
Raccoon: A Masking-Friendly Signature Proven
in the Probing Model

Rafaël del Pino1, Shuichi Katsumata1,2

, Thomas Prest1

, and Mélissa Rossi3

1 PQShield (firstname.lastname@pqshield.com)
2 AIST

3 ANSSI (firstname.lastname@ssi.gouv.fr)

Abstract. This paper presents Raccoon, a lattice-based signature scheme
submitted to the NIST 2022 call for additional post-quantum signatures.
Raccoon has the specificity of always being masked. Concretely, all sen-
sitive intermediate values are shared into 𝑑 parts. The main design ratio-
nale of Raccoon is to be easy to mask at high orders, and this dictated
most of its design choices, such as the introduction of new algorithmic
techniques for sampling small errors. As a result, Raccoon achieves a
masking overhead 𝑂 (𝑑 log 𝑑) that compares favourably with the over-
heads 𝑂 (𝑑2 log 𝑞) observed when masking standard lattice signatures.
In addition, we formally prove the security of Raccoon in the 𝑡-probing
model: an attacker is able to probe 𝑡 ≤ 𝑑−1 shares during each execution
of the main algorithms (key generation, signing, verification). While for
most cryptographic schemes, the black-box 𝑡-probing security can be
studied in isolation, in Raccoon this analysis is performed jointly.
To that end, a bridge must be made between the black-box game-based
EUF-CMA proof and the usual simulation proofs of the ISW model
(CRYPTO 2003). We formalize an end-to-end masking proof by deploy-
ing the probing EUF-CMA introduced by Barthe et al. (Eurocrypt 2018)
and exhibiting the simulators of the non-interference properties (Barthe
et al. CCS 2016). The proof is divided into three novel parts:

– a simulation proof in the ISW model that allows to propagate the
dependency to a restricted number of inputs and random coins,

– a game-based proof showing that the security of Raccoon with probes
can be reduced to an instance of Raccoon with smaller parameters,

– a parameter study to ensure that the smaller instance is secure, using
a robust generalization of the Rényi divergence.

While we apply our techniques to Raccoon, we expect that the algorith-
mic and proof techniques we introduce will be helpful for the design and
analysis of future masking-friendly schemes.

Keywords: Raccoon signature; 𝑡-probing model; side-channel attacks.

1 Introduction

In the past decade, post-quantum cryptography has rapidly evolved from a
mostly theoretical field to a mature one suitable for large-scale deployment. This

https://orcid.org/0000-0002-8496-0476
https://orcid.org/0000-0003-1445-6212
https://orcid.org/0000-0002-9268-3034

2

is epitomized by NISTs standardization in 2020 of the hash-based signatures
XMSS and LMS, as well as its announcement in 2022 of the future standardiza-
tion of the lattice-based KEM Kyber, the lattice-based signatures Dilithium and
Falcon, and the hash-based signature SPHINCS+. Whilst the efficiency profiles
and black-box security of these schemes are well-understood, resistance against
side-channel attacks remains a weak spot.

Side-channel attacks. In a side-channel attack (SCA), an attacker can learn
information about the physical execution of an algorithm, such as its running
time or its effect on the power consumption, electromagnetic or acoustic emission
of the device running it. This information can then be leveraged to recover
sensitive information, for example, cryptographic keys.

SCAs can be devastating against cryptographic implementations, and post-
quantum schemes are no exception. See Section 1.3 for references of concrete
SCAs against Dilithium.

Masking. The main countermeasure against side-channel attacks is masking
[ISW03]. It consists of splitting sensitive information in 𝑑 shares (concretely:
𝑥 = 𝑥0 + · · · + 𝑥𝑑−1), and performing secure computation using MPC-based tech-
niques. Masking provides a trade-off between efficiency and SCA resistance: the
computational efficiency of the implementation is reduced by a polynomial fac-
tor in 𝑑, but the cost of a side-channel attack is expected to grow exponentially
[DFS19,IUH22].

Unfortunately, lattice-based signatures contain subroutines that are extremely
expensive to mask, such as (a) sampling from a small set, (b) bit-decomposition,
and (c) rejection sampling. The best known ways to perform these operations is
to rely on mask conversions [HT19,CGTV15], which convert between arithmetic
and boolean masking. This typically incurs an overhead 𝑂 (𝑑2 log 𝑞) [CGV14] or
𝑂 (2𝑑/2) [Cor17], and quickly becomes the efficiency bottleneck. As an illustra-
tion, the only publicly available masked implementation of Dilithium [CGTZ23]
is 53 (resp. 200) times slower than unmasked Dilithium for 𝑑 = 2 (resp. 𝑑 = 4).

Masking-friendly schemes. In order to overcome these limitations, a natural re-
search direction is to design lattice-based signatures that are naturally amenable
to masking. However, this is easier said than done. The few designs that exist
have either been shown insecure or lack a formal security proof, see Section 1.3
for a more detailed discussion. Achieving a formally proven, masking-friendly
signature has remained an elusive goal.

1.1 Our Contributions
We propose Raccoon, a masking-friendly signature, and provide a formal secu-
rity proof in the 𝑡-probing model [ISW03]. While Raccoon is inspired from the
similarly named scheme from [dPPRS23], we have heavily modified its design in
order to make it more efficient and provable secure under standard assumptions.
The design presented in this paper is exactly the same as the one submitted to
the NIST on-ramp standardization campaign [dEK+23].

3

Blueprint. Raccoon is based on the “Lyubashevsky signature without aborts”
blueprint, also found in works on threshold signatures [ASY22], and which we
recall below. Assume the public key vk is a Learning With Errors (LWE) sample
(A, t = [A I] · s), where s is a small vector, I is the identity matrix and A is a
uniform matrix (precise definitions will be provided later in the paper). Signing
proceeds as follows:
(S1) Sample r, compute a commitment w = [A I] · r;
(S2) Compute a challenge 𝑐 = 𝐻 (w, vk,msg);
(S3) Compute a response z = s · 𝑐 + r.
The verification procedure checks that 𝐻 (A · z − t · 𝑐, vk,msg) = 𝑐 and that z is
short. Using a Rényi divergence argument, we can argue security if the modulus
𝑞 grows as the square root of the number of queries 𝑄𝑠, that is 𝑞 = Ω(

√
𝑄𝑠). By

eliminating the need for rejection sampling, this sidesteps the issue of masking
it. In addition, unlike in Dilithium, the security argument does not rely on bit-
decomposition. This eliminates the need to mask bit-dropping, which we now
employ purely for efficiency reasons. We note that our final modulus has 49 bits,
which is larger than the standard precision (32-bit or less) on many embedded
platforms. We mitigate this by taking 𝑞 = 𝑞1 · 𝑞2, where 𝑞1 and 𝑞2 are 24-bit
and 25-bit NTT-friendly prime moduli.

We note that rejection sampling in Dilithium requires a smaller modulus
𝑞 = Ω(dim(s)), in practice log 𝑞 ≈ 23 in Dilithium. Our design choice entails a
trade-off between compactness (Dilithium) and ease of masking (Raccoon).

The problem with Gaussians. Standard Rényi divergence arguments as in
[ASY22] require r to be sampled from a discrete Gaussian distribution. How-
ever, Gaussians are notoriously difficult to generate in a way that is robust to
SCA. The most common method for sampling Gaussians in a constant-time
manner is via probability distribution tables (PDT), see for example FrodoKEM
[NAB+17] or Falcon [PFH+22]. For signatures, the PDT would require a preci-
sion 𝑝 ≈ log(𝑄𝑠), for example Falcon takes 𝑝 = 72. Masking this step would
incur a prohibitive overhead 𝑂 (𝑑2 log 𝑞). Similarly, all other existing sampling
methods (see e.g. “Related works” in [HPRR20]) comprise at least one step that
is expensive to mask. We could use Gaussians, and from a purely theoretic per-
spective the security proof would go through, but from a practical point of view
this would show little relevance to the real-world issues that masking is trying
to solve in the first place.

Sums of uniforms. Our solution is to pick a distribution that has Gaussian-
style properties, but is easier to sample securely on embedded devices. As it
turns out, sampling r as a sum of uniform variates (over a small set) produces
remarkably Gaussian-like distributions, which is unsurprising and a straightfor-
ward consequence of the central limit theorem. Unfortunately, standard Rényi
divergence arguments fail for these distributions since they have finite support.

We resolve this analytical issue by introducing the smooth Rényi divergence,
a more robust generalization of the Rényi divergence that is able to provide

4

cryptographically useful statements about sums of uniform distributions. We
define it as a simple combination of the statistical distance and the Rényi di-
vergence. This generalization achieves the best of both worlds: the robustness of
the statistical distance and the power of the Rényi divergence.

Probing-resilient sampling via AddRepNoise. Now that we have identified
a suitable distribution (that is, sum of uniforms) for r, the final step is to sample
it in a way that is resilient to 𝑡-probing adversaries. A naive approach would
be to sample in parallel each share r𝑖 of ⟦r⟧ as the sum of rep small uniform
variates, so that r is the sum of 𝑑 · rep small uniform variates. However, a probing
adversary is allowed to probe 𝑡 ≤ 𝑑 − 1 individual shares r𝑖. This would reduce
the standard deviation of the conditional distribution of r by a factor

√
𝑑, and

lead to worse parameters.
We resolve this by proposing a new algorithm, called AddRepNoise, which

interleaves (a) parallel generation of individual noises and (b) refreshing the
masked vector, and repeats this rep times. We can formally prove that a 𝑡-
probing adversary only learns 𝑡 individual uniform variates, so that the standard
deviation of r conditioned to these variates is the sum of 𝑑 · rep − 𝑑 + 1 uniform
variates, which allows to prove security with a minimal loss in tightness.

1.2 Overview of the Security Proof

We recall that a high-level description of Raccoon is given in Section 1.1. Now,
in a masked form, the secret is shared as s =

∑
𝑖∈[𝑑] s𝑖where the coefficients of the

vectors s𝑖 are sampled in a short interval. This is a deliberate choice of Raccoon
that allows good sampling performance.

At first sight, if the s𝑖 are safely manipulated in the signature algorithm and
never recombined, the masking security seems guaranteed as the exact value
of s cannot be recombined. However, if an adversary probes 𝑑 − 1 shares of s𝑖,
say {s0, · · · , s𝑑−2}, he can compute vk′ = vk − [A I]∑𝑑−2

𝑖=0 ·s𝑖 = [A I] s𝑑−1. Key
recovery is significantly easier as the updated secret is now from a narrower
distribution. Hence, while the exact value of s is inaccessible, the knowledge
of the probes combined with the knowledge of the public key can lead to a
simpler key recovery. This aspect makes a link between two families of proofs
that are typically separated in other works: the black-box game-based EUF-CMA
proofs and the simulation proofs of masking. The former quantifies the advantage
of a black-box attacker and provides a security statement conditioned to the
hardness of well-defined mathematical problems (like LWE). The latter provides
a statistical statement showing that any probing attacker limited to 𝑑−1 probes
have no statistical advantage to recover the sensitive information.

To prove the security of Raccoon, it is important to link these two notions.
For that, we detail and formalize the probing security from a game-base perspec-
tive, i.e. with well-defined simulators and reuse the notion of probing EUF-CMA
provided in [BBE+18]. Such a notion has been defined but it was not formally
used in a game-based proof before.

5

𝑡-probing
EUF-CMA
(Figure 3)

Game 1
(Figure 8)

Game 2
(Figure 9)

Game 3
(Figure 10) EUF-CMA

{Self-target
MSIS} +
MLWE

KeyGen
Sign

Verify

KeyGenER
SignER
Verify

KeyGenℒ
Signℒ
Verify

KeyGenℒ
Signℒ
Verify

KeyGenSmall

SignSmall

VerifySmall

Theorem 1
(Rewriting)

Theorem 1
(NIU)

Theorem 1
(Rewriting) Theorem 1

Theorem 3 (w/
smooth Rényi)

O O O O O

Fig. 1: Proof overview. Jump 1 consists in moving randomness to inputs as per
Definition 7. Jump 2 uses Lemma 5 to move all probes to inputs. Jump 3 is a
simple rewriting step. Jump 4 is a black-box reduction to a simpler unmasked
signature Small Raccoon. Jump 5 is the security proof of Small Racoon. O denote
access to an oracle to the corresponding algorithm.

The main contribution of this paper is a proof of the probing EUF-CMA
security of Raccoon. It will consist in several steps.
1. Non-uniform masks and sNIU: First, one needs to handle the sensitive

small uniforms that are deviating from the classical ISW model [ISW03] and
other masking proof techniques [BBD+16]. For that, all the small uniforms
will not be considered as a sharing of a secret value but as several random
coins provided in input. The notion of sNIU introduced in [EEN+24] (detailed
later on in the paper) will come handy. That way, we will be able to prove
the masking security of the key generation and signature algorithm when
the small uniforms are provided as inputs in Section 6.

2. Reduction from t-probing EUF-CMA to standard EUF-CMA: Next,
we will use this probe simulation property offered by the NIU model (cf.
Lemma 5) as part of a game based proof in the probing-EUF-CMA security
model. Through a sequence of games, we prove that the probing-EUF-CMA
security of Raccoon reduces to the black-box-EUF-CMA of a different ver-
sion of Raccoon with smaller noise distributions, called small Raccoon. This
reduction lets us include the probing adversary in the attack and reduce to
a standard (non-probing) EUF-CMA adversary. This is proven in Section 7.

3. Unforgeability and smooth Rényi divergence: Finally, the proof con-
cludes with the black-box security of small Raccoon. Such a proof is close
to existing EUF-CMA proofs of signatures following the Fiat–Shamir with
aborts framework with a significative difference. To allow a complete end-
to-end proof, we avoid any heuristic assessments and introduce the notion
of smooth Rényi divergence for obtaining provable and tighter parameters.
This proof is presented in Section 7.3.

In Section 8, we instantiate the parameters to validate our proof and confirm
that the current NIST submission is secure.

6

1.3 Related works

SCA against Dilithium. Several side-channel attacks against post-quantum
schemes have been published. For concision, we only mention those related to
Dilithium, which shares similarities with Raccoon. Since its initial publication, a
string of increasingly practical side-channel attacks have been proposed against
unprotected implementations of Dilithium: see for example [FDK20], [KAA21],
[MUTS22], [BVC+23], [SLKG23], [BAE+23], [WNGD23].

Masking lattice schemes. The formal study of masking lattice-based sig-
natures has been initiated by Barthe et al. [BBE+18], which studied the GLP
signature. Since then, BLISS [BBE+19] and qTESLA [GR19] have also been
studied from a masking perspective. Masked implementations of Dilithium have
been proposed in [MGTF19], [ABC+23], [CGTZ23].

Masking-friendly signatures. A few masking-friendly signatures have been
proposed in the past two years.

– Mitaka. Espitau et al. [EFG+22] proposed the Mitaka scheme, a masking-
friendly variant of Falcon. A flaw in the security proof of Mitaka, as well as
a practical attack in the 𝑡-probing model, was later demonstrated by Prest
[Pre23].

– IEEE SP Raccoon. At IEEE S&P 2023, del Pino et al. [dPPRS23] presented
a lattice-based masking-friendly signature, also called Raccoon. Our scheme
is a conceptual descendent of the scheme from [dPPRS23], with significant
improvements. While both versions of Raccoon are Fiat-Shamir lattice-based
signatures, the security proof of [dPPRS23] relies on several heuristic argu-
ments, and the scheme itself is less compact than ours due to the use of a
variant of uniform secret LWR. In comparison, our design is more stream-
lined, more compact, relies on standard assumptions and has a formal secu-
rity proof.

– Plover. Since the original publication of Raccoon as a NIST candidate [dEK+23],
Esgin et al. [EEN+24] have proposed Plover, a signature scheme heavily in-
spired from our scheme, including the use of AddRepNoise. The key insight
of Plover is to realize that our techniques are not limited to Fiat-Shamir
signatures, and can also be applied in a hash-then-sign setting. Conversely,
[EEN+24] introduced the NIU notion, a useful abstraction that we re-use in
our analysis.

2 Preliminaries

We provide the minimal set of preparation. We refer the readers to the full
version for more details. First, let us prepare some notations. We note N the
set of non-negative integers, including zero. Given 𝑛 ∈ N, we denote by [𝑛]
the set {0, 1, . . . , 𝑛 − 1}. Let 𝑓 : 𝑋 → 𝑌 be a function, and 𝑥 ∈ 𝑋. When 𝑓 is
deterministic, we use the notation 𝑦 := 𝑓 (𝑥) to indicate that we assign the output

7

of 𝑓 (𝑥) to 𝑦. When 𝑓 is randomized, we instead use the notation 𝑦 ← 𝑓 (𝑥). From
a programming viewpoint, both of these notations indicate an assignment of the
result to the variable on the left. Given a probability distribution D over 𝑌 , we
note 𝑦 ← D to express that 𝑦 ∈ 𝑌 is sampled from D.

2.1 Hardness Assumptions

The security of Raccoon is based on the Module Learning with Errors (MLWE)
and Module Short Integer Solutions (MSIS) assumptions. More precisely, we rely
on the Self-Target MSIS assumption (SelfTargetMSIS). This variant of MSIS,
is defined with respect to a hash function modeled as a random oracle. This
assumption also underlies the security of Dilithium.

2.2 Masking Preliminaries

We consider all operations and variables used in algorithms to be over the scalar
ring R𝑞 (i.e. we consider that basic operations are done directly on polynomials
in R𝑞), this entails that we consider that probes leak full polynomials in R𝑞

and not bits or even coefficients (leading to a stronger attacker model). An
algorithm is defined as a sequence of gadget calls, each gadget being a sequence
of (probabilistic or deterministic) assignments of expressions to local variables.

Well-formed gadgets. We say a gadget is well-formed if it is written in SSA
(single static assignment) form, i.e. if its scalar variables appear at most once on
the left-hand side of an assignment, and if all assignments are three-address code
instructions, i.e. of the form 𝑎 = 𝑏∗𝑐 with ∗ an operator. These restrictions ensure
that all intermediate values are captured by local variables at some point in the
code. An algorithm is well formed if in all gadget calls b = 𝐺 (x1, . . . , x𝑘) the
variables b, x1, . . . , x𝑘 are pairwise disjoint. While some algorithms we provide
are not well formed (e.g., Algorithms 1 and 2), it is clear that this can be easily
remedied by indexing variables and adding new local variables.

We use the notation ⟦x⟧ = (x𝑖)𝑖∈[𝑑] to denote a tuple of 𝑑 values in R𝑞, which
implicitly defines the value x =

∑𝑑−1
0 x𝑖 ∈ R𝑞. This notation is used to express

that the secret value x is shared as 𝑑 additive shares as the encoding ⟦x⟧.

Variables’ values and names. We will distinguish variables (designated by a
binary string representing their name) from the values they take (in the scalar
ring R𝑞), all objects pertaining to variables (singular variables, vectors, sets,
etc...) will have a name with a bar (e.g. 𝑥 ∈ {0, 1}∗, V̄ ⊂ {0, 1}∗), while the
corresponding value will not (e.g. 𝑥 ∈ R𝑞).

For a gadget 𝐺 we define the local variables of 𝐺 as V̄𝐺 ⊂ {0, 1}∗ (noted V̄
when the gadget is clear from the context), since all variables are assigned only
once we can match the position of a variable with its name. For a program 𝑃 with
input scalar variables (𝑎1, . . . , 𝑎𝑁) that calls the gadgets 𝐺1, . . . , 𝐺𝑘 , (with 𝑁, 𝑘 ∈

8

N), we will consider the set of variables V̄𝑃 = {𝑎1, . . . , 𝑎𝑁 }
⊎ V̄𝐺1

⊎
. . .

⊎ V̄𝐺𝑘

(where the local variables of 𝐺𝑖 are additionally labelled with 𝑖 to differentiate
between gadgets and

⊎
is the disjoint union). Note that since all gadgets are

written in three-address code SSA form, all intermediate computations and out-
put variables are at some point stored locally in a uniquely defined local variable
𝑣 ∈ V̄𝑃. We thus define the set of all possible probes as the set V̄𝑃 of all local
variables as well as the input variables.

Remark 1. We will consider that a program 𝑃 always outputs all unmasked
values it computes even if they are not explicitly returned by 𝑃.

Definition 1 (Probes). For a well-formed program 𝑃 with variables V̄𝑃 and
input variables 𝑎1, . . . , 𝑎𝑁 , a set of probes is a set ℐ̄ ⊂ V̄𝑃. For any set ℐ̄ ⊂ V̄𝑃

and any scalars X = (𝑎1, . . . , 𝑎𝑁) we will denote as ExecObs(𝑃, ℐ̄,X) the joint
distribution of the (masked and unmasked) outputs of 𝑃(𝑎1, . . . , 𝑎𝑁) and of all
the values taken by the variables in ℐ̄. In particular for

(𝑜𝑢𝑡masked, 𝑜𝑢𝑡unmasked,ℒ) ← ExecObs(𝑃, ℐ̄,X),

𝑜𝑢𝑡masked (resp. 𝑜𝑢𝑡unmasked) is the masked (resp. unmasked) output of 𝑃(𝑎1, . . . , 𝑎𝑁)
for some internal random coins and ℒ is the value taken by the variables in ℐ̄

for these random coins.

Probing model. We recall standard non-interference results from [BBD+16].

Definition 2 (Perfect simulatability, reformulation of [BBD+16]). Let
ℐ̄ be a set of probes of a gadget G with input shares X̄. We say that the PPT
simulator (SimIn, 𝑆𝑖𝑚𝑜𝑢𝑡) perfectly simulates the probes ℐ̄ if and only if for
any input values X, SimIn(G, ℐ̄) outputs a subset X̄′ ⊂ X of the input vari-
ables of G, and SimOut(G,X′) (where X′ is the values taken by X at indices
X̄′) outputs a tuple of values such that the marginal distribution of ℒ, for
(𝑜𝑢𝑡masked, 𝑜𝑢𝑡unmasked,ℒ) ← ExecObs(𝑃, ℐ̄,X), and SimOut(G,X′) are identi-
cal.

Definition 3 (Non Interference [BBD+16]). A gadget is said (𝑑 − 1)-non-
interfering (written (𝑑 − 1)-NI for short) iff any set of probes ℐ̄ such that |ℐ̄ | ≤
𝑑−1 can be perfectly simulated (See Definition 2) by a simulator (SimIn, SimOut)
such that SimIn(G, ℐ̄) outputs a set X̄′ of at most 𝑑 − 1 shares of each input.

Definition 4 (Strong Non Interference [BBD+16]). A gadget is said (𝑑 −
1)-strongly-non-interfering (written (𝑑−1)-sNI for short) iff any set ℐ̄ of at most
𝑑 − 1 = 𝑑int + 𝑑out probes, where 𝑑int are made on internal data and 𝑑out are
made on the outputs, can be perfectly simulated by a simulator (SimIn, SimOut)
such that SimIn(G, ℐ̄) outputs a set X̄′ of at most 𝑑int shares of each input.

Lemma 1 (Composability of NI and sNI gadgets [BBE+18]). A well-
formed algorithm is NI if all of its gadgets are NI or sNI and each sharing is used
at most once as input of a non-sNI gadget. Moreover, a well-formed algorithm is
sNI if it is NI and its output sharings are issued from a sNI gadget.

9

Lastly, in this paper, the masking order is fixed at 𝑑 − 1 where 𝑑 is the number
of shares. For simplicity, we omit the 𝑑 − 1 when referring to NI/sNI properties.

2.3 Sum of Uniforms

Given a distribution D of support included in an additive group, we note [𝑇] ·
D the convolution of 𝑇 identical copies of D; in other words, [𝑇] · D is the
distribution of the sum of 𝑇 independent random variables, each being sampled
from D. Given integers 𝑢, 𝑇 > 0, and if we note U(𝑆) the uniform distribution
over a finite 𝑆, we note:

SU(𝑢, 𝑇) = [𝑇] · U({−2𝑢−1, . . . , 2𝑢−1 − 1}).

The acronym SU stands for “sum of uniforms”. This class of distributions is

−64 0 56

𝑇 = 1
𝑇 = 2
𝑇 = 4
𝑇 = 8

Fig. 2: The distribution SU(4, 𝑇), for 𝑇 ∈ {1, 2, 4, 8}

illustrated in Figure 2. This distribution is highly desirable for our purposes,
since for 𝑇 ≥ 4 it verifies statistical properties in the same way as Gaussians do.
However, unlike Gaussians, they are straightforward to sample in constant-time
and without requiring tables or elaborate mathematical machinery. This makes
them adequate for Raccoon. Finally, we note RSU(𝑢, 1) the distribution over R
obtained by sampling each integer coefficient of 𝑎 ∈ R according to SU(𝑢, 1), and
outputting 𝑎. More details about sums of uniforms can be found the full version
of this paper.

3 The Raccoon Signature Scheme

In this section, we present our masking-friendly signature scheme called Rac-
coon. We describe the key generation (Algorithm 1), signing (Algorithm 2) and
verification (Algorithm 3). Key generation and signing are always performed in
a masked manner; when 𝑑 = 1, the algorithmic descriptions remain valid but the
algorithms are, in effect, unmasked.

We reference relevant variables and parameters in Table 1.

10

Parameter Explanation
(R𝑞 , 𝑛) Polynomial ring R𝑞 = Z[𝑋]/(𝑞, 𝑋𝑛 + 1)
(𝑘, ℓ) Dimension of public matrix A ∈ R𝑘×ℓ

𝑞
𝑑 Number of shares used, corresponding to a masking order 𝑑 − 1

RSU(𝑎, 𝑏) Sum of 𝑎 polynomials with coefficients uniform in {−2𝑢−1, . . . , 2𝑢−1 − 1}
𝑢t, 𝑢w Parameter and repetition rate used for the sum of uniform in

rep the secret/signature s← RSUℓ (𝑢t, rep), r← RSUℓ (𝑢w, rep)
𝜈t Amount of bit dropping performed on verification key
𝜈w Amount of bit dropping performed on (aggregated) commitment

(𝑞t, 𝑞w) Rounded moduli satisfying (𝑞t, 𝑞w) := (⌊𝑞/2𝜈t⌋, ⌊𝑞/2𝜈w ⌋)
(C, 𝜔) Challenge set {𝑐 ∈ R𝑞 | ∥𝑐∥∞ = 1 ∧ ∥𝑐∥1 = 𝜔} s.t. |C| ≥ 22𝜅

(𝐵2, 𝐵∞) Two-norm and infinity-norm bounds on the signature
Table 1: Overview of parameters used in the Raccoon signature.

3.1 Key Generation

Masked key generation process is described by Algorithm 1. At a high-level,
KeyGen generates 𝑑-sharings (⟦s⟧, ⟦e⟧) of small errors (s, e), computes the ver-
ification key as an LWE sample (A, t = A · s + e), and rounds t for efficiency.
A key technique is that ⟦s⟧, ⟦e⟧ are generated in Lines 4 and 6 using our novel
algorithm AddRepNoise (Algorithm 5).

Algorithm 1 KeyGen(∅) → (vk, sk)
Output: Keypair vk, sk
1: seed← {0, 1}𝜅 ▷ 𝜅-bit random seed for A.
2: A := ExpandA(seed) ▷ Similar to ExpandA in Dilithium. A ∈ R𝑘×ℓ

𝑞 .
3: ⟦s⟧ ← ℓ × ZeroEncoding(𝑑) ▷ Masked zero vector ⟦s⟧ ∈ (Rℓ𝑞)𝑑 . Algorithm 8.
4: ⟦s⟧ ← AddRepNoise(⟦s⟧, 𝑢t, rep) ▷ Generate the secret distribution.

Algorithm 5.
5: ⟦t⟧ := A · ⟦s⟧ ▷ Compute masked product ⟦t⟧ ∈ (R𝑘

𝑞)𝑑 .
6: ⟦t⟧ ← AddRepNoise(⟦t⟧, 𝑢t, rep) ▷ Add masked noise to ⟦t⟧. Algorithm 5.
7: t := Decode(⟦t⟧) ▷ Collapse t ∈ R𝑘

𝑞 . Algorithm 6.
8: t := ⌊t⌉𝜈t ▷ Rounding and right-shift to modulus 𝑞t = ⌊𝑞/2𝜈t⌋.
9: return (vk := (seed, t), sk := (vk, ⟦s⟧)) ▷ Return serialized key pair.

3.2 Signing Procedure

The masked signing process is described by Algorithm 2. This signing procedure
is similar to the “Lyubashevskys Signature Without Aborts” in [ASY22, Fig.
2]. Again, the use of AddRepNoise is crucial in this procedure. The challenge
computation is divided in two parts, first a 2𝜅 bitstring is computed using the
hash function ChalHash, then this bitstring is mapped to a ternary polynomial
with fixed hamming weight using ChalPoly. As in previous works this distinction
is made for ease of implementation and storage.

11

Algorithm 2 Sign(⟦sk⟧,msg) → sig
Input: Secret signing key sk = (vk, ⟦s⟧), message to be signed msg ∈ {0, 1}∗.
Output: Signature sig = (𝑐hash, h, z) of msg under sk.
1: 𝜇 := H(H(vk)∥msg) ▷ Bind vk with msg to form 𝜇 ∈ {0, 1}2𝜅 .
2: A := ExpandA(seed) ▷ Similar to ExpandA in Dilithium. A ∈ R𝑘×ℓ

𝑞 .
3: ⟦r⟧ ← ℓ × ZeroEncoding(𝑑) ▷ Masked zero vector ⟦r⟧ ∈ (Rℓ𝑞)𝑑 . Algorithm 8.
4: ⟦r⟧ ← AddRepNoise(⟦r⟧, 𝑢w, rep) ▷ Add masked noise to ⟦r⟧. Algorithm 5.
5: ⟦w⟧ := A · ⟦r⟧ ▷ Compute masked product ⟦w⟧ ∈ (R𝑘

𝑞)𝑑 .
6: ⟦w⟧ ← AddRepNoise(⟦w⟧, 𝑢w, rep) ▷ Add masked noise to ⟦w⟧. Algorithm 5.
7: w := Decode(⟦w⟧) ▷ Collapse LWE commitment w. Algorithm 6.
8: w := ⌊w⌉𝜈w ▷ Rounding and right-shift to modulus 𝑞w = ⌊𝑞/2𝜈w ⌋.
9: 𝑐hash := ChalHash(w, 𝜇) ▷ Map w and 𝜇 to 𝑐hash ∈ {0, 1}2𝜅 .

10: 𝑐poly := ChalPoly(𝑐hash) ▷ Map 𝑐hash to 𝑐poly ∈ C.
11: ⟦s⟧ ← Refresh(⟦s⟧) ▷ Refresh ⟦s⟧ before re-use. Algorithm 7.
12: ⟦r⟧ ← Refresh(⟦r⟧) ▷ Refresh ⟦r⟧ before re-use. Algorithm 7.
13: ⟦z⟧ := 𝑐poly · ⟦s⟧ + ⟦r⟧ ▷ Masked response ⟦z⟧ ∈ (Rℓ𝑞)𝑑 .
14: ⟦z⟧ ← Refresh(⟦z⟧) ▷ Refresh ⟦z⟧ before collapsing it. Algorithm 7.
15: z := Decode(⟦z⟧) ▷ Collapse into response z ∈ Rℓ𝑞 . Algorithm 6.
16: y := A · z − 2𝜈t · 𝑐poly · t ▷ “Noisy” LWE commitment.
17: h := w − ⌊y⌉𝜈w ▷ Compute hint h ∈ R𝑘

𝑞𝑤 . Subtraction mod 𝑞w.
18: sig := (𝑐hash, h, z)
19: if {CheckBounds(sig) = FAIL} goto Line 3 ▷ Sanity check on the signature.

Algorithm 4.
20: return sig ▷ Return encoded signature triplet.

3.3 Verification Procedure

Algorithm 3 describes the signature verification process. Signature verification
is not masked, and its parameters are independent of the number of shares 𝑑
used when creating the signature. As is usual in lattice signatures, verification
performs a bound check and an equality check.

Algorithm 3 Verify(sig,msg, vk) → {OK or FAIL}
Input: Signature sig = (𝑐hash, h, z), message msg ∈ {0, 1}∗, public key vk = (seed, t).
Output: Signature validity: OK (accept) or FAIL (reject).
1: if CheckBounds(sig) = FAIL return FAIL ▷ Norms check. Algorithm 4.
2: 𝜇 := H(H(vk)∥msg) ; A := ExpandA(seed)
3: 𝑐poly := ChalPoly(𝑐hash) ▷ Map 𝑐hash to 𝑐poly ∈ C.
4: y := A · z − 2𝜈t · 𝑐poly · t ▷ Scale t from Z𝑞t to Z𝑞 and recompute the commitment.
5: w′ := ⌊y⌉𝜈w + h ▷ Adjust the LWE commitment with hint (mod 𝑞w).
6: 𝑐′hash := ChalHash (w′, 𝜇) ▷ Recompute 𝑐′hash ∈ {0, 1}

2𝜅 .
7: if 𝑐hash ≠ 𝑐′hash return FAIL ▷ Check commitment.
8: return OK ▷ Signature is accepted.

12

It is easy to check that the equation of line 7 verifies by construction when
the signature algorithm is run honestly, we will fix the bounds 𝐵∞ and 𝐵2 such
that honest signatures verify with overwhelming probability (this is necessary
for the reduction of Section 7.2 to go through).

3.4 Helper Algorithms

The following are algorithms used within our key generation (Algorithm 1), sign-
ing (Algorithm 2) and verification (Algorithm 3). The algorithm AddRepNoise
(Algorithm 5) is the most interesting one, which we come back later when dis-
cussing probing security.

Checking Bounds. The function CheckBounds (Algorithm 4) is used to check
the norm bounds and encoding soundness of signatures by both the verification
function (Algorithm 3), but also by the signing function (Algorithm 2). Note that
unlike rejection, CheckBounds is used to enforce the zero-knowledge property, and
therefore it does need to be masked. Rather, it detects signatures that are a bit
too large. Note that CheckBounds could be removed entirely at the cost of a
slight increase in signature size (and therefore a slight decrease in security).

Algorithm 4 CheckBounds(sig) → {OK or FAIL}
Input: Signature sig = (𝑐hash, h, z).
Output: Format validity check OK or FAIL.
1: if (∥(z, 2𝜈w · h)∥∞ > 𝐵∞) or (∥(z, 2𝜈w · h)∥2 > 𝐵2) return FAIL else return OK

Error Distributions. AddRepNoise (Algorithm 5) implements the Sum of Uni-
forms (SU) distribution SU(𝑢, 𝑑 · rep) (Section 2.3) in a masked implementation.
AddRepNoise interleaves noise additions and refresh operations; more precisely,
for each (masked) coefficient ⟦𝑎⟧ of ⟦v⟧, small uniform noise is added to each
share of ⟦𝑎⟧, then ⟦𝑎⟧ is refreshed, and this operation is repeated rep times. The
security properties of AddRepNoise is analyzed in Section 6.2.

Challenge Computation. As in Dilithium, the challenge computation is split
in two subroutines: ChalHash computes a hash digest, and ChalPoly expands it
into a challenge polynomial 𝑐poly that is (pseudo-randomly) uniform in the set
C = {𝑐 ∈ R, ∥𝑐∥1 = 𝜔}. These functions do not need to be masked.

Refresh and Decoding Gadgets. Lastly, we recall some useful gadgets.Refresh
(Algorithm 7) generates a fresh 𝑑-sharing of a value in R𝑞, or “refresh” the 𝑑-
sharing. This operation is important for security against 𝑡-probing adversaries.
Refresh uses ZeroEncoding (Algorithm 8) as a subroutine. Both algorithms per-
form 𝑂 (𝑑 log 𝑑) basic operations over R𝑞 and require 𝑂 (𝑑 log(𝑑) log(𝑞)) bits

13

Algorithm 5 AddRepNoise(⟦v⟧, 𝑢, rep) → ⟦v⟧
Input: Masked vector ⟦v⟧ = (v 𝑗) 𝑗∈[𝑑] = (𝑣𝑖, 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑] .
Input: Bit size (distribution parameter) 𝑢.
Input: Global repetition count parameter rep.
Output: Updated ⟦v⟧ with SU(𝑢, 𝑑 · rep) distribution added to each coefficient of v.
1: for 𝑖 ∈ [len(v)] do ▷ Vector index.
2: for 𝑖rep ∈ [rep] do ▷ Repetition index.
3: for 𝑗 ∈ [𝑑] do ▷ Share index.
4: 𝜌 ← RSU(𝑢, 1) ▷ uniform sample of 𝑢 bits
5: 𝑣𝑖, 𝑗 ← 𝑣𝑖, 𝑗 + 𝜌 ▷ Add small uniform to the polynomial.
6: ⟦v𝑖⟧ ← Refresh(⟦v𝑖⟧) ▷ Refresh polynomial on each repeat.
7: return ⟦v⟧

of entropy. While we present ZeroEncoding as a recursive algorithm, it is easy
to see that it can be computed in-place and its memory requirement is 𝑂 (𝑑).
Remark that our ZeroEncoding algorithm entails that the number of shares 𝑑
is a power of 2, as the rest of our algorithms are agnostic to this property we
could use a ZeroEncoding that produces a more fine-grained number of shares to
obtain different parameters (e.g. by using Algorithm 8 and collapsing some of
the shares).

We describe in Algorithm 6 a Decode gadget that takes ⟦x⟧ = (x𝑖)𝑖∈[𝑡+1] as in-
put, refreshes it with Algorithm 7, then computes the sum x0 + · · · +x𝑑−1 mod 𝑞.
In practice, when the decoding gadget is already preceded by a refresh gad-
get, one of them is omitted. Decode is similar to the algorithm “FullAdd” from
[BBE+18, Alg. 16]. Note that since the underlying refresh is not a linear combi-
nation of 𝑑 +1 refresh algorithms as in [BBE+18, Alg. 16], the security argument
is different. One need to argue that Decode is free-SNI [CS21, Def. 10]. This has
been proved in [BCRT23, Cor. 5]. Next, one need to show that it implies NIo
security using [CGMZ23, Cor. 1].4

4 Smooth Rényi Divergence and Useful Bounds

Raccoon’s core design choice is using the sum of uniforms distributions as op-
posed to the discrete Gaussian distributions. From a practical point of view,
the sum of uniforms distribution is a much simpler distribution to mask and
implement. On the other hand, from a theoretical point of view, it poses more
challenges, as there are far fewer established statistical guarantees usable in
cryptography. Notably, since the sum of uniforms distribution only has finite
support, a standard proof technique used in lattice-based cryptography relying
on the Rényi divergence breaks down. To this end, we generalize the Rényi diver-
gence and prepare useful statistical bounds on the sum of uniforms distribution.
4 We warmly thank Katharina Boudgoust, Loïc Demange, Laurent Imbert, Loïc Ma-

sure, Camille Mutschler and Thomas Roche for finding the issue and suggesting the
correct arguments.

14

Algorithm 6 Decode(⟦𝑥⟧) → 𝑥

Input: 𝑑-sharing ⟦𝑥⟧ = (𝑥𝑖)𝑖 of 𝑥 ∈ R𝑞
Output: The clear value 𝑥 ∈ R𝑞
1: ⟦𝑥⟧ ← Refresh(⟦𝑥⟧)
2: return 𝑥 :=

∑
𝑖∈[𝑑] 𝑥𝑖

Algorithm 7 Refresh(⟦𝑥⟧) → ⟦𝑥⟧′

Input: A 𝑑-sharing ⟦𝑥⟧ of 𝑥 ∈ R𝑞
Output: A fresh 𝑑-sharing ⟦𝑥⟧ of 𝑥
1: ⟦𝑧⟧ ← ZeroEncoding(𝑑)
2: return ⟦𝑥⟧′ := ⟦𝑥⟧ + ⟦𝑧⟧

Algorithm 8 ZeroEncoding(𝑑) → ⟦𝑧⟧𝑑
Input: A power-of-two integer 𝑑, a ring R𝑞
Output: A uniform 𝑑-sharing ⟦𝑧⟧ ∈ R𝑑

𝑞 of 0 ∈ R𝑞
1: if 𝑑 = 1 then
2: return ⟦𝑧⟧1 := (0) ▷ There is only one way to encode zero into 1 share.
3: ⟦𝑧1⟧𝑑/2 ← ZeroEncoding(𝑑/2) ▷ Recursively obtain left side.
4: ⟦𝑧2⟧𝑑/2 ← ZeroEncoding(𝑑/2) ▷ Recursively obtain right side.

5: ⟦𝑟⟧𝑑/2
𝑀←− R𝑑/2

𝑞 ▷ Sampled using a Mask Random Generator (MRG).
6: ⟦𝑧1⟧𝑑/2 := ⟦𝑧1⟧𝑑/2 + ⟦𝑟⟧𝑑/2 ▷ Add to the left side.
7: ⟦𝑧2⟧𝑑/2 := ⟦𝑧2⟧𝑑/2 − ⟦𝑟⟧𝑑/2 ▷ Subtract from the right side.
8: return ⟦𝑧⟧𝑑 :=

(
⟦𝑧1⟧𝑑/2 ∥ ⟦𝑧2⟧𝑑/2

)
▷ Concatenate the two.

4.1 Smooth Rényi Divergence

The usual Rényi divergence is undefined for distributions 𝑃,𝑄 of supports not
included in one another. For example, this happens when 𝑃 = SU(𝑢, 𝑇) and 𝑄 =
𝑃 + 𝑎, for any 𝑎 ≠ 0. The smooth Rényi divergence (Definition 5) addresses these
limitations by combining the statistical distance and the Rényi divergence. The
statistical distance component captures problematic sets (typically, distribution
tails), while the Rényi divergence component benefits from the same efficiency
as the usual Rényi divergence over unproblematic parts of the supports.

Definition 5 (Smooth Rényi divergence). Let 𝜖 ≥ 0 and 1 < 𝛼 < ∞. Let
𝑃,𝑄 be two distributions of countable supports Supp(𝑃) ⊆ Supp(𝑄) = 𝑋. The
smooth Rényi divergence of parameters (𝛼, 𝜖) between 𝑃 and 𝑄 is defined as:

𝑅𝜖
𝛼 (𝑃;𝑄) = min

ΔSD (𝑃′;𝑃)≤ 𝜖
ΔSD (𝑄′;𝑄)≤ 𝜖

𝑅𝛼 (𝑃′;𝑄′), (1)

where ΔSD and 𝑅𝛼 denote the statistical distance and the Rényi divergence, re-
spectively:

ΔSD (𝑃;𝑄) = 1
2

∑
𝑥∈𝑋
|𝑃(𝑥) −𝑄(𝑥) | , 𝑅𝛼 (𝑃;𝑄) =

(∑
𝑥∈𝑋

𝑃(𝑥)𝛼
𝑄(𝑥)𝛼−1

) 1
𝛼−1

.

While [DFPS22] has also provided a definition of smooth Rényi divergence, we
argue that our definition is more natural. Indeed, it satisfies variations of prop-

15

erties that are expected from classical Rényi divergences. These are listed in
Lemma 2.

Tools for smooth Rényi divergence. We review some basic properties of the
smooth Rényi divergence.

Lemma 2. The smooth Rényi divergence satisfies the following properties.
1. Data processing inequality. Let 𝑃,𝑄 be two distributions, let 𝜖 ≥ 0, and
𝑔 be a randomized function over (a superset of) Supp(𝑃) ∪ Supp(𝑄).

𝑅𝜖
𝛼 (𝑔(𝑃); 𝑔(𝑄)) ≤ 𝑅𝜖

𝛼 (𝑃;𝑄). (2)

2. Probability preservation. For any event 𝐸 ⊆ Supp(𝑄):

𝑃(𝐸) ≤ (𝑄(𝐸) + 𝜖) (𝛼−1)/𝛼 · 𝑅𝜖
𝛼 (𝑃;𝑄) + 𝜖 . (3)

3. Tensorization. Let (𝑃𝑖)𝑖∈𝐼 , (𝑄𝑖)𝑖∈𝐼 be two finite families of distributions,
let 𝜖𝑖 ≥ 0 for 𝑖 ∈ 𝐼, and let 𝜖 =

∑
𝑖∈𝐼 𝜖𝑖.

𝑅𝜖
𝛼

(∏
𝑖∈𝐼

𝑃𝑖;
∏
𝑖∈𝐼

𝑄𝑖

)
≤

∏
𝑖∈𝐼

𝑅𝜖𝑖
𝛼 (𝑃𝑖;𝑄𝑖). (4)

Proof. We recall that ΔSD and (𝑅𝛼
𝛼 − 1) can be cast as 𝑓 -divergences, following

Csiszár’s terminology [Csi63]. Item 1 follows from the data processing inequality
for 𝑓 -divergences. Item 2 is a special case of Item 1. Finally, Item 3 follows from
tensorization properties of the statistical distance and the Rényi divergence. ⊓⊔

4.2 Useful Bounds on Sum of Uniforms

We bound the smooth Rényi divergence between two sums of uniforms, centered
at either 0 or a small offset. This will be a key lemma establishing the hardness
of standard EUF-CMA security of the small Raccoon (cf. Section 7.3). Due to
page limitation, the proof is provided in the full version of this paper.

Lemma 3. Let 𝑇, 𝑢, 𝑁 ∈ N and 𝑐 ∈ Z such that 𝑇 ≥ 4 and 𝑁 = 2𝑢. Let 𝑃 =
SU(𝑢, 𝑇) and 𝑄 the distributions corresponding to shifting the support of 𝑃 by 𝑐.
Let 𝛼 ≥ 2 and 𝜏 > 0, 𝜖 > 0 be such that:
1. 𝛼 |𝑐 | ≤ 𝜏 = 𝑜(𝑁/(𝑇 − 1)) ;
2. 𝜖 = (𝜏+𝑇)

𝑇

𝑁𝑇 𝑇! .
Then:

𝑅𝜖
𝛼 (𝑃;𝑄) ≤

(
1 + 𝛼(𝛼 − 1)

2

(
𝑇𝑐

𝑁

)2
+ 2
𝑇 !

(
𝑇𝛼𝑐

𝑁

)2
+ 𝜖 +𝑂

((
𝑇𝛼𝑐

𝑁

)3
))1/(𝛼−1)

(5)

16

Gap with practice. In practice, Lemma 3 is a bit sub-optimal. Let us note 𝜎2 =
𝑇 (𝑁2−1)

12 the variance of 𝑃 and 𝑇𝑐 = 𝑜(𝑁), which follows from Item 1 above. We
also use the notation 𝑎 ≲ 𝑏 for 𝑎 ≤ 𝑏 + 𝑜(𝑏). Then, Lemma 3 essentially tells
us that log 𝑅𝜖

𝛼 (𝑃;𝑄) ≲ 𝛼
2

(
𝑇𝑐
𝑁

)2 ∼ 𝛼 𝑐2 𝑇3

24 𝜎2 . In comparison, [ASY22, Lemma 2.28]
tells that if 𝑃 is instead a Gaussian of parameter 𝜎, then log 𝑅𝛼 (𝑃;𝑄) ≤ 𝛼 𝑐2

2 𝜎2 .
Thus there is a gap 𝑂 (𝑇3) between Lemma 3 and [ASY22, Lemma 2.28].

One could assume that this gap is caused by a fundamental difference between
Gaussians and sums of uniforms. However we performed extensive experiments
and found that this gap does not exist in practice, i.e., it seems to be an artifact
of our proof. For this reason, we put forward the following conjecture which
ignores this gap and which we use when setting our concrete parameters. Due
to page limitation, we expand upon Conjecture 1 in the full version.

Conjecture 1. Under the conditions of Lemma 3, we have

𝑅𝜖
𝛼 (𝑃;𝑄) ≲ exp

(
𝐶Rényi · 𝛼 · 𝑐2 (1 + 2

𝛼−1)
𝑇 · 𝑁2

)
(6)

for a constant 𝐶Rényi ≈ 6. Therefore, for any 𝑀-dimensional vector c, P = 𝑃𝑀

and Q = c+𝑄𝑀 , and further assuming 𝛼 = 𝜔asymp (1) and 𝑇 = 𝑜(𝛼 |𝑐𝑖 |) for all the
𝑖-th (𝑖 ∈ [𝑀]) entry of c, we have:

𝑅𝜖
𝛼 (P;Q) ≲ exp

(
𝐶Rényi · 𝛼 · ∥c∥22

𝑇 · 𝑁2

)
, (7)

where 𝜖 ≈
𝛼𝑇 ∥c∥𝑇𝑇
𝑁𝑇 𝑇 !

≲
1

√
2 𝜋 𝑇

(
𝛼 𝑒 ∥c∥2
𝑁 𝑇

)𝑇
(8)

and where ∥c∥𝑇 ≤ ∥c∥2 is the 𝐿𝑇 norm.

5 Enhancing NI/sNI for Probing EUF-CMA Security

We first formally define NI security against a probing adversary, the security
model in which Raccoon will later be prove in. We then argue that existing
probing tools/models discussed in Section 2.2 are insufficient to prove EUF-CMA
security and prepare useful tools that may be of independent interest. Our tools
build on the recent techniques developed by [EEN+24] (cf. Section 1.3).

5.1 EUF-CMA Security in the Probing Model

We use the definition of [BBE+18] that captures the fact that no PPT adversary
with access to less than 𝑑−1 probes on KeyGen and Sign should be able to break
EUF-CMA security (i.e., unforgeability). Below, our definition slightly deviates
from theirs as we rely on more generalized (and formal) notion of probes captured
by the function ExecObs (cf. Definition 1).

17

Definition 6. Let 𝑑 ≥ 1 an integer, 𝑄𝑠 be a fixed maximum amount of signature
queries. A signature scheme (KeyGen, Sign,Verify) with an efficient signing key
update algorithm KeyUpdate is EUF-CMA-secure in the (𝑑 − 1)-probing model if
any probabilistic polynomial time adversary has a negligible probability of winning
the game presented in Figure 3.

As in [BBE+18], we assume a KeyUpdate algorithm that refreshes the secret
key between signature queries and cannot be probed by the attacker. This is
performed to avoid attackers probing more than 𝑑 − 1 shares of the secret across
different signature queries. See [BBE+18, Remark 3] for more details.

Adversary Challenger
(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−−→
vk,ℒKeyGen←−−−−−−−−−−

(
vk, sk,ℒKeyGen

)
← ExecObs(KeyGen, ℐ̄KeyGen, 1𝜆)

𝑄𝑠 queries

𝑚(1) , ℐ̄
(1)
Sign−−−−−−−−−−→

sk← KeyUpdate(sk)
sig(1) ,ℒ (1)Sign←−−−−−−−−−−

(
sig(1) ,⊥,ℒ (1)Sign

)
← ExecObs(Sign, ℐ̄ (1)Sign, (sk, 𝑚

(1)))
...

𝑚(𝑄𝑠) , ℐ̄
(𝑄𝑠)
Sign−−−−−−−−−−−−→

sk← KeyUpdate(sk)
sig(𝑄𝑠) ,ℒ (𝑄𝑠)

Sign←−−−−−−−−−−−−−
(
sig(𝑄𝑠) ,⊥,ℒ (𝑄𝑠)

Sign
)
← ExecObs(Sign, ℐ̄ (𝑄𝑠)

Sign , (sk, 𝑚
(𝑄𝑠)))

forgery {
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign | ≤ 𝑑 − 1

Fig. 3: EUF-CMA security game in the 𝑑 − 1-probing model. See Definition 1 for
the definition of ExecObs.

Remark 2 (Standard EUF-CMA security). We note that Definition 6 incorpo-
rates the standard notion of standard EUF-CMA (i.e., 0-probing). For this, we
define KeyUpdate to be the identify function; the restriction that the adversary
can only query an empty set for the set of probes is enforced by the winning
condition.

5.2 Insufficiency of the NI/sNI Models

At first glance, all subroutines of Raccoon can be proven composable in the NI
model. However, careful consideration shows that the NI model does not capture

18

security when the intermediate values are not uniformly distributed and biased
with the knowledge of the public output. Indeed, for example in the KeyGen,
the knowledge of some shares of ⟦s⟧ combined with the knowledge of the public
key vk allows one to decrease the key-recovery security (decreasing the standard
deviation of the short vector in a lattice) as presented in the technical overview
in Section 1.

The gist of the problem when taking the output of an algorithm into account
comes from the fact that the NI model proves that there exists a simulator that
can simulate any set of probes from a subset of the input shared secrets of the
algorithm. However, the aforementioned property does not entail that the distri-
bution of the probes can be simulated when taking into account the output. This
is clearly apparent in Definition 2 where the definition requires SimOut(G,X′)
and ℒ to be identically distributed, but not (𝑜𝑢𝑡unmasked, SimOut(G,X′)) and
(𝑜𝑢𝑡unmasked,ℒ).

non-NIU((⟦v⟧)
1: for 𝑗 ∈ [𝑑] do
2: 𝜌 𝑗 ← RSU(𝑢, 1)
3: 𝑣′𝑗 ← 𝑣 𝑗 + 𝜌 𝑗

NIU((⟦v⟧, (𝜌𝑖)𝑖∈[𝑑])
1: for 𝑗 ∈ [𝑑] do
2: 𝑣′𝑗 ← 𝑣 𝑗 + 𝜌 𝑗

Fig. 4: Example of an algorithm without unshared inputs (left), and its equivalent
where randomnesses are explicitly passed as unshared inputs (right).

To see that the marginal distributions being identical is insufficient we give
a simple example in Figure 4: both algorithms are trivially NI since any probe
𝜌 𝑗 or 𝑣′𝑗 can be simulated by sampling a small uniform and outputting it or
adding it to the corresponding input 𝑣 𝑗 . If we however consider the gadgets of
Figure 4, append a Decode(v′) gadget to them, and output v′, then the NI notion
is insufficient to say anything about the distribution of v′ conditioned on the
values of the probes: a simulator taking as input shares of ⟦v⟧ cannot output
probes that are correlated to the decoded output v′. For example, in gadget
non-NIU, consider the set of probes ℐ̄ =

{
𝑣′1

}
which corresponds to the sum

of 𝑣1 and 𝜌1. A simulator (SimIn, SimOut) can perfectly simulate ℐ̄ by setting
SimIn(non-NIU, ℐ̄) := 𝑣1, and SimOut(non-NIU, 𝑣1) := 𝑣1 + RSU(𝑢, 1). Then the
variable ℒ = 𝑣′1 being probed has the same distribution as SimOut(non-NIU, 𝑣1).
However the distribution of (ℒ, 𝑜𝑢𝑡unmasked) = (𝑣1+ 𝜌1, 𝑣+ 𝜌1+ . . .+ 𝜌𝑑) is clearly
not the same as that of (SimOut(non-NIU, 𝑣1), 𝑜𝑢𝑡unmasked) = (𝑣1 +RSU(𝑢, 1), 𝑣 +
𝜌1 + . . . + 𝜌𝑑).

19

5.3 NI/sNI with Unshared Inputs

To be able to handle cases where the values being probed are correlated with
the output we will modify the relevant gadgets and consider that any correlated
random variables will be considered as inputs. We will formalize this idea with
a model named Non-Interference with Unshared Inputs (NIU) (see Definitions 7
and 8 below), in which we will consider a variant of the algorithm where all
random values that can affect the distribution of the output will be considered
as inputs of the algorithm. While this model is stronger than the NI model, as it
can be used to prove security even in the presence of leakage (see Lemma 5), we
note that once an algorithm 𝑃 has been modified to have its relevant randomness
moved to inputs, the difference with the NI model becomes mostly syntactical
since the new inputs of the algorithm and gadgets can be considered as just an
additional shared secret input.

As an example, see the algorithm NIU in Figure 4 where we parse the random
samples 𝜌𝑖 as inputs rather than local variables. NIU thus takes two tuples of 𝑑
values as input, and can as before be proven NI (where we artificially consider
the tuple (𝜌𝑖)𝑖∈[𝑑] as a shared input). However this time the NI proof does entail
that the joint distribution of the probes and the output is identical to that of the
simulator and output, because the output is a deterministic function of the input.
Using the same set of probes ℐ̄ = 𝑣′1 as before, this time the simulator needs to
use two input values to simulate the probe: SimIn(NIU, ℐ̄) := {𝑣1, 𝜌1}, however
since each input variable is in a different shared input this simulator fits the
definition of 2-NI in Definition 3, and we can set SimOut(NIU, {𝑣1, 𝜌1}) := 𝑣1+𝜌1.
It is obvious that in this case (ℒ, 𝑜𝑢𝑡unmasked) = (𝑣1 + 𝜌1, 𝑣 + 𝜌1 + . . . + 𝜌𝑑) =
(SimOut(NIU, {𝑣1, 𝜌1}), 𝑜𝑢𝑡unmasked).

We will now first formalize the (𝑑 − 1)-NIU notion, introduced in [EEN+24],
in Definitions 7 and 8. Using the formalism of Section 2.2 we can then state and
prove composition properties in Lemma 4, which are straightforward though
never made explicit in [EEN+24]. Finally we can prove the core simulatability
property of Lemma 5 which shows that when passing appropriate random vari-
ables as input NIU is sufficient to simulate the joint distribution of the probes and
outputs of an algorithm. While this property was implicitly used in [EEN+24],
it was actually never proven.

Definition 7 (Non Interference with Unshared input [EEN+24]). Let
𝐺 be a gadget taking two types of inputs:
1. shared inputs X, where all elements in X are 𝑑-tuples of elements in R𝑞

2. unshared input Y, where all elements in Y are tuples (not of fixed size) of
elements in R𝑞

A gadget G with shared and unshared inputs is said (𝑑 − 1)-non-interfering with
unshared inputs (written (𝑑 − 1)-NIU for short) iff any set of probes ℐ̄ such
that |ℐ̄ | ≤ 𝑑 − 1 can be perfectly simulated (See Definition 2) by a simulator
(SimIn, SimOut) such that SimIn(G, ℐ̄) outputs a set X̄′⋃ Ū of at most 𝑑 − 1
shares of each shared input (X̄′) and each unshared input (Ū).

20

Definition 8 (Strong Non Interference with Unshared input [EEN+24]).
A gadget is said (𝑑 − 1)-strongly-non-interfering with unshared inputs(written
(𝑑−1)-sNIU for short) iff any set ℐ̄ of at most 𝑑−1 = 𝑑int+𝑑out probes where 𝑑int
are made on internal data and 𝑑out are made on the outputs can be simulated
as in Definition 7 with 𝑑int instead of 𝑑 − 1.

Since unshared inputs only differ from shared inputs by semantics (the dis-
tinction comes mostly from the fact that they do not represent a secret being
used by the algorithm but internal randomnesses), one can note that if we ig-
nore this distinction, the definitions of NIU and NI are identical. The interesting
property of NIU comes from the fact that first transforming the relevant gadgets
(namely AddRepNoise) to include the randomness as unshared inputs allows NIU
to prove a meaningful statement on the joint distribution of the probes and the
output. A key property we use to prove EUF-CMA in the probing model.

Lemma 4 (Composability of NIU and sNIU gadgets). A well-formed algo-
rithm is sNIU if it is NIU and its output sharings are issued from a sNIU gadget.5

We now give a core lemma to use NIU. In essence the following lemma states
that by passing the relevant randomnesses of a program to inputs, proving NIU
becomes sufficient to prove that probes can be simulated even in the presence of
outputs.

Lemma 5. Let 𝑃 be an algorithm with shared inputs X and unshared inputs
U. If 𝑃 is (𝑑 − 1)-NIU, and the public output of 𝑃 is a deterministic func-
tion of (X,U). Then for any input X and any probes ℐ̄ (with |ℐ̄ | ≤ 𝑑 − 1),
the distribution of (𝑜𝑢𝑡unmasked, SimOut(𝑃, (X′,U′))) and (𝑜𝑢𝑡unmasked,ℒ) over
the randomness U and the random coins of 𝑃 and SimOut are identical, where
(𝑜𝑢𝑡masked, 𝑜𝑢𝑡unmasked,ℒ) ← ExecObs(𝑃, ℐ̄,X) and (X̄′, Ū′) ← SimIn(𝑃, ℐ̄).

Proof. We will fix the input X and not D the distribution from which U is
sampled. ℒ and 𝑜𝑢𝑡unmasked are random variables over the choice of U and
the random coins of 𝑃 which we will note 𝑟𝑐𝑃, and SimOut(𝑃, (X′,U′))) is a
random variable over the choice of U and the random coins of SimOut which
we will note 𝑟𝑐𝑆 (SimOut only uses the randomness in U′ ⊂ U but we can
consider it as a variable of U since U′ is a marginal of U). First we observe that
since the definition of NI and NIU are identical if we simply consider the extra
randomness as another input we have that the marginal distributions of ℒ and
SimOut(𝑃, (X′,U′)) are identical, i.e. for any possible leakage Λ we have:

Pr
U←D,𝑟𝑐𝑃←{0,1}∗

[ℒ(X,U, 𝑟𝑐𝑃) = Λ] = Pr
U←D,𝑟𝑐𝑃←{0,1}∗

[SimOut(X,U, 𝑟𝑐𝑆) = Λ]

5 We thank Katharina Boudgoust, Loïc Demange, Laurent Imbert, Loïc Masure,
Camille Mutschler and Thomas Roche for noting an incorrect statement in a previous
version of this paper.

21

Since the algorithm 𝑃 is deterministic when given (X,U), we have that for any
possible leakage value Λ and output value 𝜃:

Pr
U←D,𝑟𝑐𝑃←{0,1}∗

[ℒ(X,U, 𝑟𝑐𝑃) = Λ, 𝑜𝑢𝑡unmasked (X,U) = 𝜃]

=
∑

U s.t 𝑜𝑢𝑡unmasked (X,U)=𝜃
Pr

𝑟𝑐𝑃←{0,1}∗
[ℒ(X,U, 𝑟𝑐𝑃) = Λ]

=
∑

U s.t 𝑜𝑢𝑡unmasked (X,U)=𝜃
Pr

𝑟𝑐𝑆←{0,1}∗
[SimOut(X,U, 𝑟𝑐𝑆) = Λ]

= Pr
U←D,𝑟𝑐𝑆←{0,1}∗

[SimOut(X,U, 𝑟𝑐𝑆) = Λ, 𝑜𝑢𝑡unmasked (X,U) = 𝜃]

which is the desired result. ⊓⊔

6 NIU Property of Raccoon’s KeyGen and Sign

Before establishing EUF-CMA security of Raccoon in the probing model, we
prove that the KeyGen and Sign algorithms are NIU. Looking ahead, this allows
a reduction to simulate the probes ℒKeyGen and ℒ

(𝑖)
Sign in the EUF-CMA security

game in the probing model (cf. Figure 3).

6.1 Existing Security Properties

Thanks to the composability of the sNI/NIU models, we can focus on the smaller
gadgets comprising the KeyGen and Sign algorithms. Table 2 summarizes the
security properties of the gadgets used in Raccoon, where we can rely on prior
works to establish the security of every gadget, except for AddRepNoise. We refer
to the cited papers for more information about the proofs.

Table 2: Security properties of the known and new gadgets. No security property
is necessary for the other unmasked operations (ExpandA, ChalHash, ChalPoly,
CheckBounds, Computing the hint h).

Name Property Proof reference
×A and Line 13 of Algorithm 2 NI Z𝑞−linear
Refresh (Algorithm 7) sNI [BCPZ16,Mat21,GPRV21]
ZeroEncoding (Algorithm 8) sNI [Mat21]
Decode (Algorithm 6) NI [BCRT23, Cor. 5] and [CGMZ23, Cor. 1]
AddRepNoise (Algorithm 5) sNIU Proved in Section 6.2, Lemma 6

22

6.2 Security Property of the AddRepNoise Gadget

Let us start with an intuition on the role of the Refresh operations in AddRepNoise.
When considering unmasked coefficients, AddRepNoise is functionally equivalent
to performing 𝑎 ← 𝑎+SU(𝑢, 𝑇) for each coefficient 𝑎, for 𝑇 = 𝑑 · rep. The internal
use of Refresh operations does not affect this behavior but is meant to offer some
resilience to probing adversaries.

Without Refresh, a viable strategy would be to probe individual shares of
⟦𝑎⟧ at the start and at the end of AddRepNoise, allowing to learn the sum 𝑏 of
rep · (𝑑 − 1)/2 small uniform errors. The conditional distribution of the additive
noise (conditioned on the 𝑑−1 probed values) is now 𝑏+SU(𝑢, 𝑇 − (𝑑−1) · rep/2).
With Refresh, this strategy is not possible anymore but a probing adversary can
still probe individual errors, which in the end gives out no more than the sum 𝑏
of 𝑑 − 1 small uniform errors. The conditional distribution of the additive noise
(conditioned on the 𝑑 − 1 probed values) is now 𝑏 + SU(𝑢, 𝑇 − (𝑑 − 1)), where the
adversary learns 𝑏 but knows nothing about the realization of SU(𝑢, 𝑇 − (𝑑 −1)).

While AddRepNoise performs operations share by share, the underlying dis-
tributions are not uniform. Short noise values are added together and as stated in
the introduction the knowledge of any intermediate short value biases the a pos-
teriori distribution of the final noise. Hence, one cannot prove that this gadget
is probing secure. We resolve this issue by moving the short noise values as ran-
dom coin inputs of the algorithm, introducing AddRepNoiseER in Algorithm 9, an
instance of AddRepNoise with explicit randomness (ER) for the small uniforms.
Note that the complete set of small uniforms is considered as a single unshared
input. We can now formally show in Lemma 6 that AddRepNoiseER is sNIU. A
similar result was proven in [EEN+24] but our proof strategy is different and
perhaps a bit more formal. Later, these inputs will be handled in the general
composition proof.

Lemma 6. The AddRepNoiseER gadget is (d-1)-sNIU.

Proof. We can represent AddRepNoiseER as a sequential succession of MiniAddRepNoise
and Refresh as presented in Figure 5. To prove the sNIU property, we exhibit
the randomness 𝜌𝑖,𝑖rep , 𝑗 in the input. Let us remark that the randomness in-
volved in Refresh (and thus in ZeroEncoding) are not explicited as the algorithm
is already proved sNI. Hence, AddRepNoiseER is partially derandomized. Our
proof proceeds in two steps; we first study the MiniAddRepNoise sub-gadget,
then AddRepNoiseER.

Step 1: MiniAddRepNoise. We first show that any probe inside MiniAddRepNoise
can be perfectly simulated (see Definition 2) with 𝜌𝑖,𝑖rep , 𝑗 and the input v 𝑗 ,
where (𝑖, 𝑖rep, 𝑗) corresponds to the targeted loop. Indeed, let 𝑝 be a probe inside
MiniAddRepNoise. The description of this probe necessarily includes (𝑖, 𝑖rep, 𝑗) to
specify the involved loop. The intermediate value targeted by 𝑝 can be
1. the randomness 𝜌𝑖,𝑖rep , 𝑗 ,
2. the value 𝑣 𝑗 or 𝑣′𝑗 .

23

⟦v⟧

M
in

iA
dd

Re
pN

oi
se

Re
fre

sh

. . .

M
in

iA
dd

Re
pN

oi
se

Re
fre

sh

. . .

M
in

iA
dd

Re
pN

oi
se

Re
fre

sh

⟦v⟧

(𝜌0,0, 𝑗) 𝑗∈[𝑑] (𝜌𝑖,𝑖rep , 𝑗) 𝑗∈[𝑑] (𝜌len(v) ,rep, 𝑗) 𝑗∈[𝑑]

⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧ ⟦v⟧

Fig. 5: Structure of AddRepNoiseER (using Algorithm 10). A gadget proven sNI is
noted gadget . The gadgets with no proven property are noted gadget .
Single arrows () and double arrows () represent plain and masked values,
respectively.

Algorithm 9 AddRepNoiseER (⟦v⟧, (𝜌𝑖,𝑖rep , 𝑗)) → ⟦v′⟧, w/ partial explicit ran-
domness
Input: Masked vector ⟦v⟧ = (v 𝑗) 𝑗∈[𝑑] = (𝑣𝑖, 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑] .
Input: Randomness (𝜌𝑖,𝑖rep , 𝑗)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑]
Output: Updated ⟦v⟧ with SU(𝑢, 𝑑 · rep) distribution added to each coefficient of v.
1: for (𝑖, 𝑖rep) ∈ [len(v)] × [rep] do ▷ Vector index.
2: for 𝑖rep ∈ [rep] do
3: ⟦v𝑖⟧ ← MiniAddRepNoise(⟦v𝑖⟧, (𝜌𝑖,𝑖rep , 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑])
4: ⟦v𝑖⟧ ← Refresh(⟦v𝑖⟧) ▷ Refresh polynomial on each repeat.
5: return ⟦v⟧

Algorithm 10 MiniAddRepNoise(⟦v⟧, 𝑖rep, (𝜌𝑖,𝑖rep , 𝑗)) → ⟦v′⟧
Input: Masked vector ⟦v′⟧, index 𝑖rep ∈ [rep], randomness (𝜌𝑖,𝑖rep , 𝑗)𝑖∈[len(v)], 𝑗∈[𝑑]
Output: Updated ⟦v⟧.
1: for 𝑗 ∈ [𝑑] do
2: 𝑣′𝑗 ← 𝑣 𝑗 + 𝜌𝑖,𝑖rep , 𝑗

3: return ⟦v′⟧

It is easy to conclude that any of these values can be perfectly simulated from
𝜌𝑖,𝑖rep , 𝑗 and the input v 𝑗 . The only intermediate value that needs both is 𝑣′𝑗 as it
needs 𝜌𝑖,𝑖rep , 𝑗 .

Step 2: AddRepNoiseER. Let us now look at the bigger picture. In this proof, we
will perform a composition proof by propagating the dependency of the inter-
mediate variables to shares of 𝜌𝑖,𝑖rep , 𝑗 and v 𝑗 . Let ℐ̄ be the given set of at most
𝑑 − 1 probes in AddRepNoise. We decompose ℐ̄ as follows.

– Let 𝛿𝑖,𝑖rep
MiniAddRepNoise be the number intermediate variables that are probed

inside the MiniAddRepNoise gadget of the loop with indexes 𝑖, 𝑖rep.
– Let 𝛿𝑖,𝑖rep

Refresh be the number intermediate variables that are probed inside the
Refresh gadget of the loop with indexes 𝑖, 𝑖rep.

24

By definition,

len(v)∑
𝑖=0

rep∑
𝑖rep=0

(
𝛿
𝑖,𝑖rep
MiniAddRepNoise + 𝛿

𝑖,𝑖rep
Refresh

)
≤ 𝑑 − 1. (9)

Going from right to left in Figure 5, we first consider the last Refresh of the
last loop (where 𝑖 = len(v) and 𝑖rep = rep). Thanks to the sNI property of the
last Refresh algorithm, all the 𝛿len(v) ,rep

Refresh probes can be perfectly simulated from
𝛿len(v) ,rep

Refresh shares of v′, which is also the output of the last MiniAddRepNoise. So,
thanks to the above paragraph about MiniAddRepNoise, all the probes from the
last MiniAddRepNoise, can be perfectly simulated from two sets of probes:

– ℐ̄len(v) ,rep defined as the description of at most 𝛿len(v) ,rep
MiniAddRepNoise + 𝛿

len(v) ,rep
Refresh

values of 𝜌len(v) ,rep, 𝑗 (with several different 𝑗 ’s),
– ℐ̄

′
len(v) ,rep defined as the set of to at most 𝛿len(v) ,rep

MiniAddRepNoise + 𝛿
len(v) ,rep
Refresh shares

of v, the input of the last MiniAddRepNoise.
The set of ℐ̄

′
len(v) ,rep can also be seen as probes of the output of the penulti-

mate Refresh. But, thanks to the sNI property of the penultimate Refresh algo-
rithm, they can be simulated independently from the 𝛿len(v)−1,rep−1

Refresh intermediate
variables probed inside the penultimate Refresh algorithm. In conclusion, the
ℐ̄
′
len(v) ,rep probes can be simulated from uniform random.

Applying the same reasoning for all the subsequent loops, the set of ℐ̄ probes
can be perfectly simulated from

– ℐ̄𝑖,𝑖rep defined as the description of at most 𝛿𝑖,𝑖rep
MiniAddRepNoise + 𝛿

𝑖,𝑖rep
Refresh values of

𝜌𝑖,𝑖rep , 𝑗 (with several different 𝑗 ’s),
– ℐ̄

′
0,0 defined as the set of to at most 𝛿0,0

MiniAddRepNoise + 𝛿
0,0
Refresh shares of v, the

input of the AddRepNoiseER.
We define Ū = ℐ̄0,0

⋃ · · ·⋃ ℐ̄len(v) ,rep and X̄′ = ℐ̄
′
0,0. Thanks to Eq. (9) and

Lemma 1, we have shown that AddRepNoiseER is (d-1)-sNIU. ⊓⊔

6.3 Security Property of KeyGen and Sign

Now that AddRepNoiseER is proved, one needs to derive the security of the key
generation and signature algorithms with a composition proof. Let us first intro-
duce KeyGenER and SignER, simple modifications of KeyGen and Sign algorithms
where the small uniform randomness is provided as input. KeyGenER is formally
described in Algorithm 11. The formal description of SignER is deferred to the
appendix (Algorithm 16).

Lemma 7. The algorithm KeyGenER is (𝑑 − 1)-NIU.

Lemma 8. The algorithm SignER is (𝑑 − 1)-NIU.

We now prove Lemma 7. The proof of Lemma 8 proceeds in a similar fashion
and is deferred to Appendix D.

25

Algorithm 11 KeyGenER ((𝜌 (0)𝑖,𝑖rep , 𝑗
), (𝜌 (1)𝑖,𝑖rep , 𝑗

)) → (vk, sk)
▷ KeyGen with explicit randomness for AddRepNoise

Input: Randomness (𝜌 (0)𝑖,𝑖rep , 𝑗
)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑] , (𝜌

(1)
𝑖,𝑖rep , 𝑗

)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑]
Output: Keypair vk, sk
1: seed← {0, 1}𝜅 ; A := ExpandA(seed)
2: ⟦s⟧ ← ℓ × ZeroEncoding(𝑑)
3: ⟦s⟧ ← AddRepNoiseER (⟦s⟧, 𝑢t, rep, (𝜌 (0)𝑖,𝑖rep , 𝑗

)) ▷ Partially derandomized
AddRepNoise.

4: ⟦t⟧ := A · ⟦s⟧
5: ⟦t⟧ ← AddRepNoiseER (⟦t⟧, 𝑢t, rep, (𝜌 (1)𝑖,𝑖rep , 𝑗

)) ▷ Partially derandomized
AddRepNoise.

6: t := Decode(⟦t⟧)
7: t := ⌊t⌉𝜈t
8: return (vk := (seed, t), sk := (vk, ⟦s⟧))

ZeroEncoding AddRepNoise ×A AddRepNoise Decode

⟦sk⟧

vk

(𝜌 (0)𝑖,𝑖rep , 𝑗
) (𝜌 (1)𝑖,𝑖rep , 𝑗

)

⟦s⟧ ⟦s⟧ ⟦t⟧ ⟦t⟧

Fig. 6: Structure of KeyGen (Algorithm 11). Gadgets proven NI (resp. sNIU)
is noted gadget (resp. gadget). Triangular gadgets either start from a
masked input and output an unmasked value, or the other way around.

Proof (Lemma 7). Let us decompose the key generation as a succession of gad-
gets. The gadgets may be represented as in Figure 6. We assume the respective
NI/sNI/sNIU properties of each gadget as presented in Table 2.

Recall that given a set ℐ̄ of at most 𝑑 − 1 probes inside KeyGenER, we aim
at proving that they can be perfectly simulated with at most 𝑑 − 1 shares of
(𝜌 (0)𝑖,𝑖rep , 𝑗

) and 𝑑−1 shares of (𝜌 (1)𝑖,𝑖rep , 𝑗
). In other words we will exhibit two sets ℐ̄0

of at most 𝑑 − 1 values of (𝜌 (0)𝑖,𝑖rep , 𝑗
), and ℐ̄1 of at most 𝑑 − 1 values of (𝜌 (1)𝑖,𝑖rep , 𝑗

)
which will be enough to perfectly simulate ℐ̄.

Let us decompose the set ℐ̄ of at most 𝑑 − 1 probes in KeyGenER among the
different gadgets. By convention, to avoid counting certain probes twice (once
as output of a gadget and once as input of the subsequent gadget), we do not
count the probes on the outputs. For example, if a probe is made on the output
of a gadget G, we will consider that it is actually made on the input of the
subsequent gadget. We note:

26

– 𝛿0 the number of intermediate variables probed in Line 6 (final Decode gad-
get);

– 𝛿1 the number of intermediate variables probed in Line 5 (second AddRepNoiseER);
– 𝛿2 the number of intermediate variables probed in Line 4 (multiplication

with A);
– 𝛿3 the number of intermediate variables probed in Line 3 (first AddRepNoiseER);
– 𝛿4 the number of intermediate variables probed in Line 2 (ZeroEncoding);

We recall that by definition of ℐ̄,
∑4

𝑖=0 𝛿𝑖 ≤ 𝑑 − 1.

The proof is similar to a standard composition proof. Thanks to the NI prop-
erty of the Decode gadget, all the 𝛿0 intermediate variables can be perfectly
simulated (see Definition 2) with at most 𝛿0 shares of ⟦t⟧. Since the second
AddRepNoiseER is 𝑑 − 1-sNIU, the 𝛿1 + 𝛿0 intermediate variables observed during
Decode and the last AddRepNoiseER may be perfectly simulated with 𝛿1 shares
of ⟦𝑡⟧ (the output of the ×A operation) and 𝛿1 shares of (𝜌 (1)𝑖,𝑖rep

). We note ℐ̄1
this set. Note that 𝛿0 has been discarded as it concerns the output of a sNIU
gadget.

With the same reasoning, all the 𝛿0 + 𝛿1 + 𝛿2 + 𝛿3 intermediate variables
observed after the first AddRepNoiseER can be perfectly simulated with at most 𝛿3
shares of ⟦𝑠⟧ (which are also the output of ZeroEncoding) and at most 𝛿3 shares
of (𝜌 (0)𝑖,𝑖rep

). We note ℐ̄0 this sets. In addition, the 𝛿4 intermediate variables in
the ZeroEncoding gadget may be perfectly simulated from the public parameters
as ZeroEncoding is NI and does not take any input.

Putting everything together, we have proved that the distribution of the
intermediate variables in ℐ̄ may be perfectly simulated from :

– the set ℐ̄0 containing at most 𝛿3 shares of (𝜌 (0)𝑖,𝑖rep
)

– the sets ℐ̄1 containing at most 𝛿1 shares of (𝜌 (1)𝑖,𝑖rep
)

Since 𝛿3 + 𝛿1 ≤
∑4

𝑖=0 𝛿𝑖 ≤ 𝑑 − 1, we have exhibited a ses Ū of at most 𝑑 − 1 of the
unshared input which concludes the proof. ⊓⊔

7 EUF-CMA Security of Raccoon in the Probing Model

We are finally ready to prove EUF-CMA security of Raccoon in the probing
model. This is done in two steps. We first reduce EUF-CMA security of Raccoon in
the probing model to the standard EUF-CMA security of small Raccoon, formally
defined in Figure 7. We then establish that this small Raccoon is EUF-CMA
secure. Technically, the first part relies on the NIU property of KeyGen and Sign
(cf. Section 6), a purely statistical step claiming that given a small Raccoon key
and signature, we can simulate the leakage of Raccoon. The second part relies on
the smooth Rényi divergence for the sum of uniform distributions (cf. Section 4),
and consists the computation step.

27

7.1 Description of a Non-Masked Small Raccoon

We first formally define a non-masked and simplified variant of Raccoon, which
we call small Raccoon. This is depicted in Figure 7. Notice that there are no
more masking or bit-droppings applied. More importantly, it is “small” since the
sum of uniform distribution is smaller. We effectively modify the bounds on the
signature size to be smaller, using 𝐵∞ and 𝐵2, whose formal definition appears
in Appendix E.

7.2 EUF-CMA Security of Small Raccoon ⇒ Probing EUF-CMA
Security of Raccon

This consists of the first step. Once the following theorem is established, we only
need to prove standard EUF-CMA security of small Raccoon.

Theorem 1. For any PPT adversary A against the EUF-CMA security on Raccoon
in the (𝑑 − 1)-probing model with time 𝑇 and advantage 𝜀, there exists a PTT
adversary B against the EUF-CMA security on small Raccoon (cf. Figure 7) with
time 𝑂 (𝑇) and avantage:

AdvB ≥ AdvA − 4𝑄𝐻𝑄𝑆 · 2−2𝜅 − 2−𝜅+1 − 1
|C| .

Above, 𝑄𝐻 and 𝑄𝑆 denote the number of random oracle queries and signing
queries performed by A.

We will use a series of hybrids defined below to prove the theorem.
Hybrid0: This hybrid corresponds to real the EUF-CMA security game in the
(𝑑 − 1)-probing model (cf. Figure 3).

Hybrid1: In this hybrid we replace KeyGen with KeyGenER and Sign with SignER,
in which all randomnesses are sampled prior to running the algorithm. Since
the algorithms are functionnaly identical the advantage is unchanged.

Hybrid2: This hybrid corresponds to Figure 8, in which all the probes queried
by the adversary during either key generation or signature are mapped to
probes that target only the randomness used in the AddRepNoise gadgets.
We prove that the values output by these probes can be used to perfectly
simulate the output queried by the adversary in Lemmas 7 and 8.
More precisely there is a first PPT simulator (SimInKeyGen, SimOutKeyGen)
such that for any probe set |ℐ̄KeyGen | ≤ 𝑡 in KeyGen(1𝜅), all probes in
ℐ̄
′ := (ℐ̄′s, ℐ̄

′
e) := SimInKeyGen (ℐ̄KeyGen) are of the form 𝜌s,𝑖,𝑖rep , 𝑗 ∈ ℐ̄

′
s for

some (𝑖, 𝑖rep, 𝑗) ∈ [ℓ, rep, 𝑑], and 𝜌e,𝑖,𝑖rep , 𝑗 ∈ ℐ̄
′
e for some (𝑖, 𝑖rep, 𝑗) ∈ [𝑘, rep, 𝑑]

(note that the variable names 𝜌 are also indexed by the AddRepNoise gadget
to which they belong to ensure unique namings), and max(|ℐ̄′𝑠 |, |ℐ̄

′
𝑒 |) ≤ 𝑑−1.

Using Lemma 5 we have that (vk, SimOut(KeyGenER,ℐ
′)) follows the same

distribution as (vk,ℒ), where (sk, vk,ℒ) ← ExecObs(ℐ̄KeyGen,KeyGenER, 1𝜆).
Similarly there is a second PPT simulator (SimInSign, SimOutSign) such that
for any message msg, masked secret key ⟦sk⟧, and probe set |ℐ̄Sign | ≤ 𝑡

28

Algorithm 12 KeyGenSmall (∅) → (vk, sk)
Output: Keypair vk, sk
1: seed← {0, 1}𝜅
2: A := ExpandA(seed)
3: (s, e) ← RSU(𝑢t, 𝑑 (rep − 1) + 1)ℓ ×RSU(𝑢t, 𝑑 (rep − 1) + 1)𝑘
4: t := A · s + e ▷ No rounding of t ∈ R𝑘

𝑞
5: return (vk := (seed, t), sk = (vk, s))

Algorithm 13 SignSmall (sk,msg) → sig
Input: Secret signing key sk = (vk, s), message msg ∈ {0, 1}∗.
Output: Signature sig = (𝑐hash, h, z) of msg under sk.
1: 𝜇 := H(H(vk)∥msg)
2: (r, e′) ← RSU(𝑢w, 𝑑 (rep − 1) + 1)ℓ ×RSU(𝑢w, 𝑑 (rep − 1) + 1)𝑘
3: w = A · r + e′ ▷ No rounding of w ∈ R𝑘

𝑞

4: 𝑐hash := ¯ChalHash(w, 𝜇) ▷ ¯ChalHash redefined to take w ∈ R𝑘
𝑞

5: 𝑐poly := ChalPoly(𝑐hash)
6: z := 𝑐poly · s + r
7: y := A · z − 𝑐poly · t ▷ No need to lift t anymore
8: h := w − y ▷ Hint h now defined over R𝑘

𝑞
9: sig := (𝑐hash, z, h)

10: if
(
∥(z, h)∥∞ > 𝐵∞

)
or

(
∥(z, h)∥2 > 𝐵2

)
goto Line 2 ▷ Check smaller bound

11: return sig

Algorithm 14 VerifySmall (sig,msg, vk) → {OK or FAIL}
Input: Signature sig = (𝑐hash, h, z) := sig.
Output: Signature validity: OK (accept) or FAIL (reject).
1: if

(
∥(z, h)∥∞ > 𝐵∞

)
or

(
∥(z, h)∥2 > 𝐵2

)
return FAIL else return OK

2: 𝜇 := H(H(vk)∥msg); A := ExpandA(seed)
3: 𝑐poly := ChalPoly(𝑐hash)
4: y := A · z − 𝑐poly · t
5: w := y + h
6: 𝑐′hash := ChalHash (w′, 𝜇)
7: if 𝑐hash ≠ 𝑐′hash return FAIL
8: return OK

Fig. 7: A non-masked and simplified Raccoon, named small Raccoon. While we
used the notation from the masked Raccoon for consistency, notice above that
h simply becomes 𝑐poly · e + e′ without rounding errors.

in Sign(⟦sk⟧,msg), all probes in ℐ̄
′ := (ℐ̄′r, ℐ̄

′
e′ , ℐ̄

′
sk) := SimInSign (ℐ̄Sign)

are of the form 𝜌r,𝑖,𝑖rep , 𝑗 ∈ ℐ̄
′
r for some (𝑖, 𝑖rep, 𝑗) ∈ [ℓ, rep, 𝑑], 𝜌e′ ,𝑖,𝑖rep , 𝑗 ∈

ℐ̄
′
e′ for some (𝑖, 𝑖rep, 𝑗) ∈ [𝑘, rep, 𝑑], and s̄𝑖 ∈ ℐ̄

′
sk for some 𝑖 ∈ [𝑑], and

max (|ℐ̄′r |, |ℐ̄
′
e′ |, |ℐ̄

′
sk) | ≤ 𝑡. We also have that (sig, SimOut(ExecObs(ℐ̄′, Sign, 1𝜆)))

follows the same distribution as ExecObs(ℐ̄Sign, Sign, 1𝜆). Using Lemma 5
we have that SimOut(SignER,ℐ

′) follows the same distribution as (sig,ℒ),

29

Adversary Challenger
(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−−→
ℐ̄
′
KeyGen ← SimInKeyGen (ℐ̄KeyGen)(

vk, sk,ℒ′KeyGen
)
← ExecObs(ℐ̄′KeyGen,KeyGen, 1𝜆)

vk,ℒKeyGen←−−−−−−−−−− ℒKeyGen ← SimOutKeyGen (ℒ′KeyGen)

𝑄𝑠 queries

𝑚(𝑖) , ℐ̄
(𝑖)
Sign−−−−−−−−−→ sk← KeyUpdate(sk)

ℐ̄
(𝑖)
Sign
′
← SimInSign (ℐ̄

(𝑖)
Sign)(

sig(𝑖) ,⊥,ℒ (𝑖)Sign
′)
← ExecObs(ℐ̄ (𝑖)Sign

′
, Sign, sk, 𝑚 (𝑖))

sig(𝑖) ,ℒ (𝑖)Sign←−−−−−−−−−− ℒ
(𝑖)
Sign ← SimOutSign (ℒ

(𝑖)
Sign
′
)

forgery {
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign | ≤ 𝑑 − 1

Fig. 8: Hybrid2: The NIU properties proven in Lemma 7 ensure the existence
of two PPT simulators (SimInKeyGen, SimOutKeyGen) and (SimInSign, SimOutSign).
This ensures all probes can be moved to the randomness in the AddRepNoise
gadgets in KeyGen and Sign. Differences with the EUF-CMA security game in
the (𝑑 − 1)-probing model (Figure 3) are highlighted.

where (sig,ℒ) ← ExecObs(ℐ̄Sign, SignER,msg). Thus the two hybrids are
identical.

Hybrid3: This hybrid corresponds to Figure 9, in which the algorithms ExecObs(ℐ̄,
KeyGen, 1𝜅) and ExecObs(ℐ̄, Sign, sk,msg) are replaced by KeyGenℒ (1𝜅 , ℐ̄)
and Signℒ (sk,msg, ℐ̄), respectively. The former is presented in Algorithm 15.
The latter is defined analogously and deferred to Appendix E.1, Algorithm 17
due to page limitations. Observe that since ExecObs(ℐ̄,KeyGen, 1𝜅) outputs
the same output as KeyGen(1𝜅) as well as the value of the variables at indices
ℐ̄, any algorithm that outputs the same distribution is semantically iden-
tical. Since the variables in ℐ̄ are now restricted to the randomness used
in AddRepNoise it is clear that the algorithm KeyGenℒ outputs the same
distribution . The same argument goes for ExecObs(ℐ̄, Sign, sk,msg). Hence,
the two hybrids are identical.

Hybrid4: This hybrid corresponds to Figure 10, in which the challenger artifi-
cially extends the set of probes queried to the key generation and signing
algorithm. More specifically, we define Extend so that for any 𝜌s,𝑖,𝑖rep , 𝑗 ∈ ℐ̄s,
all variables 𝜌s,𝑖′ ,𝑖rep , 𝑗 for 𝑖′ ∈ [ℓ] are in Extend(ℐ̄s) (same for Extend(ℐ̄e),
Extend(ℐ̄r), Extend(ℐ̄e′)). Conversely Collapse(ℒ′s) discards the values of
any variables that are in ℐ̄r but not ℐ̄

′
r. Clearly, this does not modify the

30

Adversary Challenger
(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−−→
ℐ̄
′
KeyGen ← SimInKeyGen (ℐ̄KeyGen)(
(sk, vk),ℒ′KeyGen

)
← KeyGenℒ (1𝜅 , ℐ̄

′
KeyGen)

vk,ℒKeyGen←−−−−−−−−−− ℒKeyGen ← SimOutKeyGen (ℒ′KeyGen)

𝑄𝑠 queries

𝑚(𝑖) , ℐ̄
(𝑖)
Sign−−−−−−−−−→ sk← KeyUpdate(sk)

ℐ̄
(𝑖)
Sign
′
← SimInSign (ℐ̄

(𝑖)
Sign)(

sig(𝑖) ,ℒ (𝑖)Sign
′)
← Signℒ (ℐ̄

(𝑖)
Sign
′
, 𝑠𝑘, 𝑚 (𝑖))

sig(𝑖) ,ℒ (𝑖)Sign←−−−−−−−−−− ℒ
(𝑖)
Sign ← SimOutSign (ℒ

(𝑖)
Sign
′
)

forgery {
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign | ≤ 𝑑 − 1

Fig. 9: Hybrid3: We replace the ExecObs calls with the functionally identical al-
gorithms KeyGenℒ (cf. Algorithm 15) and Signℒ (cf. full version).

Algorithm 15 KeyGenℒ (1𝜅 , ℐ̄) → (vk, sk,ℒ)
Input: Probe set ℐ = (ℐs,ℐe), ℐ̄s ⊂

{
𝜌s,𝑖,𝑖rep , 𝑗 ; (𝑖, 𝑖rep, 𝑗) ∈ [ℓ] × [rep] × [𝑑]

}
,

ℐ̄e ⊂
{
𝜌e,𝑖,𝑖rep , 𝑗 ; (𝑖, 𝑖rep, 𝑗) ∈ [𝑘] × [rep] × [𝑑]

}
Output: Keypair vk, sk and Leakage ℒ

1: seed← {0, 1}𝜅 ; A := ExpandA(seed)
2: ⟦s⟧ = (s1, . . . , s𝑑) := (0, . . . , 0) ∈ (Rℓ𝑞)𝑑
3: for (𝑖, 𝑖rep, 𝑗) ∈ [ℓ] × [rep] × [𝑑] do
4: 𝜌s,𝑖,𝑖rep , 𝑗 ← RSU(𝑢, 1)
5: s 𝑗 ,𝑖 ← s 𝑗 ,𝑖 + 𝜌s,𝑖,𝑖rep , 𝑗

6: ⟦t⟧ := A · ⟦sk⟧ ∈ (R𝑘
𝑞)𝑑

7: for (𝑖, 𝑖rep, 𝑗) ∈ [𝑘] × [rep] × [𝑑] do
8: 𝜌e,𝑖,𝑖rep , 𝑗 ← RSU(𝑢, 1)
9: t 𝑗 ,𝑖 ← t 𝑗 ,𝑖 + 𝜌s,𝑖,𝑖rep , 𝑗

10: t := Decode(⟦t⟧)
11: t := ⌊t⌉𝜈t

12: ℒ :=
{
(𝜌s,𝑖,𝑖rep , 𝑗 , 𝜌e,𝑖′ ,𝑖′rep , 𝑗′)

}
(𝜌s,𝑖,𝑖rep , 𝑗 , 𝜌e,𝑖′ ,𝑖′rep , 𝑗′) ∈ℐ̄

13: return (vk := (seed, t), sk := (vk, ⟦s⟧),ℒ)

view of the adversary. This conceptual change will be necessary to reduce to
a simpler signing algorithm in the following section.

31

Adversary Challenger
(KeyGen,Sign,Verify,KeyUpdate)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ℐ̄KeyGen−−−−−−−→
(ℐ̄′s, ℐ̄

′
e) := ℐ̄

′
KeyGen ← SimInKeyGen (ℐ̄KeyGen)

ℐ̄
′
s = Extend(ℐ̄′s)

ℐ̄
′
e = Extend(ℐ̄′e)(
(sk, vk), (ℒ′s ,ℒ′e)

)
← KeyGenℒ ((ℐ̄

′
s, ℐ̄

′
e), 1𝜆)

vk,ℒKeyGen←−−−−−−−−−− ℒKeyGen ← SimOutKeyGen (Collapse(ℒ′s),Collapse(ℒ′e))

𝑄𝑠 queries

𝑚(𝑖) , ℐ̄
(𝑖)
Sign−−−−−−−−−→ sk← KeyUpdate(sk)

(ℐ̄′r, ℐ̄
′
e′ , ℐ̄

′
sk) := ℐ̄

(𝑖)
Sign
′
← SimInSign (ℐ̄

(𝑖)
Sign)

ℐ̄
′
r = Extend(ℐ̄′r)

ℐ̄
′
e′ = Extend(ℐ̄′e′)(

sig(𝑖) , (ℒ′r ,ℒ′e′ ,ℒ
′
sk)

)
← Signℒ ((ℐ̄

′
r, ℐ̄

′
e′ , ℐ̄

′
sk), sk, 𝑚 (𝑖))

sig(𝑖) ,ℒ (𝑖)Sign←−−−−−−−−−− ℒ
(𝑖)
Sign ← SimOutSign (Collapse(ℒ′r),Collapse(ℒ′e′),ℒ

′
sk)

Forgery{
𝑚∗ , sig∗
−−−−−−→

𝑏 := Verify(vk, 𝑚∗, sig∗) ∧ (𝑚∗ ∉ {𝑚 (1) , . . . , 𝑚 (𝑄𝑠) })∧
∧|ℐ̄KeyGen | ≤ 𝑑 − 1 ∧ ∀𝑖 ∈ {1, . . . , 𝑄𝑠}, |ℐ̄ (𝑖)Sign | ≤ 𝑑 − 1

Fig. 10: Hybrid4: In this game, for any variable name 𝜌s,𝑖,𝑖rep , 𝑗 the challenger arti-
ficially leaks all variables 𝜌s,𝑖,𝑖rep , 𝑗′ for 𝑗 ′ ∈ [ℓ] (and similarly when s is replaced
by e, r, e′). He then discards the extra leakage before sending it to the adversary.
The view of the adversary is unchanged.

Lastly, we prove that for any PPT adversary A against the game described
in Hybrid4 (cf. Figure 10), we can construct an adversary B against the standard
EUF-CMA security of small Raccoon in Figure 7. We defer the formal proof to
Appendix E.2. At a high level a challenger can simulate queries from KeyGenℒ
by querying the public key t̄ from the oracle for KeyGen𝑆𝑚𝑎𝑙𝑙 and artificially
sampling additional noises (s̃, ẽ) as the sum of 𝑑−1 small uniforms and outputting
the public key t :=

⌊
t̄ +As̃ + ẽ

⌉
𝜈t

which will be distributed exactly as a public
key for KeyGenℒ. Similarly the a signature from SignSmall can be mapped to
a signature for Signℒ by sampling the appropriate sums of uniform (r̃, ẽ′) and
setting w = ⌊w̄ +Ar̃ + ẽ′⌉𝜈w . Finally we show that a forgery for Signℒ can be
mapped to a forgery for SignSmall.

This completes the proof of the main theorem.

7.3 MLWE + SelfTargetMSIS ⇒ EUF-CMA Security of Small Raccoon

It remains to prove that small Raccoon in Figure 7 is (standard) EUF-CMA
secure. This is established in the following theorem. A more formal statement

32

with a concrete security loss is provided in Appendix F. The detailed security
proof along with a candidate asymptotic parameter selection is deferred to Ap-
pendix F. The main technical contribution of the proof consists of relying on the
smooth Rényi divergence introduced in Section 4.

Theorem 2 (Informal). The small Raccoon in Figure 7 is EUF-CMA secure
under the MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑑 ·rep) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝜈w ,𝛽 assumptions.

8 Concrete Instantiation

Looking at Theorem 3, it is clear that the security bottlenecks are the hardness
of MLWE, of SelfTargetMSIS, and the smooth Rényi divergence (𝜖Tail and 𝑅𝜖Tail

𝛼).
Instantiating Raccoon boils down to an optimization problem where we need to
balance the hardness assumptions (MLWE, SelfTargetMSIS), the smooth Rényi
divergence and the performance metrics (size of vk and sig).

– Our analysis of MLWE and SelfTargetMSIS is fairly standard. We rely on
the lattice estimator [APS15] for the concrete analysis of MLWE. Follow-
ing the Dilithium methodology [LDK+22, §C.3], we assume that breaking
SelfTargetMSIS requires to either (a) break the second-preimage resistance
of the hash function, or (b) break an inhomogeneous MSIS instance, for which
the best known attack is in [CPS+20, §4.2].

– For the smooth Rényi divergence, one could use Lemma 3 for a provable
bound. However, it is not tight so we opt instead to use Conjecture 1.

We refer the reader to the full version of this paper where we provide the re-
lationship between parameters the security/efficiency metrics is in. In addition,
we provide example parameters for the NIST security level I.

Table 3: Parameters for Raccoon-128, NIST Post-Quantum security strength
category 1. For all Raccoon-128 masking orders, we fix: 𝜅 = 128, 𝑄𝑠 = 253,
𝑞 = (224 − 218 + 1) · (225 − 218 + 1), 𝑛 = 512, 𝑘 = 5, ℓ = 4, 𝜈t = 42, 𝜈w = 44, 𝜔 = 19,
2−64𝐵2

2 = 14656575897, 𝐵∞ = 41954689765971.
Parameter Raccoon-128 128-2 128-4 128-8 128-16 128-32
|sig| (bytes) 11524 = = = = =
|vk| (bytes) 2256 = = = = =

𝑑 1 2 4 8 16 32
rep 8 4 2 4 2 4
𝑢t 6 6 6 5 5 4
𝑢w 41 41 41 40 40 39

|sk| (bytes) 14800 14816 14848 14912 15040 15296

33

9 Conclusion and Next Steps

We have presented Raccoon, a masking-friendly signature scheme with a formal
security proof in the 𝑡-probing model based on standard lattice assumptions. We
present a few natural extensions of our work:

– Tighter proof. The recent Hint-MLWE assumption by Kim et al. [KLSS23]
seems perfectly suited to study Raccoon, as illustrated by a thresholdized
variant of Raccoon [DKM+24]. For Raccoon itself, an obstacle to a direct
application is that [KLSS23] provided security reductions for Gaussian dis-
tributions, whereas Raccoon uses sums of uniform distributions.

– More realistic models. While the 𝑡-probing model is a simple and con-
venient abstraction of real-world leakage, there exist more realistic models
such as the random probing and noisy leakage models. We expect a security
analysis in these models to be informative and to raise its own challenges.

– Real-world assessment. Since side-channel analysis are grounded in real-
world deployment, this work needs to be completed with a study of the
concrete leakage of Raccoon when implemented on real-world devices.

References

ABC+23. Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoff-
mann, Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schö-
nauer, François-Xavier Standaert, and Christine van Vredendaal. Protect-
ing Dilithium against leakage revisited sensitivity analysis and improved
implementations. IACR TCHES, 2023(4):58–79, 2023.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of Learning with Errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015.

ASY22. Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-
based threshold signatures, revisited. In Mikolaj Bojanczyk, Emanuela
Merelli, and David P. Woodruff, editors, ICALP 2022, volume 229 of
LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

BAE+23. Olivier Bronchain, Melissa Azouaoui, Mohamed ElGhamrawy, Joost Renes,
and Tobias Schneider. Exploiting small-norm polynomial multiplication
with physical attacks: Application to crystals-dilithium. Cryptology ePrint
Archive, Paper 2023/1545, 2023. https://eprint.iacr.org/2023/1545.

BBD+16. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

BBE+18. Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Ben-
jamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP
lattice-based signature scheme at any order. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of
LNCS, pages 354–384. Springer, Cham, April / May 2018.

https://eprint.iacr.org/2023/1545

34

BBE+19. Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Mélissa
Rossi, and Mehdi Tibouchi. GALACTICS: Gaussian sampling for lattice-
based constant- time implementation of cryptographic signatures, revisited.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2147–2164. ACM Press, November
2019.

BCPZ16. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 23–39. Springer, Berlin, Heidel-
berg, August 2016.

BCRT23. Sonia Belaïd, Gaëtan Cassiers, Matthieu Rivain, and Abdul Rahman Taleb.
Unifying freedom and separation for tight probing-secure composition.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part III, volume 14083 of LNCS, pages 440–472. Springer, Cham, August
2023.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, October / November 2006.

BVC+23. Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, Steven Madec,
Damien Vergnaud, and David Vigilant. Exploiting intermediate value leak-
age in Dilithium: A template-based approach. IACR TCHES, 2023(4):188–
210, 2023.

CGMZ23. Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order polynomial comparison and masking lattice-based encryption.
IACR TCHES, 2023(1):153–192, 2023.

CGTV15. Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and
Praveen Kumar Vadnala. Conversion from arithmetic to Boolean mask-
ing with logarithmic complexity. In Gregor Leander, editor, FSE 2015,
volume 9054 of LNCS, pages 130–149. Springer, Berlin, Heidelberg, March
2015.

CGTZ23. Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina
Zeitoun. High-order masking of NTRU. IACR TCHES, 2023(2):180–211,
2023.

CGV14. Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order.
In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731
of LNCS, pages 188–205. Springer, Berlin, Heidelberg, September 2014.

Cor17. Jean-Sébastien Coron. High-order conversion from Boolean to arithmetic
masking. In Wieland Fischer and Naofumi Homma, editors, CHES 2017,
volume 10529 of LNCS, pages 93–114. Springer, Cham, September 2017.

CPS+20. Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre
Wallet, and Keita Xagawa. ModFalcon: Compact signatures based on
module-NTRU lattices. In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu,
and Giuseppe Ateniese, editors, ASIACCS 20, pages 853–866. ACM Press,
October 2020.

CS21. Jean-Sébastien Coron and Lorenzo Spignoli. Secure wire shuffling in the
probing model. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 215–244, Virtual Event, August
2021. Springer, Cham.

35

Csi63. Imre Csiszár. Eine informationstheoretische Ungleichung und ihre Anwen-
dung auf den Beweis der Ergodizitat von Markoffschen Ketten. Magyar.
Tud. Akad. Mat. Kutató Int. Közl, 8:85–108, 1963.

dEK+23. Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice
Mouhartem, Thomas Prest, Mélissa Rossi, and Markku-Juhani Saarinen.
Raccoon. Technical report, National Institute of Standards and Technol-
ogy, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/
round-1-additional-signatures.

DFPS22. Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On
rejection sampling in Lyubashevsky’s signature scheme. In Shweta Agrawal
and Dongdai Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of
LNCS, pages 34–64. Springer, Cham, December 2022.

DFS19. Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete (or how to evaluate the security of any
leaking device), extended version. Journal of Cryptology, 32(4):1263–1297,
October 2019.

DKM+24. Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem,
Thomas Prest, and Markku-Juhani O. Saarinen. Threshold raccoon: Prac-
tical threshold signatures from standard lattice assumptions. In Marc Joye
and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652
of LNCS, pages 219–248. Springer, Cham, May 2024.

dPPRS23. Rafaël del Pino, Thomas Prest, Mélissa Rossi, and Markku-Juhani O. Saari-
nen. High-order masking of lattice signatures in quasilinear time. In 2023
IEEE Symposium on Security and Privacy (SP), pages 1168–1185, 2023.

EEN+24. Muhammed F. Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin
Sakzad, and Ron Steinfeld. Plover: Masking-friendly hash-and-sign lattice
signatures. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part VII, volume 14657 of LNCS, pages 316–345. Springer, Cham, May
2024.

EFG+22. Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi,
Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mi-
taka: A simpler, parallelizable, maskable variant of falcon. In Orr Dunkel-
man and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, vol-
ume 13277 of LNCS, pages 222–253. Springer, Cham, May / June 2022.

FDK20. Apostolos P. Fournaris, Charis Dimopoulos, and Odysseas G. Koufopavlou.
Profiling Dilithium Digital Signature Traces for Correlation Differential
Side Channel Attacks. In Alex Orailoglu, Matthias Jung, and Marc Re-
ichenbach, editors, Embedded Computer Systems: Architectures, Modeling,
and Simulation - 20th International Conference, SAMOS 2020, Samos,
Greece, July 5-9, 2020, Proceedings, volume 12471 of Lecture Notes in Com-
puter Science, pages 281–294. Springer, 2020.

GPRV21. Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien
Vergnaud. Probing security through input-output separation and revis-
ited quasilinear masking. IACR TCHES, 2021(3):599–640, 2021.

GR19. François Gérard and Mélissa Rossi. An efficient and provable masked im-
plementation of qtesla. In Sonia Belaïd and Tim Güneysu, editors, Smart
Card Research and Advanced Applications - 18th International Conference,
CARDIS 2019, Prague, Czech Republic, November 11-13, 2019, Revised Se-
lected Papers, volume 11833 of Lecture Notes in Computer Science, pages
74–91. Springer, 2019.

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

36

HPRR20. James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi.
Isochronous gaussian sampling: From inception to implementation. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography
- 11th International Conference, PQCrypto 2020, pages 53–71. Springer,
Cham, 2020.

HT19. Michael Hutter and Michael Tunstall. Constant-time higher-order Boolean-
to-arithmetic masking. Journal of Cryptographic Engineering, 9(2):173–
184, June 2019.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Berlin, Heidelberg, August
2003.

IUH22. Akira Ito, Rei Ueno, and Naofumi Homma. On the success rate of
side-channel attacks on masked implementations: Information-theoretical
bounds and their practical usage. In Heng Yin, Angelos Stavrou, Cas Cre-
mers, and Elaine Shi, editors, ACM CCS 2022, pages 1521–1535. ACM
Press, November 2022.

KAA21. Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-Trace Side-
Channel Attacks on 𝜔-Small Polynomial Sampling: With Applications to
NTRU, NTRU Prime, and CRYSTALS-DILITHIUM. In IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust, HOST 2021,
Tysons Corner, VA, USA, December 12-15, 2021, pages 35–45. IEEE, 2021.

KLSS23. Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward
practical lattice-based proof of knowledge from hint-MLWE. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, vol-
ume 14085 of LNCS, pages 549–580. Springer, Cham, August 2023.

LDK+22. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, Berlin,
Heidelberg, May 2013.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

Mat21. Axel Mathieu-Mahias. Securisation of implementations of cryptographic
algorithms in the context of embedded systems. (Sécurisation des implé-
mentations d’algorithmes cryptographiques pour les systèmes embarqués).
PhD thesis, University of Paris-Saclay, France, 2021.

MGTF19. Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain
Fouque. Masking Dilithium - efficient implementation and side-channel
evaluation. In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa,
and Moti Yung, editors, ACNS 19International Conference on Applied
Cryptography and Network Security, volume 11464 of LNCS, pages 344–
362. Springer, Cham, June 2019.

Muk15. Samrat Mukhopadhyay. Decreasing ratio of two Partial Sums. Mathematics
Stack Exchange, 2015. Author profile: https://math.stackexchange.com/
users/83973/samrat-mukhopadhyay. Version: 2015-02-09.

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://math.stackexchange.com/users/83973/samrat-mukhopadhyay
https://math.stackexchange.com/users/83973/samrat-mukhopadhyay

37

MUTS22. Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre
Seifert. Profiling side-channel attacks on Dilithium: A small bit-fiddling
leak breaks it all. Cryptology ePrint Archive, Report 2022/106, 2022.

NAB+17. Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen
Easterbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov,
Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM. Technical report, National
Institute of Standards and Technology, 2017. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-1-submissions.

PFH+22. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical re-
port, National Institute of Standards and Technology, 2022. avail-
able at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

Pre17. Thomas Prest. Sharper bounds in lattice-based cryptography using the
Rényi divergence. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 347–374. Springer,
Cham, December 2017.

Pre23. Thomas Prest. A key-recovery attack against mitaka in the 𝑡-probing
model. In Alexandra Boldyreva and Vladimir Kolesnikov, editors,
PKC 2023, Part I, volume 13940 of LNCS, pages 205–220. Springer, Cham,
May 2023.

SLKG23. Hauke Malte Steffen, Georg Land, Lucie Johanna Kogelheide, and Tim
Güneysu. Breaking and protecting the crystal: Side-channel analysis of
dilithium in hardware. In PQCrypto, volume 14154 of Lecture Notes in
Computer Science, pages 688–711. Springer, 2023.

WNGD23. Ruize Wang, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Single-trace
side-channel attacks on crystals-dilithium: Myth or reality? Cryptology
ePrint Archive, Paper 2023/1931, 2023. https://eprint.iacr.org/2023/
1931.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2023/1931
https://eprint.iacr.org/2023/1931

38

A Parameters

Table 4: Impact of parameters on security/performance metrics. ↗↗ (resp. ↗,
=, ↘, ↘↘) indicates that increasing this parameter has a very positive (resp.
positive, negative, neutral, very negative) impact on the considered metric.

𝑞 𝑢t 𝑢w 𝑑 · rep 𝜈t 𝜈w 𝑛 ℓ 𝑘 𝜔

MLWE ↘ ↗↗ = ↗ = = ↗↗ ↗↗ = =
SelfTargetMSIS ↗↗ = ↘↘ ↘ ↘ ↘ ↗↗ ↗ ↗↗ ↘
𝜖Tail = ↘↘ ↗↗ ↗↗ = = ↘ ↘ ↘ ↘
𝑅𝜖Tail
𝛼 = ↘↘ ↗↗ = = = ↘ ↘ ↘ ↘

Size of vk ↘ ↗ = = ↗↗ = ↘↘ = ↘↘ =
Size of sig ↘ ↘ ↘ ↘ = ↗↗ ↘↘ ↘↘ ↘ =

B Deferred Preliminaries

We review some useful properties on samples from the sum of uniform distribu-
tion.

B.1 Hardness assumptions

Let us recall the hardness assumptions used to establish the security of Raccoon.

Definition 9 (MLWE). Let ℓ, 𝑘, 𝑞 be integers, and D be a probability distribu-
tion over R𝑞. The advantage of an adversary A against the Module Learning
with Errors MLWE𝑞,ℓ,𝑘,D problem is defined as follows:

AdvMLWE
A (𝜅) = |Pr [1← A(A,A · s + e)] − Pr [1← A(A, b)] | ,

where (A, b, s, e) ← R𝑘×ℓ
𝑞 × R𝑘

𝑞 × Dℓ × D𝑘. The MLWE𝑞,ℓ,𝑘,D assumption states
that any efficient adversary A against this problem has negligible advantage.

Definition 10 (MSIS). Let ℓ, 𝑘, 𝑞 be integers and 𝛽 > 0 a real number. The ad-
vantage of an adversary A against the Module Short Integer Solution MSIS𝑞,ℓ,𝑘,𝛽

problem is defined as follows:

AdvMSIS
A (𝜅) = Pr

[
A← R𝑘×ℓ

𝑞 , s← A(A) : 0 < ∥s∥2 ≤ 𝛽 ∧
[
A | I

]
· s = 0 mod 𝑞

]
.

The MSIS𝑞,ℓ,𝑘,𝛽 assumption states that any efficient adversary A has negligible
advantage.

39

Definition 11 (SelfTargetMSIS). Let ℓ, 𝑘, 𝑞 be integers, and 𝛽 > 0 a real num-
ber. Let C be a subset of R𝑞 and let G : R𝑘

𝑞 × {0, 1}2𝜅 → C be a cryptographic
hash function modeled as a random oracle. The advantage of an adversary A
against the Self Target MSIS problem, noted SelfTargetMSIS𝑞,ℓ,𝑘,𝐶,𝛽, is defined
as:

AdvSelfTargetMSIS
A (𝜅) = Pr

[
A← R𝑘×ℓ

𝑞 , (msg, s) ← AG (A), (msg, s) ∈ {0, 1}2𝜅 × Rℓ+𝑘
𝑞 :(

s =
[
𝑐
s′
])
∧ (0 < ∥s∥2 ≤ 𝛽) ∧ G

([
A | I

]
· s, msg

)
= 𝑐

]
.

The SelfTargetMSIS𝑞,ℓ,𝑘,𝐶,𝛽 assumption states that any efficient adversary A has
no more than negligible advantage.

The following are important worst-case to average-case reductions, establish-
ing the hardness of the MLWE and MSIS problems.

Lemma 9 (Hardness of MLWE ([LS15])). Let 𝑘 (𝜅), ℓ(𝜅), 𝑞(𝜅), 𝑛(𝜅), 𝜎(𝜅)
such that 𝑞 ≤ poly(ℓ · 𝑛), 𝑘 ≤ poly(ℓ), and 𝜎 ≥

√
ℓ ·𝜔asymp (

√
log 𝑛). If D is a dis-

crete Gaussian distribution with standard deviation 𝜎, then the MLWE𝑞,ℓ,𝑘,D
problem is as hard as the worst-case lattice Generalized-Independent-Vector-
Problem (GIVP) in dimension 𝑁 = ℓ𝑛 with approximation factor

√
8 · 𝑁ℓ·𝜔asymp (

√
log ℓ)·

𝑞/𝜎.

Lemma 10 (Hardness of MSIS ([LS15])). For any 𝑘 (𝜅), ℓ(𝜅), 𝑞(𝜅), 𝑛(𝜅), 𝛽(𝜅)
such that 𝑞 > 𝛽

√
ℓ𝑛 · 𝜔asymp (log(ℓ𝑛)), 𝑘 ≤ poly(ℓ), and log 𝑞 ≤ poly(ℓ𝑛). The

MSIS𝑞,ℓ,𝑘,𝛽 problem is as hard as the worst-case lattice Generalized-Independent-
Vector-Problem (GIVP) in dimension 𝑁 = ℓ𝑛 with approximation factor 𝛽

√
𝑁 ·

𝜔asymp (
√

log 𝑁).

Finally, the following lemma, an immediate implication of the forking lemma [BN06],
reduces MSIS to SelfTargetMSIS.

Lemma 11 (Hardness of SelfTargetMSIS). Let ℓ, 𝑘, 𝑞 be integers and 𝛽 > 0
be a real number. Let C be a subset of R𝑞 and let G : R𝑘

𝑞 × {0, 1}2𝜅 → C be a
cryptographic hash function modeled as a random oracle. Then, for any adversary
A against the SelfTargetMSIS𝑞,ℓ,𝑘,C,𝛽 problem making at most 𝑄 queries to H,
there exists an adversary B against the MSIS𝑞,ℓ,𝑘,2𝛽 problem such that

AdvSelfTargetMSIS
A (𝜅) ≤

√
𝑄 · AdvMSIS

B (𝜅) + 𝑄

|C| .

B.2 Min-entropy of MLWE for the sum of uniform distribution.

In the security proofs, we use the MLWE𝑞,ℓ,𝑘,D distribution with bit dropping:
BD-MLWE, formally defined as follows.

40

Definition 12. Let BD-MLWE be the MLWE𝑞,ℓ,𝑘,D distribution with 𝜈w dropped
bits. Namely, given A ∈ R𝑘×ℓ

𝑞 , BD-MLWE is defined as the ensemble {⌊A · s + e⌉𝜈w |
(s, e) ← Dℓ+𝑘}.

Conjecture 2. For the parameters of our scheme in Figure 7, i.e., MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑑 ·rep) ,
we have

𝐻∞ (BD-MLWE) ≥ 2 · 𝜅.

While we do not have a proof that the above min-entropy is large enough, there
are strong heuristic arguments toward this. First, if the distribution of (s, e) was
Gaussian (even with a much smaller standard deviation) we would be able to
use the regularity theorem of [LPR13] to argue 𝑛 > 2𝜅 bits of security. Second,
even without Gaussians if we assume that As + e is “well distributed", i.e. if we
assume that the distributions ⌊As + e⌉𝜈w and As + e mod 2𝜈w are independent,
then we have:

𝐻∞ (As + e) = 𝐻∞ (⌊As + e⌉𝜈w ,As + e mod 2𝜈w)
≤ 𝐻∞ (BD-MLWE) + 𝑘𝑛𝜈w

If we also assume that the function (s, e) ↦→ As + e is injective, we get

𝐻∞ (BD-MLWE) ≥ 𝐻∞ (Dℓ+𝑘) − 𝑘𝑛𝜈w

Since D is the sum of 𝑇 uniform distribution with support 𝑁 = 2𝑢w it has min-
entropy larger than 𝑢w, hence:

𝐻∞ (BD-MLWE) ≥ (ℓ + 𝑘)𝑛𝑢w − 𝑘𝑛𝜈w

For all parameters we consider we will have 𝐻∞ (BD-MLWE) > 100𝜅, meaning
that even if the two assumptions we have made are not very accurate we have
high confidence in the amount of entropy used for the input of the hash function.

B.3 Deferred preliminaries on sum of uniforms

Given a random variable 𝑋 ∼ SU(𝑢, 𝑇), its moment-generating function is easily
computed, here with 𝑁 = 2𝑢:

E[𝑒𝑘𝑋] =
(
𝑒𝑁𝑘/2 − 𝑒−𝑁𝑘/2

𝑁 (𝑒𝑘 − 1)

)𝑇
One can check that 𝑋 + 𝑇/2 is sub-Gaussian for 𝜎2 = 𝑁2𝑇

6 . Hence the sub-
Gaussian tail bounds:

P[|𝑋 + 𝑇/2| > 𝜇] ≤ exp
(
− 𝜇2

2𝜎2

)
= exp

(
− 3𝜇2

𝑇𝑁2

)
(10)

41

Using Lemma 2.2 from [LPR13] we get a bound on the norm of a vector 𝑌 =
(𝑋1, . . . , 𝑋𝑚) of 𝑚 iid. variables from SU(𝑢, 𝑇). For any 𝑟 ≥ 16:

Pr
[

𝑚∑
1
𝑋2
𝑖 > 𝑟 · 𝑚 · 𝜎2

]
≤ exp

(
−𝑟 · 𝑚

8

)
(11)

Derivating the moment-generating function gives us the moments and variance
of 𝑋:

E[𝑋] = −𝑇
2

; E[𝑋2] = 𝑇 (𝑁
2 − 1)
12

+ 𝑇
2

4
; V[𝑋] = 𝑇 (𝑁

2 − 1)
12

; (12)

Note that SU(𝑢, 𝑇) is not “symmetric”, in the sense that its expected value
and skewness (third-order moment) are not equal to zero. This could be prob-
lematic in applications such as trapdoor sampling, but is unimportant in the
case of Raccoon. Indeed, since the offset is public we can remove it and assume
for the study of the MLWE hardness that the distribution is centered around
zero. On the other hand, the offset is very small and has a negligible impact on
the hardness of SelfTargetMSIS.

B.4 Tail-cut bounds

We provide some norm bounds regarding the sum of uniform distribution.

Lemma 12. Let v ∈ R𝐿 and 𝑐 ∈ R such that each integer coefficient of v is
sampled from SU(𝑢, 𝑇) and ∥𝑐∥∞ = 1. Let 𝑁 = 2𝑢 and 𝜈2 = 𝑇𝑁2

3 · (𝜅 + log(𝑛𝐿)) ·
log(2). Then, we have

Pr
[
∥v · 𝑐∥2 ≤ ∥𝑐∥1 ·

√
𝑛𝐿 ·

(
𝑇

2
+ 𝜈

)]
≥ 1 − 2−𝜅 .

Pr
[
∥v · 𝑐∥∞ ≤ ∥𝑐∥1 ·

(
𝑇

2
+ 𝜈

)]
≥ 1 − 2−𝜅 .

Proof. Minkowski’s inequality implies ∥v · 𝑐∥2 ≤ ∥𝑐∥1 · ∥v∥2. Moreover, since the
absolute value of each coefficient of 𝑐 is less than 1, we have ∥v·𝑐∥∞ ≤ ∥𝑐∥1 · ∥v∥∞.
Since v′ = v + 𝑇

2 · 1 is a sub-Gaussian of parameter 𝜎2 = 𝑁2 ·𝑇
6 , we can combine

Eq. (10) with the union bound:

Pr [∥v′∥∞ > 𝜈] ≤ 2−𝜅 .

We obtain the bound using ∥v∥2 ≤
√
𝑛𝐿 ·

(
𝑇
2 + ∥v′∥

)
. ⊓⊔

Lemma 13. For 0 < 𝑝 < 1 and 𝑘 > 0, let D be the binomial distribution of
parameter (

⌈
2𝑘
𝑝

⌉
, 𝑝). Hoeffding’s Inequality for D entails:

Pr [D ≤ 𝑘] ≤ exp(−𝑝𝑘)

42

C Deferred Details from Section 4

This section provides a collection of results related to sums of discrete uniform
variables that were omitted from Section 4.

C.1 Symmetry for Symmetric Distributions

For a class of “symmetric” distributions which includes shifted copies of sums
uniforms, the Rényi divergence is symmetric.

Lemma 14 (Symmetry for symmetric distributions). Let 𝑃,𝑄 be distri-
butions of support included in Z. Suppose that 𝑃,𝑄 are “symmetric” in the sense
that there exists 𝐶 ∈ Z such that 𝑃(𝑥) = 𝑄(𝐶 − 𝑥). Then for any 𝛼 > 1, 𝜖 > 0, it
holds that 𝑅𝜖

𝛼 (𝑃;𝑄) = 𝑅𝜖
𝛼 (𝑄; 𝑃).

In particular, for 𝑃SU = SU(𝑢, 𝑇) and 𝑄SU the distributions corresponding to
shifting the support of 𝑃 by 𝑐, we have 𝑅𝜖

𝛼 (𝑃SU;𝑄SU) = 𝑅𝜖
𝛼 (𝑄SU; 𝑃SU).

Proof. The bijection 𝑥 ↦→ 𝐶 − 𝑥 maps the distributions (𝑃,𝑄) to (𝑄, 𝑃). There-
fore (𝑃,𝑄) and (𝑄, 𝑃) are identical up to reindexing the support. In partic-
ular, 𝑅𝜖

𝛼 (𝑃;𝑄) = 𝑅𝜖
𝛼 (𝑄; 𝑃). Lastly, by defining 𝐶 = 𝑇 · (2𝑢 − 1) + 𝑐, we have

𝑃SU (𝑥) = 𝑄SU (𝐶 − 𝑥). ⊓⊔

C.2 The Sum of Discrete Uniform Variables

Definition 13. Let 𝑁,𝑇 ≥ 1 be integers. We note 𝑃𝑁,𝑇 the distribution corre-
sponding to the sum of 𝑇 independent and identically distributed (iid) random
variables (𝑋𝑖)𝑖∈[𝑇] , each 𝑋𝑖 being uniformly distributed in [𝑁].

The support of 𝑃𝑁,𝑇 is [𝑇 (𝑁 − 1) + 1]. Lemma 15 links the cumulative distri-
bution function (CDF) of 𝑃𝑁,𝑇 and the probability distribution function (PDF)
of 𝑃𝑁,𝑇+1.

Lemma 15. For any 𝑥 ≥ 0, 𝑃𝑁,𝑇+1 (𝑥) = 1
𝑁 𝑃𝑁,𝑇 ({max(0, 𝑥 − 𝑁 + 1), . . . , 𝑥}).

Proof. (𝑇 + 1) random variables 𝑋𝑖 sum to 𝑥 if and only if the 𝑇 first sum to 𝑥1,
the last one is equal to 𝑥2, and 𝑥1 + 𝑥2 = 𝑥. If we note 𝑦 = max(0, 𝑥 − 𝑁 + 1), this
is formalized as follows:

𝑃𝑁,𝑇+1 (𝑥) =
∑

𝑥1+𝑥2=𝑥

𝑃𝑁,𝑇 (𝑥1) 𝑃𝑁,1 (𝑥)

=
1
𝑁

𝑥∑
𝑥1=𝑦

𝑃𝑁,𝑇 (𝑥1)

=
1
𝑁
𝑃𝑁,𝑇 ({𝑦, . . . , 𝑥})

⊓⊔

43

Our next lemma provides a neat closed formula for the weight of the tail of 𝑃𝑁,𝑇 .

Lemma 16. For 𝑥 ∈ [𝑁]:

𝑃𝑁,𝑇 ({0, . . . , 𝑥}) =
(
𝑥 + 𝑇
𝑥

)
1
𝑁𝑇

=

(
𝑥 + 𝑇
𝑇

)
1
𝑁𝑇

By Lemma 15, this implies:

𝑃𝑁,𝑇 (𝑥) =
(
𝑥 + 𝑇 − 1
𝑇 − 1

)
1
𝑁𝑇

(13)

Proof. We prove the result by induction on 𝑇 . First, one can check that it is
true for 𝑇 ≤ 2. Now, following the same reasoning as in the proof of Lemma 15,
(𝑇 + 1) random variables 𝑋𝑖 sum to a value ≤ 𝑥 if and only if the 𝑇 first sum to
a value ≤ 𝑥1, the last one is equal to 𝑥2, and 𝑥1 + 𝑥2 = 𝑥. This can be formalized
as:

𝑃𝑁,𝑇+1 ({0, . . . , 𝑥}) =
∑

𝑥1+𝑥2=𝑥

𝑃𝑁,𝑇 ({0, . . . , 𝑥1}) 𝑃𝑁,1 (𝑥)

=
1

𝑁𝑇+1

∑
𝑥1≤𝑥

(
𝑥1 + 𝑇
𝑥1

)
=

1
𝑁𝑇+1

(
𝑥 + 𝑇 + 1

𝑥

)
The final equality is due to the hockey-stick identity. ⊓⊔

Monotony of 𝒙 ↦→ 𝑷𝑵,𝑻 (𝒙 + 𝒄)/𝑷𝑵,𝑻 (𝒙). The goal of this section is to prove
that 𝑃𝑁,𝑇 (𝑥 + 𝑐)/𝑃𝑁,𝑇 (𝑥) is non-increasing in 𝑥. This will later be useful for
computing the smooth Rényi divergence between shifted copies of 𝑃𝑁,𝑇 .

Lemma 17. Let 𝑐 ≥ 0 be an integer. The function

𝑥 ∈ {0, . . . , 𝑇 (𝑁 − 1) − 𝑐} ↦→ 𝑃𝑁,𝑇 (𝑥 + 𝑐)
𝑃𝑁,𝑇 (𝑥)

is non-increasing.

Proof. It suffices to prove Lemma 17 in the special case 𝑐 = 1. The general case
follows from the telescopic product:

𝑃𝑁,𝑇 (𝑥 + 𝑐)
𝑃𝑁,𝑇 (𝑥)

=
𝑃𝑁,𝑇 (𝑥 + 𝑐)

𝑃𝑁,𝑇 (𝑥 + 𝑐 − 1) × · · · ×
𝑃𝑁,𝑇 (𝑥 + 1)
𝑃𝑁,𝑇 (𝑥)

.

For the rest of the proof, let 𝑐 = 1. For 𝑥 < 𝑁, the statement can be verified
using Lemma 16. For 𝑥 ≥ 𝑛, we proceed by induction on 𝑇 . The statement is

44

true for 𝑇 = 1. For 𝑥 ≥ 𝑛, it holds that:

𝑃𝑁,𝑇+1 (𝑥) =
∑

𝑥1+𝑥2=𝑥

𝑃𝑁,𝑇 (𝑥1) 𝑃𝑁,1 (𝑥2)

=
1
𝑁

𝑁−1∑
𝑐=0

𝑃𝑁,𝑇 (𝑥 − 𝑐)

Therefore the ratio 𝑃𝑁,𝑇+1 (𝑥 + 1)/𝑃𝑁,𝑇+1 (𝑥) can be written as a ratio of partial
sums:

𝑃𝑁,𝑇+1 (𝑥 + 1)
𝑃𝑁,𝑇+1 (𝑥)

=

∑𝑁−1
𝑐=0 𝑃𝑁,𝑇 (𝑥 + 1 − 𝑐)∑𝑁−1

𝑐=0 𝑃𝑁,𝑇 (𝑥 − 𝑐)
Since the ratio 𝑃𝑁,𝑇 (𝑥+1)/𝑃𝑁,𝑇 (𝑥) is non-increasing, this is also the case for the
ratio of their partial sums [Muk15]. ⊓⊔

C.3 Smooth Rényi Divergence Between Shifted Copies of 𝑷𝑵,𝑻

The goal of this section is to prove Lemma 3. We first partition Supp(𝑃) ∪
Supp(𝑄) in five sections, as illustrated in Figure 11:

Tails. The tails are 𝑇ℓ = {0, . . . , 𝜏−1} and 𝑇𝑟 = {𝑇 (𝑁−1)+𝑐−𝜏+1, . . . , 𝑇 (𝑁−1)+𝑐}.
By symmetry, 𝑃(𝑇ℓ) = 𝑄(𝑇𝑟). Moreover, 𝜏 is chosen such that 𝑃(𝑇ℓ) ≤ 𝜖 .

Sides. The sides are 𝑆ℓ = {𝜏, . . . , 𝑁 −1} and 𝑆𝑟 = {(𝑇 −1)(𝑁 −1) +𝑐+1, . . . , 𝑇 (𝑁 −
1) + 𝑐 − 𝜏}. Over the sides, 𝑃(𝑥) and 𝑄(𝑥) can be computed explicitly, which
allows computing precise bounds on partial Rényi divergence sums.

Head. The head is 𝐻 = {𝑁, . . . , (𝑇 − 1)(𝑁 − 1) + 𝑐}. Over the head, the ratio
𝑃/𝑄 is constrained in a very narrow interval, which allows bounding the partial
Rényi divergence sum over 𝐻 using generic results.

·10−2

𝑇ℓ 𝑆ℓ 𝐻 𝑆𝑟 𝑇𝑟

𝑃

𝑄

Fig. 11: Two copies of 𝑃{𝑛=15,𝑡=8} , shifted by an offset 𝑐 = 5. The areas 𝑇ℓ , 𝑆ℓ , 𝐻, 𝑆𝑟
and 𝑇𝑟 relate to a proof in Appendix C.3

45

Informally speaking, our proof strategy is to separately bound the statistical
distance over the tails (Appendix C.3), and the partial Rényi divergence over the
sides (Appendix C.3) and head (Appendix C.3). The smooth Rényi divergence
between 𝑃 and 𝑄 is obtained (Appendix C.3) as a simple consequence of these
separate bounds.

Selecting 𝑷′ and 𝑸′. Let 𝜏 > 0 such that (𝜏+𝑇)
𝑇

𝑇! 𝑁𝑇 ≤ 𝜖 . By Lemma 16, we can
bound the weight of 𝑃 (resp. 𝑄) over the left (resp. right) tail: 𝑃(𝑇ℓ) = 𝑄(𝑇𝑟) ≤ 𝜖 .

Let 𝑄′ = 𝑄, and 𝑃′ be such that 𝑃′ (𝑥) = 𝑄(𝑥) if 𝑥 ∈ 𝑇ℓ ⊔ 𝑇𝑟 , otherwise
𝑃′ (𝑥) = 𝑃(𝑥). This implies ΔSD (𝑃′, 𝑃) ≤ 𝜖 and ΔSD (𝑄′, 𝑄) = 0.

Partial Sum Over the Sides. We now compute partial Rényi divergences
sums over the sides. This is perhaps the most tedious part of our overall proof, as
we computed this sum explicitly, as opposed to relying on more generic bounds.

Lemma 18. Let 𝑇 ≥ 2, 𝛼 ≥ 4, 𝜏, 𝑐 ≥ 0 be such that 𝛼 𝑐 ≤ 𝜏. Let 𝑎 = (𝑇 − 1) 𝛼 𝑐
and assume 𝑎 = 𝑜(𝑁). Then:∑

𝑥∈𝑆ℓ⊔𝑆𝑟

(
𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) ≤ 1

𝑇 !

(
2 + 𝑇

𝑇 − 2

(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
. (14)

Proof. Without loss of generality, we assume 𝑐 > 0, as the result is otherwise
straightforward. We focus on the left side 𝑆ℓ . By computing their derivatives,
one can see that:

𝑥 ↦→
(𝑥 + 𝑐
𝑥

)𝛼
𝑥 is non-decreasing over [(𝛼 − 1)𝑐;+∞) (15)

𝑓𝑎,𝑇 : 𝑥 ↦→ exp
(𝑎
𝑥

)
𝑥𝑇 is non-decreasing over [𝛼/𝑇 ;+∞) (16)

In particular, since max((𝛼 − 1) 𝑐, 𝛼/𝑇) ≤ 𝜏 − 𝑐, they are non-decreasing over
[𝜏 − 𝑐;+∞). Since Lemma 12, Eq. (13) provides exact formulae for 𝑃(𝑥) and
𝑄(𝑥) on the sides, we can upper bound each term

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
𝑄(𝑥) for 𝑥 ∈ 𝑆ℓ :(

𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) = 1

(𝑇 − 1)! 𝑁𝑇

𝑥−𝑐+𝑇−1∏
𝑢=𝑥−𝑐

(𝑢 + 𝑐
𝑢

)𝛼
𝑢

≤ 1
(𝑇 − 1)! 𝑁𝑇

(
𝑥 + 𝑇 − 1

𝑥 − 𝑐 + 𝑇 − 1

) (𝑇−1)𝛼
(𝑥 − 𝑐 + 𝑇 − 1)𝑇−1 (17)

≤ 1
(𝑇 − 1)! 𝑁𝑇

exp
(
𝑐(𝑇 − 1)𝛼
𝑥 − 𝑐 + 𝑇 − 1

)
(𝑥 − 𝑐 + 𝑇 − 1)𝑇−1 (18)

(17) follows from the non-decreasingness of (15), while (18) follows from Bernoulli’s
inequality 1 + 𝑥 ≤ exp(𝑥). We now bound the partial Rényi divergence sum over

46

the left side 𝑆ℓ :∑
𝑥∈𝑆ℓ

(
𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) ≤ 1

(𝑇 − 1)! 𝑁𝑇

𝑛−𝑐+𝑇−1∑
𝑥=𝜏−𝑐+𝑇−2

exp
(
𝑐(𝑇 − 1)𝛼

𝑥

)
𝑥𝑇−1

≤ 1
(𝑇 − 1)! 𝑁𝑇

𝑁−1∑
𝑥=𝜏

𝑓𝑎,𝑇−1 (𝑥) (19)

≤ 1
(𝑇 − 1)! 𝑁𝑇

∫ 𝑁

𝜏
𝑓𝑎,𝑇−1 (𝑢)𝑑𝑢, (20)

where (19) is implied by 𝑓𝑎,𝑇−1 being non-decreasing, see (16), and (20) bounds
a sum by an integral, by casting it as a Riemann sum and using its monotonicity.
Let us note:

𝐹𝑎,𝑇 =
∫ 𝑁

𝜏
𝑓𝑎,𝑇 (𝑢)𝑑𝑢.

Our next goal is to bound 𝐹𝑎,𝑇 . An iterated integration by parts gives us:

𝐹𝑎,𝑇 =

[
1

𝑇 + 1
𝑓𝑇+1

]𝑁
𝜏

+ 𝑎

𝑇 + 1
𝐹𝑇−1

=
1

𝑇 + 1

[
𝑓𝑇+1 +

𝑎

𝑇
𝑓𝑡 +

𝑎2

𝑡 (𝑇 − 1) 𝑓𝑇−1 + · · · +
𝑎𝑇−1

𝑇 !
𝑓2

]𝑁
𝜏

+ 𝑎𝑇

(𝑇 + 1)! 𝐹0

Since 𝜏 ≤ 𝑎 and 𝑎 = 𝑜(𝑁), we can approximate 𝐹𝑎,𝑇 using Taylor series as
follows:

𝐹𝑎,𝑇 =
exp(𝑎/𝑁)
𝑇 + 1

(
𝑁𝑇+1 + 𝑎

𝑇
𝑁𝑇 + 𝑎2

𝑇 (𝑇 − 1) 𝑁
𝑇−1 +𝑂 (𝑎3𝑁𝑇−2)

)
=
𝑁𝑇+1

𝑇 + 1

(
1 +

(
1 + 1

𝑇

)
𝑎

𝑁
+ 𝑇 + 1

2(𝑇 − 1)
(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
(21)

Combining (20) and (21) gives the partial sum on the left tail:∑
𝑥∈𝑆ℓ

(
𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) ≤ 1

𝑇 !

(
1 +

(
1 + 1

𝑇 − 1

)
𝑎

𝑁
+ 𝑇

2(𝑇 − 2)
(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
(22)

Applying the same techniques provides a similar bound for the right tail 𝑇𝑟 .∑
𝑥∈𝑆𝑟

(
𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) ≤ 1

𝑇 !

(
1 −

(
1 + 1

𝑇 − 1

)
𝑎

𝑁
+ 𝑇

2(𝑇 − 2)
(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
(23)

Adding (22) and (23) gives the result.∑
𝑥∈𝑆ℓ⊔𝑆𝑟

(
𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) ≤ 1

𝑇 !

(
2 + 𝑇

𝑇 − 2

(𝑎
𝑁

)2
+𝑂 ((𝑎/𝑁)3)

)
.

⊓⊔

47

Partial Sum Over the Head.

Lemma 19. Let 𝑐𝑇 = 𝑜(𝑁). Then:∑
𝑥∈𝐻

(
𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) ≤ 1+𝛼(𝛼 − 1)

2

(
(𝑐𝑇)2
𝑁2 +𝑂

(
(𝑐𝑇)3
𝑁3

))
− 2
𝑇 !

(
1 + 4(𝑐/𝑁)2 +𝑂 ((𝑐/𝑁)4)

)
(24)

Proof. Our goal is to apply [Pre17, Lemma 3]. This lemma requires us to bound
the ratio 𝑃(𝑥)/𝑄(𝑥) over 𝐻 = {𝑁, . . . , (𝑇 − 1) (𝑁 − 1) + 𝑐}. Thanks to the mono-
tonicity of this ratio (Lemma 17), we know that it suffices to bound it at the
extremities of 𝐻.

𝑃(𝑁)
𝑄(𝑁) =

𝑁+𝑇−1∏
𝑥=𝑁

𝑥

𝑥 − 𝑐 ≤
(
𝑁

𝑁 − 𝑐

)𝑇
≤ exp

(
𝑐 𝑇

𝑁 − 𝑐

)
(25)

Similarly, by symmetry:

𝑃((𝑇 − 1)(𝑁 − 1) + 𝑐)
𝑄((𝑇 − 1) (𝑁 − 1) + 𝑐) =

𝑄(𝑁)
𝑃(𝑁) ≥ exp

(
− 𝑐 𝑇

𝑁 − 𝑐

)
A second issue is that [Pre17, Lemma 3] provides us the complete Rényi di-
vergence sum over the full support of a distribution, while we only require
a partial sum over 𝐻. We resolve this by assuming that all values 𝑥 ∉ 𝐻
are collapsed into a single value. Note that 𝑃(Z\𝐻) = 𝑄(Z\𝐻). If we note
𝛿 = exp

(
𝑐 𝑇
𝑁−𝑐

)
− 1 = 𝑐 𝑇

𝑁 +𝑂
(
𝑐𝑇
𝑁

)2, then we obtain:∑
𝑥∈𝐻

(
𝑃(𝑥)
𝑄(𝑥)

)𝛼
𝑄(𝑥) ≤ 1 + 𝛼(𝛼 − 1)𝛿2

2(1 − 𝛿)𝛼+1 −𝑄(Z\𝐻) (26)

Finally, we can explicitly compute 𝑄(Z\𝐻) via Lemma 12, and approximate it
via Taylor series:

𝑄(Z\𝐻) = 2
𝑇 !

(
1 + 4(𝑐/𝑁)2 +𝑂 ((𝑐/𝑁)4)

)
⊓⊔

Putting it together: Proof of Lemma 3.

Proof. It suffices to prove Lemma 3 for 𝑐 ≥ 0 since 𝑅𝜖
𝛼 (𝑃;𝑄) = 𝑅𝜖

𝛼 (𝑄; 𝑃). We
apply Lemma 16 to compute 𝜖 , and Lemmas 18 and 19 to compute the Rényi
divergence sum. ⊓⊔

C.4 Conjecture on the Smooth Rényi Divergence for Sums of
Uniforms

In practice, Lemma 3 is a bit sub-optimal. For instance, [ASY22, Lemma 2.28]
tells that if 𝑃 is instead a Gaussian of parameter 𝜎, then log 𝑅𝛼 (𝑃;𝑄) ≤ 𝛼 𝑐2

2 𝜎2 .

48

Thus there is a gap 𝑂 (𝑇3) between Lemma 3 and [ASY22, Lemma 2.28]. For
this reason, we put forward Conjecture 1, which ignores this gap and which we
use when setting our concrete parameters.

We note that Eq. (7) is obtained by invoking the tensorization property of
the smooth Rényi divergence (see Lemma 2, Item 3) on Eq. (6).

D Deferred Details from Section 6
The SignER algorithm is described in Algorithm 16. The following is the proof
of Lemma 8.

Algorithm 16 SignER (⟦sk⟧,msg, (𝜌 (0)𝑖,𝑖rep , 𝑗
), (𝜌 (1)𝑖,𝑖rep , 𝑗

)) → sig
▷ Sign with explicit randomness for AddRepNoise

Input: Secret signing key sk = (vk, ⟦s⟧)
Input: Message to be signed msg ∈ {0, 1}∗.
Input: Randomness (𝜌 (0)𝑖,𝑖rep , 𝑗

)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑] , (𝜌
(1)
𝑖,𝑖rep , 𝑗

)𝑖∈[len(v)],𝑖rep∈[rep], 𝑗∈[𝑑]
Output: Signature sig = (𝑐hash, h, z) of msg under sk.
1: (vk, ⟦s⟧) := sk, (seed, t) := vk
2: 𝜇 := H(H(vk)∥msg)
3: A := ExpandA(seed)
4: ⟦r⟧ ← ℓ × ZeroEncoding(𝑑)
5: ⟦r⟧ ← AddRepNoiseER (⟦r⟧, 𝑢w, rep, 𝜌 (0)𝑖,𝑖rep , 𝑗

)) ▷ Partially derandomized
AddRepNoise.

6: ⟦w⟧ := A · ⟦r⟧
7: ⟦w⟧ ← AddRepNoiseER (⟦w⟧, 𝑢w, rep, 𝜌 (1)𝑖,𝑖rep , 𝑗

)) ▷ Partially derandomized
AddRepNoise.

8: w := Decode(⟦w⟧)
9: w := ⌊w⌉𝜈w

10: 𝑐hash := ChalHash(w, 𝜇)
11: 𝑐poly := ChalPoly(𝑐hash)
12: ⟦s⟧ ← Refresh(⟦s⟧)
13: ⟦r⟧ ← Refresh(⟦r⟧)
14: ⟦z⟧ := 𝑐poly · ⟦s⟧ + ⟦r⟧
15: ⟦z⟧ ← Refresh(⟦z⟧)
16: z := Decode(⟦z⟧)
17: y := A · z − 2𝜈t · 𝑐poly · t
18: h := w − ⌊y⌉𝜈w
19: sig := (𝑐hash, h, z)
20: if {CheckBounds(sig) = FAIL} goto Line 4
21: return sig

Proof (Lemma 8). We proceed similarly to the proof of Lemma 7. We decom-
pose Algorithm 2 as a succession of gadgets. The gadgets may be represented

49

as Figure 12. We decompose the set ℐ̄ of at most 𝑑 − 1 probes in SignER as

ZeroEncoding AddRepNoise ×A AddRepNoise Decode
ChalHash,
ChalPoly

Refresh

Line 13 Decode Compute h

⟦s⟧msg

h

(𝜌 (0)𝑖,𝑖rep
, 𝑗) (𝜌 (1)𝑖,𝑖rep , 𝑗

)

⟦r⟧ ⟦r⟧ ⟦w⟧ ⟦w⟧ w 𝑐 p
ol

y

⟦z⟧ z

⟦r⟧

Fig. 12: Structure of Sign (Algorithm 16). Notations inherited from Figures 5
and 6. The gadgets containing only unmasked data are noted gadget .

follows (with the same convention excluding the probes on the outputs from the
count).

– 𝛿0 be the number of intermediate variables probed in Line 16 (Decode(⟦𝑧⟧)).
– 𝛿1 be the number of intermediate variables probed in Line 14.
– 𝛿2 be the number of intermediate variables probed in Line 13 (Refresh(⟦r⟧)).
– 𝛿3 be the number of intermediate variables probed in Line 8 (Decode(⟦w⟧)).
– 𝛿4 be the number of intermediate variables probed in Line 6 (second AddRepNoiseER).
– 𝛿5 be the number of intermediate variables probed in Line 5 (multiplication

by A).
– 𝛿6 be the number intermediate variables probed in Line 5 (first AddRepNoiseER).
– 𝛿7 be the number of intermediate variables probed in Line 4 (ZeroEncoding).

Some probes may be performed during the unmasked computations like in the
computation of ChalHash, ChalPoly or the computation of the hint, their number
does not matter. By definition,

∑7
𝑖=0 𝛿𝑖 ≤ 𝑑 − 1.

Starting at the end of the algorithm, thanks to the NI property of the final
Decode gadget, all the intermediate variables from the final Decode can be per-
fectly simulated with at most 𝛿0 shares of ⟦z⟧. Identically, since Line 14 is NI,
all the intermediate variables from Line 14 to the end of the signature can be
perfectly simulated with at most 𝛿0 + 𝛿1 shares of ⟦𝑟⟧ and ⟦𝑠⟧.

Continuing to the preceding masked gadget, thanks to the NI property of
the first Decode gadget, all the intermediate variables after its execution until
the computation of ChalHash andChalPoly can be simulated with 𝛿3 shares of
⟦𝑤⟧. Hence, all the intermediate variables after the second AddRepNoiseER can
be perfectly simulated with 𝛿4 shares of ⟦𝑤⟧ and (𝜌 (1)𝑖,𝑖rep

) . Note that we exclude
the 𝛿3 observations as they are on the outputs (this is due to the sNIU property
of the second AddRepNoiseER). Similarly, as the multiplication with A is linear
thus NI, the probes inside its execution can be perfectly simulated with at most

50

𝛿6 shares of ⟦𝑟⟧ (output of the first AddRepNoiseER) and at most 𝛿6 shares of
(𝜌 (0)𝑖,𝑖rep

).

Finally, as the Refresh gadget is sNI and ZeroEncoding is sNI (and requires no
input), the probes inside the ZeroEncoding and Refresh can be perfectly simulated
from uniform random and public parameters.

To recap, we have proved that the distribution of the intermediate variables
in ℐ̄ may be perfectly simulated from :

– 𝛿6 shares of (𝜌 (0)𝑖,𝑖rep
)

– 𝛿4 shares of (𝜌 (1)𝑖,𝑖rep
)

– 𝛿0 + 𝛿1 shares of ⟦𝑠⟧.

Since 𝛿6 + 𝛿4, 𝛿0 + 𝛿1 ≤
∑7

𝑖=0 𝛿𝑖 ≤ 𝑑 − 1, this concludes the proof of Lemma 8. ⊓⊔

E Deferred Details from Section 7.2

This section contains the deferred details from Section 7.2.

E.1 Formal Description of Sign𝓛

The following is the formal description of Signℒ used in Hybrid3 of Theorem 1.

51

Algorithm 17 Signℒ (sk,msg,ℐ) → sig
Input: Signing key sk = (vk, ⟦s⟧), message msg ∈ {0, 1}∗.
Input: Probe set ℐ = (ℐ̄r, ℐ̄e′ , ℐ̄sk), ℐ̄r ⊂

{
𝜌r,𝑖,𝑖rep , 𝑗

}
(𝑖,𝑖rep , 𝑗) ∈ [ℓ]×[rep]×[𝑑] ,

ℐ̄e′ ⊂
{
𝜌e′ ,𝑖,𝑖rep , 𝑗

}
(𝑖,𝑖rep , 𝑗) ∈ [𝑘]×[rep]×[𝑑] , ℐ̄sk ⊂

{
s̄k 𝑗

}
𝑗∈[𝑑]

Output: Signature sig = (𝑐hash, h, z) of msg under sk, leakage ℒ

1: 𝜇 := H(H(vk)∥msg); A := ExpandA(seed)
2: ⟦r⟧ := (0, . . . , 0) ∈ (Rℓ𝑞)𝑑
3: for (𝑖, 𝑖rep, 𝑗) ∈ [ℓ] × [rep] × [𝑑] do
4: 𝜌r,𝑖,𝑖rep , 𝑗 ← RSU(𝑢, 1)
5: r 𝑗 ,𝑖 ← r 𝑗 ,𝑖 + 𝜌r,𝑖,𝑖rep , 𝑗

6: ⟦w⟧ := A · ⟦r⟧ ∈ (R𝑘
𝑞)𝑑

7: for (𝑖, 𝑖rep, 𝑗) ∈ [𝑘] × [rep] × [𝑑] do
8: 𝜌e′ ,𝑖,𝑖rep , 𝑗 ← RSU(𝑢, 1)
9: w 𝑗 ,𝑖 ← w 𝑗 ,𝑖 + 𝜌r,𝑖,𝑖rep , 𝑗

10: w := Decode(⟦w⟧)
11: w := ⌊w⌉𝜈w
12: 𝑐hash := ChalHash(w, 𝜇)
13: 𝑐poly := ChalPoly(𝑐hash)
14: ⟦s⟧ ← Refresh(⟦s⟧)
15: s := Decode(⟦s⟧)
16: z := 𝑐poly · s + r
17: y := A · z − 2𝜈t · 𝑐poly · t
18: h := w − ⌊y⌉𝜈w
19: sig := (𝑐hash, h, z)
20: if {CheckBounds(sig) = FAIL} goto Line 4
21: ℒ :=

{
(𝜌r,𝑖,𝑖rep , 𝑗 , 𝜌e′ ,𝑖′ ,𝑖′rep , 𝑗′ , s 𝑗′′)

}
(𝜌r,𝑖,𝑖rep , 𝑗 ,𝜌e′ ,𝑖′ ,𝑖′rep , 𝑗′ ,̄s 𝑗′′) ∈ℐ̄

22: return (sig,ℒ)

E.2 Completing the Proof of Theorem 1

The following lemma is the final component required to prove Theorem 1, es-
tablishing that for any PPT adversary A against the game described in Hybrid4
(cf. Figure 10), we can construct an adversary B against the standard EUF-CMA
security of small Raccoon in Figure 7.

Lemma 20. Let 𝐵∞ ≥ 𝐵∞+𝜔 · (𝑑−1) ·
(

1
2 +

23𝑢𝑡
3

)
· (𝜅+log(𝑛(𝑘+ℓ))+2𝜈w +𝜔 ·2𝜈t , let

𝐵2 ≥ 𝐵2+𝜔 ·
√
𝑛(𝑘 + ℓ) · (𝑑−1) ·

(
1
2 +

23𝑢𝑡
3

)
· (𝜅+ log(𝑛(𝑘 +ℓ)) +2𝜈w ·

√
𝑛𝑘 +𝜔 ·2𝜈t ·

√
𝑛𝑘.

Let A be a PPT adversary against the game defined in Hybrid4 (cf. Figure 10),
then there exists a PPT adversary B against the EUF-CMA security game for
small Raccoon in Figure 7 with advantage:

AdvB ≥ AdvA − 4𝑄𝐻𝑄𝑆 · 2−𝐻∞ − 2−𝜅 − 1
|C| − 2−𝜅

52

Proof. For clarity we will assume that all probes queried by A are on variables
𝜌𝑏,𝑖,𝑖rep , 𝑗 in some AddRepNoise gadget and that for any 𝜌𝑏,𝑖,𝑖rep , 𝑗 ∈ ℐ̄ we have that
𝜌𝑏,𝑖′ ,𝑖rep , 𝑗 ∈ ℐ̄ for all 𝑖′ ≠ 𝑖, I.e. we abstract away the applications of SimIn, Extend,
SimOut, and Collapse. When A queries O𝐾𝑒𝑦𝐺𝑒𝑛(ℐ̄s, ℐ̄e), as per Figure 10, B
will run the following algorithm.

Algorithm 18 KeyGenB ((ℐ̄s, ℐ̄e))
1: (A, v̄k) ← OKeyGenSmall () ▷ Call to KeyGenSmall (Algorithm 12)
2: s̃← SU(𝑑 − 1 − |ℐ̄s |/ℓ, 𝑢𝑡)ℓ
3: ẽ← SU(𝑑 − 1 − |ℐ̄e |/𝑘, 𝑢𝑡)𝑘
4: for (𝑖rep, 𝑗) ∈ [rep] × [𝑑] such that 𝜌s,1,𝑖rep , 𝑗 ∈ ℐ̄1 do
5: (𝜌s,1,𝑖rep , 𝑗 , . . . , 𝜌s,ℓ,𝑖rep , 𝑗) ← RSU(𝑢, 1)ℓ
6: s̃ := s̃ + (𝜌s,1,𝑖rep , 𝑗 , . . . , 𝜌s,ℓ,𝑖rep , 𝑗)
7: for (𝑖rep, 𝑗) ∈ [rep] × [𝑑] such that 𝜌e,1,𝑖rep , 𝑗 ∈ ℐ̄e do
8: (𝜌e,1,𝑖rep , 𝑗 , . . . , 𝜌e,ℓ,𝑖rep , 𝑗) ← RSU(𝑢, 1)𝑘
9: ẽ := ẽ + (𝜌e,1,𝑖rep , 𝑗 , . . . , 𝜌e,ℓ,𝑖rep , 𝑗)

10: t :=
⌊
t̄ + t̃

⌉
𝜈t

11: return
(
t,ℒ := (𝜌𝑏,𝑖,𝑖rep , 𝑗)𝜌𝑏,𝑖,𝑖rep , 𝑗 ∈ℐ̄ , s̃, ẽ

)

We simulate the distribu-
tion of KeyGenℒ .

B then returns (t,ℒ) to A and keeps (s̃, ẽ) which will be necessary when
signing. Observe that if t̄ comes from KeyGenSmall then t = ⌊A · s + e⌉𝜈w where
s and e are the sums of 𝑁 = rep · 𝑑 small uniforms, exactly as in KeyGenℒ,
the leakage ℒ is also identical to the one in KeyGenℒ, note as well that since
|ℐ̄s | + |ℐ̄e | ≤ 𝑑−1, lines 2& 3 of the previous algorithm always make sense When
A queries OSgn(msg, ℐ̄), B will run the following algorithm.

53

Algorithm 19 SignB (msg, ℐ̄)
1: (ℐ̄r, ℐ̄e′ , ℐ̄sk) = ℐ̄

2: (𝑐hash, z̄, h̄) ← OSgnSmall (msg) ▷ Call to SignSmall (Algorithm 13)
3: 𝑐poly := ChalPoly(𝑐hash)
4: 𝜇 := 𝐻 (𝐻 (vk) | |msg)
5: r̃← SU(𝑑 − 1 − |ℐ̄r |, 𝑢𝑤)ℓ
6: ẽ′ ← SU(𝑑 − 1 − |ℐ̄e′ |, 𝑢𝑤)𝑘
7: for (𝑖rep, 𝑗) ∈ [rep] × [𝑑] such that 𝜌r,1,𝑖rep , 𝑗 ∈ ℐ̄r do
8: (𝜌r,1,𝑖rep , 𝑗 , . . . , 𝜌r,ℓ,𝑖rep , 𝑗) ← RSU(𝑢, 1)ℓ
9: r̃ := r̃ + (𝜌r,1,𝑖rep , 𝑗 , . . . , 𝜌r,ℓ,𝑖rep , 𝑗)

10: for (𝑖rep, 𝑗) ∈ [rep] × [𝑑] such that 𝜌e′ ,1,𝑖rep , 𝑗 ∈ ℐ̄e′ do
11: (𝜌e′ ,1,𝑖rep , 𝑗 , . . . , 𝜌e′ ,ℓ,𝑖rep , 𝑗) ← RSU(𝑢, 1)𝑘
12: ẽ′ := ẽ′ + (𝜌e′ ,1,𝑖rep , 𝑗 , . . . , 𝜌e′ ,ℓ,𝑖rep , 𝑗)
13: w̄ := A · z̄ − 𝑐poly − v̄k + h̄
14: w̃ := A · r̃ + ẽ′
15: z̃ := s̃ · 𝑐poly + r̃
16: w := ⌊w̄ + w̃⌉𝜈w
17: ChalHash(w, 𝜇) := 𝑐hash
18: z := z̄ + z̃
19: h := w −

⌊
A · z − 𝑐poly · 2𝜈t · t

⌉
𝜈w

20: sig := (𝑐poly, z, h)
21: if {CheckBounds(sig) = FAIL} goto Line 4
22: return

(
sig,ℒ =

(
(𝜌𝑏,𝑖,𝑖rep , 𝑗)𝜌𝑏,𝑖,𝑖rep , 𝑗 ∈ℐ̄ , $

))

We simulate the distribu-
tion of Signℒ .

First note that since If (𝑐hash, z̄, h̄) comes from SignSmall then z = (s̄+s̃) ·𝑐poly+
r̄ + r̃, and w = ⌊A · (r̄ + r̃) + ē′ + ẽ′⌉𝜈w are distributed exactly as in Signℒ, thus
so is h. When A directly queries ChalHash(x, 𝑦), B checks that ChalHash(x, 𝑦)
is not set and queries 𝑐hash := ¯ChalHash(2𝜈w · x, 𝑦) and sets ChalHash(𝑥, 𝑦) :=
𝑐hash. When A outputs a forgery (𝑐∗hash, z

∗, h∗) for message msg∗, let 𝑐poly :=
ChalPoly(𝑐hash), z̄ := z∗ − 𝑐poly · s̃, and h̄ := 2𝜈wh∗ − 𝑐poly · ẽ + 𝛿1 + 𝑐poly · 𝛿2,
where 𝛿1 := 2𝜈w ·

⌊
A · z∗ − 𝑐∗poly · 2

𝜈t · t
⌉
𝜈w
− (A · z∗ − 𝑐∗poly · 2

𝜈t · t), and 𝛿2 :=

2𝜈t
⌊
t̄ +A · s̃ + ẽ

⌉
𝜈t
− (t̄ + A · s̃ + ẽ). B then checks that (𝑐∗hash, z

∗, h∗) is a valid
forgery for Signℒ and outputs his forgery (𝑐hash, z̄, h̄). We first prove that A
cannot distinguish between B and the challenger of Figure 10. We have shown
that the keys and signatures output by B come from the appropriate distribution
unless B aborts because it is required to program ¯ChalHash on a value that was
already queried by the adversary. If we set 𝑝 the probability that CheckBounds
succeeds (which is constant and identical in SignB and Signℒ), using Lemma 13
(for our parameters we always have 𝑝 > 1/2) we have that the total number
of queries done to ChalHash during signature is less than 2𝑄𝑆

𝑝 with probability
1 − 2−𝑝𝑄𝑠 > 1 − 2−𝜅 , since each call to ChalHash is done on a vector w from
⌊LWE⌉ and at most 𝑄𝐻 values are set at any time, the probability that B aborts

54

because the input to ChalHash was already set is at most:

Pr [BAD] = Pr
[
BAD|𝑄𝑆,𝑡𝑜𝑡𝑎𝑙 ≤ 2𝑄𝑆/𝑝

]
· Pr

[
𝑄𝑆,𝑡𝑜𝑡𝑎𝑙 ≤ 2𝑄𝑆/𝑝

]
+ Pr

[
BAD|𝑄𝑆,𝑡𝑜𝑡𝑎𝑙 > 2𝑄𝑆/𝑝

]
· Pr

[
𝑄𝑆,𝑡𝑜𝑡𝑎𝑙 > 2𝑄𝑆/𝑝

]
≤ (1 − 2−𝜅) · (1 − (1 −𝑄𝐻 · 2−𝐻∞)2𝑄𝑆/𝑝) + 2−𝜅

≤ 𝑄𝐻 · 𝑄𝑆

𝑝
· 2−𝐻∞+1 + 2−𝜅

We now show that when the event BAD does not occur the forgery output by B
is valid with overwhelming probability. We first note that since (𝑐∗hash, z

∗, h∗) is a
valid forgery for msg∗, OSgn was never queried on msg∗. Let w∗ = ⌊A · z∗ − 𝑐∗ · 2𝜈t · t⌉𝜈w+
h∗, if A never queried ChalHash(w∗,msg) and it is consequently not set, then the
probability of forging successfully is at most 1/|C|. IfA queried ChalHash(w∗,msg),
then

ChalHash(w∗,msg) = ¯ChalHash(2𝜈t · w∗,msg) = ¯ChalHash(A · z̄ − 𝑐 · t̄ + h̄,msg)

where (z̄, h̄) = (z∗− 𝑐poly · s̃, 2𝜈wh∗− 𝑐poly · ẽ+ 𝛿1 + 𝑐poly · 𝛿2 are as defined previously
with ∥𝛿1∥∞ ≤ 2𝜈w and ∥𝛿2∥∞ ≤ 2𝜈t . Using Lemma 12, we have:

∥(z̄, h̄)∥ ≤ ∥(z∗, 2𝜈wh∗)∥ + ∥(𝑐poly · s̃, 𝑐poly · ẽ + 𝛿1 + 𝑐poly · 𝛿2)∥

≤ 𝐵2 + 𝜔 ·
√
𝑛(𝑘 + ℓ) · (𝑑 − 1) ·

(
1
2
+ 23𝑢𝑡

3

)
· (𝜅 + log(𝑛(𝑘 + ℓ)) + 2𝜈w ·

√
𝑛𝑘 + 𝜔 · 2𝜈t ·

√
𝑛𝑘

= 𝐵2

Similarly we have

∥(z̄, h̄)∥∞ ≤ 𝐵∞ + 𝜔 · (𝑑 − 1) ·
(
1
2
+ 23𝑢𝑡

3

)
· (𝜅 + log(𝑛(𝑘 + ℓ)) + 2𝜈w + 𝜔 · 2𝜈t

= 𝐵∞

Hence (𝑐, z̄, h̄) is a valid forgery. ⊓⊔

F Deferred Details in Section 7.3

This section establishes the standard EUF-CMA security of small Raccoon in Fig-
ure 7.

F.1 Asymptotic Parameter Selection and Preparation

To formally rely on the smooth Rényi divergence and the hardness assumptions,
we must first provide a set of candidate asymptotic parameters for which the
EUF-CMA security proof holds.

55

Random oracle model. The small Raccoon signature relies on two hash functions
H : {0, 1}∗ → {0, 1}2𝜅 and G : R𝑘

𝑞𝜈t
×{0, 1}2𝜅 → C, where C is the challenge space

defined as
C = {𝑐 ∈ R𝑞 | ∥𝑐∥∞ = 1 ∧ ∥𝑐∥1 = 𝜔}. (27)

It further relies on the ExpandA function serving as a pseudorandom number
generator. These hash functions and ExpandA are modeled as random oracles
throughout the security proof.

Constraints on parameters. We then give the intermediate variables that will be
used during the proof and their value when applicable. Below, denote 𝜔asymp (𝑓)
the class of functions that grows asymptotically faster than 𝑓 . Also, denote
𝑇 = 𝑑 (rep − 1) + 1 below.

– 𝐵sRD
𝑢t ,∞, 𝐵sRD

𝑢t ,2 bounds on the 𝐿∞, 𝐿2-norm, respectively, of 𝑐 · (s, e) for any
𝑐 ∈ C and (s, e) ← RSU(𝑢t, 𝑇)ℓ × RSU(𝑢t, 𝑇)𝑘 ,

– 𝐵sRD
𝑢w ,∞ 𝐵

sRD
𝑢w ,2 bounds on the 𝐿∞, 𝐿2-norm, respectively, of (r, e′) ← RSU(𝑢w, 𝑇)ℓ×

RSU(𝑢w, 𝑇)𝑘 ,
– 𝛽 =

√
𝜔 + 𝐵2,

– 𝛼 the order used in the smooth Rényi divergence,
– 𝜖Tail the statistical component that will be used in the smooth Rényi diver-

gence argument,
– 𝜀Adv = AdvMLWE

B + AdvSelfTargetMSIS
B′ + 𝜖negl, for Lemma 22 where B and B′ are

constructed from the EUF-CMA adversary A with similar advantages as A,
and a fixed negligible function 𝜖negl.
We now list the constraints which will appear in the proof:

– AdvMLWE
B = negl(𝜅). I.e. 𝑇 (22𝑢t−1)

12 ≥
√
ℓ · 𝜔asymp (

√
log 𝑛), using Eq. (12)

and Lemma 9.
– AdvSelfTargetMSIS

B′ = negl(𝜅). I.e. 𝛽′
√
𝑛(ℓ + 1) · 𝜔asymp (

√
log(𝑛ℓ)) ≤ 𝑞 where 𝛽′ =

2𝛽, using Lemmas 10 and 11.
– 𝛼𝐵sRD

𝑢t ,∞ = 𝑜
(

2𝑢w
𝑇−1

)
, 𝛼 = 𝜔asymp (1) and 𝜖Tail =

(𝛼𝐵sRD
𝑢t ,∞+𝑇)

𝑇

2𝑢w ·𝑇𝑇! = negl(𝜅). So that
we can use the smooth Rényi divergence as per Lemma 3 and Conjecture 1.

– 𝛼 = 2𝑢w

𝐵sRD
𝑢t ,2

√
− log(𝜀Adv)𝑇
𝐶Rényi𝑄𝑠

,
𝐵sRD
𝑢t ,2

2𝑢w ·
√
−𝐶Rényi ·log(𝜀Adv) ·𝑄𝑠

𝑇 = 𝑂 (log 𝜅), and 𝑄𝑠 · 𝜖Tail ≤
𝜖negl. So we can use Lemma 22.

– 𝐵sRD
𝑢t ,∞ = 𝜔·

(
𝑇
2 + 𝛿𝑢t

)
, 𝐵sRD

𝑢t ,2 =
√
𝑛(ℓ + 𝑘)·𝐵sRD

𝑢t ,∞, and 𝛿𝑢t = 2𝑢t
√

𝑇
3 · 𝜅 + log(𝑄𝑠 · 𝑛(ℓ + 𝑘)) · log(2).

For Lemma 12.
– 𝐵sRD

𝑢w ,∞ = 2𝑢w · 𝑇 , and 𝐵sRD
𝑢w ,2 = 2𝑢w

√
3𝑇 · 𝑛(ℓ + 𝑘) for Eq. (11).

– 𝐵2 = 𝐵sRD
𝑢w ,∞ + 𝐵sRD

𝑢w ,2 + 2𝜈w ·
√
𝑛𝑘 for overwhelming correctness.

Candidate asymptotic parameters. Finally, we give a set of asymptotic parame-
ters which fit the above constraints. It is worth noting that the only parameters
that may depend on the EUF-CMA adversary A are 𝛼, 𝜖Tail, and 𝜀Adv used in
the security proof. All other parameters are scheme specific and defined inde-
pendently of A.

56

– 𝑛, ℓ, 𝑘 = poly(𝜅) such that 𝑛 ≥ 𝜅,
– 𝑄ℎ = poly(𝜅): the maximum number of hash queries is any unbounded poly-

nomial,
– 𝑄𝑠 = poly(𝜅): the maximum number of signing queries is polynomially bounded,

i.e., the parameter of the scheme depends on 𝑄𝑠. Without loss of generality,
we assume 𝑄𝑠 ≥ 𝜅,

– 𝑇 = 𝑑 · (rep − 1) + 1 = 𝜔asymp (1), e.g., 𝑇 =
√

log 𝜅,
– 𝜔 = 𝜔asymp (1), e.g., 𝜔 = log 𝜅,
– 𝜖negl = 2−𝜅 ,
– 𝜈t, 𝜈w = 𝑂 (log 𝜅). From which, we get 𝛽, 𝛽′ = poly(𝜅), and set polynomially

sized modulus 𝑞 such that 𝛽′
√
𝑛(ℓ + 1) · 𝜔asymp (log(𝑛ℓ)) ≤ 𝑞,

– 2𝑢t = 4
√
ℓ · log 𝜅 ,

– 2𝑢w = 𝐵sRD
𝑢t ,2

√
𝐶Rényi𝑄𝑠

𝑇 ·
√

𝜅
log 𝜅 · 𝑛(ℓ + 𝑘). From which we get the condition on

Lemma 22, as well as 𝜖Tail = negl(𝜅) since

𝜖Tail ≤
(
𝛼BsRD

𝑢t ,∞
2𝑢w

+ 1
√
𝜅

)𝑇
≤

(√
− log(𝜖Adv) · 𝑇
𝑄𝑠 · 𝑛(ℓ + 𝑘)

+ 1
√
𝜅

)𝑇
≤

(
2
4√𝜅

)√log 𝜅

= negl(𝜅).

Where the first inequality comes from 𝑇 · 𝜅1/2 ≤ 2𝑢w and the second inequal-
ity comes from BsRD

𝑢t ,2 =
√
𝑛(ℓ + 𝑘) · BsRD

𝑢t ,∞. The last fact comes from 𝑄𝑠 ≥ 𝜅,
𝑇 =

√
log 𝜅, and the fact that we can assume 𝜀Adv ≥ 2−

√
𝜅

log 𝜅 ·𝑛(ℓ+𝑘) as any
adversary against SelfTargetMSIS with 𝛽 = poly(𝜅) can achieve better ad-
vantage than 𝜀Adv by random guessing.6 Following a similar computation,
𝐵sRD
𝑢t ,2

2𝑢w ·
√
−𝐶Rényi ·log(𝜀Adv) ·𝑄𝑠

𝑇 ≤ 1. Lastly, we have 𝑄𝑠 · 𝜖Tail ≤ 𝜖negl,

– Using how we set 2𝑢w , 𝛼 = 2𝑢w

𝐵sRD
𝑢t ,2

√
− log(𝜀Adv)𝑇
𝐶Rényi𝑄𝑠

=
√
− log(𝜀Adv) ≤ 4√𝜅 ·

√
𝑛(ℓ + 𝑘).

From this we get 𝛼𝐵sRD
𝑢t ,∞ = 𝑜

(
2𝑢w
𝑇−1

)
. Moreover, assuming the hardness of

MLWE and SelfTargetMSIS, we can bound 𝜀Adv ≤ 𝜅−1, which establishes
𝛼 ≥ log(𝜅) = 𝜔asymp (1).

Theorem 3. The small Raccoon in Figure 7 is EUF-CMA secure under the
MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑇) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽 assumptions.

Formally, for any adversary A against the EUF-CMA security game making
at most 𝑄ℎ random oracle queries and 𝑄𝑠 signing queries, and 𝜖Tail, there exists
adversaries B and B′ against the MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑇) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽
problems such that

AdvEUF-CMA
A ≤ 2−𝜅 · 𝑄ℎ · (1 + 2−𝜅+1 · 𝑄𝑠) +𝑄𝑠 · 𝜖Tail

+
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ +𝑄𝑠 · 𝜖Tail

) 𝛼−1
𝛼 ·

(
𝑅𝜖Tail
𝛼 (P;Q)

)𝑄𝑠 ,

(28)
6 Note that when setting concrete parameters, we can use a lower bound derived from

the best known attack against the ExtMLWE and SelfTargetMSIS problems.

57

where Time(A) ≈ Time(B) ≈ Time(B′).Concretely, plugging in our candidate
asymptotic parameters in Appendix F.1, we conclude AdvEUF-CMA

A is bounded by
negl(𝜅).

Hybrid0
1: seed← {0, 1}𝜅
2: A := ExpandA(seed)
3: s← RSU(𝑢t, 𝑁 − 𝑑 + 1)ℓ
4: e← RSU(𝑢t, 𝑁 − 𝑑 + 1)𝑘
5: t := A · s + e
6: vk := (A, t)
7: 𝑄Sign := ∅
8: (msg∗, sig∗) ← AOSgn() (vk)
9: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign re-

turn FAIL
10: return Verify(sig∗,msg∗, vk)

OSgn(msg)
1: 𝜇 := H(H(vk)∥msg)
2: r← RSU(𝑢w, 𝑁 − 𝑑 + 1)ℓ
3: e′ ← RSU(𝑢w, 𝑁 − 𝑑 + 1)𝑘
4: w := A · r + e′
5: 𝑐poly := G(w, 𝜇)
6: z := 𝑐poly · s + r
7: y := A · z − 𝑐poly · t
8: h := w − y
9: sig := (𝑐poly, h, z)

10: if CheckBounds(sig) = FAIL
goto Line 2

11: 𝑄Sign := 𝑄Sign ∪ {(msg, sig)}
12: return sig

Fig. 13: First hybrid Hybrid0.

Proof. Below, we consider a sequence of hybrids, where the first hybrid is the
original game and the last is a game that can be reduced from the SelfTargetMSIS
problem. We relate the advantage of A for each adjacent hybrids.
Hybrid0: This is the original EUF-CMA security game (cf. Remark 2). See Fig-

ure 13. For ease of reading, we use the hash function G that corresponds to
¯ChalPoly ◦ ChalHash to sample 𝑐poly := G(w, 𝜇). Without loss of generality,

throughout the security proof, we assume 𝑐poly is included in the signature
sig, as opposed to 𝑐hash.

AdvHybrid0
A = AdvEUF-CMA

A .

Hybrid1: In this hybrid, the challenger samples A uniformly at random from its
target set R𝑘×ℓ

𝑞 and programs ExpandA(seed) := A. This is depicted in Fig-
ure 14. As ExpandA is modeled as a random oracle and there are at most 𝑄ℎ

random oracle queries, the probability that the programming of the random
oracle fail is bounded by 𝑄ℎ · 2−𝜅 . Thus, we have���AdvHybrid1

A − AdvHybrid0
A

��� ≤ 𝑄ℎ · 2−𝜅 .

Hybrid2: In this hybrid, the challenger adds a winning condition. This is de-
picted in Figure 14. Namely, when the adversary produces a forgery on a

58

Hybrid1
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ

𝑞

3: ExpandA(seed) := A
4: s← RSU(𝑢t, 𝑁 − 𝑑 + 1)ℓ
5: e← RSU(𝑢t, 𝑁 − 𝑑 + 1)𝑘
6: t := A · s + e
7: vk := (seed, t)
8: 𝑄Sign := ∅
9: (msg∗, sig∗) ← AOSgn() (vk)

10: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign re-
turn FAIL

11: return Verify(sig∗,msg∗, vk)

Hybrid2
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ

𝑞
3: ExpandA(seed) := A
4: s← RSU(𝑢t, 𝑁 − 𝑑 + 1)ℓ
5: e← RSU(𝑢t, 𝑁 − 𝑑 + 1)𝑘
6: t := A · s + e
7: vk := (seed, t)
8: 𝑄Sign := ∅
9: (msg∗, sig∗) ← AOSgn() (vk)

10: if ∃(msg, ·) ∈ 𝑄Sign : H(H(vk)∥msg∗) =
H(H(vk)∥msg) return FAIL

11: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign re-
turn FAIL

12: return Verify(sig∗,msg∗, vk)

Hybrid3

OSgn(msg)
1: 𝜇 := H(H(vk)∥msg)
2: r← RSU(𝑢w, 𝑁 − 𝑑 + 1)ℓ
3: e′ ← RSU(𝑢w, 𝑁 − 𝑑 + 1)𝑘
4: w := A · r + e′
5: 𝑐poly ← C
6: z := 𝑐poly · s + r
7: y := A · z − 𝑐poly · t
8: h := w − y
9: G(w, 𝜇) := 𝑐poly ▷ Abort if already

programmed
10: sig := (𝑐poly, h, z)
11: if CheckBounds(sig) = FAIL

goto Line 2
12: 𝑄Sign := 𝑄Sign ∪ {(msg, sig)}
13: return sig

Hybrid4

OSgn(msg)
1: 𝜇 := H(H(vk)∥msg)
2: r← RSU(𝑢w, 𝑁 − 𝑑 + 1)ℓ
3: e′ ← RSU(𝑢w, 𝑁 − 𝑑 + 1)𝑘
4: 𝑐poly ← C
5: z := 𝑐poly · s + r
6: z′ := 𝑐poly · e + e′
7: w := A · z − 𝑐poly · t + z′
8: y := A · z − 𝑐poly · t
9: h := w − y

10: G(w, 𝜇) := 𝑐poly ▷ Abort if already
programmed

11: sig := (𝑐poly, h, z)
12: if CheckBounds(sig) = FAIL

goto Line 2
13: 𝑄Sign := 𝑄Sign ∪ {(msg, sig)}
14: return sig

Fig. 14: Hybrid1 to Hybrid4 used in the proof of Theorem 3. Differences from
Hybrid𝑖−1 to Hybrid𝑖 are highlighted.

59

message msg that provokes a collision in H(H(vk)∥msg★) for a message msg★
previously queried to the signing oracle, the challenger does not view this as
a valid forgery. Since H : {0, 1}∗ → {0, 1}2𝜅 is modeled as a random oracle,
this event happens with probability at most 𝑄𝑠 · 2−2𝜅 :���AdvHybrid2

A − AdvHybrid1
A

��� ≤ 𝑄𝑠 · 2−2𝜅 .

Hybrid3: In this hybrid, the challenger replaces non-programmed random oracle
outputs in the signing oracle with programmed outputs. Namely, it first
samples an element 𝑐poly uniformly at random from the challenge space C.
Then it programs the hash function to consistently return this value 𝑐poly on
input (𝜇,w) during further interactions with the adversary. This is depicted
in Figure 14.
Note that the signing responses in Hybrid2 are identically distributed to
Hybrid1 unless OSgn(·) is required to program a value that has already been
queried by the adversary. As w is sampled randomly following the BD-MLWE
distribution without any rounding as in Definition 12, this happens with
probability at most 𝑄ℎ ·2−𝐻∞ (BD-MLWE) in each signing query. Thus it follows
that ���AdvHybrid3

A − AdvHybrid3
A

��� ≤ 1 −
(
1 −𝑄ℎ · 2−𝐻∞ (BD-MLWE)

)𝑄𝑠

≤ 𝑄𝑠 · 𝑄ℎ · 2−𝐻∞ (BD-MLWE) ,

where we have used Bernoulli’s inequality and 𝑄ℎ < 2𝐻∞ (BD-MLWE) from
Conjecture 2.

Hybrid4: In this hybrid, the challenger computes the commitment w using the
public key as opposed to an ephemeral LWE sample A ·r+e′. This is depicted
in Figure 14. As the challenger computes w = A · r+ e′ = A · z− 𝑐poly ·A · s+ e′
in the previous game, one can verify that

A · z − 𝑐poly · A · s + e′ = A · z − 𝑐poly · t + 𝑐poly · e + e′︸ ︷︷ ︸
=:z′

,

which yields the equation in Hybrid3.
As it is simply a rewriting of w, it remains indistinguishable from Hybrid3:

AdvHybrid4
A = AdvHybrid3

A .

Hybrid5: In this hybrid, the challenger computes the response (z, z′) without
using the secret key s or the noise e. This is depicted in Figure 15. However,
to do this the challenger has removed an explicit dependence on s, e in z and
z′ so the distribution of the signing responses are not statistically identical.
We argue that the two distributions are indistinguishable for an adversary
that can make no more than 𝑄𝑠 queries.
We recall the P and Q(center) defined in Appendix F.1. Let P be the distri-
bution SU(𝑢w, 𝑇)𝑛(ℓ+𝑘) and Q(centerqs) be the distribution centerqs+P, where

60

𝑐qs ← C is the qs-th (qs ∈ [𝑄𝑠]) challenge used to respond to the signing

oracle OSgn and centerqs := 𝑐qs ·
[
s
e

]
∈ Rℓ+𝑘

𝑞 . Define P∗ := P𝑄𝑠 and let Q∗centers

be the tensored distribution ⊗qs∈[𝑄𝑠]Q(centerqs). Then, P∗ and Q∗centers cor-
respond to the distributions of (z, z′) in Hybrid5 and Hybrid4, respectively.
Lastly, let 𝜖Tail,centers :=

∑
qs∈[𝑄𝑠] 𝜖Tail(centerqs) where recall Appendix F.1

for the definition of 𝜖Tail(centerqs).
We can now relate the advantage of this hybrid from the previous hybrid. Us-
ing the probability preservation property and the tensorization of the smooth
Rényi divergence in Lemma 2, we have the following with overwhelming
probability:

AdvHybrid4
A ≤ (AdvHybrid5

A + 𝜖Tail,centers)
𝛼−1
𝛼 ·

(
𝑅
𝜖Tail,centers
𝛼 (Q∗centers;P∗)

)
+ 𝜖Tail,centers

≤ (AdvHybrid5
A + 𝜖Tail,centers)

𝛼−1
𝛼 ·

∏
qs∈[𝑄𝑠]

(
𝑅
𝜖Tail (centerqs)
𝛼 (Q(centerqs);P)

)
+ 𝜖Tail,centers

≤ (AdvHybrid5
A + 𝜖Tail,centers)

𝛼−1
𝛼 ·

∏
qs∈[𝑄𝑠]

(
𝑅
𝜖Tail (centerqs)
𝛼 (P;Q(centerqs))

)
+ 𝜖Tail,centers

≤ (AdvHybrid5
A +𝑄𝑠 · 𝜖Tail)

𝛼−1
𝛼 ·

(
𝑅𝜖Tail
𝛼 (P;Q)

)𝑄𝑠 +𝑄𝑠 · 𝜖Tail,

where the third bound follows from Lemma 14 and the final bound follows
from the definitions of 𝜖Tail and 𝑅𝜖Tail

𝛼 (P;Q). So as not to interrupt the proof,
we postpone the proof showing that the two advantages are polynomially
related.

Hybrid6: In this hybrid, the verification key vk = (seed,A · s + e) is replaced
with (A, t) where t is sampled uniformly at random from R𝑘

𝑞. Since the
secret key s is not used anywhere in Hybrid5, the only change in the view
of the adversary is the distribution of the verification key vk. Meaning that
an adversary capable of distinguishing between Hybrid5 and Hybrid6 can be
used to construct an adversary B solving the MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑇) problem:���AdvHybrid6

A − AdvHybrid5
A

��� ≤ AdvMLWE
B .

Moreover we have Time(B) ≈ Time(A).
Hybrid7: Lastly, in this hybrid, the challenger prepares an empty list 𝐿SimT and

a fresh random oracle G′, and modifies the description of the random oracle
G provided to the adversary. Notably, the adversary is not provided access
to G′. The list 𝐿SimT stores all the input for which G was queried in the
previous hybrid. The challenger checks the same abort condition using 𝐿SimT,
corresponding to the fact that G was already programmed in the previous
hybrid. Finally, (w, 𝜇,⊥) ∈ 𝐿SimT denotes the point of G that the adversary
queried, and not something programmed by the challenger. Since the view

61

of the adversary remains identical in both hybrids, we have

AdvHybrid7
A = AdvHybrid6

A .

We show in Lemma 21 that there exists an adversary B′ solving the SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽
problem such that

AdvHybrid7
A ≤ AdvSelfTargetMSIS

B′ .

Before providing the proof of Lemma 21, we finish the proof of Theorem 3.
Collecting the bounds, we obtain

AdvHybrid0
A ≤ 2−𝜅 · 𝑄ℎ · (1 + 2−𝜅+1 · 𝑄𝑠) +𝑄𝑠 · 𝜖Tail

+
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ +𝑄𝑠 · 𝜖Tail

) 𝛼−1
𝛼 ·

(
𝑅𝜖Tail
𝛼 (P;Q)

)𝑄𝑠 ,

≤
(
AdvMLWE

B + AdvSelfTargetMSIS
B′ + 𝜖negl

) 𝛼−1
𝛼 ·

(
𝑅𝜖Tail
𝛼 (P;Q)

)𝑄𝑠 + negl(𝜅),

where 𝑄𝑠 ·𝜖Tail ≤ 𝜖negl = negl(𝜅) due to our parameter selection in Appendix F.1.

Relying on Conjecture 1, we can bound (𝑅𝜖Tail
𝛼 (P;Q))𝑄𝑠 ≤ exp

(
𝐶Rényi ·𝑄𝑠 ·𝛼· (𝐵sRD

𝑢t ,2
)2

𝑇 ·22·𝑢w

)
.

Hence, plugging in our choice of 𝛼, i.e., 𝛼 = 2𝑢w

𝐵sRD
𝑢t ,2
·
√
− log(𝜀Adv) ·𝑇

𝐶Rényi ·𝑄𝑠
with 𝜀Adv =

AdvMLWE
B + AdvSelfTargetMSIS

B′ + 𝜖negl, we obtain

AdvHybrid0
A ≤ 𝜀Adv · exp

(
2 · 𝐵sRD

𝑢t ,2

2𝑢w

√
−𝐶Rényi · log(𝜀Adv) · 𝑄𝑠

𝑇

)
︸ ︷︷ ︸

=:Λ

+negl(𝜅).

We finally show in Lemma 22 that Λ = negl(𝜅), assuming the hardness of the
MLWE and SelfTargetMSIS assumptions. This completes the proof of Theorem 3.

⊓⊔

It remains to prove the following two Lemmas 21 and 22.

Lemma 21. There exists an adversary B′ solving the SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽
problem with

AdvHybrid7
A ≤ AdvSelfTargetMSIS

B′ .

Moreover we have Time(B′) ≈ Time(A) .

Proof. Let A be an adversary against the EUF-CMA security game in Hybrid7.
We construct an adversary B′ solving the SelfTargetMSIS problem having the
same advantage as A. Assume B′ is given M ∈ R𝑘×(ℓ+1)

𝑞 as the SelfTargetMSIS
problem. We denote by G′ the oracle B′ is given access to as part of the
SelfTargetMSIS problem. The description of B′ follows.

62

First, B′ lazily simulates the random oracles H and ExpandA. It also simu-
lates G by relying on G′ in the case (w,H(H(vk)∥msg)) was not used to answer
the signing query (see Figure 15). Furthermore, B′ sets −t ∈ R𝑘

𝑞 to be the first
column of M and A ∈ R𝑘×ℓ

𝑞 to be the last ℓ columns and prepares the verification
key vk. Note that B′ perfectly simulates the challenger in Hybrid7 as the matrix
A and the vector t are distributed uniformly in their respective sets. At the end
of the game, the adversary A outputs a forgery (𝑐∗poly, h

∗, z∗) for a message msg∗.

B′ sets 𝜇∗ = H(H(vk)∥msg∗) and s =

𝑐∗poly
z∗
h∗

 ∈ Rℓ+𝑘+1
𝑞 . It then outputs (𝜇∗, s) as

the solution to the SelfTargetMSIS problem.

Let us analyze the success probability of B′. Conditioning on A′ breaking
EUF-CMA security, no (w′, 𝑐′poly) such that 𝑐′poly ≠ ⊥ and (w′, 𝜇∗, 𝑐′poly) ∈ 𝐿SimT
exists due to the modification we made in Hybrid2. Since the forgery is valid,
this implies 𝑐∗poly = G′

(
A · z∗ − 𝑐∗poly · t + h∗, 𝜇∗

)
and ∥(z∗, h∗)∥2 ≤ 𝐵2. Now, notice

that

[M | I] · s = [M | I] ·

𝑐∗poly
z∗
h∗

 = −𝑐∗poly · t +A · z∗ + h∗

In particular, 𝑐∗poly = G′ ([M | I] · s, 𝜇∗) as desired. Finally, we have

∥s∥2 = ∥(𝑐poly, z∗, h∗)∥2
≤ ∥𝑐∗poly∥2 + ∥(z

∗, h∗)∥2
≤
√
𝜔 + 𝐵2

= 𝛽.

Since s ≠ 0 as 𝑐∗poly has 𝜔 non-zero coefficients, we conclude that (𝜇∗, s) is a valid
solution for the SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽 problem. It is clear that Time(B′) ≈
Time(A′). This completes the proof. ⊓⊔

Lemma 22. Under the assumption that MLWE𝑞,ℓ,𝑘,SU(𝑢t ,𝑇) and SelfTargetMSIS𝑞,ℓ+1,𝑘,C,𝛽
are hard, we have the following according to our parameter selection in Ap-
pendix F.1:

Λ = 𝜀Adv · exp
(
2 · 𝐵sRD

𝑢t ,2

2𝑢w

√
−𝐶Rényi · log(𝜀Adv) · 𝑄𝑠

𝑇

)
= negl(𝜅).

Proof. Due to our assumption, we can assume 𝜀Adv = negl(𝜅). Plugging our value
for 2𝑢w , we get Λ = 𝑂 (𝜀Adv · exp(log 𝜅)) = negl(𝜅) as desired. ⊓⊔

63

Hybrid5

OSgn(msg)
1: 𝜇 := H(H(vk)∥msg)
2: z← RSU(𝑢w, 𝑁 − 𝑑 + 1)ℓ
3: z′ ← RSU(𝑢w, 𝑁 − 𝑑 + 1)𝑘
4: 𝑐poly ← C
5: w := A · z − 𝑐poly · t + z′
6: y := A · z − 𝑐poly · t
7: h := w − y
8: G(w, 𝜇) := 𝑐poly ▷ Abort if already

programmed
9: sig := (𝑐poly, h, z)

10: if CheckBounds(sig) = FAIL
goto Line 2

11: 𝑄Sign := 𝑄Sign ∪ {(msg, sig)}
12: return sig

Hybrid6
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ

𝑞
3: ExpandA(seed) := A
4: t← R𝑘

𝑞
5: vk := (seed, t)
6: 𝑄Sign := ∅
7: (msg∗, sig∗) ← AOSgn() (vk)
8: if ∃(msg, ·) ∈ 𝑄Sign :

H(H(vk)∥msg∗) = H(H(vk)∥msg)
return FAIL

9: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign re-
turn FAIL

10: return Verify(sig∗,msg∗, vk)

Hybrid7
1: seed← {0, 1}𝜅
2: A← R𝑘×ℓ

𝑞
3: ExpandA(seed) := A
4: t← R𝑘

𝑞
5: vk := (seed, t)
6: 𝑄Sign := ∅
7: 𝐿SimT := ∅
8: (msg∗, sig∗) ← AOSgn() (vk)
9: if ∃(msg, ·) ∈ 𝑄Sign :

H(H(vk)∥msg∗) = H(H(vk)∥msg)
return FAIL

10: if ∃sig′ s.t. (msg∗, sig′) ∈ 𝑄Sign re-
turn FAIL

11: return Verify(sig∗,msg∗, vk)

OSgn(msg)
1: 𝜇 := H(H(vk)∥msg)
2: z← RSU(𝑢w, 𝑁 − 𝑑 + 1)ℓ
3: z′ ← RSU(𝑢w, 𝑁 − 𝑑 + 1)𝑘
4: 𝑐poly ← C
5: w := A · z − 𝑐poly · t + z′
6: y := A · z − 𝑐poly · t
7: h := w − y
8: 𝐿SimT ← 𝐿SimT ∪ {(w, 𝜇, 𝑐poly)}

▷ Abort if ∃𝑐′poly ∈ C ∪ {⊥} s.t.
(w, 𝜇, 𝑐′poly) ∈ 𝐿SimT

9: sig := (𝑐poly, h, z)
10: if CheckBounds(sig) = FAIL

goto Line 2
11: 𝑄Sign := 𝑄Sign ∪ {(msg, sig)}
12: return sig

G(w,msg)
1: 𝜇 := H(H(vk)∥msg)
2: if ∃𝑐poly s.t. (w, 𝜇, 𝑐poly) ∈ 𝐿SimT

return 𝑐poly
3: 𝐿SimT ← 𝐿SimT ∪ {(w, 𝜇,⊥)}
4: return G′ (w,msg)

Fig. 15: Last three Hybrid games for the proof of Theorem 3. The differences
between Hybrid𝑖−1 and Hybrid𝑖 are highlighted. Note that in Hybrid6, the signing
oracle OSgn(msg) remains the same as in Hybrid5. Moreover, in Hybrid7, the
game uses another random oracle G′ (non-accessible from A) and modifies the
description of the random oracle G. We assume A is given access to the random
oracles (H,G,ExpandA).

	Raccoon: A Masking-Friendly Signature Proven in the Probing Model
	Introduction
	Our Contributions
	Overview of the Security Proof
	Related works

	Preliminaries
	Hardness Assumptions
	Masking Preliminaries
	Sum of Uniforms

	The Raccoon Signature Scheme
	Key Generation
	Signing Procedure
	Verification Procedure
	Helper Algorithms

	Smooth Rényi Divergence and Useful Bounds
	Smooth Rényi Divergence
	Useful Bounds on Sum of Uniforms

	Enhancing NI/sNI for Probing EUF-CMA Security
	EUF-CMA Security in the Probing Model
	Insufficiency of the NI/sNI Models
	NI/sNI with Unshared Inputs

	NIU Property of Raccoon's [alg:maskkeygen]KeyGen and [alg:masksign]Sign
	Existing Security Properties
	Security Property of the [alg:addrepnoise]AddRepNoise Gadget
	Security Property of [alg:maskkeygen]KeyGen and [alg:masksign]Sign

	EUF-CMA Security of Raccoon in the Probing Model
	Description of a Non-Masked Small Raccoon
	EUF-CMA Security of Small Raccoon Probing EUF-CMA Security of Raccon
	MLWE + SelfTargetMSIS EUF-CMA Security of Small Raccoon

	Concrete Instantiation
	Conclusion and Next Steps
	Parameters
	Deferred Preliminaries
	Hardness assumptions
	Min-entropy of MLWE for the sum of uniform distribution.
	Deferred preliminaries on sum of uniforms
	Tail-cut bounds

	Deferred Details from sec:smoothRD
	Symmetry for Symmetric Distributions
	The Sum of Discrete Uniform Variables
	Smooth Rényi Divergence Between Shifted Copies of PN, T
	Conjecture on the Smooth Rényi Divergence for Sums of Uniforms

	Deferred Details from sec:probing
	Deferred Details from sec:reductiontosmallraccoonstep1
	Formal Description of [alg:leaksign]Sign
	Completing the Proof of th:probingeufcmaraccoon

	Deferred Details in sec:smallraccoonproof
	Asymptotic Parameter Selection and Preparation

