01}

=T\ {b}.

1

h*+2 h*+2 h*42

)b'e{0,1}~

3,t,b. .t
[kt], lab ,7’7;72717).

t+1

In this case, we answer the query by real execution. The oracle does the

. It’s output is the same with the ldeal output.

Lemma 7.5. There exits a negligible function v()\) such that | Pr[D(1*, Hybridg') = 1]—Pr[D(1*, Hybrid{') =
1] < v(A).

Proof. We build the following adversary A’ = (Ai, Ab) for pMHE,,. For each i € H, sample k; «+
{0,1}PRGIn We will consider the experiment Real™ (1*, H, (s, k)ic i) and Ideal (1), H, (4, ks)ien)-
Adversary A'.

AL (1%, (cti)ien)
(sta, (i, (ki 7i))ic) < AL(1, (cti)ierr)
Output (St.Aa ((xla kl)? ri)iEH)

Let (Nier + O(1*, NewEnc!).
0417,
Output View 4
Oracle O 4(1*,C)
For each 7 € H, let k:? = k;.
Foreachi € H,t=1,2,...,n
Let b = id[t]. Parse PRG(k! ') as (lab®t', KL yorty s er b Thy)belo1}

—_——

Let ski =71, ,, Boot; - GC.Garble(1*, Boot[K] lab®!:?; 126)

Let p; = (pgv (BOOtg)te[n]v Cti)'
Output p;.
In the experiment Real’ (1%, H, (4, ki)icr), for any i € H, ct; is obtained from pMHE,.Enc(1*,
C.params, i, (z;, k;)), and (p?)icny is obtained by p? « pMHEO.PrivaaI(sk;,NewEncl,(ctj)je[N]).
Hence, A’ simulates the hybrid Real*(1*, H, (z;)ic) for A, and we have

Pr [D(IA, ReaIA,(lA, H, (xi, ki)icn) = 1} =Pr [D(lAa Hybridf)4) =1

On the other hand, in the experiment IdealA/(lA, H, (x;,ki)icer), (ct;)iem is obtained from
pMHE,.Sim; (1*, H, NewEnc!.params), and (pY)iemr is obtained by pMHE,.Sima(sts, NewEnc!, NewEnc!
(%4, ki)ien), ((xi, ki), 73);e), where stg is the state outputted by pMHE.Sim;. Hence, A’ simulates
the hybrid Hybrid“14 for A, and we have

Pr |[D(1*, Ideal® (12, H, (x4, k:)icrr) = 1} = Pr [D(ﬂ, Hybrid{!) =
Since pMHE, is semi-malicious secure, there exits a negligible function v(\) such that | Pr[D(1*, Real!') =
1] — Pr[D(1*, Ideal"’) = 1]| < v()\). Hence, we have | Pr[D(1*, Hybrid') = 1] — Pr[D(1*, Hybridi') =
1] < v(A). O

Note that Hybrid; and Hybrid, are essentially identical, since the only change is the expanding
of NewEnc!((z;, ki)iein)) in Hybrid,.

32

Lemma 7.6. Hybrid,, Hybridy and Hybrid} 5 are identical. Hybrid)Y ! is identical to Hybrids. More-

over, there exits a negligible function v(\) such that | Pr[D(1*, Hybridé}) = 1]—Pr[D(1*, Hybrid} #) =
1| < v(N).

Proof. We firstly show that Hybrid, and Hybr|d2 5 are identical, and HybrldN'H is identical to Hybrids.
When i* =1, (IabZ s Ki by Ti 1,0, Ti, 2,0, Ti 3,0 be{0,1) 18 generated by PRG for all i € [N]. Hence, Hybridéﬁ
is identical to Hybrid,. When i* = N 41, for every 4, (lab®?, KibsTi1,6sTi2,b> 70,36)befo,1} 1S generated
randomly. Hence, Hybridé\gH is identical to Hybrid;.

Now we prove Hybridg5 = Hybrldl 1. Note that the only difference between Hybridg5 and
Hybrid’;grl is that, in Hybrid2‘5, (Iab kz by T 1,bs Ti* 2,65 Ti* 3,0)befo,1} 15 generated by PRG, while
in Hybrid’;;l, (Iabi*’b, i by Tix 1,65 Tix 2.6, ri*73’b)b€{071} is generated randomly.

Now, for any adversary A for pMHE, we build the following distinguisher D’ for the PRG.

Distinguisher D’(1*,v € {0, 1}PRG.0ut)
For each i € H, if i < i*, then randomly sample (Iab™", ki, 7i.1,5, 72,6 4.3)be 0,1}

. . ib
If i = i*, then parse v as (1ab™’, ki b, 7516, 7526, Ti.3.5)be {011 -

If i > *, then parse PRG(k;) as (1ab"", ki, 71,6, 72,6, 76,35)be (0,1}
For each 7 € [N], if i ¢ H, sample r; < {0,1}*, otherwise, let r; = L.
..(Continue the remaining part of Hybrid} , and finally output D(1*, View 4)...

When v is generated by PRG(s), where s < {0, 1}PRGin the distinguisher simulates the Hybrid -
for A. Hence, Pr[s + {0, 1}PRGIn . D'(1* PRG(s)) = 1] = Pr[D(1%, Hybrids, 5) = 1].

When v is uniform random, the distinguisher simulates the HybrldZ 'H for A. Hence, Pr[v +
{0,1}PRGout . /(1A y) = 1] = Pr[D(1*, Hybrid}, 1) = 1].

From the security of PRG, we derive that there exits a negligible function v(\) such that
| Pr[D(1*, Hybridy 5) = 1] — Pr[D(1*, Hybrid} &) = 1]| < v(\). O

Lemma 7.7. Hybrids is identical to Hybrid3 5. Moreover, there exits a negligible function v(\) such
that | Pr[D(1*, Hybrid, ") = 1] — Pr[D(1*, Hybrid{';"" ”1) 1] < ().

Proof. The main difference between Hybridgi;’b*) and Hybridi(,f;’b*)Jrl is (Iab’i* " Boot} ;). It is obtained

from GC.Garble in Hybrld(’), while it is obtained from GC.Sim in Hybrldé 5b 1 Now we build a
distinguisher D’ trying to break the garbling scheme for the input cty+ and the circuit Boot'[5

Tix 1p]
D'(1*, lab, C)

Initialize an empty set T" = ¢.

For each i € H,b € {0, 1}, if (i,0) < (¢*,b*), randomly sample (k; p, 7 1,6, 7i.2,p)-

Otherwise, randomly sample (Iabi’b, KibyTid by Ti2,b,Ti30)-

(stl, (ct})icn) < pMHE,.Sim(1*, H, NewEnc'.params)

(sta, (i, (kisri)ien)) + A1, (ct])ien)

For each i € H, let (ct!,sk;) = pMHE,.Enc(1*, C.params, i, 7;; (k;, 7;)).

For each i € H, parse PRG(k;) as (Iabi’b, Ki by Ti 1,65 Ti,2,b> Ti,3,0)be{0,1}-

For any b € {0, 1}, crs, = pMHE'.Setup(1%; Dicv i)

33

For any j € [N],b € {0,1}, let (ct;p,skj) = pMHE".Enc(crs;,, NewEnc?.params, 7, (2, k;5); 7j.1.6)-
For any b € {0, 1}, let cty = (ct;p)jen]-

For any i € H,b € {0,1}, if (4,b) < (i*,b%), let (GC.st; , lab’*?) <~ GC.Sim; (1%, Boot!.params),
and update 77 = T" U {(i,b)}.

For any i € H,b e {0,1}, if (i,b) = (¢*,b*), let lab"™" = [ab.

If (i,b) > (i*,b*), let lab™® = lab" .
For any i € H,b € {0,1}, let lab"® = Iab’ctlz

(st§, (p))ierr) + PMHE.Sima(st’y, NewEnc', (Iab™, lab™1);c(ny, (2, ki), 1) ic 1)
A0 (st.0)

Output D(1*, View 4).

PMHE.PrivEval(sk;, C, (ct}) je(n))

: 1 1 1 —
Let b — |d[].], and (k;’i,b/’ T,L-71’b/,ri’2’b/)b/€{0’1} - (ki,bla’ri,l,b/’ Ti72,b’)b’€{0,1}-

If (i,b) < (i*,b*) and (i,b) ¢ T’, let Boot} = Boot}.
If (i,0) < (i*,b*) and (i,b) € T', let p;;, = pMHE’.PrivEval(sk! = r; 14, NewEnc? cty),

— — 1
and Boot] < GC.Simy(GC.st;, p;yy), define Boot;;, = Boot;, and update T = T" \ {(i,b)}.

If (4, b) = (i*,), let Boot! = C.

If (i,b) > (i*,b%), let sk} = r;1,, Boot; = GC.Garble(1*, Boot! ,;7l,,).

1 2,00 1.2 2 2 2
Parse PRG(ki’b) as (lab ,ki’b,,r@l’b,,rig’b,,ri73’b,)b/e{o71}.
Fort=2...n

P

Let b =id[t]. Let skj =, Boot] + GC.Garble(1*, Bootfskﬂ, lab™ b5 7ty).
Let k! = k!,.
LY pt+1 41l il ot
Parse PRG(k:;b) as (lab®t* ,lig/) lJ{ b Tlgb/, Z§ b)icHye{0,1}-
Let p; = (p?, (Bootf)te[n], ct;).
Output p;.

When lab = labet,., where lab is sampled uniformly at random, and Cisa garbled circuit of

Boot! the distinguisher D’ simulates the hybrid Hybridg;’b*) for A. Hence, we have

[ski=r3,1,5]’

labe{0,1}2ABootin)\ M| [A by }
Pr |:6’HGC.Garble(l’\,Boot1,Iab)'D(l Jlabet,.,C) =1 Pr |D(1%, Hybrids 2) =1

On the other hand, when (Ifa\l/) C) is obtained from the simulator GC.Sim. Then the adversary
D’ simulates the environment of Hybr|d(l PO for A Hence,

[(sts,g))(—GC.Sim1(1’\,Boot1.params)

) Aok o) — 1] — A PGSR A
6’<—GC.Sim2(sts,Boot[lri) b](Ctb*))) : D/(l ,lab, C) = 1:| =Pr |:'D(1 , Hybr|d3.5) =1

34

From the security of the garbling scheme, there exits a negligible function v(\) that bound the
left hand sides. Hence, we have |Pr[D(1)‘,Hybridg5’b)) = 1] — Pr[D(1*, Hybrid:(;ﬁ’b)+1) =1]] <
V(). O

Lemma 7.8. Hybridé].\é’l)Jrl is identical to Hybrid,. Moreover, There exists a negligible function
v(\) such that | Pr[D(1*, Hybrid,) = 1] — Pr[D(1*, Hybrids) = 1]| < v()).

Proof. In Hybridé{\é’l)ﬂ, crsy, = pMHE’.Setup(l)‘;@ie[N] 7i3p), where (753p)icy are uniformly at
random, and (r;3p);cqg only depends on (k;);cg, which is independent of (7;34)icr. Hence,
®ie[N] 7; 3, is uniformly random.

To show that Hybrid, ~ Hybrids, the proof follows the same strategy as Lemma 7.5. O

Lemma 7.9. Hybridy ¢s identical to Hybridé. Hybridé2+1 18 identical to ldeal. Moreover, for any
q* € [Q], any PPT adversary A, and any PPT distinguisher D, there exists a negligible function
V() such that | Pr[D(1*, Hybridd) = 1] — Pr[D(1*, Hybridd 1) = 1]| < v(X).

Proof. We prove that for any (¢*, h*), there exits a negligible function v()\) such that | Pr[D(1*,
Hybrid\? ")) = 1) — Pr[D(1*, Hybrid{ ") = 1]| < ().
The proof follows the same strategy as Lemma 7.5, and Lemma 7.6. 0

Proof of Lemma 7.4. Combining Lemma 7.5, Lemma 7.6, Lemma 7.7 Lemma 7.8, and Lemma 7.9,
we finish the proof. O

Lemma 7.10 (Efficiency). If the underlying pMHE pMHE' is ciphertext succinct, then the con-
struction of pMHE runs in polynomial time.

Proof. We bound the size of the circuit pMHE'.Enc.

From the efficiency of pMHE, scheme, the size of pMHE.Enc is poly(A, IV, NewEnc'.in, NewEnc!.out,
NewEnc!.depth). We now bound the size of NewEnc’ for any t.

Recall that, NewEnc' takes the input (z;, ki)ie/n], and does the following things.

1. Apply PRG to k; to generate random coins for pMHE’.Setup and pMHE’.Enc, two sets of
labels lab®"? lab®"!, and also the randomness for the garbling scheme GC.Garble.

2. Generate two CRS crsg, crs; using pMHE’ Setup.
3. Generate new (Ct;p);c(n)pefo,1} using pMHE'.Enc.
4. Select labels according to (ct;p)icn]befo,1}, and output.

Hence, for NewEnc'.in, we have NewEnc’.in = poly(\, N, > ie[n] lzil). For NewEnc'.out, we have
NewEnc.out = poly(X\, N, NewEnc!*L.in, NewEnct“.depth). Now we only need to bound NewEnc!.depth.

e In step 1, the size of random coins for pMHE'.Setup is poly (), NV, NeWEnct‘H.depth), the size of
random coins for pMHE'.Enc is poly(), N, NewEnc!*1.in, NewEnc! ™ .depth), the size of labels
is poly (A, NV, NewEnc!*.in, NeWEnct‘H.depth), and the size of randomness for GC.Garble can be
poly(\). Hence, if we use a PRG in NC, then the depth of this step is poly(\, log N, log NewEnc!™.in,
log NewEnc!™t.depth).

e In step 2, xor N randomness coins needs a O(log N) depth circuit. Then, since the pMHE’
scheme is ciphertext succinct, the depth of pMHE'.Setup is poly(\, N, log NeWEnct‘H.depth).
Hence, the depth of this step is poly(), NV, log NewEnc!™!.depth).

35

e In step 3, since the pMHE’ scheme is ciphertext succinct, generating the new ciphertext
requires a circuit of depth poly(\, N, NewEnc!™L.in, log NewEnc! ™! .depth).

e In step 4, selecting the labels according to the new ciphertext can be implemented as a
O(1)-depth circuit.

Hence, we have NewEnc!.depth = poly(\, N, NewEnc!™1.in, log NewEnc! ™ .depth) = poly(\, N, C.in,
log NewEnc!*t.depth).
For t = n + 1, we have NewEnc’.in = C.in + PRG.in, NewEnc’.depth = C.depth.

Claim 7.11. There exits two constants ¢ and \g such that for any X\ > Xg, for all t € [n],
NewEnc'.depth < (A- N - C.in - C.depth)®’.

Proof. There exits a ¢ > 1 such that, there exits a Ag, for any A > Ao, for any t € [n],
NewEnc’.depth < (- N - C.in - log NewEnc'*!.depth)¢

Set ¢ = ¢+ 1. We prove the claim by induction on t. For t = n + 1, as ¢ > 1, the theorem
clearly holds.

Now we assume the claim holds for ¢ = t* 4+ 1, we prove the claim for ¢ = t*. By the induction
hypothesis, we have that, for any A > o,

NewEnc' .depth < A°- N¢. (C.in)¢ - log®(NewEnc' *!.depth)
< AN (C.in)¢- (¢ +1)°-1log(A - N - C.in - C.depth)
< (\-N-C.in-C.depth)

The last equality holds if A > (¢ + 1)¢. Thus, the claim holds for ¢ = t*. By induction, the claim
holds for all ¢ € [n]. O

By the claim, we derive that the size of pMHE.Enc is a polynomial of A, N, C.in, C.depth. O

7.3 Instantiation

We can instantiate pMHE based on any two-round semi-malicious MPC in the plain model and this
in turn can be based on any two-round semi-malicious oblivious transfer (OT); we crucially use the
fact that pMHE need not satisfy any succinctness property for this implication. Furthermore, we
can instantiate the two-round semi-malicious OT from learning with errors [14]. Similarly, we can
also instantiate one-time pMHE in the CRS model with ciphertext succinctness from learning with
errors (Theorem 6.6) and finally, the pseudorandom generator mentioned above any pseudorandom
function which in turn can be based on one-way functions. Thus, we have the following theorem.

Theorem 7.12. Assuming LWE, there exists a (non-succinct) reusable pMHE scheme in the plain
model.

8 Result #1: Construction of Multi-key FHE

In the following we show how to combine a multi-key FHE with unstructured decryption with a
reusable pMHE without trusted setup to obtain a multi-key FHE scheme in the plain model with
one-round decryption.

36

Theorem 8.1 (Multi-key FHE in the Plain Model). If there exists a semantically secure multi-

key FHE scheme MKFHE' = (MKFHE'.KeyGen, MKFHE'.Enc, MKFHE'.Eval, MKFHE’.Dec) without
trusted setup and with unstructured decryption, and a reusable semi-malicious pMHE scheme
pMHE = (pMHE.Enc, pMHE.PrivEval, pMHE.FinDec) without trusted setup, then there exists a semi-
malicious multi-key FHE scheme MKFHE = (MKFHE.KeyGen, MKFHE.Enc, MKFHE.Eval, MKFHE.PartDec,
MKFHE.FinDec) without trusted setup.

Construction. Let I'.params be the input, output size, and depth of the decryption circuit of the
multi-key FHE scheme MKFHE’. The construction is described below.

MKFHE.KeyGen(1*,1):
Let (MKFHE' .pk;, MKFHE' .sk;) + MKFHE'.KeyGen(1*,1).
Let (pMHE.ct;, pMHE.sk;) <~ pMHE.Enc(1*, T.params, i, MKFHE'.sk;)
Let pk; = (MKFHE'.pk;, pMHE.ct;), and sk; = (MKFHE'.sk;, pMHE.sk;).
Output (pk;, sk;).

MKFHE.Enc(pk;, z;):
Parse pk; as (MKFHE'.pk;, pMHE.ct;).
Let MKFHE'.ct; < MKFHE'.Enc(MKFHE'.pk;, x;).
Let ct; = (MKFHE'.ct;, pMHE.ct;).
Output ct;.

MKFHE.Eval(C, (ct;) je(n)):
For all j € [N] parse ct; as (MKFHE'.ct;, pMHE.ct;).
Compute MKFHE'.ct < MKFHE'.Eval(C, (ct;) je(n)-
Let ct = (MKFHE'.ct, (p(MHE.ct;) ;c(n))-
Output ct.

MKFHE.PartDec(sk;, i, ct):
Parse ct as (MKFHE'.ct, (p(MHE.ct;) je(n))-
Parse sk; as (MKFHE'.sk;, pMHE.sk;).
Define T'((s;) je(n]) = MKFHE'.Dec((s;) je(n, €t).
Let pMHE.p; <~ pMHE.PrivEval(pMHE.sk;, I, (pMHE.ct;) je(n))-
Let p; = (pPMHE.p;, ct)
Output p;.

MKFHE.FinDec((p;) je(v)):

For all j € [N] parse p; as (pMHE.pj, ct).
Define T'((s;);en]) = MKFHE'.Dec((s;) e[Ct)-
Let y < pMHE.FinDec(T", (PMHE.p;) je(n))-
Output y.

37

Proof. The correctness follows immediately from the correctness of the multi-key FHE scheme
MKFHE’ and of the pMHE scheme pMHE. To see that the scheme is compact, observe that, by
the compactness of MKFHE’, the size of the circuit I' is bounded by a fixed polynomial in A and
in particular is independent of the size of the evaluated circuit C'. This implies that the size of the
evaluated ciphertext and the runtime of the MKFHE.PartDec and MKFHE.FinDec algorithms is also
independent of the size of C, except for its output.

Now we prove the reusable semi-malicious security. For any n.u. PPT adversary A, any distin-
guisher D, we build the following hybrids.

Hybrid, This hybrid is identical to the Real.

Hybrid’; We replace the computation of pMHE.ct; and pMHE.p; with the output of Sim; and Sims,
respectively, for all i € H.

Hybrid’;5 We replace MKFHE’ .ct; with an encryption of 01,

MKFHE.Enc(pk;, z;):
Parse pk; as (MKFHE'.pk;, pMHE.ct;).
If i € H and i < i*, let MKFHE'.ct; +— MKFHE' .Enc(MKFHE’ pk;, 0%il).
Otherwise, let MKFHE’.ct; < MKFHE’.Enc(MKFHE’.pk;, z;).
Let ct; = (MKFHE'.ct;, pMHE.ct;).
Output ct;.

Hybrid, We replace MKFHE'.ct; with an encryption of 0lil.,

MKFHE.Enc(pk;, ;):
Parse pk; as (MKFHE'.pk;, pMHE.ct;).
If i € H, let MKFHE'.ct; <~ MKFHE’.Enc(MKFHE’.pk;, 0!%]).
Otherwise, let MKFHE'.ct; + MKFHE'.Enc(MKFHE'.pk;, ;).
Let ct; = (MKFHE'.ct;, pMHE.ct;).
Output ct;.

Ideal Is identical to Hybrid,.
Lemma 8.2. There exits a negligible function v(X\) such that
| Pr[D(1*, Hybridg!) = 1] — Pr[D(1*, Hybrid{) = 1]] < v()).
Proof. The proof follows by an invocation of the reusable semi-malicious security of pMHE. O

Lemma 8.3. Hybrid,, and Hybrid) ; are identical. Hybrid)s and Hybridy are also identical. For
any i* € [N], there exits a negligible function v(\) such that

| Pr[D(1*, Hybrid? 1) = 1] — Pr[D(1*, Hybrid{ ;) = 1]] < v()\).
Proof. The proof follows by a standard reduction against the semantic security of MKFHE'. O

We finish the proof by combining Lemma 8.2 and Lemma 8.3.
O

38

8.1 Instantiation

By Theorem 7.12 we can instantiate the reusable semi-malicious pMHE scheme from the LWE
problem (with sub-exponential modulus-to-noise ratio). For the multi-key FHE with unstructured
decryption, we can use the scheme from [30], which is shown semantically secure against the Ring
LWE and the DSPR problem. Thus we obtain the following implication.

Theorem 8.4. Assuming LWE, Ring LWE, and DSPR, there exists a multi-key FHE scheme with
one-round decryption in the plain model.

9 Result #2: Construction of MHE

We now show how to construct an MHE scheme. In Section 7, we constructed a pMHE scheme
satisfying ciphertext succinctness. To obtain an MHE scheme from pMHE with ciphertext suc-
cinctness, we perform the following two steps: (1) first, we transform the above pMHE scheme
into another scheme satisfying succinctness (recall that succinctness is incomparable to ciphertext
succinctness) and, (2) secondly, we show how to achieve public evaluation generically to obtain the
MHE scheme.

9.1 Non-Succinct pMHE to Succinct pMHE

We now show how to generically transform a non-succinct pMHE scheme into a succinct pMHE
scheme. Furthermore, the transformation preserves the number of queries the adversary can make
to the decryption oracle. That is, if the underlying pMHE scheme is reusable, then so is the resulting
scheme.

Theorem 9.1. Assuming LWE, there exists a generic transformation from any non-succinct (Re-
mark 5.3) semi-honest pMHE to a succinct (Definition 5.2) semi-honest pMHE scheme.

Proof. Let NSpMHE be a non-succinct pMHE scheme. We show how to transform NSpMHE into a
succinct pMHE scheme SpMHE. We use laconic function evaluation (Section 3.2) as an intermediate
tool in this construction. Denote the algorithms associated with laconic function evaluation to be
LFE = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec). Our construction, proceeds along the same
lines as the construction of low-communication secure MPC in [34].7

SpMHE.Enc(1*, C.params, i, z;) : On input security parameter A, circuit parameters C.params, in-
dex i € [N], input ;, compute ct) < NSpMHE.Enc(1*, G.params, i, (x;,7;)); where G.params
are circuit parameters associated with the LFE.Enc circuit and r; is uniformly chosen at
random. Output the ciphertext ct). If i = 1, also additionally output crs, where crs «+
LFE.crsGen(1*, C.params).

SpMHE,, ;.. PrivEval(sk;, i, C, (ct;) je;n) On input the secret key sk;, index i € [N], circuit C, cipher-
texts (ct;) e[, first compute digest Compress(1*, C).% Then compute NSpMHE.PrivEval(
ski, i, G, (ct})je(n]), Where ct; = (cty, crs), for every j # 1, ct; = ct, and G takes as input
((x1,71), .-+, (xn§, 7)) and computes p; < LFE.Enc(crs, digestc, (1, ..., 2N); ©ieiniri). Out-
put the partial decryption p; = (crs, pf).

"One can also use functional encryption combiners [3] to achieve the same result.
8Note that we crucially use the fact that LFE.Compress is a deterministic algorithm to argue that all parties will
compute the same digest,.

39

SpMHE.FinDec(C, (p;) je(n]) On input the circuit C, partial decryptions (p;);e[n), first compute
NSpMHE.FinDec(C, (p})e(n)) to obtain LFE.ct. Compute LFE.Dec(crs, C,LFE.ct) to obtain
the output y.

To argue succinctness, we show the following:

e First, we argue about the size of the ciphertexts output by SpMHE.Enc. To do this, it
suffices to separately bound the sizes of the CRS of the LFE scheme annd the size of the
ciphertexts of NSpMHE scheme. From the efficiency property of the LFE scheme, it follows
that the size of CRS is poly(\, C.in, C.out, C.depth). The size of ciphertexts of NSpMHE is
max;(poly (A, |z, |7i])), which is poly(A).

e Next, we argue about the size of the partial decryption values output by SpMHE.PrivEval.
Since we already established an upper bound on the size of the CRS output by SpMHE, it
suffices to establish an upper bound on the ciphertexts of the LFE scheme. Again from the
efficiency of the LFE scheme, we have that the size of the ciphertexts output by LFE.Enc is
poly(A, C.in, C.out, C.depth).

We omit the proof of security since it follows from [34]. Since laconic function evaluation can be
based on the hardness of learning with errors [34], we have the theorem.
O

9.2 pMHE to MHE: Private to Public Evaluation

We show how to construct an MHE scheme from pMHE and a leveled fully homomorphic encryption
scheme.

Theorem 9.2 (From pMHE to MHE). If there exits a reusable semi-honest secure pMHE scheme
PMHE with succinctness property, and a (leveled) fully homomorphic encryption scheme FHE =
(FHE.KeyGen, FHE.Enc, FHE.Dec, FHE.Eval), then there exits a reusable semi-honest secure MHE
scheme MHE with succinctness property.

Construction. The construction is described below.

Cgv[cv(Ctj)je[N]] (PMHE sk;)

e Let p; = pMHE.PrivEval(1*, pMHE.sk;, C, (ctj)je[ny)-

e Output p;.

Figure 5: Description of C}.

MHE.KeyGen(1*,14):
Let (FHE.pk;, FHE.sk;) + FHE.KeyGen(1*, 1¢"-depth),
Let pk; = FHE.pk;, and sk; = FHE.sk;.
Output (pk;, sk;).

40

MHE.Enc(pk;, x;):
Parse pk; as FHE.pk;.
Let (pMHE.ct;, pMHE.sk;) <~ pMHE.Enc(1?*, C.params, i, z;).
Let FHE.ct; +- FHE.Enc(FHE.pk;, pMHE.sk;).
Output ct; = (PMHE.ct;, FHE.ct;).

MHE.Eval(C, (ct;) je(n):
For each j € [N], parse ct; as (pMHE.ct;, FHE.ct;).

For each i € [N], ct; « FHE.Eval(C] (1 ommg.ct,) o) FHE-CE)-

jeln]]
Output (ct;)se(n-
MHE.PartDec(sk;, , ct;):
Parse sk; as FHE.sk;.
Let p; + FHE.Dec(FHE.skZ-,Et\Z-).
Output p;.

MHE.FinDec(C, (p;) je[n)):
Let y < pMHE.FinDec(C, (Pj)je[N])-
Output y.

Proof. The correctness and succinctness follows from the correctness and succinctness of the pMHE
scheme pMHE and FHE.

Now we prove the reusable semi-honest security. For any n.u. PPT adversary A, any distin-
guisher D, we build the following hybrids.

Hybrid, This hybrid is identical to the Real.

Hybrid, In this hybrid, we replace the oracle O(1*,C) with the following, which doesn’t use the
FHE secret keys (FHE.sk;);c|n-

Oracle O(1*,C)
Let p; +~ pMHE.PrivEval(pMHE.sk;, i, C, (p(MHE.ct;) jc(n))-
Output p;.

Hybridi 5 We replace the function MHE.Enc(pk;, z;) with the following, which doesn’t use pMHE
secret keys for honest parties (pMHE.sk;);cpr.

MHE.Enc(pk;, z;)
Let (pMHE.ct;, pMHE.sk;) <— pMHE.Enc(1*, C.params, i, m;).
If i € H and i < i*, execute FHE.ct; «+ FHE.Enc(FHE.pk;, 0/PMHEskil)
Otherwise, execute FHE.ct; < FHE.Enc(FHE.pk;, pMHE.sk;).
Output ct; = (pPMHE.ct;, FHE.ct;).

Hybrid, We replace the function MHE.Enc(pk;, z;) with the following, which doesn’t use pMHE
secret keys for honest parties (pMHE.sk;);cpr.

41

MHE.Enc(pk;, z;)
Let (pMHE.ct;, pMHE.sk;) <— pMHE.Enc(1*, C.params, i, m;).
If i € H, let FHE.ct; + FHE.Enc(FHE.pk;, 0/PMHEskil),
Otherwise, let FHE.ct; - FHE.Enc(FHE.pk;, pMHE.sk;).
Output ct; = (PMHE.ct;, FHE.ct;).

Ideal We replace the Hybrid, with the ideal world, where the simulators are defined as follows.

MHE.Sim; (1%, H, (2:);c 1)
Let (pMHE.st, (pMHE.ct;)icr, (PMHE.7;)icr) < pMHE.Simi (1%, H, (2:);c77)-
For each i € H, let (FHE.pk;, FHE.sk;) < FHE.KeyGen(1*), FHE.ct; <~ FHE.Enc(FHE.pk;, 0/PMHEskil),
Let MHE.st be the current state of MHE.Sim;.
For each i € H, sample r; uniformly at random.
Output (MHE.st, (FHE.pk;, (PMHE.ct;, FHE.ct;))icH, (75, PMHE.T;));c 17)-
MHE.Simg(MHE.st, C, C((%i)ie[n)))icir)
Let (pi)ien < pPMHE.Simy(pMHE.sts, C, C'(();e1n1))-
Let MHE.st be the current state of MHE.Sims.
Output (MHE.st, p;)icH.

Lemma 9.3. Hybrid,, Hybrid,, and Hybrid(l).5 are identical. For any i* € [N], there exits a negligible
function v(X\) such that

| Pr[D(1*, Hybrid® 1) = 1] — Pr[D(1, Hybrid{ ;) = 1]] < v()\).

Proof. From correctness of the (leveled) FHE, Hybrid, and Hybrid; are identical. In Hybrid{ -, when
i* = 0, all FHE.ct; are generated in the same manner as the real execution. Hence, Hybrid; and
Hybrid - are identical.

We build the following distinguisher D’ trying to break the ciphertext-indistinguishable security
of FHE.

Adversary D’'(1*, FHE.pk)
For each i € H,i # i*, let (FHE.pk;, FHE.sk;) + FHE.KeyGen(1?).
For each i € H, let (pMHE.ct;, pMHE.sk;) <~ pMHE.Enc(1*, C.params, i, z;).
For each i € H and i < i*, let FHE.ct; + FHE.Enc(FHE.pk;, 0/PMHEskil),

If * € H, query the challenger with plaintext (0PMHEski<l oMHE sk;-), and get a challenge
ciphertext ct. Let FHE.pk;» = FHE.pk, FHE.ct;» = ct.

For each i € H and i > i*, let FHE.ct; « FHE.Enc(FHE.pk;, pMHE.sk;).

For each i € H, randomly sample ri, rh, let pMHE.ct; = pMHE.Enc(lA, C.params, i, z;;1}).
ACa() (12 (FHE.pk;, ((MHE.ct;, FHE.ct;))icn, (7, m)ici)

Output D(1*, View 4).

Oracle O4(1*,0)
For each i € H, let p; = pMHE.PrivEval(pMHE.sk;, C, (PMHE.ct;) jen1)-

Output (p;)icq-

42

When the challenger ct is generated by FHE.Enc(FHE.pk, 0IPMHEski<[y " then the adversary D’
simulates the environment of Hybride}) for A. Hence,

Pr [ct « FHE.Enc(FHE.pk, 0PMHEski=) . 1/(12 FHE.pk) = 1] = Pr[D(1*, Hybridi5) = 1] (1)

When the challenger ct is generated by FHE.Enc(FHE.pk,pMHE.sk;+), then the adversary D’
simulates the environment of Hybrid? 5! for A. Hence,

Pr [ct ¢ FHE.Enc(FHE.pk, pMHE.sk;+) : D'(1*, FHE.pk) = 1} = Pr[D(1* Hybridi 1) =1] (2)

By the security of FHE, there exits a negligible function v(\) such that the difference of the left
hand sides of Equation (1) and (2) is bounded by v(A). Hence, we have | Pr[D(1*, Hybrid? 1) =
1] — Pr[D(1*, Hybrid?) = 1]| < v()). O

Lemma 9.4. Hybridjl\g is identical to Hybridy. There exits a negligible function v(X) such that
| Pr[D(1*, Hybridz!) = 1] — Pr[D(1%, Ideal) = 1]] < v(\).

Proof. When i* = N, all FHE.ct; are generated by encrypting 0PMHEskil Hence, Hybrid% is
identical to Hybrid,.
We build the following adversary A’ for pMHE.

Adversary A°« (12, (pMHE.ct;)icn, (PMHE.T;),c 1)
For each i € H, let (FHE.pk;, FHE.sk;) +— FHE.KeyGen(1*), FHE.ct; + FHE.Enc(FHE.pk;, 0/PMHEski[)
For each i € H, let ct; = (pPMHE.ct;, FHE.ct;).
For each i € H, randomly sample 7;.
ACAM) (1N (FHE.pk;, (PMHE.ct;, FHE.ct;))icrr, (ri, PMHE.T);c)
Output View 4.
Oracle 0 4(1*,C)
The adversary A" queries the oracle O (1, -) with C, and obtains (p;)icy-
Output (pi)icn-

When A’ is interacting with Real world, it simulates the Hybrid, for A. Hence,
Pr [D(ﬂ, Real') = 1] — Pr [D(l’\, Hybrid4) = 1]
When A’ is interacting with ldeal world, it simulates the ldeal world for A. Hence,
Pr [D(ﬂ, Ideal’) = 1} = Pr [D(ﬂ, deal4) = 1}
Since the pMHE scheme is semi-honest secure, there exits a negligible function v(\) such that
| Pr[D(1*, Ideal!) = 1] — Pr[D(1*, Real?) = 1]| < v(N).
Hence, we have | Pr[D(1*, Hybrids') = 1] — Pr[D(1*, Ideal) = 1]| < v()).

We finish the proof by combining Lemma 9.3 and Lemma 9.4.

43

9.3 Instantiation

From Theorem 7.12, we can instantiate the reusable semi-malicious (but not necessarily succinct)
pMHE scheme from the LWE problem (with sub-exponential modulus-to-noise ratio). Combining
this with Theorems 9.1 and 9.2, we have the following:

Theorem 9.5. Assuming LWE, there exists an MHE scheme.

10

Acknowledgements

The second and third author were supported in part by a DARPA/ARL Safeware Grant W911NF-
15-C-0213, NSF CNS-1814919, NSF CAREER 1942789, Samsung Global Research Outreach award
and Johns Hopkins University Catalyst award.

References

1]

Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-input
functional encryption. In: Vidick, T. (ed.) ITCS 2020. vol. 151, pp. 40:1-40:41. LIPIcs, Seattle,
WA, USA (Jan 12-14, 2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.40

Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU assump-
tions - cryptanalysis of some FHE and graded encoding schemes. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 153-178. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 14-18, 2016). https://doi.org/10.1007/978-3-662-53018-4_6

Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE combiners to
secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol.
11891, pp. 199-228. Springer, Heidelberg, Germany, Nuremberg, Germany (Dec 1-5, 2019).
https://doi.org/10.1007/978-3-030-36030-6_9

Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and robust
combiners for indistinguishability obfuscation and witness encryption. In: Robshaw, M., Katz,
J. (eds.) CRYPTO 2016, Part IT. LNCS, vol. 9815, pp. 491-520. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 14-18, 2016). https://doi.org/10.1007/978-3-662-53008-5_17

Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistinguishability
obfuscation to functional encryption. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 91-121. Springer, Heidelberg, Germany, Paris, France (Apr 30 —
May 4, 2017). https://doi.org/10.1007/978-3-319-56620-7_4

Ananth, P.; Jain, A.: Indistinguishability obfuscation from compact functional encryption.
In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp.
308-326. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16-20, 2015).
https://doi.org/10.1007/978-3-662-47989-6_15

Ananth, P.; Jain, A., Jin, Z.: Multiparty homomorphic encryption (or: On removing setup in
multi-key fhe). Cryptology ePrint Archive, Report 2020/169 (2020), https://eprint.iacr.
org/2020/169

Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round mpc from ddh. Cryp-
tology ePrint Archive, Report 2020/170 (2020), https://eprint.iacr.org/2020/170

44

https://eprint.iacr.org/2020/169
https://eprint.iacr.org/2020/169
https://eprint.iacr.org/2020/170

[9]

[10]

[13]

[16]

[17]

[19]

Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation. Cryptology
ePrint Archive, Report 2020/221 (2020), https://eprint.iacr.org/2020/221

Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
In: Guruswami, V. (ed.) 56th FOCS. pp. 171-190. IEEE Computer Society Press, Berkeley,
CA, USA (Oct 17-20, 2015). https://doi.org/10.1109/FOCS.2015.20

Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
Journal of the ACM (JACM) 65(6), 39 (2018)

Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation
under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814,
pp. 509-539. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14-18, 2016).
https://doi.org/10.1007/978-3-662-53018-4_19

Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: Optimizing rounds, com-
munication, and computation. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II.
LNCS, vol. 10211, pp. 163-193. Springer, Heidelberg, Germany, Paris, France (Apr 30 — May 4,
2017). https://doi.org/10.1007/978-3-319-56614-6_6

Brakerski, Z., Dottling, N.: Two-message statistically sender-private ot from lwe. In: Theory
of Cryptography Conference. pp. 370-390. Springer (2018)

Brakerski, Z., Dottling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1 fully-
homomorphic encryption and time-lock puzzles. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019,
Part II. LNCS, vol. 11892, pp. 407-437. Springer, Heidelberg, Germany, Nuremberg, Germany
(Dec 1-5, 2019). https://doi.org/10.1007/978-3-030-36033-7_16

Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage re-
silience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EU-
ROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535-564. Springer, Heidelberg, Germany, Tel
Aviv, Israel (Apr 29 — May 3, 2018). https://doi.org/10.1007/978-3-319-78381-9_20

Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short cipher-
texts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp.
190-213. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14-18, 2016).
https://doi.org/10.1007/978-3-662-53018-4_8

Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with
errors. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216,
pp. 630-656. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16-20, 2015).
https://doi.org/10.1007/978-3-662-48000-7_31

Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816,
pp. 93-122. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14-18, 2016).
https: / /doi.org/10.1007 /978-3-662-53015-3_4

Doéttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372-408. Springer, Heidelberg,
Germany, Baltimore, MD, USA (Nov 12-15, 2017). https://doi.org/10.1007/978-3-319-70500-
2_13

45

https://eprint.iacr.org/2020/221

[21]

[27]

28]

[30]

Dottling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption.
In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537-569. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20-24, 2017).
https://doi.org/10.1007/978-3-319-63688-7_18

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.)
41st ACM STOC. pp. 169-178. ACM Press, Bethesda, MD, USA (May 31 — Jun 2, 2009).
https://doi.org/10.1145/1536414.1536440

Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption and reran-
domizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp.
155-172. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15-19, 2010).
https://doi.org/10.1007/978-3-642-14623-7_9

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended ab-
stract). In: 25th FOCS. pp. 464-479. IEEE Computer Society Press, Singer Island, Florida
(Oct 24-26, 1984). https://doi.org/10.1109/SFCS.1984.715949

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the
ACM (JACM) 33(4), 792-807 (1986)

Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-interactive mul-
tiparty computation without correlated randomness. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181-211. Springer, Heidelberg, Germany,
Hong Kong, China (Dec 3-7, 2017). https://doi.org/10.1007/978-3-319-70700-6_7

Kirchner, P., Fouque, P.A.: Comparison between subfield and straightforward attacks on ntru.
IACR Cryptology ePrint Archive 2016, 717 (2016)

Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU param-
eters. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol.
10210, pp. 3-26. Springer, Heidelberg, Germany, Paris, France (Apr 30 — May 4, 2017).
https: / /doi.org/10.1007/978-3-319-56620-7_1

Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A, Part I. LNCS,
vol. 9562, pp. 96-124. Springer, Heidelberg, Germany, Tel Aviv, Israel (Jan 10-13, 2016).
https://doi.org/10.1007/978-3-662-49096-9_5

Lépez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi, T. (eds.)
44th ACM STOC. pp. 1219-1234. ACM Press, New York, NY, USA (May 19-22, 2012).
https://doi.org/10.1145/2213977.2214086

Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp.
620-649. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18-22, 2019).
https://doi.org/10.1007/978-3-030-26948-7_22

Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 735-763. Springer,
Heidelberg, Germany, Vienna, Austria (May 8-12, 2016). https://doi.org/10.1007/978-3-662-
49896-5_26

46

[33] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith, A.D. (eds.)
TCC 2016-B, Part II. LNCS, vol. 9986, pp. 217-238. Springer, Heidelberg, Germany, Beijing,
China (Oct 31 — Nov 3, 2016). https://doi.org/10.1007/978-3-662-53644-5_9

[34] Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: Thorup, M.
(ed.) 59th FOCS. pp. 859-870. IEEE Computer Society Press, Paris, France (Oct 7-9, 2018).
https: //doi.org/10.1109/FOCS.2018.00086

[35] Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS.
pp. 162-167. IEEE Computer Society Press, Toronto, Ontario, Canada (Oct 27-29, 1986).
https://doi.org/10.1109/SFCS.1986.25

47

	Introduction
	Our Results
	Open Problems

	Technical Overview
	Reusability Transformation
	From pMHE to Multi-key FHE
	From pMHE to MHE
	Instantiating One-Time pMHE in the CRS model

	Preliminaries
	Garbling Schemes
	Laconic Function Evaluation

	Multi-Key Fully Homomorphic Encryption
	Multiparty Homomorphic Encryption
	Definition
	Security

	Intermediate Notion: MHE with Private Evaluation (pMHE)
	CRS model
	One-Time pMHE
	Ciphertext Succinctness
	Instantiation

	Main Step: One-time pMHE in CRS -3mu Reusable pMHE
	Correctness
	Security
	Instantiation

	Result #1: Construction of Multi-key FHE
	Instantiation

	Result #2: Construction of MHE
	Non-Succinct pMHE to Succinct pMHE
	pMHE to MHE: Private to Public Evaluation
	Instantiation

	Acknowledgements

