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Abstract—Stateless blockchain designs have emerged to address
the challenge of growing blockchain size using succinct global
states. Previous works have developed vector commitments
that support proof updates and aggregation to be used as
such states. However, maintaining proofs for multiple users
still demands significant computational resources, particularly
to update proofs with every transaction. This paper intro-
duces Cauchyproofs, a batch-updatable vector commitment
that enables proof-serving nodes to efficiently update proofs
in quasi-linear time relative to the number of users and
transactions, utilizing an optimized KZG scheme to achieve
complexity 𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2(∣�⃗�∣ + ∣ ⃗𝛽∣)) for |𝛼| users and ∣𝛽∣
transactions, compared to the previous 𝑂 (∣�⃗�∣ ⋅ | ⃗𝛽|) approaches.
This advancement reduces the computational burden on proof-
serving nodes, allowing efficient proof maintenance across
large user groups. We demonstrate that our approach is
approximately five times faster than the naive approach at
the Ethereum-level block size. Additionally, we present a novel
matrix representation for KZG proofs utilizing Cauchy matri-
ces, enabling faster all-proof computations with reduced elliptic
curve operations. Finally, we propose an algorithm for history
proof query, supporting retrospective proof generation with
high efficiency. Our contributions substantially enhance the
scalability and practicality of proof-serving nodes in stateless
blockchain frameworks.

1. Introduction

Traditional blockchain protocols such as Bitcoin and
Ethereum require every fully functional running node to
maintain a state consisting of all accounts and all transac-
tions ever generated since the inception of that blockchain.
The size of the state increases as the blockchain runs,
reaching over 85 million elements in Bitcoin and over 200
million accounts with a 35 GB of state in Ethereum [1].

Such enormous state sizes create difficulty in decentral-
ization of the network, as the storage and computational
requirements for running a full node become increasingly ex-
pensive. To address this issue, stateless blockchains [1] have
been proposed to build a cryptocurrency with a succinct
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global state. The design paradigm of stateless blockchains
represents a shift of responsibility. Every running node only
maintains a succinct digest of the state, and the user has
to provide the necessary proofs to the node to showcase
the validity of their transactions, usually by demonstrating
the inclusion of their account and balance in the state. The
node then verifies the proof and processes the transaction
accordingly.

The succinct global state digest is usually achieved by a
vector commitment [2], [3], [4], [5], which allows a vector
of values to be committed by a short digest. For example,
previous work has explored representing the state of smart
contracts [6] or account balances [2] using a vector and
employ a vector commitment to implement a succinct global
state digest. In this design paradigm, to verify the validity of
every transaction in a block, the node has to verify the proof
of every account involved in the transaction. Therefore, all
the proofs have to be included in the block. To reduce block
size, the concept of aggregatable vector commitment [2] has
been proposed, which allows the aggregation of multiple
proofs into a single proof of constant size, reducing the size
of the block.

Ideally, the proof of every user should not change often
if that user makes no transactions, even if the state is being
updated with other transactions. However, Christ et al. [1]
has shown that it is impossible to build a stateless blockchain
without frequent proof update almost linear to the number of
transactions, thus necessitating what prior works call as a
proof-serving node [2], [3], [7] that maintains and serves
proofs of a specific user group. Figure 1 illustrates this
scenario.

Previous works on aggregatable vector commitments
have demonstrated that it is possible to update one proof
with one change in the vector in constant time [2], [5]. With
this technique, if the proof-serving node computes through
an update of ∣ ⃗𝛽∣ transactions for each of the ∣�⃗�∣ users, naively
it will take at least 𝑂 (∣�⃗�∣ ⋅ | ⃗𝛽|) time complexity, since for
each user, the node has to access every transaction at least
once. Naturally, such complexity blows up quadratically
as users and transactions increase, This raises a natural
question: can we do better?

In this paper, we motivate the idea of a batch-updatable
vector commitment, where the proof-serving node can up-
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Figure 1: In this stateless blockchain example, let us assume
that the blockchain state is a vector ⃗𝑣 of length 𝑛. We denote
the global state after the 𝑖-th block ⃗𝑣𝑖 and the succinct
global state digest 𝐶𝑖. The 𝑖-th block contains this digest 𝐶𝑖
and a list of updates ⟨UPDATE, 𝛽𝑗, Δ𝑣𝛽𝑗

⟩ representing the
changes in the vector from ⃗𝑣𝑖−1 to ⃗𝑣𝑖. Our proof-serving node
maintains and serves proofs of a specific group of users,
represented by the vector �⃗� where 0 ≤ 𝛼𝑗 ≤ 𝑛 that contains
a list of indices for ⃗𝑣. It is responsible for providing proofs of
the type 𝑄𝛼𝑗

, which proves the value of 𝑣𝑖,𝛼𝑗
given the digest

𝐶𝑖. Given that updating proofs frequently is inevitable, the
proof-serving node has to update these proofs after every
block gets published to ensure that the verification goes
through on the latest digest.

date ∣�⃗�∣ proofs with ∣ ⃗𝛽∣ modifications in time quasi-linear
to (∣�⃗�∣ + ∣ ⃗𝛽∣). Specifically, we revised the previous KZG-
based schemes [2] and developed an algorithm to achieve
said update in 𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣)), irrelevant to
the length of the vector 𝑛, which may consist of many
more other users’ data. This result helps to motivate proof-
serving nodes, as one node maintaining a group of users
becomes cheaper than each user maintaining their proof
individually, which would cost at least 𝑂 (∣�⃗�∣ ⋅ | ⃗𝛽|) for each
user to access every transaction. With Etheruem’s current
block size of 20,000 transactions, we expect our algorithm
to enable proof-serving nodes to be roughly 5 times faster
than the naive algorithm.

As a side result, the method we developed allows us
to represent KZG proofs as matrix multiplications with
Cauchy matrices. The result allows us to compute all proofs
in a KZG vector commitment with 2𝑛 log 𝑛 + (𝑛 log 𝑛)
elliptic multiplications, an improvement from the previous
3𝑛 log 𝑛 + 𝑜 (𝑛 log 𝑛) result [8] that cares about the numbers

of elliptic curve multiplications. It can save around 106

multiplications under Ethereum’s use case study [8]. The
improvement comes from the fact that the previous result’s
algorithm first computes the KZG polynomial coefficients
given the vector, a step which we discover that we can skip.
We note that applying the all-proof computation algorithm
to the batch update scenario naively causes the update
complexity to be quasi-linear to the total vector length 𝑛,
which may be significantly larger than the user and update
size ∣�⃗�∣ and ∣ ⃗𝛽∣. Thus, batch update remains an interesting
scenario that this work aims to explore.

As a final observation, we note that by divide and
conquer, our algorithm can also be modified to support
a history proof query that outputs proofs at any point in
time throughout the blockchain lifetime. The history query
is useful in a scenario where a user wants to verify the state
of the blockchain at a certain point in time, which can be
useful for auditing purposes.

1.1. Contribution

As our first contribution, we present a way to represent
KZG proofs as matrix multiplications with Cauchy matrices.
The formulation allows several optimizations in the compu-
tation of KZG proofs.

Our second contribution motivates the concept of a
batch-updatable vector commitment, where we can ap-
ply update ∣�⃗�∣ proofs with ∣ ⃗𝛽∣ modifications efficiently.
Our new algorithm allows us to update ∣�⃗�∣ KZG proofs
with ∣ ⃗𝛽∣ modifications in time complexity quasi-linear to
(∣�⃗�∣ + ∣ ⃗𝛽∣). Based on the notation we developed, we apply
extra matrix multiplication and polynomial evaluation tech-
niques to reduce the computation cost from 𝑂 (∣�⃗�∣ ⋅ | ⃗𝛽|) to
𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣)). We implemented and bench-
marked our solution, finding it about five times faster than
the naive approach at the Ethereum-level block size.

For our third contribution, we reexamine the fast KZG
all-proof computation first theorized by Feist et al. [9]. We
discover that putting the computation under the lens of
vector commitment without detouring to polynomial coeffi-
cients allows us to reduce the number of elliptic multipli-
cations from 3𝑛 log 𝑛 + 𝑜 (𝑛 log 𝑛) to 2𝑛 log 𝑛 + 𝑜 (𝑛 log 𝑛).
We analyzed this improvement under Ethereum’s use case
scenario [8], and found that we can save millions of elliptic
curve multiplication operations.

Our last contribution discusses the scenario where a
history-proof query is required. We similarly give an algo-
rithm that allows the computation of a group of ∣�⃗�∣ proofs at
any point in time throughout ∣ ⃗𝛽∣ updates in time complexity
quasi-linear to (∣�⃗�∣ + ∣ ⃗𝛽∣).

1.2. Related Work

Algebraic vs. Hash-Based Vector Commitments. Parallel
to solutions that leverage algebraic properties such as KZG-
based vector commitments, hash-based solutions, most no-
tably the Merkle tree [10], implement similar functionalities
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with an interesting trade-off. For the Merkle-based solu-
tion, updates can be done dynamically without the need to
batch them together, but aggregation is not possible without
SNARK-related techniques. Moreover, with Merkle trees,
updating the proofs requires knowing the full vector data,
whereas for algebraic solutions this is not necessary. We
highlight a few key differences in Table 1.
Other Algebraic Vector Commitments. Various other
cryptographic primitives have been employed to develop
aggregatable vector commitments, including hidden order
groups [4], [5], [12] and lattices [13]. To our knowledge, no
batch-update solutions have been proposed for these con-
structions. We speculate that a unified framework could be
developed to support batch updates for these constructions
and leave it for future work.
Advancement on Elliptic Curve-Based Solutions. Var-
ious other works have considered implementing vector
commitments using elliptic curves with different focuses.
For instance, a multilinear extension of KZG commitment
has been proposed under the computation verification set-
ting [14]. Another work [15] considered the problem of
aggregating proofs of different vector commitments together.
Batch and Dynamic Updates. Although various works have
investigated proof aggregation under the name of ‘batch-
ing’ [4], [16], [17], to our knowledge, our work is the first
paper that systematically studies the batch update problem
and proposes efficient solutions.

On the other hand, the problem of dynamically updating
proofs has been studied by various works. A square-root up-
date algorithm based on dividing the commitment into sev-
eral segments has been proposed that trades much increased
proof size with performance [11]. Hyperproofs [3] was the
first aggregatable solution to support dynamic updates with
a logarithmic complexity. However, it uses a Merkle-like
structure and SNARKs to achieve aggregation. We showcase
their complexity under the batch-update setting in Table 1.

2. Solution Overview

Our goal is to structure proof computations such that the
update is easy. Towards that end, we observe that our results
are based on our observation that KZG proofs can be bro-
ken down as matrix multiplications with Cauchy matrices.
Therefore, by computing two such matrix multiplications,
we can evaluate all relevant KZG proofs simultaneously.
We then use this observation to optimize the computation
of KZG proofs in several scenarios. We give a breakdown
of our results in Figure 2.

2.1. Notation

We use arrows to describe vectors. For instance,

�⃗� = (𝛼0, 𝛼1, … , 𝛼𝑛−1) .

When �⃗� is a vector, we use ∣�⃗�∣ to denote its size and 𝛼𝑖
to denote its 𝑖-th element. Meanwhile, when �⃗� and ⃗𝛽 are
vectors, we use �⃗� ∘ ⃗𝛽 to denote their element-wise product.

Prior Results
Our Results

KZG Proof Transformation
(Section 4)

Batch Updates
(Section 5)

History Proof Query
(Section 7)

Fast All-Proof Computation
(Section 6)

KZG-based
Vector Commitment [2]

Fast Amortized
KZG Proofs [9]

Evaluation
(Section 8)

Im
provem

ent

Figure 2: A view of our results. Our results are based
on our observation of transforming KZG proofs as matrix
multiplications with Cauchy matrices. We used the scheme
developed by Tomescu et al. [2]. We also show that our
results improve the fast amortized KZG proofs by Feist et
al. [9].

We use additive notation for group operations and square
brackets [𝑥]𝑖 to denote the group element 𝑔𝑥 ∈ 𝐺𝑖 with
respect to some generator 𝑔. We may omit 𝑖 when the
underlying group is clear. Typically, we use capital letters
(e.g. 𝐶) to denote group elements. We use arrows with
brackets (e.g. [�⃗�]) to denote the vector of group elements
corresponding to the vector scalar, indexed by [𝛼𝑖]. We use
𝑝 (𝑥) to represent a polynomial and 𝑝 (𝑠) to represent the
polynomial evaluated at 𝑠. To make matrix multiplication
easier to represent, we also refer to vectors by their column
representations.
Benefits of Additive Notation. Using the arguably less
common additive notation for group operations allows us
to represent linear transformations of group elements as
matrices. For instance, consider some vector

[�⃗�] = ([𝑏0] , [𝑏1]) .

We can leverage the benefit of the notation to represent an
example of its linear transformation as

(1 2
3 4) ⋅ ([𝑏0]

[𝑏1]) = ( [𝑏0] + 2 [𝑏1]
3 [𝑏0] + 4 [𝑏1]) .

We can then evaluate this linear transformation as long as we
know [�⃗�], though not necessarily its scalar vector �⃗� directly.

As we will see later, we also use various techniques on
matrix multiplication optimization to accelerate the evalua-
tion we do in our algorithms. Such techniques are easier
to represent in the matrix form, and can look unwieldy
when using the more common multiplicative notation (e.g.
(𝑔𝑏0 , 𝑔𝑏1)).

2.2. KZG Proof Transformation

We start by outlining the construction of the KZG com-
mitment [18], a polynomial commitment scheme that allows
a succinct commitment of any polynomial up to degree
(𝑛 − 1) and a succinct proof of its evaluation at any point,
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TABLE 1: Comparison between various vector-commitment solutions. We picked the ones that focus on update complexity
and the ones that motivated our work. We include the proof size, complexity of batch updates, whether it is possible to update
proofs dynamically, whether aggregation is possible without SNARKs, and whether it is possible to update proofs without
the full vector data. For BalanceProofs, we used their final two-layer construction appearing in their macrobenchmark.

Proof Size Batch Update Dynamic Update Aggregation Requirement Update w/o Full Vector

Merkle [10] 1 (∣�⃗�∣ + ∣�⃗�∣) log 𝑛 Yes SNARK No
BalanceProofs [11] √𝑛 (∣�⃗�∣ + ∣�⃗�∣)5/4 log (∣�⃗�∣ + ∣�⃗�∣) Yes - Yes

Hyperproofs [3] 1 (∣�⃗�∣ + ∣�⃗�∣) log 𝑛 Yes SNARK No
aSVC [2] 1 ∣�⃗�∣ ⋅ |�⃗�| No - Yes
Our Work 1 (∣�⃗�∣ + ∣�⃗�∣) log2 (∣�⃗�∣ + ∣�⃗�∣) No - Yes

and show how it can be converted to a vector commitment
scheme. We then give our result, a transformation that allows
us to represent KZG proofs as multiplications with Cauchy
matrices.
Construction of the KZG Commitment. In the KZG
commitment, a pairing-friendly elliptic curve (𝐺1, 𝐺2) with
𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇 is used. The commitment scheme relies
on a trusted setup involving a random trapdoor scalar 𝑠 not
known to any party and a public parameter of

([1]1 , [𝑠]1 , [𝑠2]
1

, … , [𝑠𝑛−1]
1
)

and
([1]2 , [𝑠]2 , [𝑠2]

2
, … , [𝑠𝑛−1]

2
)

is published.
Suppose we are committing to some polynomial 𝑝(𝑥).

The KZG commitment

𝐶 = [𝑝 (𝑠)]1

is the trapdoor scalar 𝑠 evaluated on the polynomial 𝑝 (𝑥).
Such evaluation is possible by taking the coefficients of the
polynomial 𝑝(𝑥) and multiplying them with the correspond-
ing powers of 𝑠 in the public parameter.

The proof of a single point 𝑦 = 𝑝 (𝑥) is given by

𝑄 = [
𝑝 (𝑠) − 𝑦

𝑠 − 𝑥
]

1
.

This is again, possible to evaluate by first performing a
polynomial long division with 𝑠 as the variable and then
multiplying the coefficients of the result with the corre-
sponding powers of 𝑠 in the public parameter.

To convert the KZG commitment to a vector commit-
ment that commits to vector ⃗𝑣, a list of 𝑥 values is chosen,
and an interpolation polynomial 𝑝 (𝑥) is constructed such
that 𝑝 (𝑥𝑖) = 𝑣𝑖 for all 0 ≤ 𝑖 < 𝑛. Typically, we pick 𝑥𝑖 = 𝜔𝑖

for some root of unity 𝜔 such that 𝜔𝑛 = 1 for ease of
computation. We gave a toy example of such construction
in Figure 3.

With this manner, the KZG commitment 𝐶 and proof 𝑄𝑖
can be written as

𝐶 =
𝑛−1
∑
𝑖=0

𝑣𝑖 [𝜆𝑖 (𝑠)]1 ,

𝑄𝑖 = [
𝐶 − 𝑣𝑖
𝑠 − 𝜔𝑖 ]

1

Public parameters:
1) Group size |𝐺1| = |𝐺2| = 17.
2) Vector size 𝑛 = 4.
3) Root of unity 𝜔 = 3.
4) Trapdoor setup with 𝑠 = 2

([𝑠3]
1

, [𝑠2]
1

, [𝑠]1) = ([23]
1

, [22]
1

, [2]1) .

We start with the vector to be committed

⃗𝑣 = (1, 2, 3, 4) .

Interpolate a polynomial such that

𝑝 (𝜔0) = 𝑣0, 𝑝 (𝜔1) = 𝑣1, 𝑝 (𝜔2) = 𝑣2, 𝑝 (𝜔3) = 𝑣3.

The result is
𝑝(𝑥) = 7𝑥3 + 6𝑥2 + 13𝑥 + 9.

Compute the commitment

𝐶 = [𝑝(𝑠)]1

= 7 ⋅ [𝑠3]1 + 6 ⋅ [𝑠2]1 + 13 ⋅ [𝑠]1 + 9 ⋅ [1]1

= 7 ⋅ [23]1 + 6 ⋅ [22]1 + 13 ⋅ [2]1 + 9 ⋅ [1]1

= [13]1.

Figure 3: A toy example of a KZG commitment used as
a vector commitment. The vector is transformed into a
polynomial first, and then the polynomial is evaluated at
the trapdoor scalar to get the commitment.

where𝜆𝑖 (𝑠) is the Lagrange polynomial defined as

𝜆𝑖 (𝑠) = ∏
𝑗≠𝑖

𝑠 − 𝜔𝑗

𝜔𝑖 − 𝜔𝑗 .

We leave a formal description of this functionality
to Section 3.4.

Proof Transformation. Our result allows us to represent
this type of KZG proof as matrix multiplications with
Cauchy matrices. To begin, we construct the matrix

𝑀𝑖,𝑗 =
⎧{
⎨{⎩

0 (𝑖 = 𝑗)
(𝜔𝑖 − 𝜔𝑗)−1 (𝑖 ≠ 𝑗)

.
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Then, the commitment and the proof of the 𝑖-th element
can be computed as

𝐶 =
𝑛−1
∑
𝑖=0

𝑣𝑖 [𝑙𝑖]1 ,

𝑄𝑖 = 𝑣𝑖𝑤𝑖 [𝑙′𝑖 (𝑠)]1 + 𝑎𝑖 [𝑙𝑖 (𝑠)]1 − [𝑏𝑖]1

where ⃗𝑎 and [�⃗�]
1

are the result vectors of the matrix
multiplication

⃗𝑎 = 𝑀 ( ⃗𝑣 ∘ �⃗�) ,

[�⃗�]
1

= 𝑀 ( ⃗𝑣 ∘ �⃗� ∘ [ ⃗𝑙 (𝑠)]
1
)

and �⃗�, [ ⃗𝑙 (𝑠)]
1

and [ ⃗𝑙′ (𝑠)]
1

are constant vectors that can be
evaluated based on the KZG setup

𝑤𝑖 =
𝜔𝑖

𝑛
,

[𝑙𝑖 (𝑠)]1 =
𝑛−1
∑
𝑗=0

𝜔𝑖(𝑛−1−𝑗) [𝑠𝑗]
1

,

[𝑙′𝑖 (𝑠)]1 =
𝑛−1
∑
𝑗=0

(𝑛 − 1 − 𝑗) 𝜔𝑖(𝑛−2−𝑗) [𝑠𝑗]
1

.

We leave a formal proof of this result to Section 4.

2.3. Batch Updates

We now consider the batch-updating scenario where ∣�⃗�∣
proofs need to be updated with ∣ ⃗𝛽∣ modifications. Specifi-
cally, we define the vector commitment functionality

VC.BatchUpdate (�⃗�, ⃗𝑄, ⃗𝛽, Δ ⃗𝑣) → ⃗𝑄′

where we update the original proofs ⃗𝑄 indexed at �⃗� with
modifications Δ ⃗𝑣 indexed at ⃗𝛽 to produce a new vector of
proofs.

Going back to the KZG commitment, we observe that
𝑄𝑖 is linear with respect to 𝑣𝑖. Therefore, to perform a batch
update, it suffices to compute

Δ𝑄𝑖 = Δ𝑣𝑖𝑤𝑖 [𝑙′𝑖 (𝑠)]1 + Δ𝑎𝑖 [𝑙𝑖 (𝑠)]1 − [Δ𝑏𝑖]1

where

Δ ⃗𝑎 = 𝑀 (Δ ⃗𝑣 ∘ �⃗�) ,

[Δ�⃗�]
1

= 𝑀 (Δ ⃗𝑣 ∘ �⃗� ∘ [ ⃗𝑙 (𝑠)]
1
)

We can then filter out all columns in 𝑀 where Δ ⃗𝑣 is
zero, since the corresponding Δ ⃗𝑎 and [Δ�⃗�]

1
will be zero.

We also only need to keep track of the ∣�⃗�∣ rows that we care
about in 𝑀. Performing these two optimizations trims 𝑀 to
a ∣�⃗�∣ × ∣ ⃗𝛽∣ matrix 𝑀′ where

𝑀′
𝑖,𝑗 =

⎧{
⎨{⎩

0 (𝛼𝑖 = 𝛽𝑗)
(𝜔𝛼𝑖 − 𝜔𝛽𝑗)−1 (𝛼𝑖 ≠ 𝛽𝑗)

.

We observe that this specific matrix multiplication can
be done in 𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣)). We leave a de-
scription of the algorithm to Section 5.

2.4. Fast All-Proof Computation

In this section we consider the case where we want
to compute all proofs in a KZG vector commitment, and
give an algorithm that allows us to compute all proofs in
2𝑛 log 𝑛+𝑜 (𝑛 log 𝑛) elliptic multiplications. Instead of start-
ing from polynomial coefficients like the previous work [8],
[9], we directly compute the proofs by leveraging the matrix
multiplication representation we developed in the previous
section.

Observe that 𝑀 = diag (�⃗�)⋅𝐶 is the product of a diagonal
matrix diag (�⃗�) and a circulant matrix 𝐶, where

�⃗� = (𝜔0, 𝜔−1, 𝜔−2, … , 𝜔−(𝑛−1)) ,

𝐶𝑖,𝑗 =
⎧{
⎨{⎩

0 (𝑖 = 𝑗)
(1 − 𝜔𝑖−𝑗)−1 (𝑖 ≠ 𝑗) .

Since circulant matrices are diagonalizable with the
Fourier matrix [19], we can diagonalize 𝐶 by

𝐶 = 𝐹∗diag (𝐹 ⃗𝑐) 𝐹

where 𝐹 is the 𝑛 × 𝑛 Fourier matrix and

⃗𝑐 = (0,
1

1 − 𝜔𝑛−1 ,
1

1 − 𝜔𝑛−2 , … ,
1

1 − 𝜔
)

is the representation of 𝐶.
We can precompute this Fourier transformation as

�⃗� = 𝐹 ⃗𝑐

= (
𝑛 − 1

2
,
𝑛 − 3

2
,
𝑛 − 5

2
, … ,

−𝑛 + 1
2

) .

We leave a proof of this computation to Section 6.
Then

⃗𝑎 = diag (�⃗�) 𝐹∗diag (�⃗�) (𝐹 ( ⃗𝑣 ∘ �⃗�)) ,

[�⃗�]
1

= diag (�⃗�) 𝐹∗diag (�⃗�) (𝐹 [ ⃗𝑣 ∘ �⃗� ∘ [ ⃗𝑙 (𝑠)]
1
]) .

We note that we only have to perform DFT and iDFT
once on group elements during the computation of [�⃗�]

1
.

Therefore, the computation of all proofs can be done in
2𝑛 log 𝑛 + 𝑜 (𝑛 log 𝑛) elliptic curve multiplications (See Sec-
tion 6).

2.5. History Proof Query

Similar to bank statement queries in real life, a his-
tory proof query is a query that outputs proofs at any
point in time throughout the blockchain lifetime. We show
an algorithm that by leveraging our batch update algo-
rithm, we can compute any version of the proof in time
𝑂 (∣�⃗�∣ + ∣ ⃗𝛽∣) log3 (∣�⃗�∣ + ∣ ⃗𝛽∣), based on the current version
of the proof.

In this algorithm, we treat blockchain transactions as a
stream of ⟨UPDATE, 𝛽𝑖, Δ𝑣𝛽𝑖

⟩ updates. This view allows
us to treat history computation as interleaving ⟨QUERY, 𝛼𝑗⟩
commands that output a single proof at the appropriate place
in the stream. Since we know that the stream ended with
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the current version of the proof, we can reverse the stream,
negate all updates and start from the current version of
the proof to answer all history queries. Processing history
queries in this fashion leaves us with a query stream 𝑆 that
we have to work through. Figure 4 illustrates this process.

With the query stream 𝑆 and the current vector of proofs
�⃗�, we now need to work through it, updating the proofs as
we go and outputting the proofs at the appropriate time.
Doing this naively requires updating every proof for every
update command, which results in a time complexity of
𝑂 (∣�⃗�∣ ⋅ ∣ ⃗𝛽∣). However, we observe that we can leverage our
batch update algorithm and divide-and-conquer techniques
to achieve a time complexity of 𝑂 (∣�⃗�∣ + ∣ ⃗𝛽∣) log3 (∣�⃗�∣ + ∣ ⃗𝛽∣).
We now describe this algorithm VUpdate (𝑆, �⃗�).

1) If |𝑆| = 1, output the proof if it is a query and return.
2) Let

𝑚 = ⌊
|𝑆|
2

⌋ .

Split
𝑆 = (𝑆0, 𝑆1, … , 𝑆|𝑆|−1)

into two halves

𝑆𝑙 = (𝑆0, 𝑆1, … , 𝑆𝑚−1)

and
𝑆𝑟 = (𝑆𝑚, 𝑆𝑚+1, … , 𝑆|𝑆|−1).

3) Pick out all proofs corresponding to queries in 𝑆𝑙
and 𝑆𝑟 as vector �⃗�𝑙 and �⃗�𝑟, respectively. Pick out all
updates in 𝑆𝑙 and 𝑆𝑟 as vector ( ⃗𝛽𝑙, Δ ⃗𝑣𝑙) and ( ⃗𝛽𝑟, Δ ⃗𝑣𝑟),
respectively.

4) Perform a batch update of ( ⃗𝛽𝑙, Δ ⃗𝑣𝑙) on �⃗�𝑟.
5) Recursively do

VUpdate (𝑆𝑙, �⃗�𝑙)

and
VUpdate (𝑆𝑟, �⃗�𝑟) .

We give a proof of correctness and time complexity
in Section 7.

2.6. Application

Applying the KZG commitment scheme with our batch
update algorithm to the stateless blockchain scenario al-
lows us to achieve the best of both worlds. On one hand,
prove-serving nodes can enjoy an efficient quasi-linear time
complexity for updating proofs. On the other hand, the
succinctness of the KZG commitment allows a constant
48-byte proof (with the BLS12-381 elliptic curve) to be
attached to the block to verify every transaction in the
block. Previously, such feat was only possible with various
SNARK-based constructions [3], which require a proof size
of around 50 KB, as well as 100x slower aggregation
time and 10x slower verification time compared to KZG-
based schemes [11]. Figure 5 gives a comparison of the
complexity of various vector commitment schemes in the
stateless blockchain scenario.

This complexity advantage translates into real-life per-
formance improvements. In our evaluation (Section 8), we
show that at block size 20,000 (similar to Ethereum), our
algorithm is 5 times faster than the naive KZG approach.
Alternatively, if we fix the process time to one hour, our
algorithm can handle around four times more users than the
naive KZG approach.

3. Preliminary

Before we dive into the details of our analysis, we take
some time to first review a few tricks that we will employ
to speed up our algorithms. We also present a formalized
definition of the KZG-based vector commitment inspired
by the previous work [2], which will be the commitment
scheme we work with in this paper.

3.1. Quasi-Linear Polynomial Operations

Given that the KZG commitment scheme operates on
polynomials, efficient polynomial operations are essential to
reduce computational complexity. While the naive complex-
ity of multiplying two polynomials of degree 𝑛 is 𝑂 (𝑛2),
the application of discrete Fourier transform (DFT) has
simplified many operations on polynomials to quasi-linear
complexity. Here, we note a few that will be useful in our
computation in Table 2.

TABLE 2: Complexity of polynomial operations. Here, we
assume the polynomials are of degree 𝑛.

Operation Complexity

Multiply 𝑂 (𝑛 log 𝑛)
Interpolate 𝑛 points [20] 𝑂 (𝑛 log2 𝑛)
Evaluate on 𝑛 points [20] 𝑂 (𝑛 log2 𝑛)

Zeroing Polynomial. It is well-known that the coefficients
of zeroing polynomial for ⃗𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑛−1)

𝑝 (𝑥) =
𝑛−1
∏
𝑖=0

(𝑥 − 𝑎𝑖)

can be computed in 𝑂 (𝑛 log2 𝑛) by the following divide-
and-conquer algorithm [21]:

1) Divide ⃗𝑎 into two halves ⃗𝑎𝑙 and ⃗𝑎𝑟.
2) Recursively compute for ⃗𝑎𝑙 and ⃗𝑎𝑟, yielding two poly-

nomials of degree 𝑛
2 .

3) Multiply two polynomials together.

3.2. Limits on Prime Field

We observe that many previous papers dealing with
polynomial evaluations [2], [22], [23] employ derivatives
directly to convey the idea of L’Hospital’s rule. In this paper,
we sought to use a more intuitive notation. Specifically,
we use lim𝑥→𝑛 𝑝 (𝑥) to denote a limit, even though 𝑝 (𝑥)
is defined on a prime field. While the prime field itself is
discrete, we can nevertheless consider a natural projection
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⟨UPDATE, 𝛽0, Δ𝑣𝛽0
⟩

⟨UPDATE, 𝛽1, Δ𝑣𝛽1
⟩
⋮

⟨UPDATE, 𝛽100, Δ𝑣𝛽100
⟩

⟨UPDATE, 𝛽0, Δ𝑣𝛽0
⟩

⟨QUERY, 𝛼0⟩
⟨UPDATE, 𝛽1, Δ𝑣𝛽1

⟩
⋮

⟨QUERY, 𝛼0⟩
⟨QUERY, 𝛼1⟩

⟨UPDATE, 𝛽100, Δ𝑣𝛽100
⟩

⟨UPDATE, 𝛽100, −Δ𝑣𝛽100
⟩

⟨QUERY, 𝛼1⟩
⟨QUERY, 𝛼0⟩

⋮
⟨UPDATE, 𝛽1, −Δ𝑣𝛽1

⟩
⟨QUERY, 𝛼0⟩

⟨UPDATE, 𝛽0, −Δ𝑣𝛽0
⟩

Blockchain Transactions

Query Stream 𝑆

Interleave Queries Reverse Stream

Figure 4: An example of processing history queries into a query stream 𝑆. We start with a list of blockchain transactions.
We then insert queries into the stream. Finally, we reverse the stream and negate all updates. This process allows us to start
with the current version of the proof and process all updates and queries in the sequential order.

𝑂(1)

SNARK

𝑂 (√𝑛)

Proof Size

�̃�(∣�⃗�∣ + ∣�⃗�∣) �̃�((∣�⃗�∣ + ∣�⃗�∣)5/4) 𝑂(∣�⃗�∣ ⋅ ∣�⃗�∣)

Batch Update Complexity

Our Work

Hyperproofs [3]
Merkle [10]

BalanceProofs [11]

aSVC [2]

Figure 5: A comparison of various vector commitment
schemes employed in stateless blockchain scenarios. ̃𝑂(⋅)
denotes big-O notation with logarithmic factors omitted.

from ℚ[𝜔] to ℤ/𝑝ℤ, where we replace 𝜔 from a root of
unity on the complex field to a root of unity on the prime
field. It’s easy to confirm that both field operations remain
homomorphic. This technique allows us to reason cases
where both the numerator and the denominator are zeroes
with similar techniques as mathematical analysis, such as

lim
𝑥→1

(𝑥 − 1)2

𝑥 − 1
= lim

𝑥→1
(𝑥 − 1) = 0

even if the equation is defined on a prime field.

3.3. Vector Commitment

Intuitively, a vector commitment [2] allows us to gen-
erate a succinct representation of a vector that allows us to
verify any element in the vector with a proof. We define the
functionality as follows.

1) VC.KenGen (1𝜆, 𝑛) → 𝑝𝑝. Given the vector length
𝑛, sample the public parameter 𝑝𝑝 to be used in the
commitment.

2) VC.Commit (𝑝𝑝, 𝑣) → 𝐶. Given a vector ⃗𝑣, generate its
commitment 𝑐.

3) VC.Prove (𝑝𝑝, ⃗𝑣, 𝐶, 𝑖) → 𝜋𝑖. Generate a proof 𝜋𝑖 for
the 𝑖-th element 𝑣𝑖.

4) VC.Verify (𝑝𝑝, 𝐶, 𝑖, 𝑣𝑖, 𝜋𝑖) → {0, 1}. Verify the proof
against element 𝑣𝑖 and commitment 𝐶.

Moreover, recent works have demonstrated that the KZG
commitment is aggregatable [2]. Specifically, it also pro-
vides the following functionality.

1) VC.Aggregate (𝑝𝑝, {(𝑖, 𝜋𝑖)}) → 𝜋. Given a list of
proofs {(𝑖, 𝜋𝑖)}, aggregate them into a succinct proof
𝜋.

2) VC.VerifyAggregate (𝑝𝑝, 𝐶, {(𝑖, 𝑣𝑖)} , 𝜋) → {0, 1}.
Given a list of vector values {(𝑖, 𝑣𝑖)}, verify them
against the commitment 𝐶 with the aggregated proof
𝜋.

For a full treatment of the definition of security prop-
erties, we refer the readers to the respective work for refer-
ence [2].

3.4. KZG-based Vector Commitment

KZG commitment [18] is a common polynomial com-
mitment scheme that uses elliptic curve pairing to achieve
𝑂 (1) commitment and proof size for polynomials of some
predetermined maximum degree (𝑛 − 1).

KZG commitment requires a trapdoor setup 𝑠 ∈ ℤ|𝐺1|

not known to any party. The group elements

([1]1 , [𝑠]1 , [𝑠2]
1

, … , [𝑠𝑛−1]
1
)

and
([1]2 , [𝑠]2 , [𝑠2]

2
, … , [𝑠𝑛−1]

2
)

are published as public parameter.
Commitment. For a polynomial 𝑝 (𝑥) of degree no more
than (𝑛 − 1), its KZG commitment is computed by

𝐶 = [𝑝 (𝑠)]1 ,

which is computable given the public parameter by expand-
ing 𝑝(𝑥) with its coefficients and using the proper powers
of 𝑠.
Proof. The KZG proof of a single point 𝑦 = 𝑝 (𝑥) is given
by

𝑄𝑥 = [
𝑝 (𝑠) − 𝑦

𝑠 − 𝑥
]

1
.
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Verification is carried out by verifying that

𝑒 (𝑄𝑥, [𝑠 − 𝑥]2) ?= 𝑒 (𝐶 − [𝑦]1 , [1]2) .

Conversion to Vector Commitment. Typically in schemes
such as aSVC [2], a vector 𝑣 = (𝑣0, 𝑣1, … , 𝑣𝑛−1) is trans-
formed to a polynomial by interpolation on a set of points
(𝜔𝑖, 𝑣𝑖) with 0 ≤ 𝑖 < 𝑛 and 𝜔 being the root of unity such
that 𝜔𝑛 = 1.

This interesting construction allows for an efficient
setup computation that can be completed in 𝑂 (𝑛 log 𝑛)
via a discrete Fourier transform and would otherwise take
𝑂 (𝑛 log2 𝑛) in other generic cases. In our analysis, we
assume this aSVC setup. We give the formalization of the
KZG-based vector commitment below.

1) VC.KenGen (1𝜆, 𝑛) → 𝑝𝑝. Sample random

𝑠 ∈ ℤ|𝐺1|.

Compute the public parameter 𝑝𝑝 as

([1]1 , [𝑠]1 , [𝑠2]
1

, … , [𝑠𝑛−1]
1
)

and
([1]2 , [𝑠]2 , [𝑠2]

2
, … , [𝑠𝑛−1]

2
) .

2) VC.Commit (𝑝𝑝, 𝑣) → 𝐶. Compute

𝐶 =
𝑛−1
∑
𝑖=0

𝑣𝑖 [𝜆𝑖 (𝑠)]1

where

𝜆𝑖 (𝑠) =
𝑛−1
∏

𝑗=0,𝑗≠𝑖

𝑠 − 𝜔𝑗

𝜔𝑖 − 𝜔𝑗

is the Lagrange interpolation polynomial.
3) VC.Prove (𝑝𝑝, 𝑣, 𝐶, 𝑖) → 𝜋𝑖. Compute

𝜋𝑖 =
⎡⎢⎢
⎣

(∑𝑛−1
𝑗=0 𝑣𝑗 [𝜆𝑗 (𝑠)]

1
) − 𝑣𝑖

𝑠 − 𝜔𝑖
⎤⎥⎥
⎦1

.

4) VC.Verify (𝑝𝑝, 𝐶, 𝑖, 𝑣𝑖, 𝜋𝑖) → {0, 1}. Verify that

𝑒 (𝜋𝑖, [𝑠 − 𝜔𝑖]
2
) ?= 𝑒 (𝐶 − [𝑣𝑖]1 , [1]2) .

Multi-Point Proof. The KZG proof of multiple points

𝑦0 = 𝑝 (𝑥0) , 𝑦1 = 𝑝 (𝑥1) , … , 𝑦𝑚−1 = 𝑝 (𝑥𝑚−1)

is given by

𝑄𝑥 = [
𝑝 (𝑠) − Λ (𝑠)

𝑧 (𝑠)
]

1
,

where Λ (𝑠) is the Lagrange interpolation of the 𝑚 points
and

𝑧 (𝑠) =
𝑚−1
∏
𝑖=0

(𝑠 − 𝑥𝑖)

is the zeroing polynomial. Verification is carried out by
verifying that

𝑒 (𝑄𝑥, [𝑧 (𝑠)]2) ?= 𝑒 (𝐶 − [Λ (𝑠)]1 , [1]2) .

Aggregation. Notice that we can aggregate single-point
proofs

(𝑄𝑖0 , 𝑄𝑖1 , 𝑄𝑖2 , … , 𝑄𝑖𝑚−1
)

into a multi-point proof by a weighted addition

𝑄 =
𝑚−1
∑
𝑗=0

𝑄𝑖𝑗
𝛿𝑗

where
𝛿𝑗 = ∏

𝑘≠𝑗
(𝜔𝑖𝑗 − 𝜔𝑖𝑘)

can be computed by noticing that

𝛿𝑗 = lim
𝑥→𝜔𝑖𝑗

∏𝑚−1
𝑘=0 (𝑥 − 𝜔𝑖𝑘)

𝑥 − 𝜔𝑖𝑗
.

Therefore, denote 𝑔 (𝑥) as the zeroing polynomial

𝑔 (𝑥) =
𝑚−1
∏
𝑘=0

(𝑥 − 𝜔𝑖𝑘) .

Then, by L’Hospital
𝛿𝑗 = lim

𝑥→𝜔𝑖𝑗
𝑔′ (𝑥) = 𝑔′ (𝜔𝑖𝑗) .

Therefore, it suffices to find the coefficients of 𝑔 (𝑥), and
then evaluate 𝑔′ (𝑥) on 𝑚 different points. Both operations
can be done in 𝑂 (𝑚 log2 𝑚).

Tomescu et al. [2] first observed this property in their
aSVC work and explained it based on partial fraction de-
composition and derivative functions. We offer an explana-
tion that does not require this knowledge in Appendix Ap-
pendix A.

We give a formalization of the aggregation functionality
below.

1) VC.Aggregate (𝑝𝑝, {(𝑖, 𝜋𝑖)}) → 𝜋. Compute

𝜋 =
𝑚−1
∑
𝑗=0

𝜋𝑖𝑗
𝛿𝑗

where
𝛿𝑗 = ∏

𝑘≠𝑗
(𝜔𝑖𝑗 − 𝜔𝑖𝑘) .

2) VC.VerifyAggregate (𝑝𝑝, 𝐶, {(𝑖, 𝑣𝑖)} , 𝜋) → {0, 1}.
Verify that

𝑒 (𝜋, [𝑧 (𝑠)]2) ?= 𝑒 (𝐶 − [Λ (𝑠)]1 , [1]2)
where

Λ (𝑠) =
𝑚−1
∑
𝑗=0

𝑣𝑖𝑗𝜆𝑖𝑗 (𝑠)

𝑧 (𝑠) =
𝑚−1
∏
𝑗=0

(𝑠 − 𝜔𝑖𝑗) .

Security. KZG commitment is considered to be both hiding
and binding, and its security proof relies on various as-
sumptions on the elliptic curve including discrete logarithm
(DL), 𝑡-polynomial Diffe-Hellman (𝑡-polyDH) and 𝑡-strong
Diffe-Hellman (𝑡-BSDH). We invite the reader to the original
paper for more details.
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4. KZG Proof Transformation

Recall in Section 2.2 that we claimed KZG proofs can
be represented as multiplications with Cauchy matrices, and
that this result helps optimize multiple algorithms down the
line. In this section, we give a formal proof of the result.

Theorem 4.1. The KZG commitment and 𝑖-th KZG proof
can be represented as

𝐶 =
𝑛−1
∑
𝑖=0

𝑣𝑖 [𝑙𝑖]1 ,

𝑄𝑖 = 𝑣𝑖𝑤𝑖 [𝑙′𝑖 (𝑠)]1 + 𝑎𝑖 [𝑙𝑖 (𝑠)]1 − [𝑏𝑖]1

where 𝑎 and [𝑏]1 are the result vectors of the matrix
multiplication

⃗𝑎 = 𝑀 ( ⃗𝑣 ∘ �⃗�) ,

[�⃗�]
1

= 𝑀 ( ⃗𝑣 ∘ �⃗� ∘ [ ⃗𝑙 (𝑠)]
1
) ,

𝑀𝑖𝑗 =
⎧{
⎨{⎩

0 (𝑖 = 𝑗)
(𝜔𝑖 − 𝜔𝑗)−1 (𝑖 ≠ 𝑗)

and �⃗�, [ ⃗𝑙 (𝑠)]
1

and [ ⃗𝑙′ (𝑠)]
1

are constant vectors that can
be evaluated based on the KZG setup

𝑤𝑖 =
𝜔𝑖

𝑛
,

[𝑙𝑖 (𝑠)]1 =
𝑛−1
∑
𝑗=0

𝜔𝑖(𝑛−1−𝑗) [𝑠𝑗]
1

,

[𝑙′𝑖 (𝑠)]1 =
𝑛−1
∑
𝑗=0

(𝑛 − 1 − 𝑗) 𝜔𝑖(𝑛−2−𝑗) [𝑠𝑗]
1

.

Proof. Observe that

𝑄𝑖 = ⎡⎢
⎣

∑𝑛−1
𝑖=0 𝑣𝑖𝜆𝑖 (𝑠) − 𝑣𝑖

𝑠 − 𝜔𝑖
⎤⎥
⎦1

Since the Lagrange interpolation term for the 𝑖-th point
is

𝑣𝑖𝜆𝑖 (𝑠) =
∏𝑗≠𝑖 (𝑠 − 𝜔𝑗)

∏𝑗≠𝑖 (𝜔𝑖 − 𝜔𝑗)
𝑣𝑖.

We can rewrite it with

𝑙𝑖 (𝑠) = ∏
𝑗≠𝑖

(𝑠 − 𝜔𝑗) ,

𝑤𝑖 =
1

∏𝑗≠𝑖 (𝜔𝑖 − 𝜔𝑗)
,

𝜆𝑖 (𝑠) 𝑣𝑖 = 𝑣𝑖𝑤𝑖𝑙𝑖 (𝑠) . (1)

We first notice that 𝑤𝑖 has a closed-form formula that is
easy to compute.

Lemma 4.1. 𝑤𝑖 has a closed-form formula as

𝑤𝑖 =
1

∏𝑗≠𝑖 (𝜔𝑖 − 𝜔𝑗)
=

𝜔𝑖

𝑛
.

Proof. Observe that we can apply the idea of analytic con-
tinuation as

𝑤𝑖 = lim
𝑥→𝜔𝑖

𝑥 − 𝜔𝑖

∏𝑛−1
𝑗=0 (𝑥 − 𝜔𝑗)

.

Observe that
𝑛−1
∏
𝑗=0

(𝑥 − 𝜔𝑗) = 𝑥𝑛 − 1

since (1, 𝜔, 𝜔2, … , 𝜔𝑛−1) are exactly the roots of (𝑥𝑛 − 1).
Therefore, we can perform a long division on

𝑤𝑖 = lim
𝑥→𝜔𝑖

𝑥 − 𝜔𝑖

𝑥𝑛 − 1

= lim
𝑥→𝜔𝑖

1
𝑥𝑛−1 + 𝜔𝑖𝑥𝑛−2 + … + 𝜔(𝑛−1)𝑖

=
1

𝜔𝑖(𝑛−1) + 𝜔𝑖𝜔𝑖(𝑛−2) + … + 𝜔(𝑛−1)𝑖

=
1

𝑛𝜔𝑖(𝑛−1) =
𝜔𝑖

𝑛
.

Then, we have our result.

Moreover, denote 𝑙′𝑖 (𝑠) as the quotient polynomial of
𝑙𝑖 (𝑠) over (𝑠 − 𝜔𝑖)

𝑙′𝑖 (𝑠) = ⌊
𝑙𝑖 (𝑠)

𝑠 − 𝜔𝑖 ⌋ . (2)

Then, we will give an easy formula to compute

([𝑙𝑖 (𝑠)]1 , [𝑙′𝑖 (𝑠)]1)

for every 0 ≤ 𝑖 < 𝑛.

Lemma 4.2. ([𝑙𝑖 (𝑠)]1 , [𝑙′𝑖 (𝑠)]1) has a closed-form formula
as

[𝑙𝑖 (𝑠)]1 =
𝑛−1
∑
𝑗=0

𝜔𝑖(𝑛−1−𝑗) [𝑠𝑗]
1

,

[𝑙′𝑖 (𝑠)]1 =
𝑛−1
∑
𝑗=0

(𝑛 − 1 − 𝑗) 𝜔𝑖(𝑛−2−𝑗) [𝑠𝑗]
1

.

Proof. We first notice that

𝑠𝑛 − 1 =
𝑛−1
∏
𝑖=0

(𝑠 − 𝜔𝑖)

since (1, 𝜔, 𝜔2, … , 𝜔𝑛−1) are exactly the 𝑛 roots of (𝑠𝑛 − 1).
Therefore, we can expand 𝑙𝑖 (𝑠) by a long division

𝑙𝑖 (𝑠) =
∏𝑛−1

𝑗=0 (𝑠 − 𝜔𝑗)

𝑠 − 𝜔𝑖

= 𝑠𝑛−1 + 𝜔𝑖𝑠𝑛−2 + … + 𝜔(𝑛−1)𝑖. (3)

Similarly, we can expand 𝑙′𝑖 (𝑠) by a long division

𝑙′𝑖 (𝑠) = ⌊
𝑙𝑖 (𝑠)

𝑠 − 𝜔𝑖 ⌋

= 𝑠𝑛−2 + 2𝜔𝑖𝑠𝑛−3 + … + (𝑛 − 1) 𝜔(𝑛−2)𝑖. (4)

Then, we have our result.
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For the commitment 𝐶, we observe that the commitment
can be expanded based on Equation (1)

𝐶 = ⎡⎢
⎣

𝑛−1
∑
𝑖=0

𝜆𝑖 (𝑠) 𝑣𝑖
⎤⎥
⎦1

=
𝑛−1
∑
𝑖=0

𝑣𝑖𝑤𝑖 [𝑙𝑖 (𝑠)]1 .

Now, we begin to assemble the proofs. Observe that we
can expand the 𝑖-th proof 𝑄𝑖 by the 𝑖-th Lagrange term and
all the rest of the terms

𝑄𝑖 = [
𝐶 − 𝑣𝑖
𝑠 − 𝜔𝑖 ]

1

=
⎡⎢⎢
⎣

𝜆𝑖 (𝑠) 𝑣𝑖 + (∑𝑗≠𝑖 𝜆𝑗 (𝑠) 𝑣𝑗) − 𝑣𝑖

𝑠 − 𝜔𝑖
⎤⎥⎥
⎦1

= ⎡⎢
⎣

𝜆𝑖 (𝑠) 𝑣𝑖 − 𝑣𝑖
𝑠 − 𝜔𝑖 + ∑

𝑗≠𝑖

𝜆𝑗 (𝑠) 𝑣𝑗

𝑠 − 𝜔𝑖
⎤⎥
⎦1

.

For the first term, we can rewrite it with our notation of
the Lagrange term and the quotient polynomial from Equa-
tion (1) and Equation (2)

𝜆𝑖 (𝑠) 𝑣𝑖 − 𝑣𝑖
𝑠 − 𝜔𝑖 = 𝑣𝑖 ⋅

𝜆𝑖 (𝑠) − 1
𝑠 − 𝜔𝑖

= 𝑣𝑖 ⋅
𝑤𝑖𝑙𝑖 (𝑠) − 1

𝑠 − 𝜔𝑖

= 𝑣𝑖𝑤𝑖 ⋅ ⌊
𝑙𝑖 (𝑠)

𝑠 − 𝜔𝑖 ⌋

= 𝑣𝑖𝑤𝑖𝑙′𝑖 (𝑠) .
For the second term, observe that based on the definition

of Equation (1)

𝑙𝑖 (𝑠) − 𝑙𝑗 (𝑠) =
𝑠𝑛 − 1
𝑠 − 𝜔𝑖 −

𝑠𝑛 − 1
𝑠 − 𝜔𝑗

=
(𝑠𝑛 − 1) (𝜔𝑖 − 𝜔𝑗)
(𝑠 − 𝜔𝑖) (𝑠 − 𝜔𝑗)

= (𝜔𝑖 − 𝜔𝑗) ⋅
𝑙𝑗 (𝑠)

𝑠 − 𝜔𝑖 .

We can hence substitute the term with 𝑙𝑖 (𝑠) − 𝑙𝑗 (𝑠) and
remove 𝑠 from the denominator as

∑
𝑗≠𝑖

𝜆𝑗 (𝑠) 𝑣𝑗

𝑠 − 𝜔𝑖 = ∑
𝑗≠𝑖

𝑤𝑗𝑙𝑗 (𝑠) 𝑣𝑗

𝑠 − 𝜔𝑖

= ∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗 ⋅
𝑙𝑗 (𝑠)

𝑠 − 𝜔𝑖

= ∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗 ⋅
𝑙𝑖 (𝑠) − 𝑙𝑗 (𝑠)

𝜔𝑖 − 𝜔𝑗

= ⎛⎜
⎝

∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗

𝜔𝑖 − 𝜔𝑗
⎞⎟
⎠

𝑙𝑖 (𝑠) − ∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗𝑙𝑗 (𝑠)
𝜔𝑖 − 𝜔𝑗 .

Putting these together gives us an expression of 𝑄𝑖

𝑄𝑖 = 𝑣𝑖𝑤𝑖 [𝑙′𝑖 (𝑠)]1 + ⎛⎜
⎝

∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗

𝜔𝑖 − 𝜔𝑗
⎞⎟
⎠

[𝑙𝑖 (𝑠)]1

− ∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗 [𝑙𝑗 (𝑠)]
1

𝜔𝑖 − 𝜔𝑗 .

In order to simplify this expression, let us denote
( ⃗𝑎, [�⃗�]

1
) as vectors with

𝑎𝑖 = ∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗

𝜔𝑖 − 𝜔𝑗 ,

[𝑏𝑖]1 = ∑
𝑗≠𝑖

𝑣𝑗𝑤𝑗 [𝑙𝑗 (𝑠)]
1

𝜔𝑖 − 𝜔𝑗 .

Observe that the expression of ( ⃗𝑎, [�⃗�]
1
) can be written

as computation in a matrix form

⃗𝑎 = 𝑀 ( ⃗𝑣 ∘ �⃗�) ,

[�⃗�]
1

= 𝑀 ( ⃗𝑣 ∘ �⃗� ∘ [ ⃗𝑙 (𝑠)]
1
)

where

𝑀 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 1
𝜔0−𝜔1

1
𝜔0−𝜔2 … 1

𝜔0−𝜔𝑛−1
1

𝜔1−𝜔0 0 1
𝜔1−𝜔2 … 1

𝜔1−𝜔𝑛−1

⋮
1

𝜔𝑛−1−𝜔0
1

𝜔𝑛−1−𝜔1
1

𝜔𝑛−1−𝜔2 … 0

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎧{
⎨{⎩

0 (𝑖 = 𝑗)
(𝜔𝑖 − 𝜔𝑗)−1 (𝑖 ≠ 𝑗)

.

This gives us the desired expression

𝑄𝑖 = 𝑣𝑖𝑤𝑖 [𝑙′𝑖 (𝑠)]1 + 𝑎𝑖 [𝑙𝑖 (𝑠)]1 − [𝑏𝑖]1

which finishes the proof.

Pre-computing the Constants. Computing 𝑤𝑖 is triv-
ial in 𝑂 (𝑛) by Lemma 4.1. However, computing
([𝑙𝑖 (𝑠)]1 , [𝑙′𝑖 (𝑠)]1) by the expansion from Equation (3)
and Equation (4) is 𝑂 (𝑛2), which is not efficient. Here we
give a simple algorithm that computes ([𝑙𝑖 (𝑠)]1 , [𝑙′𝑖 (𝑠)]1)
in 𝑂 (𝑛 log 𝑛).

Theorem 4.2. There exists an 𝑂 (𝑛 log 𝑛) algorithm that
computes ([𝑙𝑖 (𝑠)]1 , [𝑙′𝑖 (𝑠)]1) for every 0 ≤ 𝑖 < 𝑛.

Proof. Based on our expansion from Equation (3) and Equa-
tion (4), we observe that computing ([𝑙𝑖 (𝑠)]1 , [𝑙′𝑖 (𝑠)]1) is
the same as computing

𝐹 (𝑥) = [𝑠𝑛−1]
1

+ [𝑠𝑛−2]
1

𝑥 + … + [1]1 𝑥𝑛−1,

𝐹′ (𝑥) = [𝑠𝑛−2]
1

+ [2𝑠𝑛−3]
1

𝑥 + … + [𝑛 − 1]1 𝑥𝑛−2

on 𝑥 = 𝜔𝑖, which can then be trivially done by discrete
Fourier transform in 𝑂 (𝑛 log 𝑛) for every 0 ≤ 𝑖 < 𝑛.

5. Batch Update

In Section 2.3, we give a brief description of our batch
update algorithm. In this section, we give a formal descrip-
tion of the algorithm that allows us to update ∣�⃗�∣ KZG proofs
with ∣ ⃗𝛽∣ modifications in 𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣))
time.
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Theorem 5.1. There exists an

𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣))

algorithm that updates ∣�⃗�∣ KZG proofs with ∣ ⃗𝛽∣ modifica-
tions.

Recall that in this scenario, the update can be computed
as

Δ𝑄𝑖 = Δ𝑣𝑖𝑤𝑖 [𝑙′𝑖 (𝑠)]1 + Δ𝑎𝑖 [𝑙𝑖 (𝑠)]1 − [Δ𝑏𝑖]1

where

Δ ⃗𝑎 = 𝑀 (Δ ⃗𝑣 ∘ �⃗�) ,

[Δ�⃗�]
1

= 𝑀 (Δ ⃗𝑣 ∘ �⃗� ∘ [ ⃗𝑙 (𝑠)]
1
)

We can then filter out all columns in 𝑀 where Δ𝑣 is
zero, since the corresponding Δ𝑎 and [Δ𝑏]1 will be zero.
We also only need to keep track of the ∣�⃗�∣ columns that we
care about in 𝑀. Performing these two optimizations trims
𝑀 to a ∣�⃗�∣ × ∣ ⃗𝛽∣ matrix 𝑀′ where

𝑀′
𝑖,𝑗 =

⎧{
⎨{⎩

0 (𝛼𝑖 = 𝛽𝑗)
(𝜔𝛼𝑖 − 𝜔𝛽𝑗)−1 (𝛼𝑖 ≠ 𝛽𝑗)

.

Therefore, it suffices to give an algorithm that com-
putes the matrix multiplication of 𝑀′ and a vector 𝛾 in
𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣)) time. We give a description
of the algorithm below.

Lemma 5.1. There exists an 𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣))
algorithm that computes the matrix multiplication of a ma-
trix 𝑀′ and a vector 𝛾.

Proof. To isolate the parts in 𝑀′ where 𝑀′
𝑖,𝑗 = 0, we can first

permute the rows and columns of 𝑀′
𝑖,𝑗 such that 𝑀′ [𝑖, 𝑖] = 0

for 0 ≤ 𝑖 < 𝑘 for some 𝑘 and 𝑀′ is non-zero everywhere else.
It’s easy to show that such permutation is always possible,
since the original 𝑀′ only has 𝑀𝑖,𝑗 = 0 for 𝛼𝑖 = 𝛽𝑗.

We can then divide the matrix into three parts to isolate
the zero entries in 𝑀′:

1) Compute the multiplication with 𝑀[0∶𝑘],[0∶𝑘].
2) Compute the multiplication with 𝑀[0∶𝑘],[𝑘∶∣�⃗�∣].
3) Compute the multiplication with 𝑀[𝑘∶∣�⃗�∣],[0∶∣�⃗�∣].

Figure 6 demonstrates an illustration of the three cases.
Now let us consider the three parts separately.

Case 1: 𝑀[0∶𝑘],[0∶𝑘]. Observe that the update matrix under
this case

𝑀′
𝑖,𝑗 =

⎧{
⎨{⎩

0 (𝑖 = 𝑗)
(𝜔𝛼𝑖 − 𝜔𝛼𝑗)−1 (𝑖 ≠ 𝑗)

is exactly the matrix computed in Trummer’s problem, with
an 𝑂 (𝑘 log2 𝑘) algorithm that solves the matrix multipli-
cation with an arbitrary vector 𝛾 given by Gerasoulis et
al. [23]. We adapt the algorithm below:

1) Compute the coefficients of the zeroing polynomial

𝑔(𝑥) =
𝑘−1
∏
𝑖=0

(𝑥 − 𝜔𝛼𝑖) .

𝑀′ =

0

0

𝑀[0∶𝑘],[0∶𝑘] 𝑀[0∶𝑘],[𝑘∶∣�⃗�∣]

𝑀[𝑘∶∣�⃗�∣],[0∶∣�⃗�∣]

[0 ∶ 𝑘]

[𝑘 ∶ ∣�⃗�∣]

[0 ∶ 𝑘] [𝑘 ∶ ∣ ⃗𝛽∣]

Figure 6: Illustration of the three cases in the matrix
multiplication of 𝑀′. 𝑀′ is divided into three parts:
𝑀[0∶𝑘],[0∶𝑘], 𝑀[0∶𝑘],[𝑘∶∣�⃗�∣], and 𝑀[𝑘∶∣�⃗�∣],[0∶∣�⃗�∣]. The main diag-
onal of 𝑀[0∶𝑘],[0∶𝑘] is zero, and the rest of the matrix is
non-zero.

2) Compute the coefficients of the derivative 𝑔′(𝑥) and
𝑔″(𝑥).

3) Evaluate 𝑔′ (𝜔𝛼𝑖) and 𝑔″ (𝜔𝛼𝑖) for 𝑖 ∈ [0, 𝑘).
4) Interpolate the polynomial ℎ(𝑥) that goes through every

(𝜔𝛼𝑖 , 𝛾𝑖𝑔′ (𝜔𝛼𝑖))

for 𝑖 ∈ [0, 𝑘).
5) Compute the coefficients of the derivative ℎ′(𝑥).
6) Evaluate ℎ′ (𝜔𝛼𝑖) for 𝑖 ∈ [0, 𝑘).
7) Compute the result as

𝑟𝑖 =
ℎ′ (𝜔𝛼𝑖) − 1

2𝛾𝑖𝑔″ (𝜔𝛼𝑖)
𝑔′ (𝜔𝛼𝑖)

.

Case 2: 𝑀[0∶𝑘],[𝑘∶∣�⃗�∣] and Case 3: 𝑀[𝑘∶∣�⃗�∣],[0∶∣�⃗�∣]. Similarly,
for the rest of the two cases, the update matrix is simply a
Cauchy matrix

𝑀′
𝑖,𝑗 = (𝜔𝛼𝑖 − 𝜔𝛽𝑗)−1 .

We note that A. Gerasoulis has also offered an
𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2 (∣�⃗�∣ + ∣ ⃗𝛽∣)) algorithm to compute the
multiplication of a Cauchy matrix and a vector 𝛾 in his
work [22]. We recall and adapt the algorithm below:

1) Compute the coefficients of the zeroing polynomial

𝑔(𝑥) =
∣�⃗�∣−1

∏
𝑖=0

(𝑥 − 𝜔𝛽𝑖) .

2) Compute the coefficients of the derivative 𝑔′(𝑥).
3) Evaluate 𝑔 (𝜔𝛼𝑖) for 𝑖 ∈ [0, ∣�⃗�∣) and 𝑔′ (𝜔𝛽𝑖) for 𝑖 ∈

[0, ∣ ⃗𝛽∣).
4) Interpolate the polynomial ℎ(𝑥) that goes through every

(𝜔𝛽𝑖 , 𝛾𝑖𝑔′ (𝜔𝛽𝑖))

for 𝑖 ∈ [0, ∣ ⃗𝛽∣).
5) Evaluate ℎ (𝜔𝛼𝑖) for 𝑖 ∈ [0, ∣�⃗�∣).
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6) Compute the result as

𝑟𝑖 =
ℎ (𝜔𝛼𝑖)
𝑔 (𝜔𝛼𝑖)

.

Putting these three cases together finishes the algorithm.

6. Fast Computation of All Proofs

Computing all KZG proofs fast is first explored by Feist
et al. [9] and is considered to use 3𝑛 log 𝑛 + 𝑜(𝑛 log 𝑛)
elliptic curve multiplication operations [8] with overall time
complexity 𝑂 (𝑛 log 𝑛). As stated in Section 2.4, in this
section, we give a different view of the algorithm that keeps
the time complexity and reduces the number of elliptic curve
multiplication operations to 2𝑛 log 𝑛 + 𝑜 (𝑛 log 𝑛).

Theorem 6.1. There exists an 𝑂 (𝑛 log 𝑛) algorithm with
2𝑛 log 𝑛 + 𝑜 (𝑛 log 𝑛) elliptic curve multiplication operations
that computes all 𝑛 KZG proofs for a vector of length 𝑛.

Proof. Recall that

𝑀𝑖,𝑗 =
⎧{
⎨{⎩

0 (𝑖 = 𝑗)
(𝜔𝑖 − 𝜔𝑗)−1 (𝑖 ≠ 𝑗)

.

Observe that 𝑀 = diag (�⃗�)⋅𝐶 is the product of a diagonal
matrix diag (�⃗�) and a circulant matrix 𝐶, where

�⃗� = (𝜔0, 𝜔−1, 𝜔−2, … , 𝜔−(𝑛−1)) ,

𝐶 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 1
𝜔0−𝜔1

1
𝜔0−𝜔2 … 1

𝜔0−𝜔𝑛−1
1

𝜔0−𝜔𝑛−1 0 1
𝜔1−𝜔2 … 1

𝜔1−𝜔𝑛−1

⋮
1

𝜔0−𝜔1
1

𝜔𝑛−1−𝜔1
1

𝜔𝑛−1−𝜔2 … 0

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Since circulant matrices are diagonalizable with the
Fourier matrix [19], we can diagonalize 𝐶 by

𝐶 = 𝐹∗diag (𝐹 ⃗𝑐) 𝐹

where 𝐹 is the 𝑛 × 𝑛 Fourier matrix and

⃗𝑐 = (0,
1

1 − 𝜔𝑛−1 ,
1

1 − 𝜔𝑛−2 , … ,
1

1 − 𝜔
)

is the representation of 𝐶.
We can precompute this Fourier transformation as

�⃗� = 𝐹 ⃗𝑐

= 𝐹 ⋅ (0,
1

1 − 𝜔𝑛−1 ,
1

1 − 𝜔𝑛−2 , … ,
1

1 − 𝜔
)

𝑇

= (
𝑛 − 1

2
,
𝑛 − 3

2
,
𝑛 − 5

2
, … ,

−𝑛 + 1
2

)
𝑇

by the following lemma.

Lemma 6.1. 𝜏𝑖 has a closed-form formula as

𝜏𝑖 =
𝑛 − 2𝑖 − 1

2
.

We provide a short proof of this lemma in Appendix B.

Then

⃗𝑎 = diag (�⃗�) 𝐹∗diag (�⃗�) (𝐹 ( ⃗𝑣 ∘ �⃗�)) ,

[�⃗�]
1

= diag (�⃗�) 𝐹∗diag (�⃗�) (𝐹 [ ⃗𝑣 ∘ �⃗� ∘ [ ⃗𝑙 (𝑠)]
1
]) .

We note that multiplying by 𝐹 and 𝐹∗ can be understood
as performing a DFT and iDFT, respectively, which can be
done in 𝑂 (𝑛 log 𝑛) time. Also, multiplying by a diagonal
matrix can be done in 𝑂 (𝑛). Therefore, 𝑎 and [𝑏]1 can be
computed in 𝑂 (𝑛 log 𝑛) time complexity, and

𝑄𝑖 = 𝑣𝑖𝑤𝑖 [𝑙′𝑖 (𝑠)]1 + 𝑎𝑖 [𝑙𝑖 (𝑠)]1 − [𝑏𝑖]1

can be computed in 𝑂 (𝑛).

Elliptic Curve Multiplication Complexity. Observe that
we need Θ (𝑛 log 𝑛) elliptic curve scalar multiplications only
when performing DFT and iDFT during the computation of
[𝑏]1. Since DFT and iDFT use 𝑛 log 𝑛 multiplications every
time, we only need 2𝑛 log 𝑛+𝑜 (𝑛 log 𝑛) elliptic curve scalar
multiplications.

7. History Proof Query

In this section, we finish up the proof of the versioned
update algorithm given in Section 2.5.

Theorem 7.1. There exists an

𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log3 (∣�⃗�∣ + ∣ ⃗𝛽∣))

algorithm that updates ∣�⃗�∣ KZG proofs with ∣ ⃗𝛽∣ modifications
and outputs any version in-between the modifications.

Proof. Recall the algorithm in Section 2.5 as follows.
1) If |𝑆| = 1, output the proof if it is a query and return.
2) Let

𝑚 = ⌊
|𝑆|
2

⌋ .

Split
𝑆 = (𝑆0, 𝑆1, … , 𝑆|𝑆|−1)

into two halves

𝑆𝑙 = (𝑆0, 𝑆1, … , 𝑆𝑚−1)

and
𝑆𝑟 = (𝑆𝑚, 𝑆𝑚+1, … , 𝑆|𝑆|−1).

3) Pick out all proofs corresponding to queries in 𝑆𝑙
and 𝑆𝑟 as vector �⃗�𝑙 and �⃗�𝑟, respectively. Pick out all
updates in 𝑆𝑙 and 𝑆𝑟 as vector ( ⃗𝛽𝑙, Δ ⃗𝑣𝑙) and ( ⃗𝛽𝑟, Δ ⃗𝑣𝑟),
respectively.

4) Perform batch update of ( ⃗𝛽𝑙, Δ ⃗𝑣𝑙) on �⃗�𝑟.
5) Recursively do

VUpdate (𝑆𝑙, �⃗�𝑙)

and
VUpdate (𝑆𝑟, �⃗�𝑟) .

Here we give a short proof on the correctness and time
complexity.
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Correctness. The correctness of the algorithm comes from
the fact that the only way 𝑆𝑙 and 𝑆𝑟 affect each other is that
an update in 𝑆𝑙 will affect every query in 𝑆𝑟. The queries in
𝑆𝑙 and the updates in 𝑆𝑟 do not affect across the halves.
Time Complexity. Observe that the batch update complexity
is 𝑂 (𝑛 log2 𝑛). Therefore, we can write the time complexity
𝑇 (𝑛) as

𝑇 (𝑛) = 2𝑇 (
𝑛
2

) + 𝑂 (𝑛 log2 𝑛) .

We can then apply the master theorem to obtain that

𝑇 (𝑛) = 𝑂 (𝑛 log3 𝑛) .

8. Evaluation

We focus on evaluating our algorithm’s main application
to stateless blockchain and improvement from previous so-
lutions. Towards that end, we evaluated our batch update al-
gorithm and all-proof computation algorithm and compared
with previous solutions under realistic scenarios.

8.1. Batch Updates

We implemented our batch update algorithm in Rust.
We used the BLS12-381 curve provided by the arkworks
library. An anonymous version of our code is available
at https://anonymous.4open.science/r/buvc- rs-9B74.
For comparison, we also implemented a naive algorithm
that updates each proof individually, using the algorithm
provided by aSVC [2].

We performed our benchmark on a local server with an
Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz and 32 GB
of RAM. We used the criterion library to measure the
time taken for each algorithm, and approximated the time
growth based on the algorithm complexity. We did not use
multi-threading in any of the experiments to ensure fairness.
In each experiment we set ∣�⃗�∣ = ∣ ⃗𝛽∣ to be the batch size. The
results are shown in Figure 7.

0 5000 10000 15000 20000
Batch Size (n)

5000

10000

15000

20000
Computation Time (s)

Our Work

aSVC

Figure 7: Computation time comparison of batch update
algorithms. Our work is roughly five times faster at batch
size 20,000.

Based on the figure, we observe that the improvement
of time complexity is significant. Ethereum currently has a
block size of around 20,000. At this batch size, our algorithm
is roughly five times faster than the naive algorithm. To put it

back to the real-world scenario, if we fix the processing time
to be one hour, with 20,000 transactions, our algorithm can
handle around 20,000 users. In contrast, the naive algorithm
can only handle around 5,000 users. Our algorithm can
handle around four times more users in the same time frame.

8.2. Fast Computation of All Proofs

We observe that our technique of computing all proofs
in 2𝑛 log 𝑛+𝑜(𝑛 log 𝑛) elliptic curve scalar multiplications is
directly applicable to the Ethereum scenario [8], reducing its
complexity from √6𝑘𝑛 log 𝑛 to √4𝑘𝑛 log 𝑛. We use their esti-
mates of 𝑘 and 𝑛 to demonstrate this potential improvement
in Table 3.

TABLE 3: Application of our technique in the Ethereum
scenario, in terms of elliptic curve scalar multiplications,
rounded to .001 × 106.

log2 𝑛 Original Ours Improvement

28 6.796 × 106 5.549 × 106 1.247 × 106

30 14.068 × 106 11.487 × 106 2.582 × 106

32 29.059 × 106 23.727 × 106 5.332 × 106

9. Conclusion

In this work, we tackled the computational challenges in-
herent in maintaining efficient, scalable proof-serving nodes
within stateless blockchain systems by optimizing KZG-
based vector commitments. Traditional methods for updating
KZG proofs in response to state changes are computa-
tionally intensive, particularly as the number of users and
transactions scales. To address this, we presented a novel
batch update algorithm that achieves quasi-linear time com-
plexity, reducing the computational cost of updating proofs
from 𝑂 (∣�⃗�∣ ⋅ ∣ ⃗𝛽∣) to 𝑂 ((∣�⃗�∣ + ∣ ⃗𝛽∣) log2(∣�⃗�∣ + ∣ ⃗𝛽∣)). This ad-
vancement significantly lowers the resource requirements for
proof-serving nodes, making it feasible to handle larger user
groups and greater transaction volumes. We demonstrated
that our method is approximately five times faster than naive
approaches at Ethereum-level block sizes, establishing its
practical utility in real-world blockchain systems.

We further explored fast computation of all KZG proofs
while minimizing elliptic curve operations. Additionally, our
proposed history proof query algorithm supports efficient
generation of proofs at various stages of the state. Our
contributions represent a substantial improvement in the
scalability and efficiency of proof-serving nodes for stateless
blockchain designs.

This work not only advances the technical foundations
of stateless blockchain architectures but also paves the way
for more decentralized and accessible blockchain networks
capable of sustaining high transaction throughput without
compromising efficiency.
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Appendix A.
Proof of Aggregation Formula

In this appendix, we finish the proof of the KZG proof
aggregation formula.

Theorem A.1. We can aggregate single proofs into an
aggregated proof with

𝑄 =
𝑚−1
∑
𝑗=0

𝑄𝑖𝑗
𝛿𝑗

.

Proof. Observe that

𝑄𝑖𝑗 = [
𝑝 (𝑠)

𝑠 − 𝜔𝑖𝑗
−

𝑣𝑖𝑗

𝑠 − 𝜔𝑖𝑗
]

1
.

Therefore,
𝑄𝑖𝑗
𝛿𝑗

= [
𝑝 (𝑠)

(𝑠 − 𝜔𝑖𝑗) ∏𝑘≠𝑗 (𝜔𝑖𝑗 − 𝜔𝑖𝑘)
−

𝑣𝑖𝑗

(𝑠 − 𝜔𝑖𝑗) ∏𝑘≠𝑗 (𝜔𝑖𝑗 − 𝜔𝑖𝑘)
]

1
.

We can compare this with

𝑄 =
𝑝 (𝑠) − 𝐼 (𝑠)

𝑍 (𝑠)

=
⎡
⎢
⎢
⎢
⎣

𝑝 (𝑠)
∏𝑚−1

𝑗=0 (𝑠 − 𝜔𝑖𝑗)
−

∑𝑚−1
𝑗=0

∏𝑘≠𝑗(𝑠−𝜔𝑖𝑘)

∏𝑘≠𝑗(𝜔𝑖𝑗−𝜔𝑖𝑘)
𝑣𝑖𝑗

∏𝑚−1
𝑗=0 (𝑠 − 𝜔𝑖𝑗)

⎤
⎥
⎥
⎥
⎦1

.
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Observe that

𝑣𝑖𝑗

(𝑠 − 𝜔𝑖𝑗) ∏𝑘≠𝑗 (𝜔𝑖𝑗 − 𝜔𝑖𝑘)
=

∏𝑘≠𝑗(𝑠−𝜔𝑖𝑘)

∏𝑘≠𝑗(𝜔𝑖𝑗−𝜔𝑖𝑘)
𝑣𝑖𝑗

∏𝑚−1
𝑗=0 (𝑠 − 𝜔𝑖𝑗)

.

Therefore, it is sufficient that we prove

𝑝 (𝑠)
∏𝑚−1

𝑗=0 (𝑠 − 𝜔𝑖𝑗)
=

𝑚−1
∑
𝑗=0

𝑝 (𝑠)
(𝑠 − 𝜔𝑖𝑗) ∏𝑘≠𝑗 (𝜔𝑖𝑗 − 𝜔𝑖𝑘)

.

Observe that the Lagrange interpolation on every
(𝜔𝑖𝑗 , 1) is the constant function 𝑓 (𝑠) = 1. Therefore,

𝑓 (𝑠) = 1 =
𝑚−1
∑
𝑗=0

∏𝑘≠𝑗 (𝑠 − 𝜔𝑖𝑘)

∏𝑘≠𝑗 (𝜔𝑖𝑗 − 𝜔𝑖𝑘)
.

Dividing both sides by ∏𝑚−1
𝑗=0 (𝑠 − 𝜔𝑖𝑗) gives us the

desired result

1
∏𝑚−1

𝑗=0 (𝑠 − 𝜔𝑖𝑗)
=

𝑚−1
∑
𝑗=0

1
(𝑠 − 𝜔𝑖𝑗) ∏𝑘≠𝑗 (𝜔𝑖𝑗 − 𝜔𝑖𝑘)

which we can plug back in to verify the original equation.

Appendix B.
Proof of Fourier Transformation Computation

In this appendix, we prove the following computation
used in Section 6.

Lemma 6.1. 𝜏𝑖 has a closed-form formula as

𝜏𝑖 =
𝑛 − 2𝑖 − 1

2
.

Proof. Observe that

𝜏𝑖 =
𝜔𝑖

1 − 𝜔𝑛−1 +
𝜔2𝑖

1 − 𝜔𝑛−2 + … +
𝜔(𝑛−1)𝑖

1 − 𝜔
.

Noticing that the 𝑗-th term

𝜔𝑖𝑗

1 − 𝜔𝑛−𝑗 =
𝜔𝑖𝑗 ∏𝑘≠𝑗,𝑘≠0 (1 − 𝜔𝑛−𝑘)

∏𝑛−1
𝑘=1 (1 − 𝜔𝑛−𝑘)

=
𝜔𝑖𝑗 ∏𝑘≠(𝑛−𝑗),𝑘≠0 (1 − 𝜔𝑘)

∏𝑛−1
𝑘=1 (1 − 𝜔𝑘)

.

We can then apply the idea of analytic continuity and
the expansion of 𝑙𝑖 (𝑠) from Equation (3)

𝜔𝑖𝑗

1 − 𝜔𝑛−𝑗 = lim
𝑥→1

𝜔𝑖𝑗 ∏𝑘≠(𝑛−𝑗) (𝑥 − 𝜔𝑘)

∏𝑛−1
𝑘=0 (𝑥 − 𝜔𝑘)

= lim
𝑥→1

𝜔𝑖𝑗𝑙(𝑛−𝑗) (𝑥)
𝑥𝑛 − 1

= lim
𝑥→1

𝜔𝑖𝑗𝑥𝑛−1 + 𝜔(𝑖−1)𝑗𝑥𝑛−2 + … + 𝜔(𝑖−𝑛+1)𝑗

𝑥𝑛 − 1
.

Then, we can add up the terms of 𝜏𝑖

𝜏𝑖 =
𝑛−1
∑
𝑗=1

lim
𝑥→1

𝜔𝑖𝑗𝑥𝑛−1 + 𝜔(𝑖−1)𝑗𝑥𝑛−2 + … + 𝜔(𝑖−𝑛+1)𝑗

𝑥𝑛 − 1

= lim
𝑥→1

∑𝑛−1
𝑘=0 (∑𝑛−1

𝑗=1 𝜔(𝑖−𝑘)𝑗) 𝑥𝑛−𝑘−1

𝑥𝑛 − 1
.

Here we observe that ∑𝑛−1
𝑗=1 𝜔(𝑖−𝑘)𝑗 can be simplified

with the following lemma.

Lemma B.1. for every integer 1 ≤ 𝜓 < 𝑛
𝑛−1
∑
𝑗=1

𝜔𝑗𝜓 = −1.

Proof. Let 𝜙 = gcd (𝜓, 𝑛). Observe that 𝜔𝜓 is a generator
for the group 𝐺𝜙 generated by 𝜔𝜙. 𝐺𝜙 has exactly 𝑛

𝜙
elements. Therefore, the sum

𝑛−1
∑
𝑗=0

𝜔𝑗𝜓 = 𝜙 (1 + 𝜔𝜓 + 𝜔2𝜓 + … + 𝜔(𝑛−1)𝜓)

= 𝜓 ⋅
1 − 𝜔𝑛𝜓

1 − 𝜔
= 0.

That is to say
𝑛−1
∑
𝑗=1

𝜔𝑗𝜓 =
𝑛−1
∑
𝑗=0

𝜔𝑗𝜓 − 1 = −1

and we have our proof.

Therefore, 𝜏𝑖 has exactly one term where 𝑖 − 𝑘 = 0 and
𝑛−1
∑
𝑗=1

𝜔(𝑖−𝑘)𝑗 = 𝑛 − 1.

For all the rest of the terms
𝑛−1
∑
𝑗=1

𝜔(𝑖−𝑘)𝑗 = −1.

We can then write it as

𝜏𝑖 = lim
𝑥→1

− (∑𝑛−1
𝑗=0 𝑥𝑗) + 𝑛𝑥𝑛−𝑖−1

𝑥𝑛 − 1

= lim
𝑥→1

− (∑𝑛−1
𝑗=1 𝑗 ⋅ 𝑥𝑗−1) + 𝑛(𝑛 − 𝑖 − 1)𝑥𝑛−𝑖−2

𝑛𝑥𝑛−1

=
−𝑛(𝑛−1)

2 + 𝑛(𝑛 − 𝑖 − 1)
𝑛

=
𝑛 − 2𝑖 − 1

2
by L’Hospital’s rule.
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