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Abstract. Meet-in-the-middle (MitM) is a powerful approach for the
cryptanalysis of symmetric primitives. In recent years, MitM has led to
many improved records about key recovery, preimage and collision at-
tacks with the help of automated tools. However, most of the previous
work target AES-like hashing where the linear layer is an MDS matrix.
And we observe that their automatic model for MDS matrix is not suit-
able for primitives using a binary matrix as their linear layer.
In this paper, we propose the n-XOR model to describe the XOR operation
with an arbitrary number of inputs. And it can be applied to primitives
with a binary matrix of arbitrary size. Then, we propose a check model to
eliminate the possible inaccuracies caused by n-XOR. But the check model
is limited by the input size (not greater than 4). Combined with the two
new models, we find a MitM key recovery attack on 11-round Midori64.
When the whitening keys are excluded, a MitM key recovery attack can
be mounted on the 12-round Midori64. Compared with the previous
best work, both of the above results have distinct advantages in terms
of reducing memory and data complexity. At last, we apply the n-XOR
model to the hashing modes of primitives with large size binary matrix.
The preimage attack on weakened Camellia-MMO (without FL/FL−1 and
whitening layers) and Aria-DM are both improved by 1 round.

Keywords: Meet-in-the-Middle · Binary Matrix · Key Recovery · Preim-
age · Midori64 · Camellia· Aria.
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1 Introduction

The Meet-in-the-middle (MitM) is a powerful cryptanalysis strategy first pro-
posed by Diffie and Hellman to attack Double DES [12]. The core idea is to
identify two disjoint neutral sets of unknown values. Then, the whole compu-
tation path can be divided into two independent chunks, which are determined
by two neutral sets and denoted by forward chunk and backward chunk, respec-
tively. At last, the two chunks will meet at a common internal state where the
consistency is checked to filter out candidate assignments of unknown values.
From then on, MitM and its variants have been successfully applied to many
block ciphers [9,32,18,29]. At SAC 2008, Aumasson et al. [3] first introduced the
theory of MitM into preimage attacks on step-reduced MD5 and 3-pass HAVAL.
Sequentially, many refined techniques were proposed to enhance the power of
MitM, such as splice-and-cut [2], initial structure [30], bicliques [8], and so on.
At FSE 2011, Sasaki [26] applied such MitM preimage attack to the PGV [25]
hashing modes of AES and presented the first preimage attack on 7-round AES-
MMO/MP/DM together with the partial indirect matching technique. Interestingly,
these enhancements were finally found to be applicable in the key recovery at-
tack on block ciphers. At ACISP 2011, Wei et al. [37] broke the full round
KTANTAN using the splice-and-cut technique by connecting the plaintext and
ciphertext with encryption or decryption oracles with only 4 chosen plaintexts.

Despite being clear that a MitM attack is entirely determined by its char-
acteristic, i.e., the configuration for two chunks, it’s still complicated and error-
prone to explore the whole configuration space. Recently, automated tools were
introduced to find the best characteristic by solving an optimization problem. At
Eurocrypt 2021, Bao et al. [6] proposed an MILP-based MitM preimage attack
on AES-like hash and Haraka v2. At CRYPTO 2021, Dong et al. [13] extended
the automatic model into key-recovery and collision attacks and introduced a
table-based method to solve the non-linear constraints imposed on neutral sets.
At CRYPTO 2022, Bao et al. [7] considered the MitM attack in a view of su-
perposition (SupP) states and bi-directional attribute propagation (BiDir) such
that neutral sets are treated independently and can be imposed constraints in
both computation paths. At Asiacrypt 2023, Hou et al. [17] introduced the SupP
framework into Feistel-based hash functions. At Eurocrypt 2024, Chen et al. [10]
considered the linearization of the S-Box in AES and allowed a linear combina-
tion of two neutral sets in the initial structure. Different from the above work,
Schrottenloher and Stevens [33] studied a simple top-down modeling paradigm
for both classical and quantum preimage attacks against permutations and was
later extended to key recovery attack on block ciphers with simple key sched-
ules [34]. The simplified attack excluded many details. In this paper, we adopt
the bottom-up MitM framework in [7] and the table-based method in [13].

In the previous work, the targets are most built by a block cipher with an
MDS matrix. Through the diffusion layer, each output cell is related to all the
input cells. However, the primitives with binary matrix are rarely studied, where
each output cell is represented as the XOR of partial input cells. In [13], Dong
et al. introduced the 3-XOR model for SKINNY-n-3n. In their model, the number
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of input cells is fixed to be 4. All valid cases can be easily exhausted to form a
system of inequalities using the convex hull method [36]. However, if more input
cells are involved, the number of valid cases will increase extremely leading to
larger size of system of inequalities, which can make model infeasible to compute.
Hence, there is a gap to find an accurate and effective method to describe the
MitM attribute propagation through a binary matrix of arbitrary size.

Our Contributions. In this paper, we propose a novel model called n-XOR un-
der the encoding scheme in [7], to describe the propagation of MitM attributes
through an XOR operation with an arbitrary number of input cells. And the
number of inequalities formed by n-XOR is fixed, independent of the number of
inputs. Hence, n-XOR can be applied to large binary matrices effectively. How-
ever, we also observe that only applying n-XOR will lead to subtle inaccuracies.
An extremely explicit case is that the constraint on the same neutral bits may
be double counted in two different n-XOR operations. Besides, there are more
implicit cases depending on the specific linear layer. Hence, we propose an addi-
tional check model to eliminate these inaccuracies. But this model is limited by
the input size n, that is, n ≤ 4 in our paper.

As a low-energy lightweight cryptography, Midori [5] is well-suited for con-
strained environments, like the edge gateways and end devices in the blockchain
on-chain and off-chain interactions. As a proof of work, we first apply the two
new models to Midori64 [5], with a 4 × 4 binary matrix as linear layer. Then,
an 11-round key recovery attack is found with time complexity of 2124. The
data and memory complexity are 236 and 26, respectively. When omitting the
whitening layer, a 12-round MitM characteristic for weakened Midori64 is found
with time complexity of 2120. The data and memory cost are 248 and 210.6, re-
spectively. Besides, the data and memory complexity can be further reduced if
the time complexity is relaxed to 2124. Compared to the previous best records
of Midori64 [23,35,22], despite a little higher time complexity, our results have
distinct advantages in reducing data and memory complexity.

It’s a practical design strategy to build hash functions on widely used block
cipher with a longstanding record of cryptanalysis. And AES-MMO was even inter-
nationally standardized by ISO [19]. Since Camellia [1] was also standardized by
ISO [20] and Aria [21] was standardized by Korean Standard (KS X1213), the
hashing modes of Camellia or Aria may be potential candidates used in prac-
tice. Indeed, their security have been evaluated in a series of works [31,27,16,4].
In this paper, we apply the n-XOR to describe the MitM attributes propaga-
tion through the large binary matrix of Camellia and Aria. Finally, we find a
preimage attack on 14-round weakened Camellia-MMO (without FL/FL−1 and
whitening layers) and a preimage attack on 6-round Aria-DM. Compared to the
previous best records [28,16], the attack rounds are both improved by 1 round.

Our results are also summarized in Table 1 and Table 2. For the source code,
please refer to https://github.com/wenny-kt/MITM-Binary-Matrix.

The rest of this paper is organized as follows. In Section 2, we give an overview
of how the automated MitM attacks are deployed, along with some enhanced
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Table 1: Single Key attacks on Midori64, where ID and DS-MitM denote im-
possiable differential and Demirci-Selçuk MitM attack, respectively.

Target Rounds Data Memory(Bytes) Time(Enc.) Technique Ref.

Midori64

11 260 295.8 2116.6 ID [23]
11 253 292.2 2122 DS-MitM [22]
11 236 26 2124 MitM Section 4.1
12 255.5 2109 2125.5 DS-MitM [22]
12† 261.9 244 290.5 ID [35]
12† 248 210.6 2120 MitM Section 4.2
12† 236 25.6 2124 MitM Section 4.2

† Weakened version without whitening layers.

Table 2: A Summary of the MitM Attacks on Hashing Modes.
Target Attacks Rounds Time1 Time2 Memory Technique Ref.

Camellia-MMO Preimage 13‡ 2120 2125 28 MitM [28]
14‡ 2120 2125 28 MitM Section 5

Aria-DM Preimage 5 2120 2125 28 MitM [16]
6 2120 2125 2112 MitM Section 6

- ‡ Weakened version without FL/FL−1 and whitening layers.
- Time1 represents the time complexity of pseudo-preimage. Time2 represents the time com-

plexity of preimage attack converted from the pseudo-preimage attack according to [24,
Fact9.99].

techniques. In Section 3, we introduce two new improved models embedded in the
automated MitM framework, called n-XOR and check model. The applications
to Midori64, Camellia-MMO and Aria-DM are presented in Sects. 4, 5 and 6,
respectively. Finally, we conclude in Section 7.

2 Preliminaries: Automated Meet-in-the-Middle Attack

In this section, we provide an overview of how the MitM attack framework is
constructed, and how it is encoded into the MILP language with specified config-
urations for the preimage and key recovery attack. Then, we recall two enhanced
techniques to improve the power of MitM attack. The first one is the table-based
method introduced in [13] to solving the non-linear constraints. Another one is
the Superposition (SupP) States and Bi-direction Attribute-Propagation (BiDir)
introduced in [7] to preserving more valid solutions.

2.1 Framework of the Meet-in-the-Middle Attack

The MitM attack framework is illustrated in Figure 1. SENC and SKEY are the
starting states where there are λENCB and λKEYB neutral bits for forward compu-
tation denoted by , and there are λENCR and λKEYR neutral bits for backward
computation denoted by . After imposing lENCR and lKEYR constraints on λENCR and
λKEYR backward neutral bits, respectively, can be propagated to the matching

4
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lENCB constraints
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λENCR bytes

lENCR constraints Partial match

EndB EndR

Public or Oracle computation

lKEYB constraints
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λKEYB bytes

λKEYR bytes

lKEYR constraints

Fig. 1: A high-level overview of the MITM attacks [13]

points EndB independent of the bits. The degree of freedom (DoF) for the
neutral space is computed by dR = λENCR + λKEYR − lENCR − lKEYR . Similarly, forward
neutral bits are imposed on lENCB and lKEYB constraints to cancel the effect of in
the backward computation. The DoF of the neutral space can be computed
by dB = λENCB +λKEYB − lENCB − lKEYB . Through a feed-forward mechanism or querying
a public Encryption-Decryption oracle, EndR can be derived by . Instead of
requiring the full states, the partial matching exploits the filtering ability derived
by the deterministic relation “EndB = EndR” and denoted by dm.

With the configurations of
(
λENCB , λKEYB , λENCR , λKEYR , lENCB , lKEYB , lENCR , lKEYR , dm

)
, the

basic attack procedure goes as follows:

1. Choose constants in SENC and SKEY and lENCB + lKEYB + lENCR + lKEYR constraints.
2. For 2dB values of neutral space, compute forward to EndB from the starting

states, and store the values of in table LB[EndB].
3. For 2dR values of neutral space, compute backward to EndR from the

starting states, and store the values of in table LR[EndR].
4. According to the indices, check the match between LB and LR.
5. For the surviving pairs that pass the match, check for a full-state match.

Complexity analysis. The above steps 2-5 form a MitM episode. To find an h-bit
full match, 2h−(dB+dR) episodes are needed. Since each episode is performed with
a time of 2max{dB,dR} + 2dB+dR−dm , the total time complexity is:

2h−(dB+dR) ·
(
2max{dB,dR} + 2dB+dR−dm

)
≈ 2h−min{dB,dR,dm} (1)

Apparently, a MitM characteristic is valid, if and only if min{dB, dR, dm} ≥
1. For MitM key recovery attack, additional constraints must be fulfilled to
ensure that the internal states in SENC can be totally determined by SKEY. This is
equivalent to using up the DoFs of SENC, i.e., λENCB − lENCB = 0 and λENCR − lENCR = 0.
Besides, there should exists only one type of neutral bit in the plaintext or
ciphertext, and at least 1-bit constant in the plaintext or ciphertext to avoid
using up the full codebook. In [6], Bao et al. encoded the type of each byte in
AES with a pair of boolean variables:
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1. R, (x, y) = (0, 1): Known byte only with backward computation.
2. B, (x, y) = (1, 0): Known byte only with forward computation.
3. G, (x, y) = (1, 1): Constant byte and known in both forward and backward

computations.
4. W, (x, y) = (0, 0): Unknown byte in forward and backward computations.

Then, the propagation rules for XOR and MixColumns can be described as a
system of inequalities based on the above definitions. A valid MitM characteristic
is defined as a solution solved by the off-the-shelf MILP solvers, like Gurobi [15],
with the objective function that maximizes the min{dB, dR, dm}. For the detailed
MILP models of these propagation rules, please refer to [6] or Appendix A.

2.2 Enhanced Techniques

Table-based method solving non-linear constraints. Note that Equation
(1) holds mostly when the constraints imposed on neutral bits can be solved
in O(1) time, such as linear equations. However, there are many practice MitM
characteristics with non-linear constrained neutral bits, which can not be solved
efficiently. In [13], Dong et al. proposed a precomputation method to compute
the value of the constraints by enumerating the neutral bits. Specifically, after
setting the value of constants in starting states, do as follows:

1. For 2λ
ENC
B +λKEY

B values, compute the values of lENCB + lKEYB constraints (denoted
by cB ∈ FlENCB +lKEYB

2 ) and store the λENCB + λKEYB bits in U [cB].
2. For 2λ

ENC
R +λKEY

R values, compute the values of lENCR + lKEYR constraints (denoted
by cR ∈ FlENCR +lKEYR

2 ) and store the λENCR + λKEYR bits in V [cR].

Then, in each MitM episode, for a given cB and cR, the values in U [cB] and V [cR]
can be searched in time O(1). The time and memory cost for one precomputation
phase are both 2λ

ENC
B +λKEY

B + 2λ
ENC
R +λKEY

R .

SupP States and BiDir. In the SupP MitM framework of [7], neutral cells
from both directions can be separated into two virtual states, called SupP states,
to keep the linearity through linear operations. Then, and will be treated
independently through linear operations, and the initial DoFs can be consumed
in both directions. After a series of linear operations, two SupP states are fi-
nally combined before the next nonlinear operation. The color patterns and how
the states are separated and combined are visualized in Figure 2. BiDir allows
neutral cells to be consumed in both two directions, but this may lead to depen-
dency between one type of neutral cell with non-linear constraints imposed on
another. In [11], Degré proposed a more generic table-based method to cancel
this dependency. Combined with the SupP states and BiDir methods, the solu-
tion space is greatly enlarged, such that some attack configurations with lower
time complexities may be found. In the rest of this paper, we simplify the repre-
sentation of SupP states. The virtual states of pure / / / are omitted. And
we denote the SupP states by the cell in which the blue cell and red cell occur
simultaneously.
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(a) Rules for separation

*

(b) Rules for combination

Fig. 2: Rules for separation and combination, where “∗” means any color

3 New Models for Linear Layer with Binary Matrix

In this section, we first propose an effective method to build an MILP model to
describe the MitM attributes propagation through a n-XOR operation with SupP
states. Interestingly, the number of input cells involved in the XOR operation
can be arbitrary, but the size of MILP model will not increase. However, we
also observer that this may lead to double counting of constraints on the same
neutral cells. Then, we show that the inaccuracy can be easily eliminated by
adding an additional check model.

3.1 N-XOR Model

To simulate the MitM attributes propagation through the linear layer, Bao et al.
proposed the MC-RULE for the MDS matrix in AES-like hashing [6,7]. As shown
in Figure 3(a), each input cell has an effect on all output cells in MDS matrix.
However, some primitives adopt a binary matrix in the diffusion layer where
each output cell is computed by the XOR of partial input cells. As the Midori64’s
binary matrix shown in Figure 3(b), the first output cell is only related to the
last three input cells. Apparently, this will lead to inaccurate propagation if we
apply the MC-RULE for MDS matrix on binary matrix directly since one output
cell is not related to all input cells.




e b d 9

9 e b d

d 9 e b

b d 9 e


 × −→

X Y

(a) Coloring pattern of MC-RULE for MDS matrix




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 × −→

X Y

(b) Coloring pattern for binary matrix

Fig. 3: A case of the difference of color pattern between MDS and binary matrix

In [13], Dong et al. proposed the 3-XOR-RULE to model the key addition in
SKINNY-n-3n. By enumerating four input cells, one output cell and one indicator
variable for DoF cost, all valid color patterns can be restricted to a subset of
F11
2 , which can be described into a system of inequalities using the convex hull

technique [36]. If we directly extend the strategy of 3-XOR-RULE to the XOR
operation with n input cells, then the enumeration scope will be restricted to a
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subset of F2n+3
2 . When n is large, it’s complicated and error-prone to enumerate

all valid color patterns. And the size of the system of inequalities may be large,
which renders the model infeasible to compute.

An alternative strategy is to apply the XOR-RULE in [6,7] for two-input XOR
consecutively. This strategy is valid but may miss some valid patterns by intro-
ducing additional auxiliary variables. We take the attribute propagation through
Midori64’s diffusion layer to state this fact as shown in Figure 4. In the first step
of Figure 4(a), an auxiliary variable auxi is needed to carry on the output of
X[2]⊕X[3]. For the second step, X[1] and X[0] are XORed with auxi to compute
Y [0] and Y [1], respectively. Then, one of the following cases will occur,

– If auxi is by consuming one DoF, then Y [0] will always be , and Y [1]
will always be .

– If auxi is , then Y [1] will always be . Y [0] can be either or by consuming
one DoF.

However, with the n-XOR model in Figure 4(b), step 1 and step 2 can be exe-
cuted independently without correlated variables. Then, Y [0] and Y [1] can be

simultaneously by consuming 2 DoFs of , which can not be captured by the
first strategy.




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




①
②

×
3
2
1
0

−→

X Y

-1 -1

or or

(a) Model of consecutive XOR




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ×

3
2
1
0

−→

X Y

-2

①
②

(b) n-XOR Model

Fig. 4: The advantage of n-XOR model compared with consecutive XOR

In the following, we show how to convert the propagation of cells through
the n-XOR operation under SupP states into MILP language. All coloring pat-
terns can be specified by the following set of rules denoted by n-XOR-RULE−.
The n-XOR-RULE+ for can be obtained in a similar way by exchanging and

since they are dual.

– n-XOR-RULE−-1. If there is at least one in input, then the output is .
– n-XOR-RULE−-2. If all cells of the input are , then the output must be .
– n-XOR-RULE−-3. If there are and cells but no cell in the input, then

one of the following situations will occur:
• The output is cell and no DoF is consumed.
• The output is by consuming one DoF of .

Let (A[1], A[2], · · · , A[n]) be the input of n-XOR where A[i] = (xA
i , y

A
i ). Let B be

the output where B = (xB , yB). Like [6], we introduce three boolean indicator
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variables µ, ν and η in the model. µ = 1 if and only if there exists i ∈ [1, 2, · · · , n]
such that (xA

i , y
A
i ) = (0, 0). That is, n-XOR-RULE−-1 is fulfilled. ν = 1 if and only

if xA
i = yAi = 1 for all 1 ≤ i ≤ n, which corresponds to n-XOR-RULE−-2. When

µ = ν = 0, n-XOR-RULE−-3 is fulfilled. Besides, η = 1 when there exists one
constraint imposed on input cells. With the help of indicator variables, the
n-XOR-RULE− can be converted into a system of inequalities shown in Equation
(2) and Equation (3).



n−1∑
i=0

yA
i + µ ≤ n

n−1∑
i=0

yA
i + n · µ ≥ n

n−1∑
i=0

xA
i − ν ≤ n− 1

n−1∑
i=0

xA
i − n · ν ≥ 0

(2)



yB + µ = 1

xB + µ ≤ 1

η − xB + ν = 0

n−1∑
i=0

xA
i + xB − 2 · ν ≤ n− 1

n−1∑
i=0

xA
i + xB − (n+ 1) · ν ≥ 0

(3)

At the end, we must emphasize that, in addition to preserving more valid
coloring patterns, another advantage of n-XOR is that the size of model is fixed,
independent of the number of input cells. And this makes it possible to de-
scribe the attributes propagation for primitives with large binary matrices, like
Camellia and Aria.

3.2 Check Model: More Accurate Consumption of DoFs

We also observe that n-XOR model may lead to some subtle inaccuracies. We still
take a possible propagation of Midori64’s diffusion layer as an example to state
this fact. A particularly explicit case is that the constraint on the same neutral
cells may be double counted due to the independent computation of each output
cell as shown in Figure 5(a). Besides, there are some more implicit cases leading
to inaccuracy as shown in Figure 5(b).

Then, we introduce the check model to show how the inaccuracy can be
eliminated, and describe it in the MILP language. We still state this by con-
sidering the propagation through the n-XOR operation under SupP states. Let
A[j] = (xA

j , y
A
j ), for 1 ≤ j ≤ n, be the input of the n × n binary matrix M .

After the n-XOR Model, we can get η = (η1, · · · , ηn) denoted by the degree con-
sumption vector where ηi is the indicator variable introduced in Equation (3)
and ηi = 1 means there exists one constraint imposed on the input cells for the
i-th row of M . Since only cells are needed to be considered for DoF consump-
tion, we introduce another n× n binary matrix M ′ to intuitively mark which
cells contribute to the DoF consumption. Then, M ′ is generated as follows :
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(a) Possible situation I




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ×

3
2
1
0

−→

X Y

i.e.

{
X[1]⊕X[3] = c0

X[1]⊕X[3] = c1

n-XOR Model

-2

=⇒
Check Model

{
X[1]⊕X[3] = c0

X[1]⊕X[3] = c0
-1

(b) Possible situation II




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ×

3
2
1
0

−→

X Y

i.e.





X[2]⊕X[3] = c0

X[1]⊕X[3] = c1

X[1]⊕X[2] = c2

n-XOR Model

-3

=⇒
Check Model





X[2]⊕X[3] = c0

X[1]⊕X[3] = c1

X[1]⊕X[2] = c0 ⊕ c1
-2

Fig. 5: Possible situations in our models

– If ηi = 1 and Mi,j = 1 and xA
j = 0, then M ′

i,j = 1.
– If the first case is not satisfied, then M ′

i,j = 0.

For the first case, ηi = 1 means no in the involved input cells, and Mi,j = 1 and
xA
j = 0 means A[j] is a cell involved in the i-th XOR operation. We introduce

a general variable η′ to denote the rank of M ′, which equals to the accurate
DoF consumption theoretically. Since M is a fixed matrix, we can conclude
that the accurate DoF consumption can be determined by the other 2n vari-
ables (xA

1 , · · · , xA
n , η1, · · · , ηn). Finally, the subset (xA

1 , · · · , xA
n , η1, · · · , ηn, η′) of

F2n
2 × Fn+1 can be restricted to a system of linear inequalities using the con-

vex hull technique [36]. Different with the origin framework, the configuration
lENCR + lKEYR should be calculated by accumulating the accurate DoF consumption
determined by the n-XOR and check model, along with extra constraints imposed
by other operations, such as KeyAddition. The configuration lENCB +lKEYB for degree
consumption of can also be gotten in the similar way due to the duality [7].

However, it should be noted that the cost of exhaustion to determine the
accurate DoF consumption is still affected by the number of input cells. Hence,
check model can not be applied to large binary matrix (n > 4 in this paper).
Although it’s trivial to compute the rank of a general matrix in O(n3), there
is still no effective way to implement it in MILP model. Besides, in addition to
finding out better modeling methods or more suitable optimizers, we can still
combine theoretical models and manually checking to deal with large matri-
ces, such as Section 5 and Section 6. In practice, by relaxing the constraint to
min{dB, dR, dm} ≥ 1− i, where i ≥ 1, we check the feasible solutions to find out
valid characteristic. It also should be noted that the final results derived by the
manually checking method may not be the optimal solution.

4 MitM Key Recovery Attack on Midori64

Midori64 is an SPN-based lightweight block cipher, consisting of 64-bit block
and a 128-bit key. The state is seen as a 4 × 4 matrix of 4-bit cells, and its
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diffusion layer is 4× 4 boolean matrix. The detailed specification is provided in
Appendix B.1.

In this section, we present an 11-round MitM key recovery attack on Midori64
with a time complexity of 2124. For the weakened version of Midori64, without
whitening key, a 12-round MitM characteristic is found with a time complexity
of 2120. Despite a little higher time complexity, the above two attacks can be
applied with extremely low data and memory cost compared to the previous best
work [23,35]. Besides, the data and memory of the attack on 12-round weakened
Midori64 can be further reduced if the time complexity is relaxed to 2124.

4.1 MitM Key Recovery Attack on 11-round Midori64

As shown in Figure 6 and Figure 7, an 11-round MitM key recovery attack is
identified, where |SENC| = 16 independent bytes in the encryption data path are
set to be 0 as Line 1-2 in Algorithm 1, to ensure the values of all the other bytes
are totally determined by the given key. And at least one 0 byte in the ciphertext
C to avoid using the full codebook. The starting states are C and (K(0),K(1)).
The encryption data path provides λENCR = 9 and λENCB = 0 DoFs for and ,
respectively. And the λENCR = 9 cells are used up when computing A

(9)
ShC through

an MC operation and A
(8)
MC through an XOR operation in the backward computation

path. For (K(0),K(1)), the initial DoFs for and are λKEYR = 3 and λKEYB = 2,
respectively. In the key schedule, K(0)[1] ⊕ K(0)[9] and K(0)[1] ⊕ K(0)[13] are
restricted to constants, i.e., lKEYR = 2. Hence, we get DoFR = λKEYR − lKEYR = 1.
Similarly, K(0)[5]⊕K(1)[5] is imposed on lKEYB = 1 constraint, and then DoFB =

λKEYB − lKEYB = 1. The matching phase happens at the MC operation between A
(3)
ShC

and A
(3)
MC , providing dm = 1 degree of matching by Equation (4).

A
(3)
ShC[2]⊕A

(3)
ShC[10] = A

(3)
MC [2]⊕A

(3)
MC [10] (4)

According to Equation (1), the overall time complexity is 24×(32−min{1,1,1}) ≈
2124. The data complexity is 236 by traversing the 16− 7 = 9 non-constant cells
in C. A detailed attack procedure is given in Algorithm 1. The memory cost is
about 26 bytes to store (SR,SB, L).

4.2 MitM Key Recovery Attack on 12-round Weakened Midori64

In this section, we focus on the weakened version of Midori64 omitting the
whitening layers. And we found a MitM key recovery attack on the 12-round
Midori64 as shown in Figure 8. As explained above, |SENC| = 16 independent 0

bytes in the encryption data path are set as 0. The starting states are ciphertext
C and two sub-key (K(0),K(1)). In ciphertext, there are λENCR = 12 and λENCB = 0
initial DoFs for and , respectively. And the DoFs of are used up when
computing A

(10)
ShC through an MC operation and A

(9)
MC through an XOR operation.

The two sub-key (K(0),K(1)) provide λKEYR = 6 and λKEYB = 2 initial DoFs for
and , respectively. For the key schedule, K(0)[0] ⊕ K(0)[4], K(0)[0] ⊕ K(0)[8],
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Fig. 6: Meet-in-the-Middle key recovery attack on 11-round Midori64
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KEY: (-0 , -1 )
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0
0
0
0
0

0

0

Fig. 7: The MitM characteristic through whitening layers of 11-round Midori64

Algorithm 1: MitM Key Recovery Attack on 11-round Midori64

1 Set the 0 bytes to be 0, i.e., C[0, 3, 4, 5, 8, 12, 14]← 0, A(8)
MC [1, 9, 13]← 0

2 A
(9)
MC [1]⊕A

(9)
MC [9]← 0, A(9)

MC [1]⊕A
(9)
MC [13]← 0, A(9)

MC [2]⊕A
(9)
MC [6]← 0,

A
(9)
MC [2]⊕A

(9)
MC [10]← 0, A(9)

MC [7]⊕A
(9)
MC [11]← 0, A(9)

MC [7]⊕A
(9)
MC [15]← 0

3 Collecting plaintext-ciphertext pairs by traversing the non-constant 16− 7 = 9
cells in C, and storing them in table H

4 for all possible values of the cells in K(0) and K(1) do
5 A

(10)
SC [0, 3, 4, 5, 8, 12, 14]← (K(0) ⊕K(1))[0, 3, 4, 5, 8, 12, 14]

6 for (cR,1, cR,2, cB) ∈ F3×4
2 do

7 Derive the solution space SR of cells by{
K(0)[1]⊕K(0)[9] = cR,1

K(0)[1]⊕K(0)[13] = cR,2

8 Derive the solution space SB of cells by K(0)[5]⊕K(1)[5] = cB
9 L← [ ]

10 for vR ∈ SR do
11 Compute A

(3)
ShC[2, 10] along the forward computation path:

12 A
(8)
MC → C → DecK(C)→ A

(3)
ShC by accessing H

13 L[A
(3)
ShC[2]⊕A

(3)
ShC[10]]← vR

14 end
15 for vB ∈ SB do
16 Compute A

(3)
MC [2, 10] along the backward computation path:

C → A
(3)
MC

17 for Candidate keys in L[A
(3)
MC [2]⊕A

(3)
MC [10]] do

18 Test the guessed key with several plaintext-ciphertext pairs
19 end
20 end
21 end
22 end
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K(0)[1]⊕K(0)[5] and K(0)[1]⊕K(0)[13] are restricted to constants, i.e., lKEYR = 4.
Hence, we get DoFR = λKEYR − lKEYR = 2 and DoFB = λKEYB = 2. The matching
phase happens at the MC operation between A

(4)
ShC and A

(4)
MC , providing dm = 1

degree of matching by Equation (5).

A
(4)
ShC[4]⊕A

(4)
ShC[12] = A

(4)
MC [4]⊕A

(4)
MC [12] (5)

In [14], Fuhr et al. proposed the simultaneous matching to decrease 2dB+dR−dm in
Equation (1) exponentially by testing the surviving keys with multiple plaintext-
ciphertext pairs in parallel. Hence, the overall time is dominated by 24×(32−min{2,2}) ≈
2120. The data complexity is 248 by traversing the 16−4 non-constant cells in C.
A detailed attack procedure is given in Algorithm 2. The memory cost is 210.6

bytes to store (SR, L).
When considering optimization for data complexity, we found a MitM key

recovery attack on 12-round Midori64 with data complexity of 236 by relaxing
the time complexity to 2124. The figure and algorithm are given in Figure 17
and Algorithm 4 in Appendix C.

Algorithm 2: MitM Key Recovery Attack on 12-round weakened
Midori64, optimized for time complexity

1 C[2, 6, 10, 14]← 0, A(10)
ShC [1, 4, 7, 9, 12, 15]← 0, A(9)

MC [0, 1, 4, 5, 8, 13]← 0
2 Collecting plaintext-ciphertext pairs by traversing the non-constant

16− 4 = 12 cells in C, and storing them in table H
3 for all possible values of the cells in K(0) and K(1) do
4 for (cR,1, cR,2, cR,3, cR,4) ∈ F4×4

2 do
5 Derive the solution space SR of cells by{

K(0)[0]⊕K(0)[4] = cR,1 K(0)[0]⊕K(0)[8] = cR,2

K(0)[1]⊕K(0)[5] = cR,3 K(0)[1]⊕K(0)[13] = cR,4

6 L← [ ]
7 for vR ∈ SR do
8 Compute A

(4)
ShC[4, 12] along the forward computation path:

9 A
(9)
MC → C → DecK(C)→ A

(4)
ShC by accessing H

10 L[A
(4)
ShC[4]⊕A

(4)
ShC[12]]← vR

11 end
12 for 22×4 possible values of K(1)[7, 12] do
13 Compute A

(4)
MC [4, 12] along the backward computation path:

C → A
(4)
MC

14 for Candidate keys in L[A
(4)
MC [4]⊕A

(4)
MC [12]] do

15 Test the guessed key with several plaintext-ciphertext pairs
16 end
17 end
18 end
19 end
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5 MitM Preimage Attack on Weakened Camellia

Camellia is a Feistel-based block cipher with 128-bit block. The diffusion layer
is a 8 × 8 boolean matrix. In this work, we only target on the version with a
128-bit key. The detailed specification is provided in Appendix B.2.

5.1 The MitM Characteristic of 14-round weakened Camellia

We first applied the n-XOR model to describe the attributes propagation through
the diffusion layer. However, the check model can not be deployed since the large
size of the diffusion layer. We relaxed the constraint to min{dB, dR, dm} ≥ 1− i,
where i ≥ 1, as stated in Section 3.2, and manually checked the solution files to
find out valid solutions (may not be optimal).

The final valid configuration of the pseudo-preimage MitM attack on 14-
round weakened Camellia-MMO without FL/FL−1 and whitening layers is shown
in Figure 9. We deploy the n-XOR model by considering the MixColumns and XOR
as a whole. The attack starts at A(9) and B(9) illustrated in Figure 9(a), in which
the initial DoFs for and are λB = λR = 7. In the forward computation path,
in order to facilitate the propagation of cells, there are lR = 6 linear constraints
imposed on A

(9)
SB [7] ⊕ B(9)[i], for i ∈ {0, 1, 2, 4, 5, 6}. Similarly, in the backward

computation path, lB = 6 linear constraints are imposed on A
(8)
SB [7] ⊕ A(9)[i],

for i ∈ {0, 1, 2, 4, 5, 6}, to facilitate the propagation of cells. Hence, we get
dB = λB − lB = 1 and dR = λR − lR = 1.

Around the feed-forward mechanism of MMO mode, we set global constraints
on round keys (k0, k1, k12, k13) to preserve some attributes like [28]. Specifically,
for the given target H0∥H1, A

(0)
SB equals to A

(13)
SB by setting k0 = k13⊕H0 globally.

Since B(0) = MC(A(13)
SB )⊕A(12)⊕H1 and A(1) = B(0)⊕MC(A(0)

SB ), then we can get
A(1) = A(12)⊕H1. Similarly, A(2) equals to B(12)⊕H0 by setting k1 = k12⊕H1.
The cost to determine such proper subkeys is given in Section 5.2 and will not
exceed the time complexity of main MitM procedure.

The matching points are A(5) and B(5) in Figure 9(c). At first glance, there
are no degree for the direct matching. However, after applying a linear trans-
formation P−1 to B(5) as in Figure 10, two-byte degree of match are derived.
Since dB = dR = 1, we only use one-byte for match, i.e., dm = 1. The specific
matching equation is Equation (6).

⊕

i∈[0,1,2,4,5,6]

B(3)[i]⊕A
(3)
SB [3] =

⊕

i∈[0,1,2,4,5,6]

A(6)[i]⊕A
(5)
SB [3] (6)

According to Equation (1), the total time complexity is bounded by 28×(16−min{1,1,1}) ≈
2120. A detailed attack procedure is given in Algorithm 3. The memory complex-
ity of a hash table L is 28. And this attack can be converted to a second preimage
attack with a time complexity of 2125 according to [24, Fact9.99].
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Fig. 8: Meet-in-the-Middle key recovery attack on 12-round weakened Midori64,
optimized for time complexity
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Fig. 9: Meet-in-the-Middle pseudo-preimage attack on 14-round weakened
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Algorithm 3: MitM Pseudo-Preimage Attack on 14-round weakened
Camellia-MMO
1 Setting a global key satisfying k0 = k13 ⊕H0, k1 = k12 ⊕H1;
2 for 216 values of the bytes in A(9)[3]∥B(9)[3] do
3 for cB ∈ F8×6

2 do
4 for cR ∈ F8×6

2 do
5 L← [ ]
6 Solve the following system of equations to find the solution space

SB of in A(9) and B(9); /* |SB| = 28×(7−6) = 28 */
7

A
(8)
SB [7]⊕A(9)[0] = cB[0], A

(8)
SB [7]⊕A(9)[1] = cB[1], A

(8)
SB [7]⊕A(9)[2] = cB[2],

A
(8)
SB [7]⊕A(9)[4] = cB[3], A

(8)
SB [7]⊕A(9)[5] = cB[4], A

(8)
SB [7]⊕A(9)[6] = cB[5].

8 Solve the following system of equations to find the solution space
SR of in A(9) and B(9); /* |SB| = 28×(7−6) = 28 */

9

A
(9)
SB [7]⊕B(9)[0] = cR[0], B

(9)
SB [7]⊕A(9)[1] = cR[1], A

(9)
SB [7]⊕B(9)[2] = cR[2],

A
(9)
SB [7]⊕B(9)[4] = cR[3], A

(9)
SB [7]⊕B(9)[5] = cR[4], A

(9)
SB [7]⊕B(9)[6] = cR[5].

10 for vB ∈ SB do
11 Compute forward to A(3) and B(3), derive 1-byte EndB by
12

EndB ← P−1
(
B(3)

)
[3]⊕A

(3)
SB [3]

13 L[EndB]← vB;
14 end
15 for vR ∈ SR do
16 Compute backward to A(6) and B(6), derive 1-byte EndR by
17

EndR ← P−1
(
A(6)

)
[3]⊕A

(5)
SB [3]

18 for vB ∈ L[EndR] do
19 Reconstruct the (candidate) message X;

/* 28×(1+1−1) = 28 values passed the filter */
20 if X is a preimage then
21 Output X and stop;
22 end
23 end
24 end
25 end
26 end
27 end
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5.2 The Cost to Determine a Proper Key

The key schedule of Camellia with 128-bit key is shown in Figure 15. As ex-
plained above, we only need to focus on (k0, k1, k12, k13) [1],

k0 ← K ′
A, k1 ← K ′′

A, k12 ← K ′′[30−63]∥K ′[0−29], k13 ← K ′[30−63]∥K ′′[0−29].

As shown in Figure 15, every internal state can be derived for given K ′ and
S0. Hence, we get K ′′ = F0(K

′)⊕S0 and K ′′
A = F2(F1(S0))⊕F0(K

′). According
to the global constraints k0 = k13⊕H0 and k1 = k12⊕H1, the relation between
K ′ and S0 can be represented as Equation (7).

F2(F1(S0))⊕ F0(K
′) =

(
F0(K

′)⊕ S0

)
[30− 63]∥K ′[0− 29]⊕H1 (7)

Besides, we note that K ′ and S0 can be placed at two sides of Equation (8),
respectively. The left-hand-side of Equation (8) only contains variables in terms
of K ′, while the right-hand-side of Equation (8) depends on S0.

F0(K
′)⊕F0(K

′)[30−63]∥K ′[0−29] = F2(F1(S0))⊕S0[30−63]∥
30︷ ︸︸ ︷

0 · · · 0⊕H1 (8)

Then, an algebraic meet-in-the-middle attack can be mounted by enumerating
K ′ and S0 independently to filter out valid pairs according to Equation (8), i.e.
dB = dR = dm = 64. The time and memory complexity are both 264. Besides,
the memory cost can be further reduced by extracting partial x bits of K ′ and
S0 as global variables. Then, the memory can be reduced by a fraction of 2x,
while the total time is bounded by 264+x. To avoid exceeding the time cost of
main MitM procedure, 64 + x ≤ 120 should be fulfilled, i.e., x can take 56 at
most. The corresponding memory cost is 28.

6 MitM Preimage Attack on 6-Round Aria

Aria is an SPN-based block cipher that supports a 128-bit block. In this work,
we target on the version with a 128-bit key. The state is treated as a 4×4 matrix.
And the diffusion layer is a 16 × 16 boolean matrix. The detailed specification
of Aria is presented in Appendix B.3.

Since the large size diffusion layer, only the n-XOR model can be applied
to describe the MitM attribution propagation through the diffusion layer. By
relaxing the constraint to min{dB, dR, dm} ≥ 1 − i, where i ≥ 1, as stated in
Section 3.2, we finally found out a valid configuration of the pseudo-preimage
MitM attack on 6-round Aria-DM as shown in Figure 11 (may not be optimal).
The attack starts at A(1) in which the initial DoFs for and are λB = 1, λR =

14, respectively. Since there are non-linear constraints on cells to compute A
(2)
DL

through the DL operation. We use the table-based method in [13] to solve such
non-linear constraints.
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Fig. 11: Meet-in-the-Middle pseudo-preimage attack on 6-round Aria-DM

Precomputation of red initial values. By enumerating the cells in A(1), in the
backward computation path, two constraints imposed on cells can be computed
as follows:

{
A

(0)
DL [0]⊕A

(0)
DL [6]⊕A

(0)
DL [7]⊕A

(0)
DL [8]⊕A

(0)
DL [10]⊕A

(0)
DL [13] = c[0]

A
(0)
DL [0]⊕A

(0)
DL [4]⊕A

(0)
DL [5]⊕A

(0)
DL [9]⊕A

(0)
DL [11]⊕A

(0)
DL [14] = c[1]

In the forward computation path, there are 11 constraints imposed on the
cells. During the DL operation in the 2nd round, 6 constraints are imposed on
the cells. The specific expression of the constraints is shown in as follows:





A
(1)
SL [4]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [9]⊕A

(1)
SL [13]⊕A

(1)
SL [14] = c[2]

A
(1)
SL [4]⊕A

(1)
SL [9]⊕A

(1)
SL [10]⊕A

(1)
SL [14]⊕A

(1)
SL [15] = c[3]

A
(1)
SL [2]⊕A

(1)
SL [5]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [13]⊕A

(1)
SL [15] = c[4]

A
(1)
SL [0]⊕A

(1)
SL [6]⊕A

(1)
SL [7]⊕A

(1)
SL [8]⊕A

(1)
SL [10]⊕A

(1)
SL [13] = c[5]

A
(1)
SL [5]⊕A

(1)
SL [7]⊕A

(1)
SL [10]⊕A

(1)
SL [11] = c[6]

A
(1)
SL [10]⊕A

(1)
SL [11]⊕A

(1)
SL [12]⊕A

(1)
SL [15] = c[7]

Based on the above 6 constraints
(
c[2], c[3], c[4], c[5], c[6], c[7]

)
, the effect of the

cells on the 7 cells A
(1)
DL [0, 5, 7, 10, 11, 13, 14] can be cancelled as follows:
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A
(1)
SL [4]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [9]⊕A

(1)
SL [13]⊕A

(1)
SL [14] = c[2]

A
(1)
SL [4]⊕A

(1)
SL [9]⊕A

(1)
SL [10]⊕A

(1)
SL [14]⊕A

(1)
SL [15] = c[3]

A
(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [11]⊕A

(1)
SL [12]⊕A

(1)
SL [13] = c[2]⊕ c[3]⊕ c[7]

A
(1)
SL [2]⊕A

(1)
SL [5]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [13]⊕A

(1)
SL [15] = c[4]

A
(1)
SL [2]⊕A

(1)
SL [4]⊕A

(1)
SL [7]⊕A

(1)
SL [9]⊕A

(1)
SL [12]⊕A

(1)
SL [14] = c[2]⊕ c[4]⊕ c[6]⊕ c[7]

A
(1)
SL [0]⊕A

(1)
SL [6]⊕A

(1)
SL [7]⊕A

(1)
SL [8]⊕A

(1)
SL [10]⊕A

(1)
SL [13] = c[5]

A
(1)
SL [0]⊕A

(1)
SL [4]⊕A

(1)
SL [5]⊕A

(1)
SL [9]⊕A

(1)
SL [11]⊕A

(1)
SL [14] = c[2]⊕ c[5]⊕ c[6]

In a similar way, the 5 constraints
(
c[8], c[9], c[10], c[11], c[12]

)
imposed on the

cells through the DL in the 3rd round are enough to cancel the effect of the cells
on the 6 cells A(2)

DL [4, 6, 8, 9, 13, 14]. For the specific expression of the constraints,
please refer to Algorithm 5 in Appendix C. And the detailed DoFs consumption
process is illustrated as follows:





A
(2)
SL [2]⊕A

(2)
SL [8]⊕A

(2)
SL [15] = c[8]

A
(2)
SL [2]⊕A

(2)
SL [9]⊕A

(2)
SL [12] = c[8]⊕ c[12]

A
(2)
SL [1]⊕A

(2)
SL [4]⊕A

(2)
SL [15] = c[9]

A
(2)
SL [1]⊕A

(2)
SL [6]⊕A

(2)
SL [12] = c[9]⊕ c[11]

A
(2)
SL [3]⊕A

(2)
SL [6]⊕A

(2)
SL [8] = c[10]

A
(2)
SL [3]⊕A

(2)
SL [4]⊕A

(2)
SL [9] = c[10]⊕ c[11]⊕ c[12]

In summary, the values of lR = 13 constraints can be determined for given values
of λR = 14 cells in A(1). Hence, we get dB = 1, dR = λR − lR = 1.

Matching process. The matching points are A(4)
SL , A

(4)
DL , indirect matching through

the DL provides one-byte match, i.e., DoM = 1. The specific matching process is
Equation (9).

A
(4)
SL [0]⊕A

(4)
DL [13]⊕A

(4)
DL [14] = A

(4)
DL [3]⊕A

(4)
DL [4]⊕A

(4)
DL [6]⊕A

(4)
DL [8]⊕A

(4)
DL [9]

(9)
Based on the above MitM framework, combined with the table-based tech-

nique for solving nonlinear constrained neutral words [13], Algorithm 5 gives a
detailed attack procedure in Appendix C.

Complexity. The nonlinear constraints imposed on cells are solved in Lines 2-8
of Algorithm 5. That is, 14 cells of A(1)[0, 2, 4-15] are traversed to compute
the exact values of cR[0-12]. Then, the values of A(1)[0, 2, 4-15] are stored in a
hash table V under the index of cR[0-12]. Hence, the time complexity of the
precomputation phase is 28×14 = 2112. The memory complexity is also 2112 to
store table V .

Lines 10-24 of Algorithm 5 stand for one MitM episode. With the parameters
(dB, dR, dm) = (1, 1, 1), there are a total of 28×(1+1−1) = 28 solutions that can
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be filtered out according to Equation (9). In order to find a full match of 128-
bit, it’s expected to repeat 2120−8 = 2112 MitM episodes. By traversing the in
A(1) at the outer loop and enumerating the 13 constraints imposed on cells,
it is sufficient to find a full match. According to Equation (1), The total time
complexity of the attack phase is

28 × 2112 + 28×(16−min{1,1,1}) ≈ 2120.

The memory complexity is dominated by the table V of 2112. And this attack
can be converted to a preimage attack with a time complexity of 2125 according
to [24, Fact9.99].

7 Conclusion

In this paper, we propose the n-XOR model to simulate the XOR operation with
an arbitrary number of input cells. Specifically, the size of n-XOR model is inde-
pendent of the number of input cells, and thus it is well suitable for primitives
with a binary matrix as the diffusion layer. To eliminate the subtle inaccuracies
caused by n-XOR model, we introduce another check model to determine the ex-
act DoFs consumption of MitM attributes propagation. However, the size of the
check model is still limited by the number of input cells n and does not work well
when n > 4 in this paper. We expect that there will be more elegant and efficient
techniques to overcome this defect and we leave this as an open problem.

We apply the above two new models to a MitM key recovery attack on 11-
round Midori64 with low data and memory. Besides, when omitting the whiten-
ing layers, two 12-round MitM characteristics for key recovery attack are found
for optimizing time and data, respectively. For hash functions, we obtain im-
proved preimage attack on 14-round weakened Camellia-MMO and 6-round Aria-
DM. Both attacks are improved by 1 round compared to previous best records.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit block cipher suitable for multiple platforms — design and-
analysis. In: Selected Areas in Cryptography. pp. 39–56. Springer Berlin Heidelberg
(2001). https://doi.org/10.1007/3-540-44983-3_4

2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block md4, 63-step md5 and more. In:
Selected Areas in Cryptography. pp. 103–119. Springer Berlin Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4_7

3. Aumasson, J., Meier, W., Mendel, F.: Preimage attacks on 3-pass HAVAL and
step-reduced MD5. In: SAC. vol. 5381, pp. 120–135 (2008). https://doi.org/10.
1007/978-3-642-04159-4_8

4. Baek, S., Kim, J.: Quantum rebound attacks on reduced-round ARIA-based hash
functions. Cryptology ePrint Archive, Paper 2022/1604 (2022), https://eprint.
iacr.org/2022/1604

22

https://doi.org/10.1007/3-540-44983-3_4
https://doi.org/10.1007/3-540-44983-3_4
https://doi.org/10.1007/978-3-642-04159-4_7
https://doi.org/10.1007/978-3-642-04159-4_7
https://doi.org/10.1007/978-3-642-04159-4\_8
https://doi.org/10.1007/978-3-642-04159-4_8
https://doi.org/10.1007/978-3-642-04159-4\_8
https://doi.org/10.1007/978-3-642-04159-4_8
https://eprint.iacr.org/2022/1604
https://eprint.iacr.org/2022/1604


5. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita,
T., Regazzoni, F.: Midori: A block cipher for low energy. In: ASIACRYPT
2015. pp. 411–436. Springer Berlin Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48800-3_17

6. Bao, Z., Dong, X., Guo, J., Li, Z., Shi, D., Sun, S., Wang, X.: Automatic search
of meet-in-the-middle preimage attacks on aes-like hashing. In: EUROCRYPT
2021. pp. 771–804. Springer International Publishing (2021). https://doi.org/
10.1007/978-3-030-77870-5_27

7. Bao, Z., Guo, J., Shi, D., Tu, Y.: Superposition meet-in-the-middle attacks:
updates on fundamental security of aes-like hashing. In: Annual International
Cryptology Conference. pp. 64–93. Springer (2022). https://doi.org/10.1007/
978-3-031-15802-5_3

8. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
aes. In: Advances in Cryptology – ASIACRYPT 2011. pp. 344–371. Springer Berlin
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_19

9. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: Cryptanaly-
sis of the lightweight block cipher ktantan. In: SAC. pp. 229–240. Springer Berlin
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_16

10. Chen, S., Guo, J., List, E., Shi, D., Zhang, T.: Diving deep into the preimage
security of aes-like hashing. Cryptology ePrint Archive, Paper 2024/300 (2024),
https://eprint.iacr.org/2024/300

11. Degré, M., Derbez, P., Lahaye, L., Schrottenloher, A.: New models for the crypt-
analysis of ascon. Cryptology ePrint Archive, Paper 2024/298 (2024), https:
//eprint.iacr.org/2024/298

12. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977). https://doi.org/10.
1109/C-M.1977.217750

13. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle attacks
revisited: Key-recovery, collision, and preimage attacks. In: CRYPTO 2021. pp.
278–308. Springer International Publishing (2021). https://doi.org/10.1007/
978-3-030-84252-9_10

14. Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In:
FSE 2014. pp. 61–81 (2014). https://doi.org/10.1007/978-3-662-46706-0_4

15. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https:
//www.gurobi.com

16. Hong, D., Koo, B., Kim, D.C.: Preimage and second-preimage attacks on pgv
hashing modes of round-reduced aria, camellia, and serpent. IEICE T Fund Electr
95(1), 372–380 (2012), https://api.semanticscholar.org/CorpusID:19830401

17. Hou, Q., Dong, X., Qin, L., Zhang, G., Wang, X.: Automated meet-in-the-middle
attack goes to feistel. In: ASIACRYPT 2023. pp. 370–404. Springer Nature Singa-
pore (2023). https://doi.org/10.1007/978-981-99-8727-6_13

18. Isobe, T.: A single-key attack on the full gost block cipher. Journal of cryptology
26, 172–189 (2013). https://doi.org/10.1007/s00145-012-9118-5

19. ISO/IEC: 10118-2:2010 Information technology — Security techniques - Hash-
functions - Part 2: Hash-functions using an n-bit block cipher, 3rd edn (2010)

20. ISO/IEC 18033-3:2010 Information technology-Security techniques-
EncryptionAlgorithms-Part 3: Block ciphers (2010)

21. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon,
E.J., Lee, S., Lee, J., et al.: New block cipher: Aria. In: Inscrypt. pp. 432–445.
Springer (2003). https://doi.org/10.1007/978-3-540-24691-6_32

23

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-030-77870-5_27
https://doi.org/10.1007/978-3-030-77870-5_27
https://doi.org/10.1007/978-3-030-77870-5_27
https://doi.org/10.1007/978-3-030-77870-5_27
https://doi.org/10.1007/978-3-031-15802-5_3
https://doi.org/10.1007/978-3-031-15802-5_3
https://doi.org/10.1007/978-3-031-15802-5_3
https://doi.org/10.1007/978-3-031-15802-5_3
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-19574-7_16
https://doi.org/10.1007/978-3-642-19574-7_16
https://eprint.iacr.org/2024/300
https://eprint.iacr.org/2024/298
https://eprint.iacr.org/2024/298
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1007/978-3-030-84252-9_10
https://doi.org/10.1007/978-3-030-84252-9_10
https://doi.org/10.1007/978-3-030-84252-9_10
https://doi.org/10.1007/978-3-030-84252-9_10
https://doi.org/10.1007/978-3-662-46706-0_4
https://doi.org/10.1007/978-3-662-46706-0_4
https://www.gurobi.com
https://www.gurobi.com
https://api.semanticscholar.org/CorpusID:19830401
https://doi.org/10.1007/978-981-99-8727-6_13
https://doi.org/10.1007/978-981-99-8727-6_13
https://doi.org/10.1007/s00145-012-9118-5
https://doi.org/10.1007/s00145-012-9118-5
https://doi.org/10.1007/978-3-540-24691-6_32
https://doi.org/10.1007/978-3-540-24691-6_32


22. Lin, L., Wu, W.: Meet-in-the-middle attacks on reduced-round midori64. IACR
ToSC pp. 215–239 (2017). https://doi.org/10.13154/tosc.v2017.i1.215-239

23. Liu, Y., Xiang, Z., Chen, S., Zhang, S., Zeng, X.: A novel automatic technique based
on milp to search for impossible differentials. In: ACNS. pp. 119–148. Springer
Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-33488-7_5

24. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., USA, 1st edn. (1996)

25. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Advances in Cryptology — CRYPTO’ 93. pp. 368–378.
Springer Berlin Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_31

26. Sasaki, Y.: Meet-in-the-middle preimage attacks on aes hashing modes and an
application to whirlpool. In: FSE. pp. 378–396. Springer Berlin Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9_22

27. Sasaki, Y.: Preimage attacks on feistel-sp functions: Impact of omitting the last
network twist. In: ACNS. pp. 170–185. Springer Berlin Heidelberg (2013). https:
//doi.org/10.1007/978-3-642-38980-1_11

28. Sasaki, Y.: Preimage attacks on feistel-sp functions: Impact of omitting the last
network twist. IEICE T Fund Electr 98(1), 61–71 (2015). https://doi.org/10.
1587/transfun.E98.A.61

29. Sasaki, Y.: Integer linear programming for three-subset meet-in-the-middle attacks:
Application to GIFT. In: IWSEC 2018. vol. 11049, pp. 227–243 (2018). https:
//doi.org/10.1007/978-3-319-97916-8_15

30. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: EUROCRYPT 2009, Proceedings. vol. 5479, pp. 134–152. Springer (2009).
https://doi.org/10.1007/978-3-642-01001-9_8

31. Sasaki, Y., Emami, S., Hong, D., Kumar, A.: Improved known-key distinguishers
on feistel-sp ciphers and application to camellia. In: Information Security and Pri-
vacy. pp. 87–100. Springer Berlin Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31448-3_7

32. Sasaki, Y., Wang, L., Sakai, Y., Sakiyama, K., Ohta, K.: Three-subset meet-in-the-
middle attack on reduced xtea. In: AFRICACRYPT 2012. pp. 138–154. Springer
Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0_9

33. Schrottenloher, A., Stevens, M.: Simplified mitm modeling for permutations: New
(quantum) attacks. In: CRYPTO 2022. pp. 717–747. Springer Nature Switzerland
(2022). https://doi.org/10.1007/978-3-031-15982-4_24

34. Schrottenloher, A., Stevens, M.: Simplified modeling of mitm attacks for block
ciphers: New (quantum) attacks. IACR Transactions on Symmetric Cryptology
2023, 146–183 (2023). https://doi.org/10.46586/tosc.v2023.i3.146-183

35. Shahmirzadi, A.R., Azimi, S.A., Salmasizadeh, M., Mohajeri, J., Aref, M.R.: Im-
possible differential cryptanalysis of reduced-round midori64 block cipher. In: IS-
CISC. pp. 99–104 (Sep 2017). https://doi.org/10.1109/ISCISC.2017.8488362

36. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: ASIACRYPT
2014. pp. 158–178 (2014). https://doi.org/10.1007/978-3-662-45611-8_9

37. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-
in-the-middle cryptanalysis of ktantan (poster). In: Information Security and Pri-
vacy. pp. 433–438. Springer Berlin Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22497-3_31

24

https://doi.org/10.13154/tosc.v2017.i1.215-239
https://doi.org/10.13154/tosc.v2017.i1.215-239
https://doi.org/10.1007/978-3-031-33488-7_5
https://doi.org/10.1007/978-3-031-33488-7_5
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/978-3-642-21702-9_22
https://doi.org/10.1007/978-3-642-21702-9_22
https://doi.org/10.1007/978-3-642-38980-1_11
https://doi.org/10.1007/978-3-642-38980-1_11
https://doi.org/10.1007/978-3-642-38980-1_11
https://doi.org/10.1007/978-3-642-38980-1_11
https://doi.org/10.1587/transfun.E98.A.61
https://doi.org/10.1587/transfun.E98.A.61
https://doi.org/10.1587/transfun.E98.A.61
https://doi.org/10.1587/transfun.E98.A.61
https://doi.org/10.1007/978-3-319-97916-8\_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8\_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-642-01001-9\_8
https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1007/978-3-642-31448-3_7
https://doi.org/10.1007/978-3-642-31448-3_7
https://doi.org/10.1007/978-3-642-31448-3_7
https://doi.org/10.1007/978-3-642-31448-3_7
https://doi.org/10.1007/978-3-642-31410-0_9
https://doi.org/10.1007/978-3-642-31410-0_9
https://doi.org/10.1007/978-3-031-15982-4_24
https://doi.org/10.1007/978-3-031-15982-4_24
https://doi.org/10.46586/tosc.v2023.i3.146-183
https://doi.org/10.46586/tosc.v2023.i3.146-183
https://doi.org/10.1109/ISCISC.2017.8488362
https://doi.org/10.1109/ISCISC.2017.8488362
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-642-22497-3_31
https://doi.org/10.1007/978-3-642-22497-3_31
https://doi.org/10.1007/978-3-642-22497-3_31
https://doi.org/10.1007/978-3-642-22497-3_31


A Details of MILP Models for MitM Attack

In this section, we briefly recall the MILP model for MC and XOR operation of
AES in [6].

The MC. The rules of the MC are formalized in two different directions in
[6]. Taking the forward computation as an example, the set of rules is given as
follows:

1. If there is at least one in the input column, all the outputs are ;
2. If there are but no and in the input column, then all the outputs are

;
3. If all the inputs are , then all the outputs are ;
4. If there are and but no in the input column, each output must be

or . Moreover, the sum of the numbers of and in the input and output
columns must be no more than 3;

5. If there are but no and in the input column, then each output must
be or . Moreover, the number of in the input and output columns must
be no more than 3.

Some examples of valid coloring schemes of the MC-RULE in the forward compu-
tation are shown in Figure 12.
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MC

-0

MC

-0

MC

-0

MC

-1

MC

-1

MC

-2

MC

-0

MC

-3

MC

-2

Fig. 12: Some valid coloring schemes for MC in forward computation in [6]

Let (α[0], α[1], α[2], α[3])T and (β[0], β[1], β[2], β[3])T be the input and output
columns. In [6], Bao et al. use three 0-1 indicator variables µ, υ, ω for the input
column to fulfill different rules auxiliary. Let µ = 1 if and only if there exists
i ∈ {0, 1, 2, 3} such that (xα

i , y
α
i ) = (0, 0). Let υ = 1 if and only if xα

i = 1 for
each i ∈ {0, 1, 2, 3}. Let ω = 1 if and only if yαi = 1 for each i ∈ {0, 1, 2, 3}.
Then, with the help of µ, υ, ω, the MC-RULE in the forward computation can be
described as a system of inequalities:





3∑

i=0

xα
i − 4υ ≥ 0;

3∑

i=0

xα
i − υ ≤ 3.





3∑

i=0

xβ
i + 4µ ≤ 4;

3∑

i=0

yβi + 4µ ≤ 4;

3∑

i=0

yβi − 4ω = 0;





3∑

i=0

(xα
i + xβ

i )− 5υ ≤ 3;

3∑

i=0

(xα
i + xβ

i )− 8υ ≥ 0.
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The XOR. For the XOR operation in two different directions, the coloring
schemes of the input and output cells are shown in Figure 13.

(-1 )

*

(a) For the forward computation

(-1 )

*

(b) For the backward computation

Fig. 13: The XOR in [6], where a “*” means that the cell can be any color

Let α[i], β[i] denote the input cells and γ[i] denote the output cell, where
0 ≤ i ≤ 15. Let a boolean variable di indicate the consumption of DoF, where
di = 1 means that one DoF is consumed to let the corresponding output be .
The set of rules restrict (xα

i , y
α
i , x

β
i , y

β
i , x

γ
i , y

γ
i , di) to a subset of F7

2, which can
be described by a system of linear inequalities with the convex hull technique in
[36].

B Descriptions of Midori, Camellia and Aria

B.1 Specification of Midori

Midori is a family of SPN-based lightweight block cipher designed by Banik et
al. at ASIACRYPT 2015 [5]. With its low energy consumption, it is suitable for
deployment in edge gateways and end devices to facilitate blockchain on-chain
and off-chain interactions. Two versions of Midori use a 64-bit and a 128-bit
internal state, respectively. In this work, we focus on the 64-bit version denoted
by Midori64. The internal state of Midori64 can be represented as a 4×4 array
as shown in Figure 14. Midori64 is of 16 iterated rounds and each round function
consists of four operations:

- SubCell (SC): Apply the 4-bit non-linear involution S-box on each nibble.
- ShuffleCell (ShC): Update the position of each nibble by a pre-defined

permutation.
- MixColumn (MC): Each column is left multiplied by a 4 × 4 binary matrix
M as follows.

M =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 .

- KeyAdd (KA): A round key is XORed to the internal state.

For the last round, the operations ShC, MC and KA are omitted. Two sub-keys
K(0)∥K(1) are derived from the 128-bit master key K and the round keys are
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Fig. 14: One full round function of Midori64

generated by K(r%2) ⊕ αr alternatively, where 0 ≤ r ≤ 14 and αr is a round
constant. Besides, additional KA operations are applied with a whitening key
WK = K(0) ⊕K(1) before the first round and after the last round.

B.2 Specification of Camellia

Camellia is a Feistel-based block cipher designed by NTT and Mitsubishi Elec-
tric Corporation [1] and has been specified in ISO/IEC 18033-3:2010 [20]. This
work only targets on the weakened version of Camellia with 128 bits block and
key size, where the FL/FL−1 transformations and whitening layers are omitted.
The iterated round function consists of AddRoundKey (AK), SubBytes (SB) and
MixColumns (MC) as shown in Figure 15. The linear layer of MC is a 8× 8 binary
matrix described as follows.

P =




1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0




.

The key schedule takes a 128-bit key K = K ′∥K ′′ as the input of 4-round Feistel
structure, as shown in Figure 15, to compute another 128-bit key KA = K ′

A∥K ′′
A.

The round function is borrowed from the encryption, where the round keys
are pre-defined constants. Then, each round key ki can be derived from the
rotation of K or KA. Since we only focus on (k0, k1, k12, k13), we omit detailed
key schedule here.

B.3 Specification of Aria

Aria was proposed by Korean researchers at ICISC 2003 [21] and the version
1.2 was subsequently included in the Korean Standard (KS X1213) in 2004. In
this paper, we focus our attention on Aria-128, which refers to both the block
and key sizes are 128 bits, and which we henceforth abbreviate as Aria. Aria
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Fig. 15: One full round function of Camellia and the key schedule of Camellia

is based on SPN structure with 12 rounds, and each round except the last one
consists of Substitution-Layer (SL), Diffusion-Layer (DL) and AddRoundKey
(AK) as shown in Figure 16. In the last round, the DL is omitted. Before the first
round, a whitening key is XORed to the plaintext. The updated matrix P used in
DL is a 16×16 binary matrix described as follows.

P =




0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1




.

In this paper, we target on the preimage attack on Aria-DM. Since the key is
usually fixed as a constant in the DM hashing mode, we omit the description of
the key schedule here.

C Figure and algorithms for Midori64 and Aria
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Fig. 16: One full round function of Aria

Algorithm 4: MitM Key Recovery Attack on 12-round weakened
Midori64, , optimized for data complexity

1 C[1, 3, 5, 8, 9, 13, 14]← 0, A(9)
MC [5, 9, 13]← 0

2 A
(10)
MC [0]⊕A

(10)
MC [4]← 0, A(10)

MC [0]⊕A
(10)
MC [12]← 0, A(10)

MC [2]⊕A
(10)
MC [6]← 0,

A
(10)
MC [2]⊕A

(10)
MC [10]← 0, A(10)

MC [7]⊕A
(10)
MC [11]← 0, A(10)

MC [7]⊕A
(10)
MC [15]← 0

3 Collecting plaintext-ciphertext pairs by traversing the non-constant 16− 7 = 9
cells in C, and storing them in table H

4 for all possible values of the cells in K(0) and K(1) do
5 for (cR,1, cR,2) ∈ F2×4

2 do
6 Derive the solution space SR of cells by{

K(0)[5]⊕K(0)[9] = cR,1

K(0)[5]⊕K(0)[13] = cR,2

7 L← [ ]
8 for vR ∈ SR do
9 Compute A

(4)
ShC[0, 4] along the forward computation path:

10 A
(9)
MC → C → DecK(C)→ A

(4)
ShC by accessing H

11 L[A
(4)
ShC[0]⊕A

(4)
ShC[4]]← vR

12 end
13 for 24 possible values of K(1)[15] do
14 Compute A

(4)
MC [0, 4] along the backward computation path:

C → A
(4)
MC

15 for Candidate keys in L[A
(4)
MC [0]⊕A

(4)
MC [4]] do

16 Test the guessed key with several plaintext-ciphertext pairs
17 end
18 end
19 end
20 end
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Fig. 17: Meet-in-the-Middle key recovery attack on 12-round weakened
Midori64, optimized for data complexity

30



Algorithm 5: MitM Pseudo-Preimage Attack on 6-round Aria-DM
1 for 2x possible values of in A(1) /* x+ 104 = 120− 8, i.e., x = 8 */
2 do
3 V ← [ ];
4 for vR ∈ F8×14

2 in A(1) do
5 Compute backward to to get the values of the cells in A

(0)
DL ,

cR[0] ← A
(0)
DL [0]⊕A

(0)
DL [6]⊕A

(0)
DL [7]⊕A

(0)
DL [8]⊕A

(0)
DL [10]⊕A

(0)
DL [13],

cR[1] ← A
(0)
DL [0]⊕A

(0)
DL [4]⊕A

(0)
DL [5]⊕A

(0)
DL [9]⊕A

(0)
DL [11]⊕A

(0)
DL [14].

6 Compute forward to the cells in A
(1)
SL and A

(2)
SL ,

cR[2] ← A
(1)
SL [4]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [9]⊕A

(1)
SL [13]⊕A

(1)
SL [14],

cR[3] ← A
(1)
SL [4]⊕A

(1)
SL [9]⊕A

(1)
SL [10]⊕A

(1)
SL [14]⊕A

(1)
SL [15],

cR[4] ← A
(1)
SL [2]⊕A

(1)
SL [5]⊕A

(1)
SL [6]⊕A

(1)
SL [8]⊕A

(1)
SL [13]⊕A

(1)
SL [15],

cR[5] ← A
(1)
SL [0]⊕A

(1)
SL [6]⊕A

(1)
SL [7]⊕A

(1)
SL [8]⊕A

(1)
SL [10]⊕A

(1)
SL [13],

cR[6] ← A
(1)
SL [5]⊕A

(1)
SL [7]⊕A

(1)
SL [10]⊕A

(1)
SL [11],

cR[7] ← A
(1)
SL [10]⊕A

(1)
SL [11]⊕A

(1)
SL [12]⊕A

(1)
SL [15].

cR[8] ← A
(2)
SL [2]⊕A

(2)
SL [8]⊕A

(2)
SL [15],

cR[9] ← A
(2)
SL [1]⊕A

(2)
SL [4]⊕A

(2)
SL [15],

cR[10] ← A
(2)
SL [3]⊕A

(2)
SL [6]⊕A

(2)
SL [8],

cR[11] ← A
(2)
SL [4]⊕A

(2)
SL [6]⊕A

(2)
SL [12]⊕A

(2)
SL [15],

cR[12] ← A
(2)
SL [8]⊕A

(2)
SL [9]⊕A

(2)
SL [12]⊕A

(2)
SL [15].

7 V [cR]← vR; /* There are 28 elements in V [cR] for each cR */
8 end
9 for cR ∈ F8×13

2 do
10 L← [ ]
11 for vR ∈ V [cR] do
12 Compute to the cells in A

(4)
DL , and one-byte EndR for matching is

derived by
13

EndR ←
(
A

(4)
DL [3]⊕A

(4)
DL [4]⊕A

(4)
DL [6]⊕A

(4)
DL [8]⊕A

(4)
DL [9]

)
14 L[EndR]← vR
15 end
16 for 28 possible values of A(1)[3] do
17 Compute to the cells in A

(4)
DL and A

(4)
SL , derive one-byte EndB for

matching by
18

EndB ←
(
A

(4)
SL [0]⊕A

(4)
DL [13]⊕A

(4)
DL [14]

)
19 for vR ∈ L[EndB] do
20 Reconstruct the (candidate) message X
21 if X is a preimage then
22 Output X and stop
23 end
24 end
25 end
26 end
27 end

31


	Meet-in-the-Middle Attack on Primitives with Binary Matrix Linear Layer 
	Introduction
	Our Contributions.

	Preliminaries: Automated Meet-in-the-Middle Attack
	Framework of the Meet-in-the-Middle Attack
	Enhanced Techniques

	New Models for Linear Layer with Binary Matrix
	N-XOR Model
	Check Model: More Accurate Consumption of DoFs

	MitM Key Recovery Attack on Midori64
	MitM Key Recovery Attack on 11-round Midori64
	MitM Key Recovery Attack on 12-round Weakened Midori64

	MitM Preimage Attack on Weakened Camellia
	The MitM Characteristic of 14-round weakened Camellia
	The Cost to Determine a Proper Key

	MitM Preimage Attack on 6-Round Aria
	Conclusion
	Details of MILP Models for MitM Attack
	The MC.
	The XOR.


	Descriptions of Midori, Camellia and Aria
	Specification of Midori
	Specification of Camellia
	Specification of Aria

	Figure and algorithms for Midori64 and Aria


