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Abstract. The Gentry-Peikert-Vaikuntanathan (GPV) framework is uti-
lized for constructing practical digital signatures, which is proven to be
secure in both the classical/quantum random-oracle models. Falcon is
such a signature scheme, recognized as a compact and efficient signature
among NIST-standardized signature schemes. Recently, Guerreau et al.
(CHES 2022) and Zhang et al. (Eurocrypt 2023) proposed the secret key
recovery attack on Falcon utilizing signatures filtered by simple power
analysis (SPA) attacks. However, these attacks, which exploit the condi-
tional signature distributions, require a large number of SPA attacks to
obtain the filtered signatures. Furthermore, no existing attack considers
general GPV signatures despite the importance of the GPV framework
in modern digital signatures. Therefore, we address these problems as
follows.

First, we introduce, for the first time, a concept of vulnerable par-
tial information of GPV signatures and propose a non-filtering secret
key recovery attack, called OLS attack, which effectively utilizes par-
tial information without filtering. The proposed OLS attack is a linear
estimator with computational complexity that scales linearly with the
number of samples, making OLS attack highly practical. Furthermore,
we prove that the secret key recovered by the OLS attack converges to
the real secret key in probability as the number of samples increases.

Second, we leverage SPA to extract Gaussian leakage, which is used
as partial information for the OLS attack on Falcon. As a result, the
OLS attack shows a significantly higher success rate with the fewest
samples than the state-of-the-art attacks. Furthermore, by incorporating
the DDGR attack, the OLS attack can recover the secret key using much
fewer samples with a success rate close to 100%. Moreover, we propose
an OLS attack specialized for Falcon, which can even more reduce the
number of required side-channel attacks.

Third, we propose an error-tolerant power analysis attack using MAP
decoding, which effectively corrects the errors in samples to properly esti-
mate Gaussian leakage. For concrete experimental validation, an ELMO
simulator generates noisy power traces and ChipWhisperer measures
power traces from the STM32F415 model. The proposed MAP decoding
achieves high effectiveness for estimating Gaussian leakage, particularly
when applied to power traces collected using low-resolution ChipWhis-
perer. In conclusion, it is important for future work to study counter-
measures for OLS attacks.



1 Introduction

A rapid advancement of quantum computing has posed a significant threat to
traditional cryptosystems. In particular, Shor’s algorithm can break RSA cryp-
tosystems in polynomial time [32], and Grover’s search algorithm reduces the
security bit size of symmetric key cryptosystems by half [14]. To address these
quantum threats, the national institute of standards and technology (NIST) ini-
tiated a competition to identify post-quantum cryptographic (PQC) algorithms
that are resilient against quantum attacks. After three rounds of evaluation,
NIST finally selected Falcon [30], CRYSTALS-Dilithium [20], and SPHINCS+
[2] as quantum-resistant signature schemes.

Falcon and Dilithium are constructed based on different cryptographic frame-
works: Falcon is built on the GPV framework [12] and Dilithium is based on
Fiat-Shamir with abort. Notably, the GPV framework and Fiat-Shamir with
abort are widely regarded as the most powerful frameworks for constructing
secure and practical PQC signatures. The security of the GPV framework is
based on the hardness of the short integer solution (SIS) problem, and its se-
curity is proven even in both classical and quantum random-oracle models [4].
By appropriately selecting lattices and trapdoor samplers, the GPV framework
can be used to construct practical signatures with strong PQC security. There-
fore, several signature schemes, including Falcon, Mitaka [8] and HuFu [36], have
been developed using the GPV framework. However, despite theoretical security
guarantees, GPV signatures may have vulnerabilities in physical implementa-
tions, and for this reason, research on the resistance of GPV signatures against
side-channel attacks becomes increasingly critical.

In the PQC standardization process, NIST has been evaluating algorithms
in terms of not only their resistance to quantum attack but also their security
against side-channel attacks in real situations. Moreover, in the status report
on the third round of NIST PQC standardization, NIST emphasized to future
engineers and researchers the importance of side-channel analysis of PQC and
expressed hope that such research would continue [1]. Therefore, side-channel
attack is a very important issue in PQC algorithms and the NIST standard
signature schemes have made significant progress in addressing side-channel at-
tacks, gradually strengthening their defenses. Although additional computations
are needed in Dilithium, its signatures become resilient to the t-probing model
by employing a masking scheme [24]. Falcon adopts a constant-time Gaussian
sampler [31] in its reference implementation to resist timing attacks [10].

Despite such protections, a side-channel attack through floating-point opera-
tions can fully recover the secret key of Falcon-512 using 10,000 electromagnetic
traces measured by PicoScope 3206D oscilloscope [18]. Although the subsequent
work [15] through floating-point operations can recover the secret key using 5,000
power traces measured by ChipWhisperer, these correlation-based attacks must
compute the correlation across all measured tracepoints for at least 220 search
space. Consequently, these attack schemes require a considerable amount of com-
putation time. More recently, variants of the learning parallelepiped scheme [25],
known as the hidden parallelepiped [15] and learning slice [37] schemes, can re-



cover the secret key of Falcon by leveraging the conditional signature distribu-
tion. Specifically, these attack schemes recover the secret key by utilizing samples
with signatures conditioned on specific Gaussian leakage, which is estimated by
simple power analysis (SPA) attack. Some initial research results of the hidden
parallelepiped scheme showed that the secret key of Falcon-512 could be recov-
ered using 1 million samples, while the learning slice scheme demonstrated that
a direct recovery of the secret key is possible using just 70,000 samples with a
25% success rate. If the learning slice scheme is combined with the exhaustive
search, it can recover the secret key using 45,000 samples with a 25% success
rate.

However, these secret key attack schemes, which exploit the conditional signa-
ture distribution, inevitably require filtered (or processed) signatures to recover
the secret basis of GPV signature including Falcon. This requirement arises be-
cause the distribution of GPV signatures does not reveal any information about
the secret basis [12]. Thus, obtaining filtered signatures requires a substantial
number of samples. For example, in the learning slice scheme, 161,000 signatures
are typically required to obtain 45,000 filtered signatures. To our knowledge, no
attack has been proposed, which can leverage all the available signatures to max-
imize information entropy for recovering the secret basis. Moreover, no general
attack scheme on GPV signatures has been proposed, despite the importance of
GPYV framework in PQC. Therefore, in this paper, we identify specific vulnerable
partial information in the trapdoor sampler of the GPV framework and propose
an efficient attack scheme on GPV signatures, which utilizes all the available
signatures without filtering. To demonstrate the generality and efficiency of the
proposed attack, Falcon is taken as a concrete example. The main contributions
of this work are summarized as follows.

1.1 Owur Contributions

Non-filitering Secret Key Recovery Attack on GPV Signatures. We
establish, for the first time, a new concept of vulnerable partial information of
GPV signatures and propose a general secret key recovery attack, called ordinary
least squares (OLS) attack, based on simple OLS regression. Unlike the existing
attack schemes exploiting selected samples following conditional signature distri-
bution, the OLS attack efficiently recovers the secret key of GPV signatures by
exploiting all the available signatures and partial information without filtering.
Since the OLS attack is a linear estimator, it is straightforward to implement
and has a computational complexity of O(mn? +n?), meaning that its complex-
ity linearly increases with the number of samples m for a given dimension of
the signature n. We also theoretically prove its consistency. i.e., the secret key
recovered by the OLS attack converges to the real secret key in probability.

Efficient and Fast OLS Attack on Falcon. The OLS attack recovers the
secret key of high-security variant of Falcon (Falcon-256, -512, -1024) using Gaus-
sian leakage as partial information, which is the most effective for recovering the



secret key of Falcon compared to the state-of-the-art attacks. For Falcon-512,
the OLS attack directly recovers the secret key using only 35,000 samples with a
60% success rate. By combining it with the DDGR attack in [22], the secret key
is recovered using 25,000 samples with a high success rate close to 100%. Since
the OLS attack is based on simple linear regression, the secret key of Falcon-
512 is directly recovered in about 8 seconds without using equipment such as
high-performance CPUs. Furthermore, we develop an efficient OLS attack ' on
Falcon by leveraging the orthogonal basis properties of NTRU lattice, thereby
reducing the required number of side-channel attacks by a factor of 1/2n for
n = 256,512, 1024.

Error-tolerant Power Analysis Attacks on Half-Gaussian Sampler. The
SPA attack on the BaseSampler (half-Gaussian sampler) of Falcon is highly in-
efficient if the power trace is contaminated by the ever-present noise. Therefore,
we propose an error-tolerant power analysis attack using maximum a posteriori
(MAP) decoding, which corrects the errors in samples due to noise. To evaluate
the performance of MAP decoding under various conditions, noisy power traces
are generated using the ELMO simulator, and actual hardware power traces
from STM32F415 are measured using ChipWhisperer. The proposed MAP de-
coding is demonstrated to be effective for estimating Gaussian leakage from
noisy power traces collected using low-resolution ChipWhisperer. The OLS at-
tack combined with MAP decoding further reduces the errors of the recovered
secret key. Specifically, for ChipWhisperer, the combined scheme can recover
the secret key of Falcon-512 using 47,000 samples. In contrast, without MAP
decoding, 87,000 samples are required. Furthermore, compared to the OLS at-
tack without MAP decoding, the combined scheme reduces about 50 errors in
30,000 samples at SNR 30 dB for Falcon-512. Therefore, the combined scheme
can efficiently recover the secret key with fewer samples and faster than the OLS
attack without MAP decoding.

1.2 Technical Overview

Proposing OLS Attack on General GPV Signatures. In the GPV signa-
ture, the trapdoor sampler takes the secret basis B as input and generates the
signature s by modifying the coefficient vector w. Specifically, the signature is
computed as s = wA = (r — u)A, where A represents either B or its Gram-
Schmidt orthogonal (GSO) matrix B, determined by the trapdoor sampler. The
vector r is typically derived from the message and u is a random vector gener-
ated by the trapdoor sampler. The distribution of the GPV signature has zero
mean and a variance that does not reveal information about the secret basis,
ensuring that the secret basis remains secure. To satisfy the zero mean property,
the conditional expectation of u given r is set to r. This conditional expectation
property makes u a vulnerable partial information of the GPV signature.

! The OLS attack implementation can be found in the following GitHub repository:
https://github.com/JaesangNoh-crypto/Falcon_recovery_OLSattack.
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Suppose the partial information u is estimated by side-channel attack. As in
Eq. (5), the dependent output vector y and the independent input vector x are
constructed from u and s, respectively. Since r is an unknown random vector due
to the random message, r can be regarded as an error vector e. Consequently,
s = (r —u)A can be transformed into a multiple linear regression (MLR) model
y = xA~! 4 e. A key idea of this paper, proven in Lemma 1, is that x and e
are uncorrelated if u satisfies the conditional expectation property. Exploiting
this uncorrelated property, we demonstrate that the proposed OLS estimator for
A~1in Eq. (7) converges in probability. Furthermore, by applying the continu-
ous mapping theorem, Theorem 4 demonstrates that the inverse transformation
of the OLS estimator in Eq. (8) also converges to A in probability. The inverse
transformation of the OLS estimator, referred to as the OLS attack, has a com-
putational complexity of O(mn?+n?) for the number of samples m and signature
dimension n. Since A serves as the secret key of the GPV signature, the OLS
attack can successfully recover the secret key given sufficient samples, and its
computational time scales linearly with m. Therefore, unlike conventional secret
key recovery schemes exploiting conditional signature distribution, the OLS at-
tack utilizes all collected partial information and signatures without filtering and
can be applied to any GPV signature.

Implementing OLS Attack on Falcon. The FFO sampler, a trapdoor sam-
pler of Falcon, is functionally equivalent to the Klein-GPV algorithm. Conse-
quently, Lemma 4.4 in [12], which introduced the Klein-GPV algorithm, is used
in Corollary 1 to demonstrate that Gaussian leakage can serve as partial infor-
mation of Falcon. By leveraging Gaussian leakage as partial information, the
OLS attack can recover the GSO matrix B of Falcon secret basis B. Since the
first row of B contains all the coefficients of the NTRU lattice secret polynomi-
als, recovering B can fully reconstruct B of Falcon. However, the coefficients of
the estimated first row are real numbers requiring an additional step to approx-
imate the coefficients as integers. Two main approaches for approximation are
rounding and lattice reduction. When using the rounding with 35,000 samples,
the secret key is recovered with 60 % success rate. Using the DDGR. scheme
[5] employing lattice reduction, the first row can be recovered with nearly 100%
using 25,000 samples. Notably, 25,000 samples required for the OLS attack are
significantly fewer than 161,000 samples required for the state-of-the-art attack.

Improving the Efficient of OLS Attack on Falcon. To recover the first row
of B, it is unnecessary to estimate the Gaussian leakage for every coefficient of the
signature. The Gaussian leakage corresponding to the first coefficient is sufficient
to recover the first rows. A simple OLS estimator in Eq. (11) is constructed to
estimate the first column of B~1. Notably, the transpose of the first column of
B! and the first row of B are scalar multiples of each other and their inner
product equals 1. Leveraging this property, the estimator in Eq. (12) recovers
the first row of B using the estimated first column of B=!. As a result, the
required number of side-channel attacks per signature is reduced from 2n to 1.



Moreover, Theorem 5 proves that the estimator in Eq. (12) also converges to the
first row of B in probability, and the computational complexity of the estimator
is O(mn +n?).

Proposing Error-tolerant Power Analysis Attacks Using M AP Decod-
ing. To estimate Gaussian leakage, the output of BaseSampler and the corre-
sponding sign value must be estimated by SPA. The BaseSampler operates 18
for-loop iterations to generate an output ranging from 0 to 18. Each iteration
exhibits an underflow feature in the power trace, which indicates whether 1 is
added to the output or not. By detecting underflow features, SPA can iden-
tify which iteration involves adding 1 or 0, thereby allowing the recovery of the
BaseSampler output by summing across all iterations. However, noise in the
power trace may cause wrong binary decisions in SPA, allowing even a single
misclassification in any of the 18 iterations to result in an incorrect estimation
of the output.

A key observation is that for any given output of the BaseSampler, 1 is added
during the iterations up to the output value, and 0 is added in the remaining
iterations. For example, if the output is 3, then 1 is added in the first three
for-loop iterations, followed by 0 in the remaining iterations. This sequence of
18 additions can be interpreted as a length-18 binary codeword, allowing an
error-correcting scheme through MAP decoding based on the prior probability
of SPA errors. This MAP decoding effectively corrects errors in SPA, enabling
accurate estimation of Gaussian leakage even when certain for-loop iterations
are incorrectly identified.

2 Preliminaries

2.1 Notations

This section introduces the conventional notations used in the paper except when
specified otherwise.

Linear Algebra. Vectors and matrices are denoted in bold lowercase and up-
percase letters, respectively. Vectors are considered row vectors. (u,v) denotes
the inner product of vectors u and v, and if {(u,v) = 0, u and v are called
orthogonal. ||v|| denotes the Euclidean norm (Ls norm) of v, and ||v||; denotes
the Manhattan norm (L; norm) of v. B” represents the transpose of B, and B*
represents a Hermitian matrix of B, i.e., B* is the conjugate transpose of B.

Distribution. For a distribution Q), x, o is the standard deviation and A is
the expectation. The notation = ~ @, ) denotes that a random variable z is
distributed according to @, », and the probability density function (PDF) of z
is denoted by Qo.a(z). z < Qs » implies that = is independently sampled from
the distribution @), . For any set S, z < S represents that x is independently
and randomly sampled from S. Given an algorithm or a real-valued function A,
x < A(y) represents that x is an output of A on the input y.



Statistical Analysis. For a random variable z, E;[x] and Var[z] denote the ex-
pected value and variance of x, respectively. A random vector x = (z1, Z2,...,Zp)
is a multivariate random variable where z;’s are random variables. A random
matrix X is also a multivariate random variable whose elements are random
variables. In the paper, all random variables in a multivariate random variable
are considered to be identically distributed. Given real random vectors x and y
having finite variance and expected values, the covariance matrix Ky is defined
as
K,y := Cov[x, x| = By [(x — Ex[x])7 (x — Ex[X])],

and the cross-covariance matrix Ky, is defined as

Kyy 1= Covlx,y] = Exy[(x — Ex[x])" (v — Ey[y])]-

2.2 Convergence in Probability and Related Results

Convergence in Probability [11]. Let (X, dx) be the metric space where X
is a set and dx is a metric on X. Let (£2, F,P) be the probability space where {2
is a sample space, F is a o-algebra on {2, and P is a probability measure. Given
a sequence of random variables {x,} on (2, F,P) such that x,, : 2 — X for all
n € Zt = {1,2,...}, then the sequence {z,} is said to converge to a random
variable x : 2 — X in probability if for every € > 0,

lim P(dx(z,x,) >¢) =0.

n—oo
The convergence in probability is denoted by using the probability limit operator
‘plim’ such that plim,_,  x, = z.

Let (V,||-|lv) be a normed space where V' is a vector space and ||-||y is a norm
on V. Let {x,, = (Tn1,%n2,---,Tn,m)} be the sequence of multivariate random
variables such that x,, : 2™ — V for n € Z* where all coordinates z,, ; of x,, are
random variables on the same probability space (§2, F,P). The convergence in
probability of the sequence {x,} to a multivariate random variable x : 2™ — V
is defined as follows. For every € > 0,

lim P(||x — x,|lv >¢) =0,
n— oo

which can be written by plim,,_,  x, = x.

Convergence Theorems. Three theorems related to the convergence in prob-
ability are introduced, which are used in the proofs of Theorems 4 and 5. The
first theorem is the weak law of large numbers (WLLN).

Theorem 1 (Weak Law of Large Numbers [9]). Let a1, @2, ..., x, be in-
dependent and identically distributed (IID) multivariate random variables with
Eq, @] = ¢ < 0o for alli € {1,2,...,n}. If s, = 23" | @; then

plim s, = c.
n—oo



The following Slutsky’s theorem shows the convergence of some simple oper-
ational results of two random matrices.

Theorem 2 (Slutsky’s Theorem [9]). Let {X,,} and {Y,} be sequences of
random matrices. If plim, . X,, = X and plim Y, = C for a random
matriz X and a constant matriz C, then

n—r oo

(a) plim(X,, + Y, =X+ C.

n—oo

(b) plim(X,Y,)=XC, if X,,Y, is defined.

n—oo

(¢) plim(X,Y,') = XC', if X, Y,," is defined and

n—00

C is an invertible matriz.

The final theorem is the continuous mapping theorem, which concerns the
convergence of functions at continuous points.

Theorem 3 (Continuous Mapping Theorem [3]). Let (X, ||-||x) and (Y, |-
llyv) be normed spaces, and let f be a measurable function from X toY. Let Dy
denote the discontinuity set of f. Given a sequence of multivariate random vari-
ables {x,} defined on the metric space X, if plim T, = x for a multivariate
random variable © and P(x € Dy) =0, then

n— oo

EE?O flz,) = f (EE?O wn) = f(z).

2.3 The Gentry-Peikert-Vaikuntanathan (GPV) Framework

Lattice. A basis B of a lattice £ is a set {by, bs, ..., by} of linearly independent
vectors b; € R™ for ¢ € {1,2,...,n}, which also generates the lattice £ as

=1

Also, B can be expressed as an n x m full-rank matrix where b; is located as the
1th row vector. A lattice generated by a basis B is a discrete additive subgroup
of R™, which is denoted by £(B), and n is the dimension of £(B).

A g-ary lattice, which satisfies ¢Z" C £ C Z" for some integer ¢ € Z™, is
primarily used in the construction of lattice-based cryptography. For any full-
rank matrix B € Zg*™, the g-ary lattice generated by B is defined as

A;B):={y€Z™ |y =2zB mod q for z € Z"}.
The orthogonal lattice of A,(B) modulo ¢, denoted as A(JI-(B), is defined as

1 . m T _
A;(B):={y€Z™|yB" =0 mod q}.

The orthogonal lattice A7 (B) will be used for defining the GPV framework.



GPYV framework. The GPV framework is a hash-and-sign paradigm to con-
struct a lattice-based signature [12]. Its security is guaranteed based on the
hardness of the SIS problem, which has been proven under the classical /quantum
random oracle model [4]. The GPV framework can be briefly described as follows.

— Public key: A full-rank matrix P € Zy*™(n < m) denotes a basis of an
n-dimensional g-ary lattice A,(P). The public key contains the matrix P,
called a public basis.

— Secret key: A matrix B € Z"*™ is a short basis of the g-ary lattice A;- (P),
satisfying B x P? =0 mod q. The secret key contains the matrix B, called
a secret basis.

— Signing: Given a message m and a salt r € {0, 1}*, the signature s € Ly of m
is a short vector satisfying sP” = H(ml/|r), where H : {0,1}* — Zy is a hash
function and m||r denotes a concatenation of m and r. The computation of
signature s is performed as follows.

1. Choose a salt r < {0, 1}* and find a preimage ¢ € Z7" such that cP? =
H(mlJr).

2. Compute v < Tg(c), where Tg : Z™ — AF(P) is a trapdoor sampler
that samples a lattice point v € A;- (P) close to the input c.

3. Compute s < c—v. Since v satisfies vP? = 0. Thus sP” = (c—v)P’ =
cP” = H(ml||r) and s is short.
— Verifying: If the signature s is short and satisfies sSP” = H(ml]|r), the sig-
nature is accepted. Otherwise, the signature is rejected.

A signature scheme based on the GPV framework, called GPV signature, is
constructed by properly choosing the lattices 4,(P) and AqL(P), and a trapdoor
sampler Ty which leaks no information about the secret basis B from the sig-
nature distribution. The Klein-GPV algorithm [12] is the first trapdoor sampler
family, which is proven to leak no information about the secret basis B from the
signature distribution.

2.4 Trapdoor Sampler

Gram-Schmidt Orthogonalization. The Gram-Schmidt orthogonalization
(GSO) is a linear transformation that uniquely generates a set of mutually or-
thogonal vectors from a given set of linearly independent vectors. Let B € R"*™
be a basis of a lattice. Then the Gram matrix BB* is uniquely decomposed by
LDL* decomposition as follows.

BB* = LDL* = L(BB")L",

where L € R™*" is a lower triangular matrix, D € R"*" is a diagonal matrix,
and B is the orthogonal basis of B such that B = LB. The row vectors b; of B
are pairwise orthogonal.



Gaussians. Let p,c : R® — R be the n-dimensional Gaussian PDF with the
standard deviation ¢ and the center ¢ € R™, defined as

)

202

For a lattice A C R", the discrete Gaussian distribution D4 , ¢ over A with the
standard deviation o and the center ¢ € R" is defined as follows. For all z € A,

pa,c(z)
erA Po,c (%) .

If the center c is omitted from the discrete Gaussian distribution such as D4
then c is assumed to be 0.

DA,U,C(Z> =

Trapdoor Sampler. GGH [13] and NTRUSign [16] are signature schemes that
generate short signatures by using Babai’s rounding-off algorithm. The signature
distributions of them can be exploited to recover the secret basis B by learning
a parallelepiped scheme [25]. This attack scheme can recover the secret basis B
even if Babai’s nearest plane algorithm is used in the signature scheme.

In the GPV framework, a trapdoor sampler is constructed to leak no infor-
mation about the secret basis B from the signature distribution. The trapdoor
sampler makes the signature distribution statistically close to a discrete Gaus-
sian distribution over the lattice D¢, (B),s Which is isotropic and centered at
zero (Eg[s] = 0). Therefore, the learning a parallelepiped scheme cannot ex-
tract the information about B from the signature distribution. The Klein-GPV
algorithm [12] is proven to prevent any leakage of the secret basis B because
the signature distribution is statistically close to D¢y, (B),,- The hybrid sam-
pler [6] and Peikert sampler [26] are similar to the Klein-GPV algorithm such
that the signature distribution is statistically close to D¢y r(B),o- These trap-
door samplers are a type of randomized rounding-off algorithm or nearest-plane
algorithm, which modifies the coefficients of the secret basis B or the orthogonal
basis B to generate the signature s in the following form.

s=c—v=(r—u)A=wA, (1)

where r is a random vector which is generated by the trapdoor sampler using
c and A, w is the coefficient vector of A, u is a partial information which is
adjusted by the trapdoor sampler to construct the signature distribution close
t0 Deyr(B),0r and A is either B or B. Each scheme employs a different matrix
to generate the signature (Peikert sampler: B, Klein-GPV algorithm: B), which
results in different variance of the signature distribution [29]. The trapdoor sam-
pler in Falcon is a variant of the Klein-GPV algorithm, known as Ducas-Prest’s
fast Fourier orthogonal (FFO) sampler. Note that this FFO sampler applies
Ducas FFO scheme [7] to the Klein-GPV algorithm to accelerate the sampling
process.

10



2.5 An Overview of FALCON

NTRU. The NTRU lattice was first introduced in 1996 by Hoffstein, Pipher,
and Silverman to construct a lattice over a ring [17]. Let n,q € ZT, R :=
Zlx]/(x"+1) and R, := Z,[z]/{z™+1) be the quotient ring of the polynomial ring
Zlx] and Z4[x], respectively. The NTRU lattice employs a ring structure, which
reduces the public key size to a single polynomial h € R,. Let f,¢9, F,G € R
be the small secret polynomials of the NTRU lattice, which satisfy the following
NTRU equation:
fG—gF =q mod (2" +1).

The secret key f should be invertible modulo ¢ and the NTRU public key h
is generated as h = gf~' mod ¢. If the average norms of f and g are slightly
larger than /g and n is a power of two, it was proven that h is statistically
indistinguishable from a uniformly sampled element in R, [33]. However, in
practice, the NTRU assumption still states that it is hard to find small secret
polynomials f,g € R from the public key h € R, [27].

When instantiating the GPV framework over the NTRU lattice, the public
basis P € R3 and the secret basis B € R?*? are determined as follows:

P=(1n), B:(é‘{,).

Here, h* is the Hermitian adjoint which is a unique polynomial in Q[z]/(z™ + 1)
satisfying h*(¢) = h(¢) for any root ¢ of ™ + 1 where ~ denotes the complex
conjugate over C. Since polynomial multiplication over R or R, can be performed
by negacyclic matrix multiplication, all polynomials in R or R, can be expressed
as negacyclic matrices. A negacyclic matrix has a property that each row is
a cyclic shift of the previous row, with the last element negated. Since each
component polynomial of P and B can be replaced by a negacyclic matrix, P
and B can be represented as the matrices in Z’;XQ" and Z2"*2" respectively.

Note that converting h* into a negacyclic matrix is the same as converting
h into a negacyclic matrix and then taking the conjugate transpose. Hence, the
operator * for the Hermitian adjoint polynomial h* is the same as the Hermitian
(conjugate and transpose) operator x for making Hermitian matrix. As men-
tioned in Section 2.3, B and P are orthogonal to each other such that BP* = 0
mod gq.

Falcon Signature. Falcon is the GPV signature whose trapdoor sampler is
a FFO sampler over the NTRU lattice [30]. Let ¢ = 12289 and n be a power
of two. The FFO sampler efficiently implements the Klein-GPV algorithm on
the ring structure such as R. Since the public key is a polynomial h € R, the
NTRU lattice reduces the size of public key. The combination of FFO sampler
and NTRU lattice makes Falcon one of the most compact and efficient schemes
in the NIST standard. In the NIST standard, Falcon-512 and Falcon-1024 are
adopted where 512 and 1024 denote the dimension n of the polynomial ™ + 1.

11



Algorithm 1. FalconSign(m, sk)

Input: A message m and a secret key sk
Output: A signature sig of m

1: v+ {0,1}%%°

2: ¢ < HashToPoint(r||m,g,n) >c € Ry
3: t < (c,0)B™!

4: while [s]|*> [2.42 - n- 02| do >o=111. /g log (4n(1 4982 ,/n/4))
5: z < ffsampling, (t,T) > zB ~ Dg(B),0,(c,0)
6: s+ (t—2z)B > s~ DrB)t4(c,0),0
7: end while

8: return sig = (r,s)

Algorithm 1 shows a pseudo-code of Falcon signing. As described in [30], Fal-
con utilizes FFT to efficiently perform polynomial multiplication in R. However,
Algorithm 1 in this paper omits the FFT part for the simplicity of explanation.
The inputs m and sk = (B,T) represent the message string and the secret
key of Falcon, respectively, where B is the secret basis and T is the LDL*
tree of B. HashToPoint is a hash function mapping a string (r||m, ¢,n) to a
polynomial in R,. Falcon generates the signature s by finding a lattice point
zB ~ D.(B),0,(c,0) using the FFO sampler ffsampling,. The FFO sampler en-
sures that the signature distribution is (statistically) close to Dz(B)+(c,0),» Which
leaks no information about the secret basis B.

Algorithm 2. SamplerZ(c, o’)

Input: The center of the discrete Gaussian distribution ¢ € R and the standard devi-
ation ¢’ € [Omin, Tmaz]

Output: An integer z € Z such that z ~ Dz o/ .

1: ¢+ c—|c|

2: zp < BaseSampler() > See Algorithm 3

3: b« {0,1}

4: 2+ b+(2-b—1)- 2

D! T 4— @2;7,52)2 - 2;2”8”

6: 24 zZ+ ||

7: return z passing with a probability of Z2{n exp(—x), otherwise go to Line 2 and
restart

An FFO sampler requires an oracle that exactly samples from the discrete
Gaussian distribution over integers Dz .  for any desired o > 0 and A € R. The
FFO sampler in Falcon uses the SamplerZ in Algorithm 2 as a discrete Gaussian
sampler over integers. SamplerZ performs rejection sampling to sample an integer
z from the distribution close to Dz, . in a constant time [31]. If the operation
time is not constant, the SamplerZ is vulnerable to timing attacks that estimate
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the standard deviation ¢’ to recover the secret basis B [10]. BaseSampler is a
half-discrete Gaussian sampler which samples an integer 2o from Dz+ , _  and
the value b € {0,1} determines the sign of integer z. In the reference code of
Falcon, BerExp function is used to pass z with probability @2 exp(—z) [30].
However, the BerExp function is omitted for the simplicity of explanation.

Algorithm 3. BaseSampler()

Input: -
Output: An integer zo € {0,1,...,18} such that zo ~ Dz+ ,
1: u+ {0, 1}72
20 < 0 > Set the initial value of zp as 0
: fori=0,1,...,17 do
2t « [[u < RCDTJi]]]
20 < 20 + 2t
end for
return 2o

Algorithm 3 shows a pseudo-code of BaseSampler as a half-discrete Gaussian
sampler from Dz+ , . The array RCDT denotes the (scaled) reverse cumula-
tive distribution table, where RCDTi] is equal to 22 —272.%~0 "Dy, (k)
for all ¢ € {0,1,...,18}. A random 72-bit u is compared with RCDT[i] for
i € {0,1,...,18} to determine the value 2™ € {0,1}. If v < RCDT]i], then
2T =1, and otherwise, 2+ = 0. The output zy of BaseSampler is computed by
summing all zT.

3 Secret Key Recovery Attack on GPV Signatures Using
Partial Information about Signature

In this section, we propose a secret key recovery attack, called OLS attack, on
GPV signatures based on ordinary least squares (OLS) regression, and demon-
strate the consistency of the proposed scheme.

3.1 Problem Setup for OLS Attack on GPV Signatures

There have been a few research results on the side-channel attack using the
vector zZ = (Z1, Za, ..., Zan) to recover the secret basis B of Falcon, where z; is
used to compute z; = Z; + | ¢;] in Algorithm 2 for the output z = (21, 22, . . . , 225)
of FFO sampler. The timing attack in [10] aims to estimate all the variance o;
of z; distributed according to D,, , and to recover the secret basis B of Falcon
using them. Recently, power analysis attack schemes are proposed to classify the
signatures s according to the first coordinate z; as 0 or 1, and then to recover
the secret basis B of Falcon by using the signatures with z; = 0 or 1 through the
hidden parallelepiped or the learning slice schemes [15], [37]. As will be derived
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in Section 4.1, z in Falcon can be used as a partial information u of signature s
in Eq. (1) such that

s=(r— Z)B for r; ~ x¢;n and Z; ~ Dz o, 1, (2)

where r = (71,79, ...,72,) is an unknown random vector, X¢;, is a distribution
of r; whose support is [0,1) for i € {1,2,...,2n}, and B is the orthogonal basis
of B. If the signature s is expressed as in Eq. (2), the proposed OLS attack can
be effectively applied as presented in Section 3.3.

Next, we will generalize Eq. (2) from the Falcon signature to the GPV signa-
ture, in order to apply the OLS attack more broadly. Consider a GPV signature

described in Section 2.3. Let B = (blT b2T e bZ)T € Zy™" be the secret basis of
GPV signature and s be the signature. The coeflicient vector w in Eq. (1) must
satisfy Ey[w] = 0 because Eg[s] = 0 as described in Section 2.4. To generate w
with Ew[w] = 0, a partial information u = (u1,us,...,u,) used in the trapdoor
sampler must satisfy the following relation:

s=wA = (r —u)A for r; ~ ¢, x, and u; ~ Qq, r;, (3)

where A is either B or B, r = (r1,72,...,7y) is an unknown random vector,
and ¢; and o; are also unknown. Similar to z in Eq. (2) for Falcon, u used in
the trapdoor sampler of GPV signature satisfy Ey.[u|r] = r to ensure that
Ew[w] = Er u[r —u] = Er[r — Eyp[u|r]] = E;[r —r] = 0 for r.

If u and Er[r] = XA = (A1, A, ..., A\,) of Eq. (3) are estimated through side-
channel attack or other method, an attacker attempting to recover the secret
key faces the following problem.

Problem 1. Let B € GL,(Z) be the secret basis of GPV signature and s € Z"
be a signature. Define the probabilistic algorithm Wy g (A) which outputs (s, u)
such that s = (r —u)A for ; ~ 1%, », and u; ~ Q,, ,,. Here, A is either B or B,
and r, (;, o; are unknown. Given N statistically independent samples (s, u) +
Wrg(A) and E,r] = X = (A1, A2,...,Ay) € R”, find a good approximation of
A. Note that, in this case, u is the partial information about s.

Definitely, the solution of Problem 1 is an approximation of B or B which
serves as the secret key of GPV signatures.

3.2 Transforming Problem 1 into Multiple Linear Regression
Problem

Consider m statistically independent samples (s;, u;) < Wr,g(A) in Problem 1,
where s; is the ith GPV signature and u; is the partial information about s; for
ie{1,2,...,m}. Let S, = {(s;5,w;) < Wrg(A)|i€{1,2,...,m}}. For any
i€ {1,2,...,m}, the vector r; € R™, used for sampling (s;, u;) from Wr g(A),
satisfies s; = (r; — u;)A, which can be transformed as follows:

)\—ui = SiA.il —|—()\—I‘i), (4)

14



where A denotes the expectation of r;. Eq. (4) can be regarded as a multiple
linear regression (MLR) model as explained below, which is used for recovering A
in Section 3.3. The MLR model for the samples (s;,u;) € Sy, 7 € {1,2,...,m},
is as follows.

Vi =xA7! te, (5)

where y, := A — u; is the dependent output vector, x; :=s; is the independent
input vector, and e; := A\; — r; is the noise vector. Then, x; € Z™ and e; € R”
of the proposed MLR model in Eq. (5) satisfy the following Lemma 1.

Lemma 1 (Uncorrelatedness). Let x =s € Z" and e = A —r € R” be the
independent input and noise vectors, respectively, in Eq. (5). Then, x and e are
uncorrelated, i.e., Kxe = Cov[x, €] = 0.

The complete proof of Lemma 1 is provided in Supplementary Material A.
The MLR model in Eq. (5) can be represented in matrix form for the given set
S as follows.

Y1 X1 e

-1 Yo X2 €2
Y=-XA'4E, Y= X =  E= , (6)

Y'm Xm em

where Y € R™*" is the dependent output matrix, X € Z™*" is the independent
input matrix, and E € R™*" is the noise matrix. Then, the proposed MLR model
in Eq. (6) satisfies the following Lemma 2.

Lemma 2. Let S, = {(s;,w;) | i € {1,2,...,m}} be a set of m independent
samples (s;,w;) < Wrg(A). Let X € Z™*™ and E € R™*™ be the input and
noise matrices, respectively, in Eq. (6). As m goes to infinity, %XTE converges
to 0 in probability, and %XTX converges to Cou[s,s] in probability. In other
words,
1 1

plim <XTE> =0 and plim (XTX> = Couls,s].

m—oo \ TN m—oco \ M
The complete proof of Lemma 2 is provided in Supplementary Material A.

Lemma 2 is used in Section 3.3 for proving the consistency of the proposed OLS
attack.

3.3 OLS Attack on GPV Signatures Using Partial Information
about Signature

In this section, an ordinary least squares (OLS) attack on GPV signatures, which
estimates A, is proposed and it is shown that this estimator of A is consistent.
Algorithm 4 is a pseudo-code of the OLS attack for recovering A from the
collected samples (s, u) using the proposed MLR model in Eq. (6). The inputs of
the OLS attack in Algorithm 4 are a sample set S,,, consisting of m independent
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Algorithm 4. OLS attack(Sy,, A)

Input: A sample set Sy, = {(si, w;) < Wro(A) |i€{1,2,...,m}} and the expected
vector A = (A1, A2, ..., An)

Output: A:an approximations of secret key A

1: fori=1,2,...,m do
2 X; ¢ S; > s; is the ith GPV signature
3: Vi A—u > X = E;[r] and u; is partial information of s; in Eq. (3)
4: end for
X1 Y1
X2 Y2
5 X . and Y « . > Vertical concatenation of each x; and y;
Xm Y’m

6: A+ (XTY)'XTX
7: return A

samples (s, u) < Wr o(A), and an expected vector A = E,[r] (see Eq. (4)). The
output A in Algorithm 4 is the estimation of the secret key A.

By applying an ordinary least squares (OLS) estimator to the proposed MLR
model in Eq. (6), we can obtain an estimation of A~ as follows:

—

A= (XTX) " IXTY. (7)

—

It is clear that the estimator A~' minimizes the squared error Sy —

A D (y; — x;A™HT over the sample set S,,. Note that x; and y,; are the
ith row vectors of X and Y, respectively. The estimator A is the inverse of A~
in Eq. (7) as follows:

A= (ﬁ)_l = (xTy)"'X”X. 8)

Since A in Eq. (8) is a simple linear estimator, the proposed OLS attack is very
efficient and its consistency is proven in the following Theorem 4. Note that the
consistency implies that the linear estimator A converges to A in probability as
the number of samples (s, u) increases.

Theorem 4 (Consistency of the Proposed OLS Estimator). Let S,, =
{(siyu;) « Wro(B) |ie{1,2,...,m}} be a set of m independent GPV signa-
ture samples. Let X € Z™*™ and 'Y € R™*™ be the input and output matrices,
respectively, in Eq. (6). The estimator A = (XTY) 'XTX of the OLS attack

in Algorithm 4 is consistent, i.e., plim,, A=A.

The complete proof of Theorem 4 is provided in Supplementary Material
A. Therefore, the more samples (s,u) are collected, the more accurately A is
estimated. If A is the secret basis B, the secret key of any GPV signature is
directly recovered by the proposed OLS attack in Algorithm 4. Otherwise, one
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more step is required to recover the secret basis B from the orthogonal basis B.
In [10], a scheme is proposed to recover the NTRU secret basis B using ||b;,
i€ {1,2,...,n}, where b; is the ith row of B. In addition, the NTRU secret
basis B can be more easily recovered from B by the scheme proposed in Section
4.1. However, it is still an interesting open problem to recover the secret basis
B from the orthogonal basis B for arbitrary lattice.

4 An Efficient Practical Implementation of OLS Attack
on Falcon

In this section, we introduce an efficient implementation scheme for recover-
ing the secret basis B of Falcon based on the OLS attack in Algorithm 4. The
proposed implementation scheme reduces the number of samples necessary for
attack on SamplerZ by ﬁ times compared to the general OLS attack in Algo-
rithm 4. In addition, an error-tolerant power analysis attack on BaseSampler is
proposed to further improve the attack efficiency by correcting the erroneous

samples zy obtained from BaseSampler.

4.1 Partial Information of Falcon and OLS Attack on Falcon

To perform the OLS attack on Falcon, it is necessary to determine r, u, and
A in Eq. (3) corresponding to Falcon. Let B € GLs,(Z) be the secret basis of
Falcon. We have set that the partial information u and the secret key A in Eq.

(3) for Falcon are z = (z1, 22, . . ., Z2,) and the orthogonal basis B, respectively,
where z; is used to compute z; = Z; + |¢;| in Algorithm 2 for the output z =
(21,22,...,22,) of FFO sampler. The vector z satisfies the following relation,

which will be shown in Corollary 1.
s=(r— Z)B for r; ~ x¢, x, and zZ; ~ Dz 5, 1., (9)

where r € [0,1)?" is an unknown random vector and X, », is the distribution of
r; for i € {1,2,...,2n}. It should be noted that z can be estimated by using a
power analysis attack as described in Section 5.1. Before proving Corollary 1, we
will first examine the following Lemma 3 for the output z of the FFO sampler
with the signature s.

Lemma 3 (Informal, see Lemma 4.4 in [12] for a formal statement).
Let T be the LDL* tree of Falcon, ¢ € R be the output of HashToPoint, and
t € R?" be (¢,0)B™" in Algorithm 1. Then, for any input (t,T) and any output
z of FFO sampler f fsampling, (t,T), we have

s=(t—2)B,

where t = tL — zL + z and L € R*"*?" s q lower triangular matriz in LDL*
decomposition of Gram matriz BB*. The ith coordinate z; of z is distributed
according to Dy , ;. and t; is the ith coordinate of t fori € {1,2,...,2n}.
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Lemma 4.4 in [12] addresses the relationship between the output of the Klein-
GPV algorithm and the signature. Since the FFO sampler is a variant of the
Klein-GPV algorithm, which employs a quotient ring to efficiently run the near-
est plane algorithm [7], the relationship between the signature s and the output
z of the FFO sampler in Falcon is the same as the relationship in Lemma 4.4 in
[12]. Lemma 3 shows the relationship between s and z in Falcon, which leads to
Corollary 1 implying that zZ of SamplerZ can be used as partial information for
recovering the orthogonal basis B of Falcon.

Corollary 1. Let z = (z1,22,...,22,) € Z*" be the output of FFO sampler
ffsampling,,, and let z = (21, Za, ..., Z2n) € Z*™ be the vector such that z; is
caleulated from z; = zZ; + |¢;] in Algorithm 2. Here, c;, serving as an input
to SamplerZ for producing the output z;, is equal to t; of t = (t1,t2,...,tm)
in Lemma 3. Then for any signature s € Z*" of Falcon and z, there exists
r=(r1,r2,...,7r2,) € [0,1)*" such that

s=(r—2)B,
where Z; is distributed according to Dz o, r, fori € {1,2,...,2n}.

The complete proof of Corollary 1 is provided in Supplementary Material A.
If you look at Problem 1 from the viewpoint of Falcon, Corollary 1 implies that
the outputs (s,z) of the probabilistic algorithm WX’D(B) satisfy the relation
in Eq. (9). Since various attack schemes assume that r is sampled from [0,1)?"
uniformly at random [15], [25], [37], we assume that the expected vector A in
Algorithm 4 is (%, %,,%) Let m independent samples (s,z) < WX7D(]§)
be collected, where the support of x¢, x, is [0,1). In practice, these m vectors
z are independently collected by applying power analysis attack to m Falcon
signatures made by the same secret basis B. As in Theorem 4, the estimator A
in Eq. (8) converges to the orthogonal basis B of Falcon in probability.

In Falcon, the secret basis B can be easily recovered from the orthogonal
basis B by using the properties of NTRU lattice and GSO. The secret basis B

is constructed by the secret polynomials f, g, F, G € Z[z]/{z™ + 1) as follows:

5= (527)

Note that these secret polynomials satisfy the NTRU equation, f-G—F-g=gq
mod (2" 4 1). In Falcon, F' and G are obtained by solving this NTRU equation
given f and g [28], [30]. Thus, the secret basis B of Falcon can be recovered by
finding f and g. The first row b; of B contains all the coefficient information of
secret polynomials f(z) = Y20 fiz* and g(z) = 31~ g;* such that

bl = (g(%glu"'7gn717_f07_f17"‘7_fn71)'

Since the first row by of B is the same as the first row b1 of B due to the property
of GSO, f and g can be recovered only from by, which is obtained by estimating
B using the OLS attack in Algorithm 4 with samples and X. Therefore, we only
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need the first row by of B. Given Falcon-n (in general, n = 512, 1024) and m

samples, the time complexity for computing A=Bin Eq. (8) is given as
O(mn? +n®).

It is because computing X*Y, X7X, and (XTY)~! take O(mn?), O(mn), and
O(n?) operations, respectively.

4.2 Efficient OLS Attack on Falcon

Based on the analysis in Section 4.1, an efficient OLS attack on Falcon to recover
the secret basis B is performed only using z; of the partial information z because
B (equivalently, the secret polynomials f and g) can be recovered by estimating
the first row f)l of the orthogonal basis B. Note that Bl is a scaled transpose of

~ 1
the first column vector v; € R?” of B~ such that

T
~ Vi

1= 7. (10)
[[val[?

It is clear that by = v7/||v{||? is the first row of B because the rows of B are

mutually orthogonal. In practice, since v is a real coefficient vector, we need to

round each coordinate of vI/||v1||? in Eq. (10) to obtain an integer vector by.

-1
Since the estimator A~! in Eq. (7) estimates B~ in Falcon, the first column

vy of B is estimated only using the first column y} of Y in Eq. (7) as follows.
vi = (XTX)"' X"y, (11)

where vy is the estimation of vi. Note that the first column y} of Y consists
of m elements A\y —u; 1 = % — Z;1 where u; 1 and %;; are the first coordinate
of u; and z;, respectively, for i € {1,2,...,m}, and Z; 1’s are obtained by power
analysis attack to the SamplerZ. The first row by of B is recovered by scaling
v1 as in Eq. (10) such that

—~ 7
b]_ = =115 (12)
vl

where B; represents the estimation of the first row b; of B. Note that Y in
Algorithm 4 is constructed by 2nm traces obtained by power analysis attack,
but the proposed OLS attack only needs y to recover by and hence the number
of power analysis attacks (or power traces) is reduced from 2nm to m. Theorem

5 proves that b, in Eq. (12) is a consistent estimator.

Theorem 5 (Consistent Estimator b; in Eq. (12)). Let B be the secret

basis of Falcon, and W,, p(B) be the probabilistic algorithm whose outputs (s, z)
satisfy Eq. (9). Here, x and D are distribution of r; and discrete Gaussian distri-

bution, respectively. From m independently measured samples (s, z) < Wy, p(B),
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the MLR model in Eq. (6) for Falcon is constructed using X and Y consisting
of m row vectors x; = s; and'y; = A — z;, respectively. As m goes to infinity, the
estimator by = %((XTX)_ley’l)T converges to the first row by of the secret
basis B in probability, where y' ,, € Q™ is the first column of Y consisting of

m elements \; — %1 and k = ||(XT X)X Ty |2, i.e., plim b; = b;.

m—r oo

The complete proof of Theorem 5 is provided in Supplementary Material
A. Theorem 5 implies that a sufficient number of samples (s, z;) accurately
recover by = (g, —f). Therefore, the secret basis B of Falcon can be efficiently
and accurately recovered Eging z1. Given Falcon-n and m samples, the time
complexity for computing by in Eq. (12) is

O(mn +n?).

It is because computing X 7y}, XTX, and (X*?X)~! take O(mn), O(mn), and
O(n?) operations, respectively. Also, scaling by L2 norm takes O(n) and hence
the total time complexity for computing l/)I is O(mn + n3). Note that, in Eq.
(11), X consists of m row vectors x = s and y} consists of m elements 3 — z.

4.3 Error-tolerant Power Analysis Attack on BaseSampler

This section proposes an error-tolerant power analysis attack on BaseSampler
when zg is estimated by using a binary classifier for z* € {0, 1}. The BaseSam-
pler in Algorithm 3 performs 18 iterations of calculating zg < 20 -+2" using sam-
ple 2o ~ Dz+ ,, . . Let z¥ = (217,25, ..., 2]3) be the vector where z;~ € {0,1}
is obtained from the ith loop. Note that the output z; of BaseSampler is equal
to ||z1||1. The set C of all possible 19 vectors z™ is as follows:

C={z"=(z,2,...,2t) € {0,1}'® | 2}t € {0,1} andzfz,zj for ¢ < j}.

An underflow, which results in at least 8 bits to flip in the 32-bit register, occurs
in each loop when z;r = 1 in the BaseSampler. Such underflow allows binary

classification for z;7 € {0,1} by observing power trace [15]. Let A,()?mry be a
binary classifier that takes the power trace of the ith loop as input and classifies
+

2. Then, A,(Jzzmry estimates z+ = (2], 25, ..., 25) as follows:

&= (e1,80,...,018), & — AL, (Tr;) € {0,1},
where ¢ € {0,1}!8 is the estimated z™ and Tr; is the power trace of the ith loop.
If Apinary fails to correctly classify the value of z;L , then & may not belong to C'
such that
¢=z"+et mod 2,
+

where z+ € C and et = (e] ,e5,...,efg) € {0,1}'® is an error vector. Assume

that the errors e, i € {1,2,...,18}, are statistically independent. For given

7 7

¢ € {0,1}!8, for each ¢ € C, define I. ¢ := {i € {1,2,...,18} | e =1 for et =
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c+ ¢ mod 2} and Jee :={1,2,...,18} \ Ic¢. Then, the following maximum a
posteriori (MAP) decoding is proposed to correct the errors in ¢ as follows:

¢ =argmaxP(c| ¢)
ceC

= argmaxP(c)P (¢ | ¢)
ceC

= argmax P(c)P(e™)
ceC

= arg max P(c) H Plef =1) H Pef =0),  -------- (13)
ceC i€lc.c j€Jee

where ¢* € C is the corrected ¢ by using MAP decoding. Since the probability
of selecting zp in BaseSampler is predetermined by the RCDT table [30] and zg
is uniquely determined by the codewords c of the set C' such that zp = ||c||1,
the probability of selecting ¢ from C' is the same as the probability of selecting
zo € {0,1,...,18},1.e., P(c) = P(zg). Therefore, after performing MAP decoding
in Eq. (15) the output 2o of BaseSampler is estimated uniquely as follows:

20 = [<x-

Even for the case that the errors are not statistically independent, the MAP
decoding approach in Eq. (15) can be taken to correct the errors in €.

5 Experimental Evaluation

This section presents the experimental evaluation of deep-learning-based SPA
attack to collect samples and the proposed OLS attack using these samples, as
discussed in Section 4. All evaluations were conducted on Ubuntu 20.04.6 LTS
with an Intel i7-7700k (4.2GHz), 16GB DDR4 RAM, and an NVIDIA GeForce
GTX 970. The operation for secret key recovery in the experiment was not op-
timized. Hence, the processing time could be further reduced through enhanced
CPUgs, single instruction multiple data (SIMD), and so on.

5.1 Simple Power Analysis Attacks on SamplerZ with Noise

Note that Z in Algorithm 2 is Z = b+ (20— 1) - 29 for the BaseSampler output zq
and the sign value b. The value of Z is estimated by zg and b, obtained through
power analysis attack. Since discrete Gaussian samplers play a crucial role in
PQC including Falcon, numerous studies have already explored SPA targeting
discrete Gaussian samplers using CDT and RCDT to estimate the leakage of z
and b [15,19,21,35,37]. Although most studies do not consider noisy environments
when estimating zy and b, estimating zy and b under various noise conditions
is necessary for practical reasons. Therefore, we focus on the realistic power
analysis attack for estimating zp and b from noisy power traces. Moreover, we
evaluate the attack capability when the errors in zy are corrected by the MAP
decoding proposed in Section 4.3.

21



The power traces were collected using ChipWhisperer and the ELMO sim-
ulator, targeting the ARM Cortex-M4 processor. The source code to be im-
plemented on the processor is the recent Falcon reference code 2 in NIST. For
ChipWhisperer, we mounted an STM32F415 on a CW308 UFO target board
and measrued power traces using ChipWhisperer Lite. Detailed setup for Chip-
Whisperer can be found in [35]. The ELMO simulator emulates noise-free power
traces targeting the ARM Cortex-M0/M4 model [23]. To simulate various noise
conditions, the noisy power traces were generated by adding white Gaussian
noise to the noise-free power traces produced by the ELMO simulator. A mea-
sure of signal quality is determined by the signal-to-noise ratio (SNR) defined
as

SNRdB = ].OIOg (IDSZQW) y
noise
where Pg;gnq is the signal power and P,is¢ is the noise power.

A multi-layer perceptron (MLP) is used as a binary classifier to estimate zg
and b using noisy power traces as input. The MAP decoding scheme in Sec. 4.3
can operate with any binary classifier, and a SPA-based MLP was selected since
it is good enough to demonstrate the performance of MAP decoding. The MAP
decoding scheme is still effective even when employing the SPA proposed in [15]
and [21]. Additionally, the MLP can distinguish the underflow feature in the
power traces and detect power differences at the assembly instruction level [35],
allowing efficient classification of zy and b. The structure and hyperparameters
of the MLP used in the experiment are presented in Supplementary Material B.

Half Gaussian Leakage with Noise. The MLP serves as a binary classifier
A(Z) described in Section 4.3, which takes the power trace Tr; as input and

binary

classifies z:r as 0 or 1 for i € {1,2,...,18}, where i is the iteration number of
the for-loop in the BaseSampler. Note that the training data consists of noisy
power traces Tr; each labeled with z;". For ChipWhisperer, the performance of
Al(;)nary was evaluated using 10,000 training data and a separate test data of
10,000 samples for each iteration ¢. Similarly, for ELMO, the performance was
evaluated using 10,000 training data and 10,000 test data for each iteration i
and each SNR levels [45dB, 40dB, 35dB, 30dB, 25dB]. When training an MLP
with noise-free (SNR co dB) training data, around 1,000 training samples per
iteration are sufficient to achieve 100% classification accuracy. However, in the
experiment, we trained A;()gm_y with 10,000 data per iteration to guarantee the
MLP’s performance with a sufficient amount of training data. Table 1 shows the
accuracy of the MLP Az(;?nary for the ith loop on each platforms under various
SNR.

As shown in Table 1, for ChipWhisperer, the third iteration show the worst
accuracy of Al(fizmry, while the remaining iterations consistently achieve high
accuracy. For ELMO, the first iteration is most affected by the noise, leading to

2 https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms—-2022
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Table 1. Accuracy of the MLP Agizmry for estimating z;~ for various platforms
and SNR.

Accuracy of Aé?mry

Platform SNR (dB) —T =3 =3 =4 % 5%

ChipWhisperer - 0.9932 0.9824 0.9698 0.9900 0.9883 0.9999
ELMO 45 0.9988 0.9988 0.9932 0.9944 0.9932 0.9999
ELMO 40 0.9916 0.9956 0.9796 0.9964 0.9912 0.9998
ELMO 35 0.9716 0.9936 0.9428 0.9876 0.9912 0.9998
ELMO 30 0.8952 0.9676 0.8964 0.982  0.9912 0.9998
ELMO 25 0.7632 0.9000 0.8432 0.9632 0.9892 0.9998

a sharp decline in accuracy as SNR decreases, followed by the third iteration. The
remaining iterations are progressively less affected by the noise as the iteration
continues. These experimental results of both ELMO and ChipWhisperer show
that the underflow feature varies for each loop due to the noise.

MAP decoding on éhipWhisperer o

Non-MAP decoding on ChipWhisperer £ /

095

Accuarcy

—S— MAP decoding on ELMO 1
——— Non-MAP decoding on ELMO

0.55 I I I
25 30 35 40 45

Signal-to-noise (dB)

(4)

binary

Fig. 1. Accuracy of estimating zg by A for various SNR and platforms.

Fig. 1 shows the accuracy of estimating zg by the MLP Al()?mry. It shows that
MAP decoding consistently provides better accuracy compared to Non-MAP de-
coding. Specifically, the proposed MAP decoding achieves approximately 12.5%
improvement in accuracy over Non-MAP decoding on ELMO at SNR 25dB.
When MAP decoding is applied to power traces measured on actual hardware
using ChipWhisperer, it further enhances zy estimation accuracy compared to

ELMO. The average probability over the first six iterations in Table 1 is 0.9873
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for ChipWhisperer, and the closest corresponding probability for ELMO is 0.9811
at 35dB. As shown in Fig. 1, the MAP decoding improves accuracy by about
3% for ELMO at 35 dB, whereas ChipWhisperer achieves more than twice
that improvement, with a 7% increase in accuracy. Although the average prob-
abilities are similar, ChipWhisperer shows better improvement due to higher
probability of correct classification in the first loop. Since BaseSampler samples
2o € {0,1,2,3} with 95% probability, the accuracy of estimating z;" during the
first four iterations significantly influences the performance of MAP decoding.
In particular, as the probability of zy = 0 is 36 %, achieving correct classification
of 2 in the first iteration is crucial for MAP decoding performance.

The reason for such relatively modest performance improvement is that the
set C of 19 vectors z* is not a good error-correcting code, which has a mini-
mum Hamming distance of 1, and the accuracy of the MLP model deteriorates
mostly due to the noise in the first loop as in Table 1 for ELMO. However, such
improvement with MAP decoding can substantially improve the performance of
the OLS attack, as discussed in Section 5.2.

Sign Leakage with Noise. As demonstrated in [37], the sign b was estimated
using the power traces generated during the execution of two instruction codes
in SamplerZ. The first instruction code generates b € {0,1} uniformly at ran-
dom and the second instruction code performs b + (2 -b — 1) - zg. The power
traces generated during the execution of b+ (2-b — 1) - zg show significant dif-
ference depending on b. Because the register for b changes from 0x00000000 to
OxFFFFFFFF by an underflow occurred when b = 0, this significant power dif-
ference makes it easy to distinguish even with the noise. Specifically, even at
SNR 0 dB in ELMO, the MLP trained with only 300 samples can perfectly clas-
sify the sign value b. Similarly, for ChipWhisperer, training with 300 samples or
even fewer also achieves 100% accuracy in classifying b. Therefore, estimating
the sign b from noisy power traces does not require noise reduction scheme.

5.2 Experimental Results of the OLS Attack on Falcon

Performance of the OLS Attack on Falcon using Noise-free Samples.
The experiment focuses on the performance of the proposed OLS attack on
Falcon using samples z estimated without noise. The setup is conducted in a
noise-free environment to maintain consistency with pervious works [15] and
[37], allowing for fair performance comparison. The impact of actual hardware
errors and various noise conditions on OLS performance is separately discussed
later in this section.

Twenty instances of secret key b; for each of Falcon-256, 512, and 1024 are
used for the experiment. We measured the error size and computation CPU time
of the OLS attack using up to 60,000 (s, z) samples per instance. Note that the
secret basis B of Falcon can be recovered by estimating the first row by of B,
as described in Section 4.1£n the experiment, the similarities between each of
two secret key estimators by and aj, and the real by are evaluated for various
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number of samples, where 6; is the estimator in Eq. (12) and a7 is the first row
vector of A in Eq. (8). The error size of an estimator X is defined as ||by — [X]||1,
where |X] represents the rounding of all coefficients of X.

70
—o6— Falcon-256 using ay
60 - —*— Falcon-256 using b;
Falcon-512 using a;
% Falcon-512 using by
° 50 —-6-—Falcon-1024 using a3
3 Falcon-1024 using b,
§ 40
5]
o
&30t
o
z ¢
< Ux
20F
>
o
2 T
100 e, >< e x Xy L
~—o—_ R S L0
0 IR s SRS RSB~ S s e * i < St LIS 1
2 22 24 26 28 3 32 34 36 38
Number of samples «10%

Fig. 2. The average error size of 20 instances for the estimators a; and B; on
Falcon-256, 512, 1024.

Fig. 2 shows the average error size of 20 instances for a; and f); with various
number of samples. As the number of samples increases, both ézand b, converge
to by as proven in Theorems 4 and 5. The estimators a; and by require 33,700
and 46,200 samples, respectively, to directly recover by of Falcon-512 with 25%
success rate. For the same number of samples, f); shows larger estimation error
cggpared to ay. It is because the estimator A is the inverse of the OLS estimator
A~! which can be precisely computed in a single step using (XTY)*XTX but
the computation of l/)z requires two steps of OLS regression and scaling by the L2
norm, which leads to bigger errors. The number of samples required to directly
recover the secret basis B for various n is presented in Table 2. As shown in
Table 2, a; and b; exhibit a trade-off between the required number of samples
(or execution time) and the success rate.

Fig. 3 shows the average CPU time of computing a; and B} for estimating
20 instances with various number of samples. Since the time complexities of two
estimators a; and b, are O(mn? 4+ n?) and O(mn + n3), we can see that by is
more efficient. However, as shown in Fig. 3, for Falcon-256 and 512, the average
CPU time for computing b, is similar to that for ay. For Falcon-1024, the average
computation time of by is smaller than that of a; by about 1.5 seconds. Also the
computation time of two proposed estimators increases linearly with the number
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Fig. 3. The average CPU time of 20 instances over the number of samples for
computing a; and by.

of samples and exponentially with n. The time required to directly recover b,
from a; and by for various n is presented in Table 2.

Table 2. The average number of samples and time required for achieving par-
ticular success rate (SR) to recover the secret key b; of Falcon-256, 512, and
1024 by the OLS attack.

al b,
SR (%) #Samples Time (sec) #Samples Time (sec)
25 30,000 1.73 37,500 2.63
Falcon-256 60 31,200 1.75 43,700 3.06
90 35,000 2.48 49,500 3.64
25 33,700 8.27 46,200 11.25
Falcon-512 60 35,000 8.44 48,900 12.02
90 40,000 9.72 51,800 12.81
25 36,000 25.12 46,800 29.03
Falcon-1024 60 37,000 26.09 49,000 30.14
90 42,500 28.85 53,600 32.45

Approximation Scheme. For a small number of samples, the OLS attack on
Falcon can provide an estimator X for approximating by, even if it is not very
close to by. Since by can be recovered from X using lattice reduction when a
sufficiently close vector X is available, the OLS attack combined with the lattice
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Fig. 4. The BKZ block size of Falcon-512 estimated by the leaky-LWE estimator
given the coefficients of a; as hints based on the number of samples.

reduction provides a trade-off between the number of samples for OLS attack
and the computational time for lattice reduction. Fig. 4 shows the BKZ block
size estimated by the leaky-LWE estimator [5] for recovering b; of Falcon-512
using each coefficient of a; as an approximate hint. The BKZ block size initially
required to recover b; in Falcon-512 is around 480 and drops below 200 when
over 15,000 samples are used to estimate a; by the OLS attack.

An attack scheme in [22] is based on the DDGR attack [5], which easily
integrates perfect hints, modulus hints, and approximate hints. For 10 instances
of Falcon-512 by using a7 as a hint, which is provided by the OLS attack using
25,000 samples, the lattice-reduction scheme in [22] can successfully recover the
secret key with 100% success rate within 2.5 hours. Specifically, the coefficients
of a; with a decimal value between -0.3 and 0.3 are used as perfect hints, and
other coefficients are used as approximate hints.

Comparison with the State-of-the-art Attacks. Since the OLS attack ex-
ploits Gaussian leakage to recover the secret basis of Falcon, this study compares
the performance of OLS attack with the state-of-the-art attacks that also utilize
Gaussian leakage [15,37]. For Falcon-512, the number of samples and the com-
putational time required to recover the secret basis B are compared for the OLS
attack and the state-of-the-art attacks in [15] and [37]. The scheme in [15] solves
the hidden parallelepiped problem for recovering by using the samples (s, zg = 0),
where zg € {0,1,...,18} is the output of BaseSampler in Algorithm 3. It was
shown that this scheme can recover b; by combining DDGR, attack with 1 mil-
lion samples and 25 hours of CPU time, whereas 10 million samples are needed
for direct recovery of by only by this scheme. The secret key recovery attack in
[37] solves the learning slice problem to recover b; using the samples (s, z; = 0),
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where z; € {—17,—16,...,18} is calculated in SamplerZ. This scheme with an
exhaustive search takes 30 minutes of CPU time and 45,000 samples to recover
the secret key with 25 % success rate. These two schemes recover by from a con-
ditional signature distribution, implying that only a portion of measured samples
are used to recover by. For Falcon-512, the standard deviation of coefficient of
signature s is given by ¢’/ = 1.2915. Consequently, the probability of obtaining

s conditioned on zg = 0 is P(s|zp = 0) =~ erf (ﬁ) = 0.5612, where erf is the
Gaussian error function. In the hidden parallelepiped scheme, to obtain 1 million
filtered signatures with zo = 0, an average of 1.78 million signature samples must
be collected by the side-channel attack. In the learning slice scheme, the proba-
bility of sampling z; = 0 is 0.2806. Therefore, in order to obtain 45,000 filtered
signatures with z; = 0, 161,000 samples should be collected by the side-channel
attack. Unlike the state-of-the-art attacks, the proposed OLS attack recover by
using all measured samples (s,z) and (s, z1).

Table 3 shows the required sample size and time to recover b; of Falcon-512
using the estimated z without noise for various attacks. As shown in Table 3, the
OLS attack requires fewest samples and a significantly short computation time
compared to the other schemes. Furthermore, if the DDGR attack is combined,
the OLS attack recovers by of Falcon-512 using 25,000 samples with 100 %
success rate for ten instances. When performing side-channel attack on Falcon,
about 25,000 signatures are required for SPA to successfully recover the secret
key. This number is significantly smaller than that of the state-of-the-art attack,
which requires 161,000 signatures for SPA, demonstrating the superior efficiency
and strength of the proposed attack scheme.

Table 3. Performance comparison of various attack schemes on Falcon-512. ‘SR’
denotes success rates. ‘HP’ and ‘LS’ denote the hidden parallelepiped scheme and
the learning slice scheme, respectively. ‘Approximation’ refers to the scheme to
recover the secret key from the approximated secret key. ‘Filtered’ refers to the
number of filtered signatures used in the secret key recovery attack. ‘Total’ refers

the average number of signatures required for obtaining filtered signatures using
SPA.

#Samples (x10%)

Approximation (Filtered /Total) Time SR (%)
Rounding 1,000 / 1,780 - -
HP [15] DDGR [5] 100 / 178 25 hours -
LS [37] Rounding 7/ 25 - 25
Exhaustive Search 4.5/ 16.1 30 min 25
OLS Rounding 35/ 3.5 8.4 sec 60
DDGR [22] 25/ 25 2.5 hours 100
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Performance of the OLS Attack on Falcon using Noisy Samples. Ex-
perimental results are provided when noisy zy’s are used, where the noise is gen-
erated by reflecting the MLP accuracy in Table 1 (30dB and ChipWhisperer) as
the error probability of each iteration in BaseSampler. Specifically, each error e;
of the ith loop in BaseSampler is independently generated, and the error prob-
ability is assumed to be P(e; = 1) =P(& =1|¢; =0) =P(& =0 ¢ = 1).
The accuracy of the MLP classifier of z* for the ith loop is 1 — P(e; = 0) and
hence the error vector et = (e, es,. .., e13) can be generated based on the MLP
accuracy Table 1 (30dB and ChipWhisperer). As described in Section 4.3, if we
measure ¢ = zT +eT by power analysis attack for z+ € C and the MAP decoding
is used, ¢ is decoded into ¢* € C, and %, is estimated as ||c*||;. For Non-MAP
decoding, ¢* = ¢, which may not be in C, and % is estimated as ||c*||;. Fig. 5
shows the error size in aj obtained by the OLS attack for a single instance of
Falcon-512 using the estimated 2.

— # — Non-MAP/ChipWhisperer

500 [ — & — Non-MAP/ELMO, SNR: 30 dB
! MAP/ChipWhisperer

—&— MAP/ELMO, SNR: 30 dB

— — —No noise, SNR: cc dB

400 1|

W
S
o

Error size

n
o
o

100

Number of samples %10

Fig. 5. The error size of the OLS estimator a; for Falcon-512 using the noisy 2.
‘No noise’ refers to the case when the power trace of zy does not contain noise.

As shown in Fig. 5, the number of samples required for the OLS attack to
recover the secret key increases with the number of noisy samples. However, even
when the accuracy of estimating zq is 77.5% at 30dB, the OLS attack can recover
the secret key only within 100,000 samples. As demonstrated by Theorem 4, the
experimental results in Fig. 5 suggests that the OLS attack using noisy samples
still converges to successfully recover the secret key in probability. In other words,
the OLS attack is an error-tolerant attack scheme against any errors occurring
during side-channel attack. Also despite the presence of noisy samples, the OLS
attack requires fewer samples than the state-of-the-art attacks. In particular,
when MAP decoding is applied to the power traces from ChipWhisperer, the
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OLS attack can recover the secret key only with 47,000 samples, whereas Non-
MAP decoding requires at least 85,000 samples, demonstrating the effectiveness
of MAP decoding in real hardware.

If MAP decoding is used, the error size is consistently smaller than that
without MAP decoding. Notably, in both ChipWhisperer and ELMO at SNR
30dB, the error size gap between MAP decoding and Non-MAP decoding is
approximately 50 at 30,000 samples. This suggests that combining the DDGR
scheme and MAP decoding can further reduce the required number of samples
and computational time for recovering the secret key.

6 Conclusion

We first derived vulnerable partial information in GPV framework as in Eq.
(3) and proposed an efficient secret key recovery attack, called the OLS attack,
which effectively leverages partial information to recover the secret key of GPV
signatures without filtering. Interestingly, the OLS attack is shown to be a linear
consistent estimator, which implies that it can efficiently recover the secret key
given a sufficient number of samples.

If we apply the OLS attack to Falcon, it becomes the most powerful and prac-
tical such that it requires the fewest samples and significantly less time compared
to the state-of-the-art attacks using Gaussian leakage [15], [37]. Unlike the pre-
vious works, which use only a part of the samples, the OLS attack utilizes all the
samples. In addition, we proposed more efficient OLS attack by using the prop-
erty of NTRU lattice, which further reduces the number of side-channel attacks
(or power traces or samples). We also proposed an error-tolerant power analysis
attack based on MAP decoding to improve the quality of samples obtained by
side-channel attack.

Although this paper primarily focuses on Falcon, the OLS attack is not lim-
ited to Falcon and can be applied to any GPV signatures. For example, Mitaka
signature [8] employs a hybrid sampler that can be viewed as a perturbed version
of the Klein-GPV algorithm. If Gaussian leakage is used as partial information,
the OLS attack can similarly recover the secret key, like Falcon. Moreover, the
OLS attack recovers the secret key only by using the first row of the matrix A
in Eq. (8). If the OLS attack is extended to leverage all information of A, the
secret key may be recovered using fewer samples. Given these possibilities for
further development, the OLS paves a path for significant research potential.
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Supplementary Material

A  Proofs of Lemmas and Theorems

The proof of Lemma 1 in Section 3.2 is given below.

Lemma 1 (Uncorrelatedness). Let x =s € Z" and e = X —r € R" be the
independent input and noise vectors, respectively, in Eq. (5). Then, x and e are
uncorrelated, i.e., Kxe = Cov[x, €] = 0.

Proof. In the proposed MLR model y = xA™! + e, for any x, we have

Ex[x] = Esls] (by the definition of x)
= Er u[(r —u)A] (by Eq. (3))
= Ep[Eype[(r —u)A | r]] (law of total expectation)
= E[(r — Eye[u | r])A] (constant matrix A)
= E;[(r —r)A] (Eujr[ulr] =)
=0,

where Eyj[u|r] = r holds because u; in Eq. (3) is distributed according to Qs r,
for all i € {1,2,...,n}. It follows that

Kye = Cov[x, ] = Ey o[x" €] (Ex[x] = Ecle] = 0)
= Ee[Exje[x | €]"€] (law of total expectation)
=Ee[Eye[(y —e)A | e]"€] (by the definition of x)
—Fel(e—e)A) ¢ (BypolyA | o] = eA)
-0,

where Eyjc[yA | €] = Eyc[y | /A = eA holds because A and A are constant,
and hence Ey¢ly | €] = Eyp[A —u | A —r] =Ey [A-ulrj=A-r=e O

The following is the proof of Lemma 2 in Section 3.2.

Lemma 2. Let S, = {(s;,w;) | i € {1,2,...,m}} be a set of m independent
samples (s;,w;) < Wrg(A). Let X € Z™*™ and E € R™*™ be the input and
noise matrices, respectively, in Eq. (6). As m goes to infinity, mXTE converges

to 0 in probability, and %XTX converges to Couv[s,s] in probability. In other
words,

1 1
plim (XTE) =0 and plim (XTX> = Couls, s].
m—oo \ TN m—oo \ M
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Proof. For any X € Z™*"™ and E € R™*" we have

1 1 m
lim ( —XTE ) = plim | — Te,
plim (m ) plim (m;xle>

m—00 m—00
=Exo[xe] (Theorem 1)
= Cov[x,e] — Ex[x]" Ec]e]
= Cov[x, €] (Ex[x] =0)
=0. (Lemma 1)

Since z; = s;, for any X € Z™*", we have

plim (1XTX> = plim lisfsl)

m—o0 \ 1 m—oo \ i
= Ey[s7s) (Theorem 1)
= Couls,s| — Eq[s]TEq[s]
= Covls, s] (Es[s] =0) O

The following is the proof of Theorem 4 in Section 3.3

Theorem 4 (Consistency of the Proposed OLS Estimator). Let S, =
{(siyu;) < Wro(B) | i€ {1,2,...,m}} be a set of m independent GPV signa-
ture samples. Let X € Z™*™ and Y € R™*™ be the input and output matrices,
respectively, in Eq. (6). The estimator A = (XTY)"'X"X of the OLS attack

in Algorithm 4 is consistent, i.e., plim,, A=A.

Proof. For any X € Z™*™ and Y € R™*", we have

A oA o (XTX)IXTY - A (by the def. of A—1)
= - T4 — A v the def. o
XTX)"IXT(XA'+E) - A7! by the def. of Y
= (XTX)IXTXA '+ (XTX)'XTE - A7!
= (X"X)"'X"E

It follows that

—

plim (A—1 - A—l) plim (X7X) "X E

m—o0 m—o0
1
= plim m(X*X)' =X"E
m—o0 m
-1
1 1
= plim (XTX> —X"E
m—oo \ TN m
ol . 1og
= ( plim —X* X plim — X" E ----(14)
m—oo M m—oo M
=Couvls,s] 1.0 (by Lemma 2)
=0.
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Here, the equality (14) holds as follows. Since C'ov|s, s] is a positive semi-definite
matrix, it is invertible except when BCou[s,s]3” = 0 for some 8 € R" \ {0}.
Then, BCouls,s]B” can be expressed as follows.

BCouls, s]ﬁT = Z Z BiBjCouls;, s;]

i=1 j=1

Z Bisi
=1
= Var[</65 S>]7

where f3; and s; are the ith coordinate of 3 and s, respectively. Since s is dis-
tributed according to an n-dimensional discrete Gaussian distribution over lat-
tice, Var[(B,s)] # 0 for all B8 € R™\ {0}. Therefore, Cou[s, s] is invertible and,
by Theorem 2, the equality (14) holds.

Since A™! is fixed as constant for any m and plim
follows that

=Var

—

(AT'—A Y =o0,it

m—r o0

pim A~ =AY ... (15)
m—r o0
Let g : GL,(R) — GL,(R) be a function of calculating inverse matrix. Then

g is continuous for every GL,,(R) [34]. We now show the convergence of AtoA
as follows:

~ —_ _1
plim A = plim (Afl) (by Eq. (8))

m—roo m—roo

= plim g (E)

m—roo

=9 (phm A ) (by Theorem 3)
=g(9(A)) (by Eq. (15))
=A.

Since A is either B or B, all rows of A are linearly independent, and hence
P(g(A) ¢ GL,(R)) = 0. Since g is continuous on GL,(R), by Theorem 3, the
last equality holds. O

The following is the proof of Corollary 1 in Section 4.1.

Corollary 1. Let z = (z1,22,...,22,) € Z*" be the output of FFO sampler
ffsampling,,, and let z = (21, Za, ..., Z2,) € Z*™ be the vector such that z; is
caleulated from z; = zZ; + |¢;] in Algorithm 2. Here, c;, serving as an input
to SamplerZ for producing the output z;, is equal to t; of t = (t1,ta,...,top)
in Lemma 3. Then for any signature s € Z>" of Falcon and z, there exists
r=(ry,re,...,7r2,) € [0,1)%" such that

s=(r—2z)B,
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where Z; is distributed according to Dz, », r; fori € {1,2,...,2n}.

Proof. Let 1= (ll,fz, ..., lan) where I; = |£;], and let r = (r1,79,...,79,) Where
r; =t; —l;. Since t =1+ r and z =z + 1, by Lemma 3, we obtain that

s=(t—2zB=(I+r—(1+2)B=(r—2z)B.

We now derive the distribution of z. Since Dy, o, c—q(2) is the same as Dy o, .(z+
a) for any z,a € Z and ¢ € R, we have

DZ,a'i,fi (Zl) = DZ,Ui,Ei (21 + ll) = DZ,O’{,,Zi—ZiZT’i (21)7
for all i € {1,2,...,2n} given l;. Therefore, the distribution of z; is Dz 4, ;. O
The following is the proof of Theorem 5 in Section 4.2.

Theorem 5 (Consistent Estimator b; in Eq. (12)). Let B be the secret
basis of Falcon, and WX,D(B) be the probabilistic algorithm whose outputs (s, z)
satisfy Eq. (9). Here, x and D are distribution of r; and discrete Gaussian distri-
bution, respectively. From m independently measured samples (s,z) < WX,D(]%),
the MLR model in Eq. (6) for Falcon is constructed using X and Y consisting
of m row vectors x; = s; and'y; = A — z;, respectively. As m goes to infinity, the
estimator by = H(XTX)1X"y))T converges to the first row by of the secret
basis B in probability, where y| € Q™ is the first column of Y consisting of m

elements \; — z;1 and k = ||(XTX)~'XTy/|]?, i.e., plim,, ,. b; = by.

Proof. Let z; € Z™ be the ith column of Z € Z™*". Then, the matrix norm of Z
is defined as

|21 = max .

It follows that, for any € > 0, we have

0 <P(I¥i —vill > ¢) < PIA" — A7Y]| > e),
where v] = (XTX)~'X"y/ is the first column of A~ in Eq (7) and v is the
first column of A™'. Since lim,, ,oo P(|A™" — A™}|| > ) = 0 by Theorem 4,
it is clear that lim,, ;. P(||[vi — vi| >¢€) = 0 by squeeze theorem (sandwich

theorem). In other words, the estimator vi converges to vi in probability.
Let f: R™ — R" be the function defined as follows:

L 7

f(x) = —=x".
112
The function f is continuous for R™\{0} because L2 norm and the transpose

mapping are continuous for R™\{0}. Since P(vy = 0) = 0, by Theorem 3, it
follows that

plim f (1) = f (pnm VA) — f(vi) =br. o

m—r o0 m—r o0
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B Hyperparameters of MLP

This appendix presents the hyperparameters of the MLP to ensure the repro-
ducibility of the experiments and shares the optimized parameters that were
empirically verified through the study. In Table 4, “FC” denotes a fully con-
nected layer, and the following number represents the layer depth. The MLP
adjusts its input size to match the number of power traces corresponding to zg
and b.

Table 4. Hyperparameters of MLP model for binary classification

InPut Oquut Activa'tion Dropout Negative

Size Size function slope
FC1 Input size 91 LeakyReLU 0.2 0.01
FC2 91 400 LeakyReLU 0.2 0.01
FC3 400 128 LeakyReLU 0.2 0.01
FC4 128 32 LeakyReLU 0.2 0.01
FC5 32 1 LeakyReLU 0.2 0.01
FC6 1 1 Sigmoid - -
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