Order-Fairness for Byzantine Consensus

Mahimna Kelkar* Fan Zhang Steven Goldfeder Ari Juels

Cornell Tech, Cornell University, and 1C3

August 9, 2020

Abstract

Decades of research in both cryptography and distributed systems has extensively studied the
problem of state machine replication, also known as Byzantine consensus. A consensus protocol
must satisfy two properties: consistency and liveness. These properties ensure that honest
participating nodes agree on the same log and dictate when fresh transactions get added. They
fail, however, to ensure against adversarial manipulation of the actual ordering of transactions
in the log. Indeed, in leader-based protocols (almost all protocols used today), malicious leaders
can directly choose the final transaction ordering.

To rectify this problem, we propose a third consensus property: transaction order-fairness.
We initiate the first formal investigation of order-fairness and explain its fundamental impor-
tance. We provide several natural definitions for order-fairness and analyze the assumptions
necessary to realize them.

We also propose a new class of consensus protocols called Aequitas'. Aequitas protocols
are the first to achieve order-fairness in addition to consistency and liveness. They can be
realized in a black-box way using existing broadcast and agreement primitives (or indeed using
any consensus protocol), and work in both synchronous and asynchronous network models.

A preliminary version of this paper appears in the proceedings of CRYPTO 2020. This is the full version.
*Corresponding Author: mahimna@cs.cornell.edu
! Aequitas (IPA pronunciation: /'ae.k“i.ta:s/) is the Roman personification of fairness.


mailto:mahimna@cs.cornell.edu

Contents

1

Introduction

1.1 Our Contributions . . . . . . . . . . . . . ...
1.2 Related Work . . . . . . . . . ...

Definitions, Framework, and Preliminaries

2.1 Protocol Execution Model . . . . . . .. ... ... ....
2.2 Execution Environments . . . . . . . . ... ... ...
2.3 The State Machine Replication Abstraction . . . . . . ..

Building Blocks

3.1 Set Byzantine Agreement . . . ... ... ... ... ...
3.2 FIFO Broadcast . . ... ... ... . ... ........

Defining Fair Ordering

4.1 Condorcet paradox and the impossibility of fair ordering.
4.2 Environments that support receive-order-fairness . . . . .
4.3 Towards weaker definitions for order-fairness . . . .. ..

Overview of the Aequitas protocols

5.1 The Finalization Stage . . . . . . .. ... ... ... ...

The Synchronous Aequitas protocol

6.1 Protocol Description . . . . . .. ... ... ... ... ..
6.2 Protocol Pseudocode . . . . . .. ... ... ... ... ..
6.3 Consistency Proof . . . ... ... ... ... .. ...,
6.4 Liveness Proof . . . .. ... ... .. ... ...,
6.5 Block-Order-Fairness Proof . . . . . ... ... ......
6.6 Modified protocol for dee <1 . . . . . . . ...

The Asynchronous Aequitas protocol

7.1 Protocol Pseudocode . . . . . . .. ... ... ... ...
7.2 Consistency Proof . . ... ... ... ... ... ...

7.3 Liveness Proof . . . . . . . . . ... ... ... ...
7.4 Block-Order-Fairness Proof . . . . ... .. ... .....

Other results

8.1 Leader-Based Aequitas Protocols . . . . .. .. ... ...
8.2 Adding Order-Fairness to Any Consensus Protocol . . . .
8.3 Send-Order-Fairness . . . ... ... ... ... ......

10
10
12
14

16
16
19

20
21
22
23

24
28

30
30
32
33
35
36
36

37
38
39
40
40



1 Introduction

The abstraction of state machine replication has been investigated in cryptography and distributed
systems literature for the past three decades. At a high level, the goal of a state machine repli-
cation protocol is for a set of nodes to agree on an ever-growing, linearly ordered log of messages
(transactions). Two properties need to be satisfied by such a protocol: (1) Consistency - all honest
nodes must have the same view of the agreed upon log — that is, they must output messages in
the same order; and (2) Liveness - messages submitted by clients are added to the log within a
reasonable amount of time. In this paper, we will use the terms state machine replication and
consensus’ interchangeably.

Unfortunately, neither consistency nor liveness says anything about the actual ordering of trans-
actions in the final log. A protocol that ensures that all nodes agree on the same ordering is deemed
consistent regardless of how the ordering is generated. This leaves room for the definition to be
satisfied even if an adversary directly chooses the actual transaction ordering, which is discomfort-
ing considering that the ordering is often easy to manipulate [7]. Moreover, in all existing protocols
that rely on a designated “leader” node (e.g., [16, 35, 45]), which includes most protocols used in
practice, an adversarial leader may choose to propose transactions in any order.

In this paper, we formulate a new property for byzantine consensus which we call order-fairness.
Intuitively, order-fairness denotes the notion that if a (sufficiently) large number of nodes receive a
transaction tx; before another one txo, then this should somehow be reflected in the final ordering
agreed upon by all nodes.

Importance of fair transaction ordering. The need for a notion of fair transaction ordering is
immediately clear when looking at financial systems. Here, the execution order can determine the
validity and/or profitability of a given transaction. As a concrete example, suppose that Bob has
$0, and two transactions are initiated: txg, which sends $5 from Alice to Bob, and tx;, which sends
$5 from Bob to Carol. If tx is sequenced before tx, then both transactions are valid; the opposite
ordering invalidates tx;. Manipulation of transaction ordering is a well known phenomenon on Wall
Street [33], but recent work has shown it to also be commonplace in consensus-based systems such
as permissionless blockchains. A recent paper by Daian et al. [21], for example, reports rampant
adversarial manipulation of transactions in the Ethereum network [24] by bots extracting upwards
of USD 6M in revenue from unsophisticated users.

Comparison to validity in Byzantine agreement. Beyond its critical practical importance,
we believe that order-fairness is a key missing theoretical concept in existing consensus literature.
To underscore this point, consider Byzantine agreement [31], or single-shot agreement, another
well-studied problem in consensus literature. For Byzantine agreement, each node starts with a
single value within a set V. The goal is for all nodes to agree on the same value. Validity now
requires that if all honest nodes start with the same value v, then the agreed upon value should
also be v.

The property of order-fairness is a natural analog of validity formulated for the consensus
problem, i.e.; extension of Byzantine agreement to multiple rounds. If all honest nodes start with
the belief that a transaction tx; precedes another transaction txo, by natural analogy with validity,

2The term “consensus” has been used in systems literature for a number of related primitives, including “single-
shot” consensus. However, in this paper, we use “consensus” to refer to the problem of “state machine replication.”



the final output log should sequence tx; before txs. Consequently, we maintain that order-fairness
is a natural property of independent theoretical interest in the consensus literature.

1.1 Our Contributions

The main contributions of our paper are three-fold: (1) First, we investigate a natural notion of fair
transaction ordering and show why it is impossible to realize. (2) Second, we investigate slightly
weaker notions of fair ordering that are intuitive yet achievable. Still, we find that no existing
consensus protocol achieves them. (3) Third, we introduce a new class of consensus protocols
that we refer to as Aequitas. Aequitas protocols achieve fair transaction ordering while also pro-
viding the usual consistency and liveness. We discuss Aequitas protocols in both synchronous and
asynchronous settings.

Defining order-fairness and impossibility results. To model our consensus protocols, we use
an approach similar to prior work by Pass et al. [40, 41], wherein protocol nodes receive transactions
from clients and need to output or deliver them in a way that satisfies consistency and liveness. We
detail our model in Section 2. Within this model, we provide the first formalization of the property
of order-fairness (Section 4). We start with a natural definition based on when transactions are
received by nodes.

Definition 1.1 (Receive-Order-Fairness, informal; formalized in Definition 4.1). If sufficiently
many (at least v-fraction) nodes receive a transaction tx before another transaction tx’, then all
honest nodes must output tx before tx’.

Informally, receive-order-fairness here, corresponds to the notion of “first received, first output,”
or equivalently “first in, first out” (FIFO). If a large number of nodes receive tx before tx’, then
tx must be output before tx’. While Definition 1.1 is intuitive, it turns out that it is impossible
to achieve unless we assume very strong synchrony properties and/or a non-corrupting adversary.
This result draws from a surprising connection with voter preferences in social choice theory. To
highlight this using a simple example, consider three nodes, A, B, and C, that each receive 3
transactions, x, y, and z. A receives them in the order [z,y, z], B in the order [y, z,z] and C in
the order [z, x,y]. Notice that a majority of nodes have received (z before y), (y before z) and
(z before x)!'" This scenario, often called the Condorcet paradox [19], can cause a non-transitive
global ordering even when all local orderings are transitive. This is problematic for the notion of
receive-order-fairness, and we elaborate on this observation in Section 4.1. Theorem 1.2 gives an
informal description of our impossibility result.

Theorem 1.2 (Impossibility of receive-order-fairness, informal; formalized in Theorem 4.4). Con-
sider a system with n nodes where the external network (between users and protocol nodes) is either
asynchronous or the maximum delay 6 is at least n rounds. Then, no protocol can achieve all of
consistency, liveness, and receive-order-fairness.

Given this impossibility result, we consider a natural relaxation of receive-order-fairness that
we call block-receive-order-fairness, or simply block-order-fairness. To see the primary difference
between the two definitions, we look at two transactions, tx and tx’, where sufficiently many nodes
have received tx before tx’. While receive-order-fairness requires that tx be output “before” tx/,
block-order-fairness relaxes this to “before or at the same time as.” We refer to transactions
delivered at the same time as being in the same “block.”



Definition 1.3 (Block-Order-Fairness, informal; formalized in Definition 4.7). If sufficiently many
(at least y-fraction) nodes receive a transaction tx before another transaction tx’, then no honest
node can deliver tx in a block after tx'.

This small relaxation allows us to evade the Condorcet paradox by a simple trick: placing
paradoxical orderings into the same “block.” We emphasize that block-order-fairness does not
mean that transactions are partially ordered. Consistency still requires that all nodes output
transactions in the same order, whether within the same block or not. The only difference is that
unfair ordering of a set of transactions in our definition without blocks is now, with the use of
blocks, considered fair, provided that these transactions appear in the same block.

Further, we note that while receive-order-fairness is impossible to achieve (as pointed out in-
formally in Theorem 1.2 and formalized later in the paper in Theorem 4.4), block-order-fairness is
not and we provide protocols that guarantee it. We would also like to highlight that our proposed
Aequitas protocols actually make minimal use of this relaxation. In particular, they achieve the
stronger notion of receive-order-fairness except when non-transitive preferences are observed.

Aequitas: Achieving order-fairness. We present a new class of consensus protocols, Aequitas,
that achieve block-order-fairness, in addition to providing consistency and liveness. Aequitas pro-
tocols make use of two basic primitives in a black-box way: (1) FIFO Broadcast (FIFO-BC; see
Section 3.2) [27], which is a basic extension of standard reliable broadcast; and (2) Set Byzantine
Agreement (Set-BA; defined in Section 3.1), which can be achieved from Byzantine agreement.

We note that these are weak primitives and any standard consensus protocol (that achieves
consistency and liveness) can also be used to build the FIFO-BC and Set-BA primitives. This
results in an interesting observation: The Aequitas technique provides a generic compiler that takes
any standard consensus protocol and converts it into one that also provides order-fairness. At a
high level, Aequitas protocols proceed in three major stages. Fach transaction tx goes through
these stages before being delivered.

1. Gossip Stage. In this stage, nodes gossip transactions in the order that they were received.
That is, each node gossips its local transaction ordering.

For this purpose, we use the FIFO broadcast primitive (FIFO-BC). FIFO-BC guarantees
that broadcasts by an honest node are delivered by other honest nodes in the same order
that they were broadcast. Even if the sender is dishonest, FIFO-BC guarantees that all honest
nodes deliver messages in the same order as each other. As a result, nodes have a consistent
view of the transaction orderings of other nodes.

We use Logg to denote node i’s view of the order in which node j received transactions,
according to how node j gossiped them. Note that if node j is malicious, Logg may arbitrarily
differ from the actual order in which j received transactions, but FIFO-BC prevents j from
equivocating, i.e., any two honest nodes i and k will have consistent Log! and Logi. When 1
records enough logs Log’;C that contain the transaction tx, we say that the “gossip stage” for
tx is complete.

2. Agreement Stage. In this stage, nodes agree on the set of nodes whose local orderings
should be considered for deciding on the global ordering of a particular transaction.



To elaborate, at the end of the gossip stage for a transaction tx, a node ¢ ends up with a set
U of other nodes whose local orderings i has obtained for tx. That is, k € U if tx € Log?.
Note that different nodes may end up with a slightly different sets, but agreement proceeds
when enough honest nodes are present in each set. Nodes now perform Byzantine agreement
to agree on a set L™ of nodes whose ordering will be used to finalize the ordering for tx. For
this, we define a new primitive Set-BA whose validity condition guarantees that if k € U™ for
all 7, then k € L. Tt is easy to see how Set-BA can be realized by using standard Byzantine
agreement to determine the inclusion of each possible value k individually. We prove this
formally in Section 3.1.

3. Finalization Stage. In this stage, nodes finalize the global ordering of a transaction tx
using the set of local orderings decided on in the agreement stage.

Suppose that the agreement stage for a transaction tx resulted in the set L'™*. In other to
deliver tx, nodes must ensure that no other transaction should be sequenced earlier in the fair
ordering. In particular, if there is any other transaction tx’ such that tx’ is ordered before
tx in a large number of these local logs, it signifies that tx should be delivered after tx’. In
other words, the finalization of tx depends on waiting until tx’ has been delivered.

To characterize such ordering dependencies between transactions, a node 7 maintains a
directed graph G;, where vertices represent transactions and an edge from a to b denotes
that b is waiting for a to be delivered. We refer to G; as the “dependency graph” or the
“waiting graph” maintained by node i. Since nodes are building this graph on the same
“data” (the set of local logs agreed upon in the agreement phase), nodes will have consistent
graphs. That is, if an edge (a,b) exists in G;, then it will also (eventually) exist in Gj, if
1 and j are both honest. We note that the graph G; is not guaranteed to be acyclic as the
previously mentioned Condorcet paradox can cause cycles in G;. Therefore, to retrieve a
total ordering from the graph, we look at the condensation graph of G;, which collapses the
strongly-connected-components in GG; into the same vertex. Each vertex now represents a set
of transactions. Since the condensation graph is guaranteed to be acyclic, a total ordering can
be extracted from the graph. Transactions in the same vertex can now be delivered together
as part of the same “block.” The subtlety here is that the vertices in the condensation
graph can change (for example, by coalescing two previous vertices into a single one) as new
transactions are added to G;. Consequently, careful technical considerations are necessary to
ensure that consistency is not lost.

Broadly, we present two finalization techniques, a leader-based one and a leaderless one.
For the leader-based technique, resolving any partial ordering within the dependency graph
is delegated to a leader node. We emphasize that order-fairness is not lost. The leader
is only able to choose the ordering for transactions that are not required to be ordered in a
certain way. We present another, leaderless technique that requires no further communication
between nodes. We find that both realize a slightly weaker notion of liveness than the standard
one, even in a synchronous setting. Specifically, future transactions are required to be input
to the system in order to “flush out” earlier transactions. We formally define “weak-liveness”
in Section 2.

It is worth pointing out that the first two stages (gossip and agreement) are fairly straightforward
to understand and easy to achieve. The third stage is somewhat complex, as it needs to avoid the



ti . . .
Protocol Style Network Corrup ITO . Consistency Liveness Order-Fairness
Bound
HS’Aye"qCL]Ii:S Leader | Synchronous® | n > % v (W\e/ak) v
HsAyench’J?tZI:ad Leaderless | Synchronous®™ | n > % v (W\e{ak) v
Jlead 4 v
HaAsg/qnl;:it:: Leader Any n > Til v (Eventual, Weak) v
async,nolead 4f v
Aequitas Leaderless Any n> 5 v (Eventual, Weak) v

* Completely Synchronous Setting (See Section 2)

T % < v <1 is the order-fairness parameter (See Section 4)

Figure 1: The Aequitas protocols

Condorcet paradox while continuing to maintain both consistency and order-fairness. We present a
detailed account of the three stages in Section 5 and the technical nuances of the finalization stage
specifically, in Section 5.1.

Aequitas protocols. To summarize, we present the first consensus protocols that provide order-
fairness. We provide a leader-based and a leaderless protocol each for the synchronous and asyn-
chronous settings, for a total of four protocols that follow the same general outline. These protocols
all provide consistency, block-order-fairness, and some form of liveness. Fig. 1 shows a comparison.

Paper organization. The rest of the paper is organized as follows. We discuss our results in
the context of related work in Section 1.2. We describe our formal framework, along with other
preliminaries, in Section 2. In Section 3, we provide the building blocks for our protocol con-
structions. Section 4 formally introduces several notions of order-fairness and proves impossibility
results. Section 5 provides a general overview of our constructions; we detail our constructions
for the synchronous and asynchronous settings in Sections 6 and 7 respectively. We describe some
other interesting results in Section 8.

1.2 Related Work

While there is an extensive literature on consensus protocols, to the best of our knowledge, no
previous work formally captures a notion of order-fairness like the one we introduce. We also note
that the term “fairness” has been used widely in blockchain and cryptography literature, but for
properties unrelated to ours.

Broadcast primitives. Byzantine broadcast, or the Byzantine Generals Problem [31], is the
elementary broadcast primitive where a designated sender broadcasts a single value to a set of
receiving nodes. In a Byzantine broadcast protocol with the key property of consistency, all honest
receivers output the same value. Reliable broadcast is a continuous version of Byzantine broadcast
where the sender broadcasts multiple values which must be eventually delivered by nodes if the
sender is honest. Three orthogonal properties can be added onto reliable broadcast to give stronger



notions. FIFO-ordering provides first-in first-out ordering on the messages broadcast by an honest
sender. We refer to such a protocol as (Single sender) FIFO Broadcast (also called OARcast for
Ordered Authenticated Reliable Broadcast in [27]). Local-ordering (also called causal-ordering)
ensures that if a node broadcasts a message m’ after receiving some other message m, then m will
be ordered before m’. The total-ordering property ensures that all honest nodes deliver messages
broadcast potentially by different senders in the same order. This notion is usually called atomic
broadcast [20], which is well-known to be equivalent to the consensus problem. Adding all three
properties to reliable broadcast results in the notion of Causal FIFO Atomic Broadcast which still
does not provide the order-fairness property that we are looking for. The main problem is none of
the requirements consider a global notion of FIFO ordering based on multiple senders.

Our order-fairness property does enforce such a notion according to the following idea: If
enough nodes broadcast a message m before another message m/, then honest nodes will respect
this ordering. Adding this property to atomic broadcast results in a new broadcast notion, which we
call “Global FIFO Atomic Broadcast.” Consequently, requiring order fairness along with standard
consensus properties of consistency and liveness will be equivalent to this new notion of Global
FIFO Atomic Broadcast.

We note that our setup is also slightly different than earlier notions. We assume that any
message broadcast by an honest node is also eventually broadcast by all honest nodes. This allows
us to redefine liveness in terms of being broadcast by enough nodes. This also means that identical
messages broadcast by different nodes can now be delivered together as a single message. Global
FIFO ordering is defined on the ordering of these messages. Note that it no longer makes sense to
talk about (single source) FIFO order or causal order as identical messages, potentially broadcast
at different positions by different nodes, are now delivered as a single message.

Consensus protocols. Hundreds of Byzantine fault tolerant consensus protocols have been pro-
posed over the years, with PBFT [16] being perhaps the most well known one. Multiple survey
papers [7, 10] have recently aimed to systematize this vast literature. Many papers provide ef-
ficiency improvements while maintaining the basic leader-based structure of PBFT. That is, a
leader or primary node is responsible for proposing the transactions in the current round. In such
leader-based protocols ([2, 3, 5, 8, 18, 35, 43—45], just to name a few), the leader node can propose
transactions in the order of its choosing. The leader is also capable of suppressing transactions, at
least temporarily, until an honest node becomes the new leader. We highlight that in previously ex-
plored leader-based protocols, nodes do not know the ordering in which transactions were received
by everyone else. This means that a leader’s proposal can only be rejected by other nodes based
on the validity of transactions rather than the fairness of their ordering. Order-fairness is thus not
achieved in existing leader-based protocols.

Some protocols provide transaction censorship resistance, such that malicious nodes cannot
censor specific transactions based on their content. For this, in protocols like [4, 11, 37], transactions
are encrypted, and the contents are revealed only once their ordering is fixed. Separately, protocols
in [4, 30, 32] rely on a reputation based system to detect unfair censorship. Censorship resistance
is strictly weaker than the order-fairness we consider for three reasons. First, in practice, even if
transaction data is temporarily encrypted, metadata such as a user identifier or a client IP address
can be used to censor a particular transaction. Second, a malicious leader can still blindly reorder
or censor transactions based on just their ciphertext. But perhaps more importantly, a malicious
leader colluding with a user will know the ciphertext corresponding to the user’s transaction and



can thus unfairly order this transaction before others.

Other uses of the word fairness. The term fairness has been used before in consensus lit-
erature for notions unrelated to ours. One popular use case relates to fairness in block mining in
Proof-of-Work (PoW) blockchains, which intuitively requires that a node’s mining rewards be pro-
portional to its relative computational power. That is, no node should be able to mine selfishly [25]
to obtain more rewards than its fair share. This fairness notion is met by protocols in [1, 32, 34,
36, 38], among others.

Another related definition considers fairness in terms of the opportunities each node gets to
append transactions to the ledger. This includes both fair leader election (in leader based protocols)
and fair committee election (in hybrid consensus protocols). This definition is considered in [1, 26,
29, 32, 39]. We note that even if the leader election process is fair, the current leader still has the
power to manipulate transaction ordering.

Fairness has also been used in the context of “fair exchange.” Fair exchange protocols provide
a way for mutually distrusting parties to exchange digital goods in a secure way. This notion is
completely unrelated to ours but we mention it for completeness.

Works that mention fair transaction ordering. Helix [4] alludes to fair transaction ordering,
but only considers censorship resistance and fair committee election. It uses threshold encryption
to choose a random set of pending transactions for inclusion in the current block. Another related
protocol is Hashgraph [6], which intuitively considers our notion of receive-order fairness, but
provides no formal definitions. Moreover, it fails to realize the impossibility of this notion of fairness
resulting from the Condorcet paradox [19]. As a result, we identify an elementary attack on the
Hashgraph protocol that allows an adversarial node to control transaction ordering. We describe
this attack at a high level below:

In the Hashgraph algorithm, each participant maintains a directed graph (called the hashgraph)
of the transactions it has received from others. Participants sync their transactions to others by
sending their local hashgraph to a randomly chosen participant at every round. The intuitive strat-
egy of their consensus protocol is to ensure that the hashgraphs maintained by honest participants
are consistent. When Alice receives a “sync” of the hashgraph from Bob, she adds all of Bob’s new
transactions (say including a transaction tx) and any of her own to a new event node N. She then
sets the new node’s parents to be the last node received from Bob, and her own last node. Alice
includes a timestamp with the N which is considered to be Alice’s receive-time for the transaction
tx. Without going into too much detail, after N has been buried sufficiently deep in the graph,
Alice considers a specific set of graph nodes in her hashgraph and computes the final timestamp for
tx by taking the median of all the corresponding timestamps. Each participant ends up with the
same final timestamp as they compute the median on the same set of event nodes. However, we
highlight that using the median to compute the final timestamp is the actual cause of unfairness
since it is prone to adversarial manipulation. To see why, consider two users transactions tx; and
txo that are sent by honest users to all the protocol participants. Suppose that all nodes receive
txy before txs and that the network adversary lets no “sync” attempts go through before everyone
receives both tx; and txs. If the receive times for tx; and txs are sufficiently intertwined, then even
a single adversarial participant can cause the median timestamp for tx; to become larger than the
median timestamp for txo which breaks fair-ordering.



We acknowledge that carefully designing a different formal definition for fair ordering could
allow the Hashgraph protocol to achieve a different notion of fairness, but we base our comparison
on their informal notion of “first received, first output.” In Section 5, we also show a simple concrete
example of why median timestamp based ordering protocols do not work in general.

2 Definitions, Framework, and Preliminaries

In this section, we describe the general execution framework that we will use for expressing and
analyzing consensus protocols. To define the state machine replication problem in an unconstrained
setting, we adopt an approach like that of Pass and Shi [40, 41] and Chan et al. [17]. We focus on
the “permissioned” setting — where the number of consensus nodes n, as well as their identities, is
known a priori to all participants. While arbitrary clients can send messages to these nodes, only
a fixed set of nodes will take part in the consensus protocol. We are also interested in protocols for
several network settings (e.g. synchronous, partially synchronous, and asynchronous) and define
constrained environments for these settings by imposing restrictions that an adversary must respect.

2.1 Protocol Execution Model

Interactive Turing Machines (ITMs). To model protocol execution, we adopt the widely used
Interactive Turing Machine (ITM) approach rooted in the Universal Composability framework [12].
Informally, a protocol details how nodes interact with each other where each node is represented
by an Interactive Turing Machine. As standard practice in cryptography literature [12, 13, 15],
we use an environment Z(1%) (where & is the security parameter) to direct the protocol execution.
The environment Z can be thought of to represent everything that is not defined by the protocol
in consideration. Z is also responsible for activating nodes as either honest or corrupt, providing
messages as inputs to nodes, and delivering messages between nodes. This is useful to model systems
where protocol inputs may come from external applications and protocol outputs may be used by
external applications. To communicate with others, a node sends a message to the environment,
which is then relayed to other nodes as appropriate by the environment. Honest nodes follow
the protocol description while corrupt nodes are assumed to be controlled by an adversary. This
adversary, denoted by A, is able to read all inputs/messages sent to corrupt nodes and can set all
outputs/messages to be sent. The adversary also decides when messages sent over the network get
delivered, of course subject to any network assumptions.

Rounds. We assume that the environment Z maintains a global clock. The clock is a global
functionality [15] that contains a simple monotonic counter which can be updated adversarially
by the environment. Informally, “global” means that the clock functionality exists in the system
regardless of the analyzed protocol. This modeling choice follows from Canetti et al. [14]. Whether
this clock is visible to protocol nodes depends on specific network settings. In synchronous settings,
this clock is visible to all nodes®. In the synchronous setting [22], we can therefore model protocol
execution in discrete time steps or rounds. At the start of each round, each node receives a
set txs of transactions from the environment Z. Transactions are assumed to be submitted by
clients, but using the environment abstraction avoids having to model clients explicitly. Rather,

3 In [14], it is emphasized that honest parties do not talk directly to the clock functionality. We can circumvent
this restriction by having the environment send the current time counter to each node as input every round.

10



the environment is in charge of providing transactions as input to the nodes. Furthermore, at the
end of each round, each node outputs an ordered log LOG to Z which intuitively represents the list
of transactions ordered by the node so far. We assume that Z always signals the start of a new
round to each node.

Rounds in the partially synchronous setting [23] work similarly to the synchronous setting.

In the asynchronous setting [9], we assume that a global clock still exists in the environment.
Except now, the clock is not accessible to the protocol nodes. The environment Z can provide user
transactions and communication messages to nodes at any time. Without loss of generality, since
protocol nodes cannot read the global clock, we can assume that the clock counter is incremented
every time Z provides new transactions or delivers messages. Note that, we use the notion of
rounds in an asynchronous setting merely as a tool for our analysis. It serves no purpose in the
actual protocol and any protocol that works in the asynchronous setting should not rely on the
current time. Throughout the paper, we may use the terms “time” and “round” interchangeably.

Notational conventions. We use x to denote the security parameter. N denotes the set of
protocol nodes. For a protocol II, EXECH(.A, Z, k) represents the random variable for all possible
execution traces of II w.r.t. adversary A and environment Z. The possible executions arise from
any randomness used by honest nodes, adversarially controlled nodes, and the environment. Any
view in the support of EXECH(A, Z, k) is a fully specified instance of an execution trace. That is,
a particular view can be thought of as the joint view of all nodes (including all inputs, outputs,
random coins etc.) during an execution. We use view <—s EXEC'(A, Z, k) to denote randomly
sampling an execution. |view| denotes the number of rounds in view.

A function negl(-) is negligible if for every polynomial p(-), there exists a constant xg € N, such
that negl(k) < ﬁ for all Kk > ko. We use negl(x) to denote a function that is negligible as a
function of x.

Corruption Model. Since we are concerned only with the permissioned setting, we consider
environments Z that do not spawn any more nodes after an initial spawn. In particular, Z spawns
a set of nodes, numbered from 1 to n without loss of generality at the start. It never spawns any
additional nodes. At any point, A can ask Z to corrupt a particular node for which Z sends a
corrupt signal to that node. When this happens, the internal state of that node gets exposed to
A and A henceforth fully controls the node. A gets full control over all corrupt nodes, including
the ability to control their messages and outputs.

A node is said to be honest in a given view if it is never under adversarial control, otherwise it
is said to be corrupt or byzantine. Note that once a node is corrupted, it cannot become honest at
a later point. In our general model, we assume that the adversary can corrupt nodes dynamically.
That is, nodes can be corrupted at any point during the protocol’s execution. We use a corruption
parameter f to denote the maximum number of nodes that A can corrupt.

Communication and Network Model. As mentioned before, the environment Z provides
transactions sent by users as inputs to nodes and also handles communication between nodes. We
assume that a node can broadcast a message to any subset of recipients through an authenticated
channel. The environment Z delivers any broadcast messages to its recipients at the start of a
round, along with any new transaction inputs from users for that round. Furthermore, we assume
that the adversary A cannot modify messages sent by honest nodes but can reorder or delay

11



messages, possibly constrained by the specific setting. We also assume the existence of a public-key
infrastructure (PKI) — each node has a public key registered with the PKI. The public key of a node
is given to all nodes on initialization by the environment. Note that in a PKI, digital signatures
can be used to prove the identity of the message sender. Digital signatures can be realized from a
PKI, as a global signing functionality gs%gn (parameterized by a signature scheme ). We refer the
reader to [41] for further details. For our paper, we can abstract away the actual implementation
of signatures since in a PKI, without adding any communication overhead, we can assume that
Z simply reveals the identity of the sender when forwarding a message to the recipient(s). We
note that this is equivalent to working in the Qszign—hybrid world where nodes query the global
functionality gs%gn when they need to sign messages.

We differentiate between two networks in our model - an internal network for communication
between nodes and an ezternal network for how external users send transactions to nodes. We
emphasize that A is only in charge of scheduling message delivery for the internal network. The
external network may reside in other parts of the application (not relevant to the consensus protocol)
and is managed by Z (and possibly by some other network adversary). However, we may abstract
specific timing properties from the external network to prove our results.

Depending on the network delay properties, we consider the synchronous setting [22] (where
the network delay bound is known), the partially synchronous setting [23] (where the network
delay bound is finite but unknown), and the asynchronous setting [9] (where the network delay is
unbounded).

2.2 Execution Environments

Network Assumptions. First, we formally define the different network assumptions for both
the external and internal networks. We assume that clients submit transactions to the system by
sending them to all the nodes. As mentioned before, we do not explicitly model clients, but rather
have transactions input by the environment. Any network assumptions are modeled as restrictions
imposed on the environment.

External Network. The external network models the communication channel between the sys-
tem users and the protocol nodes. Any assumptions on the external network can be thought of
as assumptions on how the environment acts. By a synchronous external network, we mean that
any transaction that is received (from the environment) by a node reaches all other nodes within a
known time. This is formally defined in Definition 2.1.

Definition 2.1 (External Synchronous Setting). We say that (A, Z) respects Aext = (full,d) ext-
synchrony w.r.t. a protocol II if for every £ € N and view in the support of EXEC (A, Z, k), the
following conditions hold: (1) Z provides § as a public parameter to all nodes upon spawning; (2)
If Z provides an input message m to a node as input in the txs set at time ¢, then at any time
t' >t + 4, all other nodes will also have received message m as input.

For the partially synchronous setting, we assume that the delay bound § exists but is unknown
to the nodes. Partial synchrony in the external network is defined similar to the synchronous
setting, except now, Z does not provide the parameter § to the nodes upon spawning. We use
Aext = (partial, d) to denote the partially synchronous setting. For the asynchronous setting, we
only assume that transactions are not dropped by the network — they eventually get delivered to all

12



the nodes. However, we make no assumptions on the actual delivery time. We use Ae = (none, o0)
to denote an asynchronous external network.

Internal Network. The internal network represents the network between nodes and is usually
the standard network considered for consensus problems. For the internal network, synchrony is
the assumption that any message sent by a node reaches the recipient(s) in a known, finite time 9.
Definition 2.2 formalizes this synchrony assumption. Recall that Z delivers messages only at the
start of a round.

Definition 2.2 (Internal Synchronous Setting). We say that (A, Z) respects Aj,e = (full,d) int-
synchrony w.r.t. a protocol II if for every £ € N and view in the support of EXEC™ (A, Z, k), the
following conditions hold: (1) Z provides ¢ as a public parameter to all nodes upon spawning; (2)
If an honest node sends a message at time ¢, then at any time ¢’ > t + §, all recipient(s) will have
received the message.

The partially synchronous and asynchronous settings for the internal network are defined similarly
to the corresponding notions for the external network. We use Ajx = (partial,d) and Ay =
(none, o) to denote a partially synchronous internal network and an asynchronous internal network
respectively.

Other network nomenclature. We say that the network is completely synchronous (resp.
completely asynchronous) if both the external and the internal network are synchronous (resp.
asynchronous). We say that the external network is instant synchronous if Ae = (full,0). We
use not-async to denote both the synchronous setting (full) and the partially synchronous setting
(partial).

We formalize the permissioned setting next.

Permissioned Setting. We can express the “permissioned” or “classical” environment by placing
the following constraints on (A, Z): In the permissioned setting, we require that the environment Z
spawn all nodes upfront and not spawn any new nodes during the protocol execution. Furthermore,
all nodes know the identity of all other nodes in the protocol. Without loss of generality, we
can assume that the initial nodes spawned by Z are numbered from 1 to n. We define such a
permissioned environment in Definition 2.3.

Definition 2.3 (Classical Permissioned Environment). We say that (A, Z) respects (n, f, Aint, Aext)-
classical execution w.r.t. a protocol II if it respects A, int-synchrony, Aey ext-synchrony and for
every x € N and view in the support of EXECY(A, Z, &), the following conditions hold: (1) Z
spawns a set of nodes numbered from 1 to n at the start of the protocol and never spawns any
nodes later; (2) Z does not corrupt more than f nodes; (3) Z provides all nodes the parameters
(n, f) upon spawning; (4) Z also provides all nodes any other public parameters upon spawning.
This includes the node identities as well as any public keys.

Notation. For all constraints on (A, Z), when the context is clear, we may choose to exclude
which protocol we are referring to. For example, we may simply write (A, Z) respects (n, f, Aint, Aext)-
classical execution. For the remainder of the paper, we will only consider (A, Z) that respect
classical execution.

13



2.3 The State Machine Replication Abstraction

In the state machine replication or consensus problem, a set of nodes try to agree on a growing,
linearly ordered log. At the start of each round, Z may provide a set txs of transactions to protocol
nodes. We assume that the transactions input by Z are unique. At any time, nodes may also
choose to deliver transactions by outputting a log of transactions LOG to Z. The LOG can be
thought of as a totally ordered sequence where each element is an ordered set of transactions. We
refer to the set of transactions at an index of the LOG as a “block”. The LOG represents the set of
transactions committed by a node so far.

Transaction nomenclatures. When discussing the trajectory of a transaction, several related
terms are used in literature. We say that a transaction tx is received by a node when it is given as
input to the node by Z. A transaction tx is delivered or committed or output by a node when it is
included in a LOG output by the node to Z.

Notation for the ordered log. Suppose that T denotes the space of all possible transactions.
Let LOG; represent the most recent log output by node ¢ to the environment i.e. LOG; represents
the totally ordered list of transactions that node ¢ has delivered so far.

For two logs LOG and LOG', we define a relation < which intuitively signifies a “prefix” notion.
LOG < LOG' stands for “LOG is a prefix of LOG”. We assume that for any x, we have x < z and
) < 2. LOG[p] denotes the p' element in LOG. LOG(m) denotes the number p such that LOG[p]

contains m.

The security of a state machine replication protocol can now be defined as follows:

Definition 2.4 (Security of state machine replication [41]). We say that a protocol II satisfies con-
sistency (resp. (Twarmup, Leonfirm)-liveness) w.r.t. (A, Z) if there exists a negligible function negl(-)
such that for any x € N, the consistency (resp. (Twarmup, Leonfirm)-liveness) property is satisfied ex-
cept with negl(k) probability over the choice of view «s EXECY(A, Z, k) where negl(-) is negligible
in k.

For a particular view, we define the properties below:
e (Consistency) A view satisfies consistency if the following holds:

— Common Prefix. If an honest node i outputs LOG to Z at time ¢ and an honest node j
outputs LOG’ to Z at time t/, then it holds that either LOG < LOG’ or LOG’' < LOG.

— Future Self Consistency. If a node that is honest between times ¢ and ¢/, outputs LOG
at time ¢t and LOG’ at time ¢ > ¢ to the environment Z, then it holds that LOG < LOG'.

e (Liveness) A view satisfies (Twarmup, Tconfirm )-liveness if the following holds: At a time ¢ such
that Twarmup < t < |view/|, if an honest node either received a transaction m from Z or output
m in its log to Z, then for any honest node i and any time ¢’ > t + Teonfirm; ¢ < |view|, it
holds that m is in the log output by node i at time ¢'.

14



Here, Teonfirm and Tiwarmup are polynomial functions in the security parameter s, the number of
nodes n, the corruption parameter f, the maximum network delay bounds as defined in Ag,; and
Ajnt (for synchronous and partially synchronous networks only), as well as the actual network delay.
Twarmup 1s the protocol’s warmup time, until which point liveness need not be satisfied. T¢onfirm is
the maximum time it takes for a transaction (input after the warmup time) to be delivered by all
honest nodes.

Note that the actual network delay is required as a parameter only for completely asynchronous
networks. When the network is not asynchronous, the actual network delay is bounded by the
maximum delay parameter. In such cases, the polynomials T¢onfirm and Twarmup can be bounded by
replacing the actual network delay by the appropriate delay bound. While this is true, synchronous
protocols where Teonprm does not depend on the maximum delay bound but rather on the actual
network delay can confirm transactions much faster. The term responsive [39] is used to refer to
such protocols.

Liveness in asynchronous networks. In the asynchronous setting, we assume that the network
delay is an unbounded polynomial [39] in the security parameter. Equivalently, there does not exist
a concrete polynomial Teonhrm that serves as the liveness bound. Rather, we require that as long as
the environment eventually delivers messages, honest nodes eventually include transactions in their
output logs. Note that since the environment eventually delivers all messages before the protocol
execution finishes, all transactions input by the environment should be eventually delivered by a
live protocol. We define asynchronous or eventual liveness below.

e (Asynchronous / Eventual Liveness) A view satisfies (Tiarmup, none)-eventual liveness,
or simply Tywarmup-e€ventual liveness, if the following holds: At a time ¢ such that ¢t > Tyarmup,
if an honest node either received a transaction m from Z or output m in its log to Z, then
for any honest node 4, at the end of protocol execution, it holds that m is in the log output
by node 3.

Weak liveness. The standard definition of liveness of a transaction tx (from Definition 2.4) is
independent of what happens in the rest of the protocol’s execution. Sometimes however, it may
be enough for a protocol to be live only if transactions continue to be received by the system. For
example, a transaction tx will only be delivered if there is some transaction that is received by
all nodes sufficiently after tx. Intuitively, later transactions will cause earlier ones to be “flushed
out” of the system. We note that this subtle distinction between the two liveness definitions is
rarely considered in the literature. We found that some leaderless protocols (i.e. those that are
not based on a leader node) like the ones in [6, 42] implicitly ignore this distinction. Along similar
lines, we define a weaker version of conventional liveness, which we call “weak-liveness.” Despite
the technical difference, we think that it should be acceptable in most real world systems. For a
particular view, we define weak-liveness below.

e (Weak Liveness) A view satisfies (Twarmup, Zconfirm)-Weak-liveness if the following holds:
Suppose that at a time ¢ such that ¢ > Tyarmup, an honest node either received a transaction
m from Z or output m in its log to Z. Let T be a set built recursively as follows: (1) Add
m to T; (2) For my € T, add to T, all transactions m(, that were received by at least one
honest node before my. Now if another transaction m’ was received at time ¢’ and is such

15



that it was first received by a node after all nodes received all transactions in T, then for any
honest node i and any time t” > t' + T.ongrm; t” < |view|, it holds that m is in the log output
by node ¢ at time ¢”.

We also define weak eventual liveness, which provides a version of weak liveness for the asyn-
chronous setting.

e (Weak Eventual Liveness) A view satisfies (Twarmup, None)-weak-eventual-liveness or sim-
Ply Twarmup-weak-eventual-liveness if the following holds: Suppose that at a time ¢ such that
t > Twarmup, an honest node either received a transaction m from Z or output m in its log
to Z. Let T be a set built recursively as follows: (1) Add m to T; (2) For mg € T, add to
T, all transactions my, that were received by at least one honest node before mg. If another
transaction tx’ was first received by nodes after all nodes received all transactions in T, then
for any honest node i, at the end of protocol execution, it holds that m is in the log output
by node 3.

For all of the liveness properties, we say that a protocol II satisfies the property if there exists
a negligible function negl(-) such that for any x € N, the property is satisfied except with negl(x)
probability over the choice of view <—s EXECIY(A, Z, k) where negl(-) is negligible in &.

3 Building Blocks

We start by describing some useful primitives that will form the foundation for designing our fair
ordering consensus protocols. More specifically, we will utilize two primitives: (1) Set Byzantine
Agreement (Set-BA); and (2) FIFO Broadcast (FIFO-BC). We introduce Set-BA in Section 3.1 and
FIFO-BC in Section 3.2. We also show how to build Set-BA from standard Byzantine agreement
and FIFO-BC from reliable broadcast.

Subroutines and composition. We follow the standard conventions to enable secure compo-
sition when considering multiple instantiations of the same protocol. Each instance of a protocol
is spawned with a session identifier sid. We use Il[sid] to denote the instance of protocol II with
session id sid. Each protocol may take inputs from and return outputs to an environment. Note
that this “environment” may be different for any subroutines called. For example, when a calling
process p, forks an instance of a protocol II, p is taken to be part of the environment for II and
handles its inputs and outputs.

3.1 Set Byzantine Agreement

Definitions. In a (poly) Set Byzantine Agreement protocol (Set-BA), participating nodes will try
to agree on a set of values. At the start of the protocol, each node receives the identities of all
participating nodes, the parameters n and f, the network parameters, as well as any other public
parameters from Z. At the start of the protocol, each node receives any public parameters from
Z. Each node 7 in the set P of participating nodes also receives a set U; C S as input from Z. The
set S is also known to all nodes and its size is polynomial in the parameters. At the end of the
protocol, each honest node j € P outputs a set of the agreed upon values O;.

16



Definition 3.1 (Security of Set-BA). A Set-BA protocol Ilg,, satisfies agreement, inclusion validity,
and exclusion validity w.r.t. (A, Z) if for all K € N, the following properties hold except with
negligible probability over the random choice of view s EXEC!sba (A, Z, k).

e (Agreement) If two honest nodes i and j output the sets O; and O; respectively, then
0; = 0;.

e (Inclusion Validity) If an element is in the input sets of all nodes, then it will also be in
the output sets of all honest nodes. That is, if ¢ € U; for all ¢ € P, then ¢ € O; for all honest

7

e (Exclusion Validity) If an element is not in any input set, then it is not in any honest
output set. That is, if ¢ ¢ U; for all i € P, then ¢ ¢ O; for all honest j.

Comparison to Asynchronous Common Subset (ACS). A primitive related to Set-BA is
the asynchronous common subset (ACS) problem from [11, 37] that can be used to build an asyn-
chronous Byzantine fault tolerant system. Similar to our Set-BA primitive, each node in an ACS
protocol is input a set U; and all nodes agree on a common output set O. ACS guarantees that
the common output O contains all the elements of the input sets of at least n — 2f honest nodes.
However, O can also contain elements that were proposed by only malicious nodes. On the other
hand, a Set-BA protocol also needs to satisfy exclusion wvalidity which along with the agreement
and inclusion validity properties, guarantees that only honest proposals are included in output set.
We prove this in Lemma 3.2. Note that the output set also need not include all elements from
n — 2f of the honest input sets.

As mentioned before, it is easy to prove that any Set-BA protocol satisfies the “honest proposal”
property shown in Lemma 3.2.

Lemma 3.2. Consider any set Byzantine agreement (Set-BA) protocol g, that satisfies agree-
ment, inclusion validity, and exclusion validity (w.r.t. (A, Z)). Except for a negligible number of
views, Ilgha also satisfies the following:

e (Honest Proposal) If an honest node outputs the set O, then for every c € O, there ezists
1 € P such that ¢ is honest and ¢ € Uj.

Informally, this guarantees that all values in the agreed upon set must have been proposed by some
honest node.

Proof. The proof is straightforward. We ignore the negligible “bad” views and let view be a exe-
cution of Ilg,, where agreement, inclusion validity, and exclusion validity are all satisfied. Suppose
that there was a value ¢ in the output agreed upon by honest nodes even though it was not in
any honest node’s input set. Now, to an honest node, this protocol execution is indistinguishable
from the world where none of the malicious nodes had ¢ in their input set (from Z) either. In
particular, it could have been the case that a malicious node did not receive ¢ as input from Z
but still proposed it as part of the protocol. Equivalently, in this world, ¢ was in the agreed upon
output in Ilg,, even when no node was given it as input by Z. This contradicts the exclusion
validity property of Ilgp,. O

17



Set Agreement from Binary Byzantine Agreement (BBA). We show how Set-BA can easily
be realized from a BBA protocol. Recall that in a BBA protocol, each node ¢ starts with an initial
value b; € {0,1} and outputs a bit out; when the protocol ends. The goal is for all honest players
to output the same bit. A secure BBA protocol IIgga needs to satisfy two properties in all except
a negligible number of executions —

e (Agreement) out; = out; for all honest nodes i and j.

e (Validity) If all honest nodes start with the same initial value b, then out; = b for all honest
nodes ¢.

Let IIgga be a BBA protocol that satisfies both agreement and validity. We can now construct
a protocol Ilg,, from the BBA protocol IIgga that satisfies the Set-BA security properties. Suppose
that Ilg,, needs to be instantiated with the session id sid. We now describe the protocol Il for a
node i:

1. For each s € S, if s € U;, node i forks a new instance of Ilgpa[(sid, s)] with input 1; otherwise
it forks an instance IIgpa[(sid, s)] with input 0.

2. Collect the outputs of all IIgga instances. Let out(s) denote the output of IIgpal(sid, s)].
Construct the set O = {s € S| out(s) = 1} and output it.

Lemma 3.3. If Ilgpa satisfies the BBA security properties for (A, Z), then g, satisfies agree-
ment, inclusion validity, and exclusion validity.

Proof. The proof follows in a straightforward way from the security of Ilggsa. Agreement and
validity (both inclusion and exclusion) for Ilg,, follow directly from the agreement and validity
properties of IIgga. To see why exclusion validity holds, suppose that there is an element ¢ that
was not in any input set. This means that all honest nodes sent input 0 to the instance IIgga[(sid, ¢)],
which implies that ¢ cannot be in the agreed upon output set.

One crucial point worth mentioning here is that Ilg,, forks only a polynomial number of instances
of IIppa since S is of polynomial size. Consequently, all nodes still run in polynomial time. O

For our purpose, an equivalent way to view Set-BA is a combination of individual Byzantine agree-
ment for every possible input element in S. Our protocols consider S = {1,...,n} and we will use
the Set-BA primitive to agree on the which local node orderings to consider to finalize the order of
a given transaction.

Other Properties. To analyze other useful characteristics of a Set-BA protocol, we define two
additional properties, liveness and a-validity. Liveness describes how long it takes for nodes to
reach agreement while a-validity can be used to determine how easy it is for an adversary to make
honest nodes agree on a non-majority value.

Formally, we say that a protocol Ilg, satisfies T(i})’r?ﬁrm—liveness (respectively agp,-validity) if the
properties as described below are satisfied except for a negligible number of executions.

o (T2, -Liveness) All honest nodes output in at most 75°%  rounds after all honest nodes

have input their starting value.

When the network is asynchronous, we define liveness in the same way as for state machine
replication.

18



o (appe-Validity) If ¢ is present in the initial sets of at least app, fraction of all nodes, then
¢ € O; for all honest nodes 7.

T gfjﬁrm is a polynomial in k,n, f, the network delay bound in Aj,;, and the actual internal network

delay.

3.2 FIFO Broadcast

Single source FIFO (first in, first out) broadcast (also called Ordered Authenticated Reliable broad-
cast or OARcast in [27]) is a broadcast primitive in which all honest nodes in the protocol need to
deliver messages in the same order as they were broadcast by the sender. In one instantiation of
a FIFO broadcast protocol, we consider a single designated sender who broadcasts a sequence of
messages to all other nodes. If the sender is honest, each honest node must deliver the messages
in the same order as they were broadcast. If the sender is dishonest, all honest nodes must deliver
messages in the same order as each other; except now, this order may may be different than the
one broadcast by the sender. When composing several FIFO broadcast primitives together with
different senders, FIFO order is maintained for each individual sender but different honest nodes
may deliver messages from different senders in different orders.

Definitions. At the start of the FIFO Broadcast (FIFO-BC) protocol, each node receives the
appropriate public parameters from the environment. At any time, the designated sender may also
receive as input a message m from the environment. At any time, nodes can choose to deliver
messages.

Definition 3.4 (Security of (FIFO-BC)). A FIFO-BC protocol IIg,cast Satisfies liveness, agreement,
and FIFO-order w.r.t. (A, Z) if for all K € N, the following properties hold except with negligible
probability over the random choice of view s EXECHfifocast (A Z 1),

o ((Thocast Tiifocast)-Liveness) If the sender is honest and receives a message m as input in

round r > T‘gg‘iﬁﬁi), or if an honest node delivers m in round r > Tg;‘;ﬁ?ﬁ%, then all honest

. . fifocast
nodes will have delivered m by round r + T °£35".
Eventual liveness in asynchronous networks is defined in the same way as for state machine

replication.

e (Agreement) If an honest node delivers a message m before m’, then no honest node delivers
m’ unless it has already delivered m.

e (FIFO-Order) If the sender is honest and is input a message m before m/, then no honest
node delivers m/ unless it has already delivered m.

T gggﬁfg is a polynomial in x, n, f, the network delay bound in A;., and the actual internal network

delay.

19



Notation. Let Ilgfocast[(sid, j)] denote the instance of the protocol Igfocast Where node j is the
designated sender. In a consensus protocol that invokes Iggocast[(sid, 7)], we assume that each node
i keeps track of the messages delivered (i.e. messages broadcast by node j) in a local log Logz(»s'd’j ),
This represents node 4’s view of broadcasts from node j in the session sid. When the session id is
clear from context, we may also write the local log simply as Log].

Two local logs Log and Log’ are called “equal until tx”, denoted by =, if they are equivalent
until the occurrence of tx. Log[p] denotes the p'" element in Log. Log(m) denotes the number p
such that Log[p] contains m. Consequently, Log(m) < Log(m') signifies that m appears before m’

in Log.

FIFO-BC from Reliable Broadcast. Reliable broadcast is a basic broadcast primitive where
a designated sender broadcasts messages to a set of nodes. Honest nodes will only deliver those
messages that were broadcast, and will eventually deliver all messages broadcast by an honest
sender. Reliable broadcast can be considered a “continuous” version of single shot Byzantine
broadcast or the Byzantine generals problem [31]. Ho et al. [27] show how FIFO broadcast can be
achieved using reliable broadcast even in asynchronous networks. The intuition is simple: sequence
numbers are added to the messages broadcast by the sender in a reliable broadcast protocol. An
honest node does not deliver a message with sequence number %k until it has delivered a message
with sequence number k — 1. We refer the reader to [27] for the detailed construction.

4 Defining Fair Ordering

We formally define fair ordering in this section. As it turns out, providing a definition that is
achievable by protocols, yet intuitive, is not trivial. Some natural definitions are not achievable
except under strong assumptions. We use this section to also go through these definitions that led
to our final definition.

(Attempt 1) — Send-order-fairness. A strawman approach is to require ordering to be in
terms of when transactions were sent by clients. For instance, if a transaction tx; was sent by a
client before another transaction txy (possibly by another client), then tx; should appear before
txo in the agreed upon log. Not surprisingly, this can lead to several problems: most importantly,
there needs to be a trusted way to timestamp a transaction at the client side. Even assuming
such a timestamping service, network synchrony is also required to ensure that a transaction is not
arbitrarily delayed (either by a offline user or by a malicious network adversary). Although we do
not focus on this notion, we briefly discuss the possibility of achieving it in practice using trusted
hardware in Section 8.3.

The challenges of send-order-fairness suggest it would be more prudent to define fair ordering in
terms of when the consensus nodes actually receive transactions. Since every node might receive
transactions at slightly different times, or in a slightly different order, care must be taken in
formulating the definition. We introduce a natural notion below.

(Attempt 2) — Receive-order-fairness. Intuitively, “receive order” means that the fair or-
dering is defined by looking at when enough nodes receive a particular transaction. For instance,

20



if sufficiently many nodes receive a transaction tx; before another transaction txs, then tx; must
appear before txo in the final log. This is formalized in Definition 4.1, where “sufficiently many” is
parameterized using y. We refer to v as the order-fairness parameter.

Definition 4.1 (Receive-order-fairness, restatement of Definition 1.1). For a view in the support
of EXECY(A, Z, k), we define receive-order-fairness as follows:

o A view satisfies (7, Twarmup) receive-order-fairness if the following holds: For any two transac-
tions m and m/, let 7 be the number of nodes that received both transactions between times
Twarmup and |view|. If at least yn of those nodes received m before m’ from Z, then for all
honest nodes 4, i does not deliver m’ unless it has previously delivered m.

A protocol II satisfies (v, Twarmup) receive-order-fairness w.r.t (A, Z) if there is a negligible function
negl(-) such that for any x € N, the order-fairness property is satisfied except with probability
negl(k) over a random choice of view <—s EXEC'( A, Z, k).

4.1 Condorcet paradox and the impossibility of fair ordering.

The Condorcet paradox [19], or the “voting paradox”, is a result in social choice theory that shows
how some situations can lead to non-transitive collective voting preferences even if the preferences
of individual voters are transitive. To illustrate how this applies to fair ordering, let us look at a
simple example:

Example 4.2. Suppose that there are 3 nodes: A, B, and C. In the protocol execution, 3
transactions, txj, txo, and txg are sent by clients to all the nodes.

e Node A receives transactions in the order txq, txo, tx3.
e Node B receives transactions in the order txs, txs, txy.
e Node C receives transactions in the order txs, txi, txs.

Now, 2 nodes (A and C') received tx; before txs, 2 nodes (A and B) received txs before txs, and 2
nodes (B and () received txs before tx;. It is easy to see that no protocol can satisfy fair ordering
for v < %, since such a protocol would have to include tx; before txo; txo before txs; and txs before
txy in its final log.

Theorem 4.3 extrapolates this observation to a system with n consensus nodes.

Theorem 4.3. Consider any n, f, Aint, Aext where Agyt 18 either (none, 00) or (not-async, dext > n).
Let v < ”Tfl If a consensus protocol 11 satisfies (Twarmup, Lconfirm)-liveness w.r.t. all (A, Z) that
respect (n, f, Aint, Aext)-classical execution, then it cannot also satisfy (7, Twarmup)-receive-order-
fairness (from Definition J.1).

Proof. The proof takes inspiration from the counterexample in Example 4.2. Denote the nodes
in the system by the numbers 1 to n. We show a specific environment Z in which no protocol
can achieve receive order-fairness. Suppose that clients submit n transactions tx; to tx,. Further,
suppose that node 1 receives the transactions in the order txi,txso,--- ,tx, and any node i # 1
receives the transactions in the order tx;, - - -, tx,, tx1, -, tx;—1.

21



Now, it is straightforward to see that all nodes except node 2 received tx; before txs, all nodes
except node 3 received txs before tx3 and so on. Finally, all nodes except node 1 received tx,, before
txy. This means that any consensus protocol that provides order-fairness for v < "Tfl must order
tx1 before txg, - - -, tx,_1 before tx,,, and tx,, before tx; which is a contradiction. O

Notice that the result in Theorem 4.3 only requires properties from the external network, and is
actually independent of the adversary. In other words, receive-order-fairness for an order-fairness
parameter v < "Tfl is impossible to achieve even when there is no adversary.

Following the previous result, one would think that receive-order-fairness might still be possible for
v = 1. Unfortunately, a simple followup theorem shows this to be impossible in the presence of
even a single corrupt node.

Theorem 4.4. Consider any n, f, Aint, Aext where f > 1 and where Aex is either (none,c0) or
(not-async, dext > ). Lety < 1. If a consensus protocol 11 satisfies consistency and (Twarmup, L confirm)
liveness w.r.t. all (A, Z) that respect (n, f, Aint, Aext)-classical execution, then it cannot also satisfy
(7, Twarmup) receive-order-fairness.

Proof. The case for v < 1 is handled by Theorem 4.3. To show the result for v = 1, first suppose
that there is a protocol II that satisfies consistency, (Twarmup,Zconfirm) liveness and (1, Tywarmup)
receive-order-fairness w.r.t all (A, Z). Suppose that the nodes in the protocol are numbered from
1 to n.

Let Z be the same environment considered in the proof of Theorem 4.3. We will consider
adversaries that corrupt a single node. Suppose that an adversary A; corrupts node 1, which
claims to have received transaction tx,, before tx; (as opposed to the actual ordering of tx; before
txy, it received from the environment). Note that to all other protocol nodes, this is indistinguishable
from the world where the environment itself provided node 1, the transaction tx,, before tx;. Since
in this world, IT would have to result in all honest nodes ordering tx,, before tx; (since all nodes
received tx, before tx), the same needs to hold true in (A, 2)

In a similar spirit, we can consider other such adversaries A; that corrupt node i and claim to
have received tx;_1 before tx;. Using the same analysis as before, we can infer than II would also
have to result in all honest nodes ordering tx;_; before tx; in (A;, Z). But, all (A4;, Z) also cannot
be distinguished since the identity of the adversarial node is unknown to other nodes.

Consequently, with respect to (A1, Z), the protocol II must result in all honest nodes delivering
tx; before txs, - - -, tx,,_1 before tx,,, and tx,, before tx; which is a contradiction.

O

4.2 Environments that support receive-order-fairness
We find 