
On Gaussian Sampling for q-ary Lattices and
Linear Codes with Lee Weight

Maiara F. Bollauf1, Maja Lie2, and Cong Ling2

1 Simula UiB, N-5006 Bergen, Norway
maiarabollauf@gmail.com

2 Imperial College London, London SW7 2AZ, England
{m.lie22, c.ling}@imperial.ac.uk

Abstract. We show that discrete Gaussian sampling for a q-ary lattice
is equivalent to codeword sampling for a linear code over Zq with the Lee
weight. This insight allows us to derive the theta series of a q-ary lattice
from the Lee weight distribution of the associated code.We design a novel
Gaussian sampler for q-ary lattices assuming an oracle that computes the
symmetrized weight enumerator of the associated code. We apply this
sampler to well-known lattices, such as the E8, Barnes-Wall, and Leech
lattice, highlighting both its advantages and limitations, which depend
on the underlying code properties. For certain root lattices, we show that
the sampler is indeed efficient, forgoing the need to assume an oracle. We
also discuss applications of our results in digital signature schemes and
the Lattice Isomorphism Problem. In many cases, our sampler achieves
a significant speed-up compared to state-of-the-art sampling algorithms
in cryptographic applications.

Keywords: Lattice Gaussian sampling · Lee weight · q-ary lattice ·
Schur product · Theta series.

1 Introduction

Lattice Gaussian sampling refers to the process of sampling vectors from a dis-
crete Gaussian distribution with a specified width s, defined over a lattice Λ.
This technique plays a fundamental role in lattice-based cryptography. Namely,
Gaussian sampling over lattices with the appropriate choice of width s enables
the solution of the closest vector problem (CVP) and the shortest vector prob-
lem (SVP) [2, 3] and it is also one of the main tools used in worst-to-average
case reductions for lattice problems [26]. Additionally, it is being used in the
construction of several lattice-based cryptographic protocols, such as signature
schemes, as it can be used to hide information about the lattice basis [16].

The width s of a Gaussian sampler over a lattice determines how wide the
distribution we sample from is. It is challenging for most lattices to sample over
discrete Gaussian distributions when s is not so large. In practical terms, the
security of the SVP or approximate SVP relies on the fact that it should be

2 Maiara F. Bollauf, Maja Lie, and Cong Ling

difficult for an adversary to obtain a lattice point within a radius s
√
n, where n

refers to the lattice dimension [30].
Micciancio and Regev [26] define the smoothing parameter of a lattice, which

is the minimum amount of Gaussian noise that, when added to a lattice, produces
a distribution close to uniform over Rn/Λ. Klein’s algorithm can be used to
sample from an arbitrary lattice for s sufficiently large, but s may be well above
the smoothing parameter [7]. Recently, Ducas and van Woerden [12] introduced
a hash-then-sign signature scheme based on the Lattice Isomorphism Problem
(LIP), which can be implemented with any lattice that has an efficient Gaussian
sampler with small sampling widths. Tight sampling for lattices would enhance
the security of the LIP-based signature scheme, as it would be able to withstand
attacks down to small approximation factors [12].

Lattice-based cryptographic protocols typically require sampling at or above
the smoothing parameter. The smoothing parameter is defined in terms of the
theta series, a lattice geometric invariant. Roughly, the theta series of a lattice Λ
characterizes the number of points in Λ with a given (Euclidean) norm. Unfor-
tunately, for a general lattice, we may not know its theta series and, therefore,
do not have a tight estimation for the smoothing parameter. As a consequence,
when sampling from a general lattice, the width s may significantly exceed the
smoothing parameter when, ideally, it should be as close to the smoothing pa-
rameter as possible to achieve improved security.

Gaussian sampling over Z for a fixed width s is usually efficient since it can
use precomputed data [28,30], while for general lattices, the complexity increases.
Therefore, one can sample efficiently over the Zn lattice utilizing one-dimensional
samplers of Z [7, Sec. 5.1]. One-dimensional samplers of Z and its shifts are often
used as subroutines in samplers for other lattices as well.

Lattice-based cryptography typically uses q-ary lattices, which only involves
integer arithmetic modulo q. Λ is called a q-ary lattice if qZn ⊆ Λ ⊆ Zn. Such
a lattice can be expressed in the form C + qZn, where C is a linear code in
Zn
q . In lattice theory, lattices obtained via error-correcting codes are denoted as

Constructions A, B, C, D, and E, where each letter indicates the linear codes that
are being employed (see [11, Ch. 5]). We will extensively work with Construction
A obtained from a single linear q-ary code C ⊆ Zn

q , Construction B from two
nested binary codes, and Construction D from several nested binary codes.

Ling et al. proposed a lattice Gaussian sampler using coset decomposition for
large enough s [21, 22]. In particular, [21] presented a sampler for Construction
A in which codewords are sampled uniformly at random and proved that the
resultant distribution is close to a lattice Gaussian if s exceeds the smoothing
parameter of qZ 3; it exemplified the method by considering the checkerboard
lattice Dn and Gosset lattice E8 and remarked that the method can be extended
to Construction D. Campello and Belfiore [8] proposed an efficient method for
sampling from the 2-ary Construction A and 4-ary Construction B lattices for
any width s. These constructions include the Dn, and the Barnes-Wall lattices

3 In fact, [21] addressed a general version of Construction A where the quotient Z/qZ
is replaced with Λ1/Λ2 for a pair of lattices Λ2 ⊆ Λ1.

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 3

E8 and BW16 (they also considered sampling from A2 and the Leech lattice
using coset decomposition). Their method relies on the relationship between the
theta series of the lattice and the Hamming weight enumerator of the underlying
binary linear code. In [14], Espitau et al. gave a general framework for efficient
Gaussian sampling over lattices using extensions of lattices and new bounds on
the smoothing parameter from lattice filtrations, assuming s is large enough.
The authors used their framework to build efficient samplers for the An,Dn,
and En lattices as base cases. Their method can also be used to sample from the
Barnes-Wall lattices BW2n again assuming s is large enough.

1.1 Our Contribution

A smaller width s leads to tighter security arguments, so ideally we want to
sample as close as possible to the smoothing parameter of Λ. This paper proposes
a new unrestricted sampler for q-ary lattices. By using the code formula of the
q-ary lattice, we simplify the theta series calculation for some families of q-
ary lattices and express the theta series in terms of the Lee weight enumerator
of the underlying q-ary codes. We extend these former results to q-ary lattices
obtained via Construction A for q ≥ 2 and Construction D. Our method requires
computing the Lee weight enumerator of some code, and this computation does
not depend on the choice of sampling width s. As a consequence, we improve the
efficiency of current state-of-the-art sampling for root lattices. For Construction
D, we build upon [8, 14, 21] by leveraging lattice filtrations in such a way that
we can apply the samplers recursively. More specifically, our contributions are
three-fold:

1. On the reduction front, we present polynomial-time reductions between Gaus-
sian sampling on q-ary lattices and sampling codewords of a linear code with
respect to the Lee weight profile, thereby establishing equivalence of the two
problems. Recently, linear codes in the Lee metric have received attention
in code-based cryptography. It is known that (the decision version of) the
problem of finding codewords with a given Lee weight is NP-complete [37]. In
practice, this Lee weight is chosen to be on the Lee-metric GV bound [33].
Since finding codewords with a specified Lee weight profile is at least as
hard, this implies that Gaussian sampling for q-ary lattices is, in general, a
computationally hard problem.

2. On the algorithmic front, we use the aforementioned reduction to design a
new sampler in which one can sample with an arbitrary width s. For the
q-ary (q = 2 and q = 4, respectively) lattices obtained via Construction A
and B from binary codes, our sampler coincides with the method of coset
decomposition explored in [8]. Then, we expand the sampling via cosets
technique to another q-ary lattice family, Construction D, and show that it
depends on the Lee weight distribution of the underlying codes in different
levels of the filtration.

3. Our proposed sampler, when applied to root lattices and small dimensional q-
ary lattices, represents an improvement compared to [14,21], which restricts

4 Maiara F. Bollauf, Maja Lie, and Cong Ling

s according to the maximum smoothing parameter of the lattice filtration.
Comparison between our sampling procedure and the one presented in [14] is
performed for known families of lattices (selected results are given in Table
1). The complexity, limitations, and advantages in the cryptographic context
are also addressed.

Complexity Sampling Width s

Lattice Speed-up upper bound [14] This work

A2 18× ≈ ηϵ(A2) = ηϵ(A2)
E8 22× ≈ ηϵ(E8) = ηϵ(E8)
Dn 2× ≈ ηϵ(Dn) = ηϵ(Dn)
Λ24 2× ≈ ηϵ(E8) = ηϵ(Λ24)

BWn 22× > ηϵ(BWn/2) = ηϵ(BWn)

Table 1: Comparison of complexity and sampling width. The upper bound on
speed-up is obtained by counting the number of calls to a Z sampler, ignoring
the overhead of codeword sampling. Note that upper bounds on speed-up for
BWn and Λ24 are rather conservative since the sampling widths are different.
See Section 7 for details.

In summary, our Gaussian sampler can output a lattice vector for arbitrary
sampling width s for any q-ary lattice Λ, since any such lattice has a code
formula Λ = qZn + C, where C is a linear code over Zn

q [27]. We note that our
sampling method is limited by the need to compute the Lee weight profiles of
a potentially very large code (or its cosets). For random codes, this may not be
known or efficient to compute. The Schur (or element-wise) product can be used
to compute Lee weight profiles offline.

In this paper, we start with a theoretical and general q-ary sampler and ap-
ply our technique to known families of lattices to illustrate the improvements.
Section 2 provides some preliminaries on codes and lattices; in Section 3, we
prove the equivalence of lattice and code sampling, and in Section 4 we derive
the theta series of a q-ary lattice from the symmetrized weight enumerator of
the associated code(s). In Section 5, we present our samplers for Constructions
A, B, and D lattices and employ the technique to remarkable lattices in Sec-
tion 6. Comparisons and improvements with respect to the state-of-the-art are
in Section 7.

1.2 Techniques

Lee weight. Here we give an intuition why the somewhat mysterious Lee weight
comes into play, using the trivial example of Gaussian sampling from the integers

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 5

Z. Sampling an integer y ∈ Z may be realized in two steps: firstly, we sample
c = y mod q from Zq = {0, 1, . . . , q − 1} for q ∈ N; secondly, we sample an
integer from the coset qZ + c. Now we focus on the first step, assuming the
second step is efficient. The probability of sampling a coset qZ + c is given by
the theta function ΘqZ+c(z) for some z defined properly.

The Lee weight of c ∈ Zq is defined as wLee(c) = min{c, q − c}. It resembles
the Euclidean distance (which is relevant for lattices) more than the conventional
Hamming distance. The Gaussian function is even symmetric so that ΘqZ+c(z) =
ΘqZ+q−c(z). This coincides with the fact that c and −c = q − c in Zq have the
same Lee weight. Therefore, we only need the knowledge of the Lee weight, i.e.,
we sample coset qZ+ c with probability ΘqZ+wLee(c)(z).

Our Gaussian sampling method for q-ary lattices generalizes the above idea,
taking into account the underlying codes. For Construction D with multiple
levels, we run recursion on the second step.

The use of the Lee norm in [34] is relevant to lattices but in a different context.

Theta series. Some families of lattices have well-documented theta series in the
literature, such as the Constructions A and B lattices from binary codes. We
extend it to a general Construction A lattice qZn + C with q ≥ 2 and connect
with the symmetrized weight enumerator of the respective code over Zq. Moving
forward, we consider a L-level Construction D lattice with code formula [15,20]4:

ΛD = 2LZn + 2L−1CL + . . .+ 2C2 + C1, (1)

where C1, C2, . . . , CL are binary linear codes that are closed under Schur product
(more details follow below). In general, for L ≥ 3, the theta series of ΛD is
unknown. Nonetheless, by performing case analysis, we can obtain a general form
for the theta series of a 3-level Construction D lattice. Thus, the probability of
a coset of such a lattice depends on the Lee weight of a linear code over Z8

defined by 4C3 + 2C2 + C1. The same analysis shows that the probability of a
coset of an L-level Construction D lattice depends on the Lee weight of a code
over Z2L . This is a generalization of the fact that the coset of Constructions A
and B lattices depend only on the Hamming weight of a code over F2 [8].

The Lee weight distribution of a code allows us to sample a coset repre-
sentative of the lattice. In (1), we consider a filtration Λ1 ⊆ Λ2 ⊆ . . . ⊆ ΛL

where Λ1 = 2LZn + 2L−1CL is a scaled Construction A lattice, Λ2 = 2LZn +
2L−1CL + 2L−2CL−1, and we proceed recursively such that in each subsequent
lattice we add the next (scaled) code until we get ΛL as the whole lattice ΛD.
Let c be a coset representative. In the end, the sampler outputs a vector from
D2LZn+c,s using one-dimensional samplers of Z and its shifts. Recursive applica-
tion of sampling via coset decomposition using Lee weight enables exact sampling
of a Construction D lattice for any width s > 0.

4 Note that this is a subclass of Construction D since not all Construction D lattices
admit a code formula. See [11, p. 232] for the general definition.

6 Maiara F. Bollauf, Maja Lie, and Cong Ling

1.3 Open Questions

Lattice and code-based cryptography are closely related. Lately, techniques from
lattice-based cryptography were used to break FuLeeca [18], the first digital sig-
nature scheme based on the Lee metric. Meanwhile, the new connection discov-
ered in this work shows that code sampling in the Lee metric and lattice Gaussian
sampling are equally hard. To the best of our knowledge, no such relation has
been shown before. It is an interesting open question whether code sampling in
the Lee metric can be used to construct provably secure cryptosystems5.

Our sampling algorithms rely on knowledge of the Lee weight profile or sym-
metrized weight enumerator of a code or its coset, but existing methods to
compute these are computationally expensive. Enhancing their efficiency would
result in faster lattice Gaussian samplers. While we have made some progress in
this paper using the Schur product, further exploration is left for future work.

In [12], Ducas and van Woerden hypothesize that instantiating the LIP sig-
nature scheme with remarkably decodable lattices may lead to resistance against
attacks down to smaller approximation factors. The Barnes-Wall lattices are re-
markable, which makes it desirable to have a sampler for these lattices with a
small sampling width s. With our sampler, we can set s just above the smooth-
ing parameter, but in practice, sampling requires us to sample codewords with
respect to Lee weight (a hard problem in general). As a consequence, high di-
mensional Barnes-Wall lattices remain a challenge for tight sampling with our
method, and in this case, [14] provide wider and more efficient samplers. We
leave it to future work to optimise our samplers for Barnes-Wall lattices and to
analyse the security gains of instantiating LIP with these remarkable lattices.

2 Preliminaries

2.1 Notation

We denote by N, Z, and R the set of naturals, integers, and reals, respectively.
[a : b] ≜ {a, a + 1, . . . , b} for a, b ∈ Z, a ≤ b. The ring of integers modulo q
for q ∈ N is Zq = {0, 1, . . . , q − 1}. Vectors are boldfaced, e.g., x and matrices
are represented by capital sans serif letters, e.g. X. The symbol + represents
the element-wise addition over R and ⋆ denotes the Schur product between two
elements in Fn

2 , i.e., x ⋆ y = (x1y1, . . . , xnyn), for x,y ∈ Fn
2 .

2.2 Linear Codes

The definitions and properties presented here are based on [23,36].
A (q-ary) linear code C of length n over a finite field Fq (q is a prime power)

is a linear subspace C ⊆ Fn
q . When q is not prime, we can also define linear codes

over rings simply as additive subgroups of Zn
q . Throughout this paper, q will be

5 In fact, as noted in [18], an open question remains on how to adapt the GPV frame-
work [16] to the Lee metric.

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 7

a prime or a power of prime. We call a linear code C an (n, k)q code, where n is
the length of the code and k is the dimension.

We consider two different notions of weight: Hamming weight and Lee weight.
The Hamming weight of a codeword c ∈ C, denoted by wH(c), is defined as the
number of its nonzero coordinates. We will initially restrict our attention to
binary codes. The Hamming weight enumerator of a code is a function that
describes the weight profile of a binary code C in terms of the Hamming weight.

Definition 1 (Hamming Weight Enumerator). Let C be a (n, k)2 code. The
Hamming weight enumerator of C is given by

WC(x, y) =
∑
c∈C

xn−wH(c)ywH(c) =

n∑
w=0

Awx
n−wyw

where Aw(C) = #{c ∈ C : wH(c) = w}, with 0 ≤ w ≤ n, is the number of
codewords in C that have Hamming weight wH.

For codes over Zq, we define the Lee weight, which provides a more granular
description of the nonzero coordinates of a codeword.

Definition 2 (Lee Weight). The Lee weight of c ∈ Zq is wLee(c) = min{c, q−
c}. This can be naturally extended to a vector, i.e., given c = (c1, c2, . . . , cn) ∈
Zn
q , its Lee weight is wLee(c) =

∑n
j=1 wLee(cj).

When q = 2, 3, Lee weight coincides exactly with Hamming weight. The
notion of Lee weight allows us to define additional weight enumerators.

Definition 3 (Symmetrized Weight Enumerator). The symmetrized weight
enumerator of a code C over Zq is given by

sweC(x0, x1, . . . , xℓ) =
∑
c∈C

x
n0(c)
0 x

n1(c)
1 . . . x

nℓ−1(c)
ℓ−1 x

nℓ(c)
ℓ

where nw(c) = #{i : wLee(ci) = w}, with 0 ≤ w ≤ ⌈q/2⌉, i.e., it refers to the
number of coordinates of c that are ±w and ℓ = ⌈q/2⌉.

Definition 4 (Lee Weight Profile). Let C be a linear code over Zq. The Lee
weight profile of c ∈ C is the tuple

[n0(c), n1(c), . . . , nℓ(c)], ℓ = ⌈q/2⌉ .

Consider α ∈ Fn
2 . Then ωα(c1, . . . , cr) as the number of occurrences of α as

a row in the matrix of column vectors c1, . . . , cr. For example, for the matrix
with column vectors given by c1 = (1, 0, 0), c2 = (1, 1, 0), and c3 = (1, 1, 1), we
have that ω1,1,1(c1, c2, c3) = 1 and ω1,0,0(c1, c2, c3) = 0.

Over multiple binary codes, we can define a generalized version of the joint
weight enumerator or originally, j-fold weight enumerator as follows.

8 Maiara F. Bollauf, Maja Lie, and Cong Ling

Definition 5 (Joint Weight Enumerator [13]). Consider j binary codes
C1, . . . , Cj ⊆ Fn

2 . We define their joint weight enumerator to be

jweC1,...,Cj
(x) =

∑
c1∈C1

. . .
∑
cj∈Cj

∏
α∈Fj

2

x
ωα(c1,...,cj)
α =

∑
(c1,...,cj)

∈C1×...×Cj

∏
α∈Fj

2

x
ωα(c1,...,cj)
α ,

where x = (xα) is a 2j-tuple of variables with α ∈ Fj
2.

Notice that jweC1
(x0, x1) is the ordinary Hamming weight enumerator of

a binary code C1 and jweC1,C2
(x) = jweC1,C2

(x00, x01, x10, x11) is the biweight
enumerator of two binary codes C1 and C2 [23, pp. 147-148].

For codes C ⊆ Zn
4 constructed via C = C1 +2C2, where C1, C2 ⊆ Zn

2 are linear
codes, there is a natural relationship between the joint and the symmetrized
weight enumerators, namely jweC1,C2

(x0, x2, x1, x1) = sweC(x0, x1, x2). Indeed,

ω0,0(c1, c2) = n0(c), ω1,0(c1, c2) + ω1,1(c1, c2) = n1(c), ω0,1(c1, c2) = n2(c),

where we use the fact that the Lee weight of 1 and 3 in Z4 is the same (i.e.,
3 ≡ −1 mod 4), so we get

sweC(x0, x1, x2) =
∑
c∈C

x
n0(c)
0 x

n1(c)
1 x

n2(c)
2

=
∑

c1∈C1

∑
c2∈C2

x
ω0,0(c1,c2)
0 x

ω1,0(c1,c2)+ω1,1(c1,c2)
1 x

ω0,1(c1,c2)
2

= jweC1,C2
(x0, x2, x1, x1). (2)

From now on we will denote ωα1,...,αj (c1, . . . , cj) simply by ωα1,...,αj , when
the vectors c1, . . . , cj are clear from the context.

Next, we present the Reed-Muller codes, which are crucial to the construction
of Barnes-Wall lattices.

Definition 6 (Reed-Muller Code). A Reed-Muller code RM(r,m) of order r
and length 2m is a binary code defined as

RM(r,m) =

{
F2r

2 , m = r
{(u,u+ v) : u ∈ RM(r,m− 1),v ∈ RM(r − 1,m− 1)}, m > r.

The (u,u + v)-construction where u ∈ C,v ∈ C′ is called the Plotkin con-
struction. A Reed-Muller code RM(r,m) has dimension k =

∑
j≤r

(
m
j

)
and car-

dinality 2k. Examples of Reed-Muller codes are: the universe codes RM(m,m),
the repetition codes RM(0,m), and the parity-check codes RM(1,m).

2.3 Lattices

A real lattice Λ is a discrete additive subgroup of Rn [11]. The dual lattice is
Λ∗ = {x ∈ Rn : ∀y ∈ Λ, ⟨x,y⟩ ∈ Z}. The theta series of a lattice is a series
whose coefficients are equal to the number of lattice points of a given norm. It
is the lattice analog of the weight enumerator of a linear code.

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 9

Definition 7 (Theta Series). For any lattice Λ, its theta series is given by

ΘΛ(z) =
∑
x∈Λ

eπiz∥x∥
2

,

where Im(z) > 0.

In particular, when z is purely imaginary, i.e., z = iτ and τ > 0

ΘΛ(iτ) =
∑
x∈Λ

e−πτ∥x∥2

. (3)

The theta series ΘΛ+t(z) for a coset Λ+ t where t ∈ Rn is defined analogously.
It is often relevant to express the theta series of a lattice in terms of the

Jacobi theta functions [11, pp. 102-105]:

ϑ3(ξ|z) =
∑
m∈Z

e2miξ+πizm2

, ϑ2(z) =
∑
m∈Z

eπiz(m+1/2)2 ,

ϑ3(z) = ϑ3(0|z) =
∑
m∈Z

eπizm
2

, ϑ4(z) =
∑
m∈Z

(−1)meπizm
2

,

where Im(z) > 0 and ξ ∈ C. Observe that ϑ3(z) coincides with the theta series
of the one-dimensional lattice Z and ϑ2(z) refers to the shift Z+ 1/2.

The function ψk(z) = ΘZ+1/k(z) =
∑
m∈Z

eπiz(m+1/k)2 for k ∈ Z \ {0} is also

useful in our context. Note that

ΘZ+1/k(z) = ΘZ+(k−1)/k(z) (4)

because ΘZ+(k−1)/k(z) = ΘZ+1−1/k(z) = ΘZ−1/k(z) and we have the identity that
ψk(z) = ψ−k(z) [11, p. 105]. For a general shift t ∈ R and considering z to be
pure imaginary (3), we have the one dimensional theta series [6, Eq. (2.2.5)]

ΘZ+t(iτ) =
∑
m∈Z

e−πτ(m+t)2 = τ−
1/2

∞∑
k=−∞

e2πikt−
πk2/τ = τ−

1/2ϑ3(πt|iτ−1).

In this paper, we focus on real lattices, but the lattice constructions can
be extended to lattices over complex numbers. Several families of lattices can
be constructed from linear codes, and they are of particular interest since the
underlying code structure allows a simpler characterization of some of the lattice
properties, like the theta series. These lattices are exactly the q-ary lattices [27].

Particularly, we consider lattices that can be expressed in terms of a code
formula due to the connection with partition chains (or lattice filtrations [15,32]).

Definition 8 (Partition Chain/Filtration). A partition chain

ΛL/ΛL−1/ . . . /Λ1

is a sequence of lattices such that each is a sublattice of the previous one, that
is, Λ1 ⊆ . . . ⊆ ΛL. This is also called a filtration of the lattice ΛL.

10 Maiara F. Bollauf, Maja Lie, and Cong Ling

A partition chain induces a coset decomposition such that every element
of a lattice ΛL can be written as a sum of an element from Λ1 and a coset
representative from each partition [Λj/Λj−1] [15, p. 1127]. The partition chain
Z/2Z/4Z/ . . . induces the binary decomposition of an integer, so we can write
any x ∈ Z as a sum x0 + 2x1 + 4x2 + A 2L-ary lattice is an integer lattice
that has 2ℓZn as a sublattice for some ℓ (clearly, this is true for ℓ = L), and
the smallest such ℓ is called the depth or level of the lattice. From now on, for
q ≥ 2, we define ϕ as the natural embedding of Zn

q into Zn, which simply maps
a congruence class to its corresponding integer.

Definition 9 (Construction A). Let q ≥ 2 and C ⊆ Zn
q be a linear code, then

ΛA(C) = qZn + ϕ(C)

defines a lattice, referred to as (q-ary) Construction A.

Definition 10 (Construction B). Let Pn be the (n, n− 1)2 parity-check code
and C ⊂ Fn

2 be doubly even code, i.e., the weight of every codeword in C is
divisible by 4. Notice that C ⊂ Pn. Thus, the Construction B lattice is such that

ΛB(C) = 4Zn + 2ϕ(Pn) + ϕ(C).

Using partitions on binary lattices modulo 2 and 4, we can express Construc-
tion A and B lattices in terms of a code formula since the lattice cosets [Λj/Λj−1]
form binary linear codes [15, Lemma 3, pp. 1132-1133].

The code formula in Definition 10 can be extended to L binary linear codes [15],
which leads to the following definition of Construction D, provided that the un-
derlying linear codes satisfy some multiplicative conditions [20, Th. 1].

Definition 11 (Construction D). The code formula

2LZn + 2L−1ϕ(CL) + . . .+ 2ϕ(C2) + ϕ(C1)

defines a lattice ΛD if and only if every code Cj ⊆ Fn
2 is pairwise closed under

the Schur product, i.e. cj ⋆c′j ≜ (cj,1cj′,1, . . . , cj,ncj′,n) ∈ Cj+1 for all cj , c′j ∈ Cj.
Particularly, this implies that C1 ⊆ C2 ⊆ . . . ⊆ CL.

From now on, we drop the notation of ϕ for simplicity, but the map is implied.
Observe that both Constructions B and D can be seen as a particular case of
the q-ary Construction A if we consider C = C+2Pn and q = 4 for Construction
B, and C = C1 + 2C2 + · · · + 2L−1CL and q = 2L for Construction D. In both
cases, the set of codes satisfy the Schur product condition, which implies that
the code C is linear over the respective Zq.

By the code formula, we can write any lattice vector x ∈ ΛD as x = 2Lz +
2L−1cL + . . .+ 2c2 + c1 where z ∈ Zn and cj is a coset representative of Cj , for
all i = 1, . . . , L. Therefore, we can express ΛD as a disjoint union of its coset
representatives as follows:

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 11

ΛD =
⋃

cL∈CL

. . .
⋃

c1∈C1

2LZn + 2L−1cL + . . .+ 2c2 + c1 =
⋃
c∈C

2LZn + c (5)

where C = C1 + 2C2 + . . .+ 2L−1CL is a linear code over Z2L .
The Barnes-Wall lattices are a remarkable example of Construction D lat-

tices, known to have efficient bounded-distance decoding algorithms [25]. Since
some families of Reed-Muller codes are nested and closed under the Schur prod-
uct, the following code formulas define a lattice by Theorem 11. These lattices
are exactly the real Barnes-Wall lattices of dimension n = 2m+1 [19]:

BWn = Λ(0,m) =

2m/2Z2m+1

+
∑

1≤r≤m
m−r odd

RM(r,m+ 1)2
r−1
2 , if m even

2(m+1)/2Z2m+1

+
∑

1≤r≤m
m−r even

RM(r,m+ 1)2
r−1
2 , if m odd.

2.4 Discrete Gaussian Distributions

The theta series is closely related to the discrete Gaussian distribution over a
lattice. The Gaussian function is given by ρs(x) = e−π∥x∥2/s2 for x ∈ Rn. Further,
we can define the Gaussian function over a discrete set S as ρs(S) ≜

∑
x∈S ρs(x).

The discrete Gaussian distribution over a lattice coset Λ + t for t ∈ Rn is the
discrete distribution with support over the coset. The probability of choosing a
vector y ∈ Λ+ t according to this distribution is 6

DΛ+t,s(y) ≜
ρs(y)

ρs(Λ+ t)
=

ρs(y)

ΘΛ+t (i/s2)
, (6)

where ρs(Λ+ t) is a normalisation factor. We now recall some properties of the
lattice Gaussian distribution.

Proposition 1. [8, Prop. 1] For the lattice Gaussian distribution, it holds that

1. Dα(Λ+t),s(αy) = DΛ+t,s/α(y),
2. D(Λ1+t1)⊕(Λ2+t2)(y1,y2) = DΛ1+t1(y1)DΛ2+t2(y2).

The smoothing parameter is a lattice measure based on the Gaussian distri-
bution [26].

Definition 12 (Smoothing Parameter). For an n-dimensional lattice Λ, and
a positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such that
ρ1/s(Λ

∗ \ {0}) ≤ ε.

In the sampling context, if a noise vector is sampled from a Gaussian distribu-
tion with a width at least as large as the smoothing parameter and then reduced
modulo the fundamental parallelepiped of the lattice, the resulting distribution
will be nearly uniform.
6 In literature, there is a slightly different definition DΛ,s,t(x) with a center t, where
x ∈ Λ. It is easy to see DΛ,s,t(x) = DΛ−t,s(x− t), namely, they are a shifted version
of each other. In this paper, we follow the definition (6) since it is used in the GPV
framework [16].

12 Maiara F. Bollauf, Maja Lie, and Cong Ling

3 Reductions

We show that the problem of lattice sampling for q-ary lattices can be reduced to
that of code sampling. Combined with a straightforward reduction in the other
direction, this implies the two problems are equivalent.

For clarity, let us fix the lattice ΛA(C) = qZn + C with C ⊆ Zn
q a linear code

and q ≥ 2, and give definitions of the two problems. We also let the shift t ∈ Zn
q

without loss of generality.

Definition 13 (Gaussian Sampling for q-ary Lattices). Given some lattice
ΛA = qZn + C, a shift t ∈ Zn

q and sampling width s > 0, the Gaussian sampling
problem asks to sample a vector x ∈ ΛA + t from the distribution DΛA+t,s.

Definition 14 (Sampling for q-ary Linear Codes). Given a linear code
C ⊆ Zn

q , a shift t ∈ Zn
q and a parameter s, the code sampling problem with

respect to the Lee weight profile asks to sample a vector ν ∈ C+t with probability
given by:

LC+t,s(ν) ≜
ΘqZ(z)

n0(ν)ΘqZ+1(z)
n1(ν) . . . ΘqZ+ℓ(z)

nℓ(ν)∑
ν∈C+tΘqZ(z)n0(ν)ΘqZ+1(z)n1(ν) . . . ΘqZ+ℓ(z)nℓ(ν)

where z = i/s2, nj(ν) are the entries of the Lee weight profile of ν and ℓ = ⌈q/2⌉.
We denote the induced distribution as LC+t,s.

Define DΛA+t,s(S) ≜
∑

x∈S DΛA+t,s(x) over a discrete set S.

Lemma 1 (Key Lemma). Given a linear q-ary code C ⊆ Zn
q , a vector t ∈ Zn

q

and ν ∈ C + t, we have 7

DΛA+t,s(qZn + ν) = LC+t,s(ν).

Proof. Consider ν ∈ C + t, then the j-th coordinate of qz+ ν where z ∈ Zn is

qzj + νj =

qzj if νj = 0
qzj + 1 if νj = 1
...
qzj + q − 1 if νj = q − 1.

For each qzj+νj , we derive a corresponding theta series for the one-dimensional
lattice coset qZ+ νj . We have that

ΘqZ(z) = ϑ3(q
2z),

ΘqZ+j(z) = ΘqZ+q−j(z), j = 1, 2, . . . , q − 1

and the second equality follows from an analogous argument to the proof of (4).

7 Formally, t ∈ Zn, but we can assume t ∈ Zn
q without loss of generality [30].

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 13

For a fixed ν, we can write

ΘqZn+ν(z) =
∑
z∈Zn

eπiz∥qz+ν∥2

. (7)

We have that qZn + ν is isometric to the decomposition given by 8

qZn0(ν) ⊕
(
qZn1(ν) +

(
1n1(ν)

))
⊕ · · · ⊕

(
qZnℓ(ν) +

(
ℓnℓ(ν)

))
,

where ℓ = ⌈q/2⌉ and we interpret jnj(ν) to be a vector with nj(ν) entries of ±j.
It follows that

ΘqZn+ν(z) = ΘqZn0(ν)(z)ΘqZn1(ν)+(1n1(ν))(z)× · · · ×ΘqZnℓ(ν)+(ℓnℓ(ν))(z)

= ΘqZ(z)
n0(ν)ΘqZ+1(z)

n1(ν) × · · · ×ΘqZ+ℓ(z)
nℓ(ν) (8)

where the second equality follows by direct sum decomposition and using the
fact that ΘΛ1⊕Λ2(z) = ΘΛ1(z)ΘΛ2(z).

The proof is completed by observing that for z = i/s2,

DΛA+t,s(qZn + ν) =
ΘqZn+ν(z)∑

ν∈C+tΘqZn+ν(z)
= LC+t,s(ν).

Theorem 1 (Equivalence of Lattice and Code Sampling). The Gaussian
sampling problem for a Construction A lattice ΛA(C) + t with C ⊆ Zn

q a linear
code and q ≥ 2 is equivalent to the problem of sampling codewords over C + t
with respect to their Lee weight profiles.

Proof. We show the equivalence between lattice sampling (LS) and code sam-
pling (CS) by establishing two reductions with polynomial running time. We use
A → B to denote that problem A is reduced to problem B, i.e., an oracle for
solving problem B can also be used as a subroutine to solve problem A efficiently.

(CS → LS): This reduction is simple, we just sample x ∈ Λ+ t with probability
DΛ+t,s(x), then return a vector ν = x mod q. The probability of obtaining ν
is DΛA+t,s(qZn + ν), since this is the probability that a point drawn from the
discrete Gaussian in Λ + t lies in the coset qZn + ν. As proven in Lemma 1,
DΛA+t,s(qZn+ν) ∝ ΘqZ(z)

n0(ν)ΘqZ+1(z)
n1(ν) . . . ΘqZ+ℓ(z)

nℓ(ν) where the nj(ν)
are the entries of the Lee weight profile of ν. This probability depends on the
Lee weight profile of ν only.

(LS → CS): We can decompose a Construction A lattice as a disjoint union of
cosets ΛA(C) =

⋃
c∈C qZn+c. We sample from ΛA(C)+t via coset decomposition:

1. Sample a coset representative ν ∈ C + t with probability

LC+t,s(ν) = DΛA+t,s(qZn + ν).
8 Direct sum decomposition does not preserve order, but this is not relevant for the

computation of the theta series.

14 Maiara F. Bollauf, Maja Lie, and Cong Ling

2. Sample a vector x from DqZn+ν,s of the form x = z+ v.

This outputs a lattice vector x = z+ν ∈ qZn+ν with probability DΛA+t,s(qZn+
ν) · DqZn+ν,s(z+ ν) = DΛA+t,s(z+ ν) = DΛA+t,s(x) as desired.

If we view any multilevel lattice construction (B or D) as a Construction A
lattice with q = 2L, then from Theorem 1 it follows that sampling a Construction
D lattice is also equivalent to sampling codewords with respect to their Lee
weight profiles. We omit the details.

4 Theta Series of q-ary Lattices

The theta series is the key lattice measure underlying our sampling method. In
general, it is challenging to calculate the theta series of an arbitrary lattice Λ,
but a closed formula is known for some well-studied lattices, which can lead to
a better estimation of the smoothing parameter and improved samplers.

We now expand on the theta series of some families of q-ary lattices obtained
from linear codes. We start with showing that the theta series of a Construction A
lattice with q ≥ 2 can be written in terms of the symmetrized weight enumerator
of the associated linear code over Zq, based on [24].

Theorem 2 (Theta Series of a Construction A Lattice for q ≥ 2). The
theta series of a Construction A lattice ΛA(C) = qZn + C is given by

ΘΛA(z) = sweC(ΘZ(q
2z), ΘZ+1/q(q

2z), . . . , ΘZ+ℓ/q(q
2z)),

where ℓ = ⌈q/2⌉.

Proof. We can write

ΘΛA(z) =
∑
c∈C

∑
z∈Zn

eπiz∥qz+c∥2

=
∑
c∈C

ΘqZn+c(z). (9)

Using (8), we have

ΘΛA(z) =
∑
c∈C

ΘqZ(z)
n0(c)ΘqZ+1(z)

n1(c) · · ·ΘqZ+ℓ(z)
nℓ(c).

Notice that this is the symmetrized weight enumerator of the linear code
C ⊆ Zn

q evaluated at the corresponding shifts of theta series.

The two main challenges in calculating the theta series of any q-ary lattice
obtained via Construction A are i) characterizing the symmetrized weight enu-
merator of a q-ary code C involves going through all the codewords of C, and ii)
the theta series of shifts of qZ, i.e., ΘqZ+c(z) have some simplifications via the
well-known Jacobi-theta functions [11, pp. 102-105], but not always. We present
next some cases where this calculation is simplified due to these properties.

For the binary Construction A (q = 2), the symmetrized weight enumera-
tor is simply the Hamming weight enumerator of the binary code C. Moreover,
ΘZ(q

2z) = ϑ3(4z) and ΘZ+1/q(q
2z) = ϑ2(4z), and from [11, Th. 3, Ch. 7], we get

the following expression for the theta series of ΛA(C).

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 15

Theorem 3 (Theta Series of binary Construction A Lattice). Consider
an (n, k)2 code C, then the theta series of ΛA(C) is given by

ΘΛA(C)(z) =WC(ϑ3(4z), ϑ2(4z)).

Given that the parity-check code Pn defines the Construction B lattice, its
theta series can be written only in terms of the Hamming weight enumerator of
the doubly-even code C ⊆ Pn, according to [11, Th. 15, Ch. 7].

Theorem 4 (Theta Series of a Construction B Lattice). Consider an
(n, k)2 doubly even code C. The theta series of ΛB(C) is

ΘΛB(C)(z) =
1
2WC(ϑ3(4z), ϑ2(4z)) +

1
2ϑ4(4z)

n.

Naturally, the same procedure can be applied to Construction D lattices. We
show that its theta series can also be written as symmetrized weight enumerator
of the liner code C ⊆ Zn

2L , provided that C = 2L−1CL + . . . + 2C2 + C1 and Cj
are binary linear codes closed under the Schur product, for 1 ≤ j ≤ L− 1. If we
consider the j-th coordinate of a lattice vector 2Lz+ c where c ∈ C, we get

2Lzj + cj =

2Lzj if (c1,j , ..., c2L,j) = (0, 0, . . . , 0)
2Lzj + 1 if (c1,j , ..., c2L,j) = (1, 0, . . . , 0)
...
2Lzj + 2L − 1 if (c1,j , ..., c2L,j) = (1, 1, . . . , 1).

Let α = (α1, α2, . . . , αL) ∈ FL
2 and recall that ωα(c1, . . . , cL) is the number

of occurrences of α as a row in the matrix of column vectors c1, . . . , cL. Also,
since nw(c) is the number of coordinates that have Lee weight w, it follows that

nw(c) = ωα1,...,αL
(c1, . . . , cL) + ωα̃1,...,α̃L

(c1, . . . , cL),

where i = α1 + 2α2 + . . . + 2L−1αL and 2L − i = α̃1 + 2α̃2 + . . . + 2L−1α̃L.
Therefore, we have that for the Z2L-linear code C = C1+2C2+ . . .+2L−1CL with
each Cj a binary linear code, we can write the Lee weight profile of c ∈ C either
as [n0(c), n1(c), . . . , nℓ(c)] as defined in 4 or equivalently, as

[ω0,...,0(c1, . . . , cL), ω1,0,...,0(c1, . . . , cL) + ω0,1,...,1(c1, . . . , cL), . . .

. . . , ω1,...,1(c1, . . . , cL)].

We can also rewrite (7) as a joint weight enumerator over L binary codes.

Theorem 5 (Theta Series of a Construction D Lattice). The theta series
of a Construction D lattice ΛD = 2LZn + 2L−1CL + . . .+ 2C2 + C1 is given by

ΘΛD(z) = jweC1,...,CL
(ΘZ+tα/2L)

where α ∈ FL
2 and tα = α1 + 2α2 + . . .+ 2L−1αL.

16 Maiara F. Bollauf, Maja Lie, and Cong Ling

Proof. We have that

ΘΛD(z) =
∑
c∈C

Θ2LZn+c(z)

=
∑
c∈C

Θ2LZ(z)
n0(c) · · ·Θ2LZ+2L−1(z)

n2L−1(c)

=
∑

c1∈C1

. . .
∑

cL∈CL

Θ2LZ(z)
ω0,...,0(c1,...,cL) · · ·Θ2LZ+2L−1(z)

ω1,...,1(c1,...,cL)

=
∑

c1∈C1

. . .
∑

cL∈CL

∏
α∈FL

2

ΘZ+tα/2L(z)
ωα(c1,...,cL)

= jweC1,...,CL
(ΘZ+tα/2L).

Theorem 5 can be also expressed in terms of the symmetrized weight enumer-
ator over the code C = C1+2C2+ . . .+2L−1CL ⊆ Zn

2L as proposed in Theorem 2.
The main difference between the code formula Construction D and Construction
A for q ≥ 2 is that we have an identity between the symmetrized weight enumer-
ator of a single linear code over Zn

2L and the joint weight enumerator of multiple
binary codes Cj , for 1 ≤ j ≤ L. This does not hold in general for Construction A
with q ≥ 2 because we cannot always decompose a q-ary code C ⊆ Zn

q into a sum
of binary codes. Such a particular property will further allow a simplification of
the Gaussian sampling.

For the particular case of Theorem 5 for L = 2, we recover the theta series
for a 2-level Construction D lattice [5, Th. 22]. For instance, the theta series of
1
2 (4Z

n + 2C2 + C1) is given by

Θ 1
2 (4Zn+2C2+C1)(z) =

∑
c1∈C1

∑
c2∈C2

ϑ3(4z)
ω0,0

(
ϑ2(z)

2

)ω1,0+ω1,1

ϑ2(4z)
ω0,1

= sweC(ϑ3(4z), ϑ2(z)/2, ϑ2(4z)),

(a)
= jweC1,C2

(ϑ3(4z), ϑ2(4z), ϑ2(z)/2, ϑ2(z)/2), (10)

for C = 1/2(C1 + 2C2). In (a) we have used the identity from (2). Notice that
Θ2Z+1/2(z) = ΘZ+1/4(4z) = ΘZ+3/4(4z) = ψ4(4z), and then we apply the identity
ψ4(z) = ϑ2(z/4)

2 [11, p. 105]. In particular, considering C1 = C and C2 = Pn,
where C is a doubly even code, we recover the theta series of Construction B
presented in Theorem 4.

Next, we use Theorem 5 to express the theta series of the Barnes-Wall lattice
BW128, which is a 3-level Construction D.

Example 1. Consider the Barnes-Wall lattice BW128 = 8Z128 + 4RM(5, 7) +
2RM(3, 7) + RM(1, 7) where RM(r, 7) is a Reed-Muller code of length 27 of
order r for r = 1, 3, 5 [17]. Hence, via coset decomposition,

BW128 =
⋃

c3∈C3

⋃
c2∈C2

⋃
c1∈C1

8Z128 + 4c3 + 2c2 + c1

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 17

and we define c ≜ 4c3+2c2+c1. The theta series for each of the one-dimensional
cosets is given by

Θ8Z(z) = ϑ3(64z), Θ8(Z+1/8)(z) = Θ8(Z+7/8)(z) = ψ8(64z),

Θ8(Z+1/4)(z) = Θ8(Z+3/4)(z) = ψ4(64z) = ϑ2(16z)/2,

Θ8(Z+3/8)(z) = Θ8(Z+5/8)(z) = (z/i)
−1/2

ϑ3 (3π/8|z) , Θ8(Z+1/2)(z) = ϑ2(64z).

Hence, the theta series of a fixed coset of BW128 is

Θ8Z128+c(z) =
∑

z∈Z128

eπiz∥8z+c∥2

=ϑ3(64z)
ω0,0,0ϑ2(64z)

ω0,0,1 (ϑ2(16z)/2)
ω0,1,0+ω0,1,1 ×

× ψ8(64z)
ω1,0,0(c)+ω1,1,1ΘZ+ 3

8
(64z)ω1,1,0+ω1,0,1 . (11)

The overall theta series is obtained by summing over all codewords c ∈ C.

ΘBW128
(z) =

∑
c∈C

∑
z∈Z128

eπiz||8z+c||2

= sweC
(
ϑ3(64z), ϑ2(64z), ϑ2(16z)/2, ψ8(64z), ΘZ+3/8(64z)

)
,

where C = 4C3 + 2C2 + C1. ♢

For Gaussian sampling over a q-ary lattice Λ, the theta series we are interested
in is ΘΛ+t(z), where t ∈ Zn

q . The results of this section then correspond to t = 0.
For t ̸= 0 and a binary Construction A, one can calculate the weight enumerator
of the coset C + t of a code C ⊆ Zn

2 with t ∈ Zn
2 according to Appendix A, and

then obtain the theta function of ΛA(C)+ t via Theorem 3. For larger alphabets
q > 2, expressing the symmetrized weight enumerator of a coset C + t of a q-ary
code C is more challenging and might not have a closed form. In this case, we
assume an oracle for computing the symmetrized weight enumerator of a coset.

4.1 Smoothing Parameter

The smoothing parameter ηϵ(Λ) is computed by finding s such that ΘΛ∗(is2)−
1 = ϵ where ΘΛ∗(is2) =

∑
x∈Λ∗ e−πτ∥x∥2

with τ = s2 in (3). For a general
Construction A lattice, its dual is also a Construction A lattice up to a scaling
of 1/√q (more details in Appendix B). That is,

ΛA(C)∗ = (qZn + C)∗ = qZn + C⊥ = ΛA(C⊥).

The theta series of the dual is then given by

ΘΛ∗
A
(z) = sweC⊥(ΘZ(q

2z), ΘZ+1/q(q
2z), . . . , ΘZ+ℓ/q(q

2z))

where ℓ = ⌈q/2⌉. We can obtain the symmetrized weight enumerator of C⊥

from the symmetrized weight enumerator of C using MacWilliams identities [23,

18 Maiara F. Bollauf, Maja Lie, and Cong Ling

0.5 1.0 1.5 2.0
ηϵ(E8)

-20

-15

-10

-5

5

10

Log(ϵ)

This work

Espitau et al.

(a) E8 lattice

0.6 0.8 1.0 1.2 1.4 1.6 1.8
ηϵ(Λ24)

-30

-20

-10

10

Log(ϵ)

This work

Espitau et al.

(b) Λ24 lattice

Fig. 1: Smoothing parameters. The log scale refers to the natural logarithm.

Th. 12] for q < 5. Now we set z = is2 and solve for s such that ΘΛ∗(is2)−1 = ϵ.
For q ≥ 5, we cannot apply the MacWilliams identities [1], but we can solve
for s using a formulation involving the primal lattice instead [22]. Typically in
cryptography, the modulus q is chosen such that q ≥ 5.

Fig. 1 represents the smoothing parameters of two lattices, E8 and the Leech
Λ24. The approximations presented in [14] are usually fair for small values of ϵ.

5 Sampling Algorithms for q-ary Lattices

The reduction in Section 3 suggests an algorithm for lattice Gaussian sampling.
Let Λ =

⋃
c∈C Λ

′ + c be a disjoint union of cosets. To sample from Λ + t, we
now consider the decomposition with respect to the coset C + t. Sample first a
vector ν ∈ C + t with probability DΛ+t,s(Λ

′ + ν), then sample a lattice vector
x′ ∈ Λ′ with probability DΛ′+ν,s(x

′ + ν) to output a vector x = x′ + ν, with
target probability DΛ+t,s(Λ

′ + ν) · DΛ′+ν,s(x
′ + ν) = DΛ+t,s(x).

5.1 Sampling General Construction A with q ≥ 2

Algorithm 1 describes the coset decomposition sampling over a shift of a general
Construction A lattice with code formula qZn + C. When t = 0, the probability
of sampling a coset corresponding to a codeword c ∈ C depends on its Lee weight
profile (see Section 3). We can compute the Lee weight profiles of the code offline
using the Schur product, according to Appendix C, and store this information.

For t ̸= 0, we can use the symmetrized weight enumerator of the coset C+ t.
When q = 2, it is simply the Hamming weight enumerator of the coset of a code
(see Appendix A)9. When q < 5, we can use a similar approach as in the binary
case to compute the symmetrized weight enumerator of C + t, but for q ≥ 5
we assume we have access to an oracle that computes performs this calculation
offline, since we cannot rely on the relationship between a code and its dual [1].

In Algorithm 1, we let ν̃ be any codeword in C + t that has Lee weight
profile ℓ and DqZn+(C+t),s(qZn + ν̃) be the probability that we sample a lattice
9 When q = 2 and t = 0, we recover the Construction A sampler from [8].

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 19

Algorithm 1: Sampling for General Construction A
Require: ΛA = qZn + C, C ⊆ Zn

q and sweC+t(·) for t ∈ Zn
q and sampling width s

Ensure: x← DΛA+t,s(x)
1: Select Lee weight profile ℓ with probability pℓ = Aℓ ·DqZn+(C+t),s(qZn+ ν̃)

where Aℓ is a coefficient of sweC+t(·)
2: Select a codeword ν ∈ C + t with Lee weight profile ℓ uniformly at random
3: for j = 1, . . . , n do

xj ← q · SamplerZ+νj/q
(s/q)

end
4: return x = (x1, . . . , xn)

vector in any coset whose representative has Lee weight profile ℓ. By Lemma
1, DqZn+(C+t),s(qZn + ν̃) is proportional to a term in the symmetrized weight
enumerator of C + t with exponents defined by the coefficients of ℓ. We select
ℓ with probability DqZn+(C+t),s(qZn + ν̃) weighted by the number of codewords
Aℓ with Lee weight profile ℓ. We then select a single codeword ν associated to ℓ
uniformly over all such Aℓ codewords. We output a final lattice vector x = x′+ν
by sampling qZn + (C + t) using one dimensional Z-samplers. The correctness
of Algorithm 1 follows by applying the reduction in Theorem 1 with the general
method of coset decomposition sampling.

Example 2. Consider the Dn lattice, obtained via binary Construction A as Dn =
2Zn + Pn, where Pn is the parity-check code and a shift t = 0. There are

(
n
2m

)
vectors of weight 2m in Pn. The probability of selecting such coset is

p2m =

(
n

2m

)
ΘZ+1/2(4z)

2mΘZ(4z)
n−2m

ΘDn
(z)

as given in [8, Equation 3]. Hence, to sample in Dn, we proceed as in Algorithm 2,
according to [8]. ♢

Sampling in Dn +t, where t ̸= 0 will be discussed next.

5.2 Sampling Construction B Lattices

The Construction B lattice can be written as ΛB(C) = 2Dn +C. Thus, sampling
from ΛB requires base samplers of the Dn lattice [8, Alg. 7]. Campello and
Belfiore provide a sampler for ΛB(C) when t = 0, which we summarize below.

Note that any permutation of coordinates is an automorphism of Dn [11,
p. 118] and the addition by a lattice vector is an affine automorphism [11, p. 91],
so it follows that 2Dn +c ≃ 2Dn +(1w, 0n−w) as lattices since C is doubly even,
so the sum of the coordinates of c is even and therefore c ∈ Dn. It follows
that the theta series of a coset 2Dn +c depends only on the Hamming weight
w = wH(c). The theta series of 2(Dn +c/2) [8, Sec. VI] is

20 Maiara F. Bollauf, Maja Lie, and Cong Ling

Algorithm 2: Sampling over Dn

Require: Dn = 2Zn + Pn and sampling width s
Ensure: x← DDn,s(x)
1: Select m ∈ {1, . . . , ⌊n/2⌋} with probability p2m
2: Select a subset J ⊂ {1, . . . , n} with size 2m
3: for j ∈ J do

xj ← 2 · SamplerZ+1/2(s/2)

end
4: for j ∈ {1, . . . , n} \ J do

xj ← 2 · SamplerZ(s/2)
end

5: return x = (x1, . . . , xn)

ΘDn +c/2(z) = ΘDw +(1
2
w)(4z)ΘDn−w

(4z)

+Θ
Dw +

(
3
2

1
,
1
2

w−1
)(4z)ΘDn−w +(11,0n−w−1)(4z).

Let DΛB,s(2Dn(c) + (1w, 0n−w)) = Θ2Dn +(1w,0n−w)(z)/ΘΛB (z) be the proba-
bility that a lattice vector sampled from the distribution on ΛB lies in the
coset 2Dn +(1w, 0n−w). The sampling procedure works by sampling a Hamming
weight w with probability pw = AwDΛB,s(2Dn +(1w, 0n−w)), similar to the pro-
cedure for Construction A. The sampler selects a codeword c ∈ C uniformly
from the set of all codewords of Hamming weight w. Next, we decompose Dn =
(Dw ⊕Dn−w)

⋃
(Dw⊕Dn−w) where Dn = Dn +(11, 0n−1) by [8, Eq. (9)]. We then

sample from Dw ⊕Dn−w with probability peven,w ≜ D2Dn +c,s((2Dw +(1w)) ⊕
2Dn−w). We sample from the complementary part of the decomposition with
probability 1− peven,w. This allows us to sample from a shift of a Dn lattice.

We now apply this idea to sampling a shift of Dn +t where t ∈ Zn
2 . By

replacing c/2 with t, we get that the theta series Dn +t is

ΘDn +t(z) = ΘDw +1(4z)ΘDn−w(4z) +ΘDw +(21,1w−1)(4z)ΘDn−w +(11,0n−w−1)(4z)

where w = wH(t). Note that since t is not necessarily a codeword in C, we may
have that w is odd. We decompose Dn as before. After that, we sample from
Dw ⊕Dn−w with probability peven,w ≜ DDn +t,s((Dw +(1w))⊕Dn−w), and from
the complementary part of the decomposition with probability 1−peven,w. Notice
that if w is even, sampling Dn +t is equivalent to sampling Dn when t = 0.

5.3 Sampling Construction D Lattices for L ≥ 2

Decomposing a linear q-ary code using a code formula offers significant advan-
tages in the sampling process when t = 0, as was the case for Construction B,
and now we extend to a multilevel Construction D lattice. Consider a filtration
of sublattices of a Construction D lattice of the form

2LZn + 2L−1CL ⊆ 2LZn + 2L−1CL + 2L−2CL−2 ⊆ . . .

⊆ 2LZn + 2L−1CL + . . .+ 2C2 + C1 ≜ ΛD

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 21

where we notice that the first lattice in the filtration is a shifted Construction
A lattice scaled by 2L−1 for L ≥ 1.

Our sampler begins at the first level of the filtration and samples cL ∈ CL
with respect to a scaled Construction A lattice. The sampler proceeds to sample
the next codeword by considering the next level of the filtration, and so on. After
we have sampled cj for j = 1, . . . , L, we sample a lattice point from the overall
lattice using base samplers of Zn or Dn.

To illustrate, we present a summary of the method for L = 2 in Algorithm 3.

Algorithm 3: Sampling for L = 2

Require: ΛD = 4Zn + 2C2 + C1, C1 ⊆ C2 closed under Schur product, WC2(·),
swe2C2+C1(·) and sampling width s

Ensure: x← DΛD,s(x)
1: Λ1 ← 4Zn + 2C2
2: Aw ← #{c2 ∈ C2 : wH(c2) = w}
3: Sw ← {c2 ∈ C2 : wH(c2) = w}
4: Sample a weight w with probability pw = Aw · DΛ1,s(4Zn + 2c̃2)
5: Sample c2 ← Sw uniformly at random
6: Λ2 ← 4Zn + 2C2 + C1 = ΛD

7: Aℓ ← #{c1 ∈ C1 : [ω0,0, wH(c1), ω0,1] = ℓ}
8: Sℓ ← {c1 ∈ C1 : [ω0,0, wH(c1), ω0,1] = ℓ}
9: Sample Lee weight profile ℓ with probability pℓ = Aℓ ·

DΛD,s(4Zn+2c2+c̃1)

DΛ1,s(4Zn+2c̃2)

10: Sample c1 ← Sℓ uniformly at random
11: c← 2c2 + c1
12: for j = 1, . . . , n do

xj ← 4 · SamplerZ+cj/4
(s/4)

end
13: return x = (x1, . . . , xn)

Alternatively, we can directly use C = 2C2+C1 as a code over Z4 and sample
in a single step without defining conditional probabilities. In this case, we can
sample the 2-level lattice ΛD = 4Zn +2C2 + C1 by using Algorithm 1 with q = 4
and C = 2C2+C1. The correctness of Algorithm 3 is analogous to the correctness
of Algorithm 4, by restricting it to two levels. We next provide the description
and correctness proof for Algorithm 4.

For a 3-level Construction D lattice ΛD = 8Zn+4C3+2C2+C1, we repeat what
was done for L = 2 to sample with respect to the first two levels of the filtration.
Next, we sample with respect to the third and final filtration, which is the entire
lattice ΛD, under the condition that c3 and c2 were previously sampled in the
first two steps. The theta series of a coset in this lattice is, according to (11)

Θ8Zn+4ν3+2ν2+ν1(z) = ϑ3(64z)
ω0,0,0ϑ2(64z)

ω0,0,1

(
ϑ2(16z)

2

)ω0,1,0+ω0,1,1,

ψ8(64z)
ω1,0,0+ω1,1,1ΘZ+ 3

8
(64z)ω1,1,0+ω1,0,1

22 Maiara F. Bollauf, Maja Lie, and Cong Ling

where c1 ∈ C1. The probability of a coset depends on the frequency values
ωα(c1, c2, c3), where α ∈ F3

2. Now, let Ak be the number of Lee weight profiles
k defined by these frequency values and let c̃1 ∈ C1 be any codeword having
weight profile k with respect to fixed c3, c2. Define the conditional probability
that we select a vector from a discrete Gaussian on 8Zn + 4C3 + 2C2 + C1 which
lies in a coset of the form 8Zn + 4c3 + 2c2 + c̃1 given that we have previously
sampled c3, c2. The probability that we have already sampled c3 and c2 is the
probability that step 1 outputs c3 and step 2 outputs c2. Overall, it follows that

pcond2 ≜
D8Zn+4C3+2C2+C1,s(8Zn + 4c3 + 2c2 + c̃1)

D8Zn+4C3+2C2,s(8Zn + 4c3 + 2c̃2)
.

We sample c1 in two steps: first, we choose a Lee weight profile k with
probability pk = Ak · pcond2

, then we sample a codeword c1 uniformly from all
codewords in C1 that have Lee weight profile k with respect to c3, c2. This selects
a codeword c1 ∈ C1 with probability pk/Ak.

The final step is to sample a vector from D8Zn+4c3+2c2+c1,s by recursively
applying one-dimensional samplers of Z and its shifts. The sampler outputs a
lattice vector total probability

DΛ1,s(8Zn + 4c3) ·
DΛ2,s(8Zn+4c3+2c2)

DΛ1,s(8Zn+4c3)
· DΛD,s(8Zn+c)

DΛ2,s(8Zn+4c3+2c2)
·

D8Zn+4c3+2c2+c1,s(8z+ c) = DΛD,s(8Zn + c)D8Zn+c,s(8z+ c)

= DΛD,s(8z+ c),

where Λ1 ⊆ Λ2 ⊆ ΛD = 8Zn + 4C3 + 2C2 + C1 is the lattice filtration that we
consider and c = 4c3 + 2c2 + c1. This yields a sampling method that does not
restrict the sampling width s since it samples exactly from the true distribution
of the lattice. We can extend this sampling technique to higher levels, as in
Algorithm 4. The computation of Lee weight profiles can be performed offline,
and the frequency of each Lee weight profile is contained in the symmetrized
weight enumerator. This information is used in the online phase of sampling to
define the relevant probabilities. We also sample codewords corresponding to a
chosen Lee weight profile in the online phase.

5.4 Algorithm Complexity

For a general L-level Construction D lattice, we sample by recursively selecting
codewords to obtain a coset representative c = 2LcL + . . . + 2c2 + c1, then
we sample a final lattice vector via one-dimensional samplers over the integers.
Sampling these codewords depends on Lee weight profiles. In general, we may
not have this information. Considering the Schur product of codewords might
be an alternative; see Appendix C.

In terms of complexity, Algorithm 4 first samples cL with respect to its
Hamming weight. We can compute the Hamming weight enumerator of CL offline.
To sample a codeword of a given weight, we can use a lookup table of the
codewords sorted by weight. The online lookup time is O(log |CL|) = O(kL)

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 23

Algorithm 4: Sampling for L ≥ 3

Require: ΛD = 2LZn + 2L−1CL + . . .+ 2C2 + C1, Cj closed under Schur product
for 1 ≤ j ≤ L, WCL(·), symmetrized weight enumerators of linear com-
binations of CL, . . . , C1, sampling width s

Ensure: x← DΛD,s(x)
1: Sample cL and cL−1 as in Algorithm 3
2: Λ3 ← 2LZn + 2L−1CL + 2L−2CL−1 + 2L−3CL−2

3: Ak ← #{cL−2 ∈ CL−2 : [ω0,0,0, ω1,0,0 + ω1,1,1, ω0,1,0 + ω0,1,1,
ω1,1,0 + ω1,0,1, ω0,0,1] = k}

4: Sk ← {cL−2 ∈ CL−2 : [ω0,0,0, ω1,0,0 + ω1,1,1, ω0,1,0 + ω0,1,1,
ω1,1,0 + ω1,0,1, ω0,0,1] = k}

5: Sample a Lee weight profile k with probability

pk = Ak ·
DΛ3,s(2

LZn+2L−1cL+2L−2cL−1+2L−3c̃L−2)

DΛ2,s(2
LZn+2L−1cL+2L−2c̃L−1)

6: Sample cL−2 ← Sk uniformly at random
7: Repeat lines 4-8 for Λ4 ⊆ . . . ⊆ ΛL−1 ⊆ ΛL = ΛD

8: c← 2LcL + . . .+ 2c2 + c1
9: for j = 1, . . . , n do

xj ← 2L · SamplerZ+cj/2L
(s/2L)

end
10: return x = (x1, . . . , xn)

where kL is the dimension of CL, but the storage complexity of the table is
at least the size of the code, which is exponential in kL. Clearly, this is not
polynomial, but we present cases where we can avoid using such lookup tables
and still sample with respect to Hamming weight efficiently in Section 6.

Algorithm 4 proceeds to recursively sample from cosets of CL−1, . . . , C1 with
respect to Lee weight profiles. We can compute Lee weight profiles offline via the
Schur product over CL−1, . . . , C1. We need to compute the Lee weight profiles of
CL with CL−1 in the second step, then repeat with CL, CL−1 and CL−2 in the third
step, and so on. However, notice that we can recover the Lee weight profiles in
each step by simply performing the computation over all of the codes CL, . . . , C1.
For example, to extract the Lee weight profiles of CL with CL−1 from this larger
computation, we find when cL−2 = . . . = c1 = 1. The complexity of this larger
computation is O(n · |CL| · . . . · |C1|) = O(n2kL+...+k1) where kj is the dimension
of Cj . This is much larger than O(kL2

kL), so the overall offline complexity is
given by O(n2kL+...+k1).

The online complexity is harder to estimate since, in general, it is not efficient
to sample codes of a given Hamming weight nor of a given Lee weight profile.
If we store a lookup table for codewords associated to given Lee weight profiles,
then this cost would be O(log(|CL| · . . . · |C1|)) = O(kL . . . k1) = O(nL) since
kj ≤ n for all j. Added to this, we would have the complexity of applying n one-
dimensional samplers over a shift of the integers which has complexity O(n), so
the overall online complexity is given by O(nL). However, it should be noted
that the storage for such a lookup table would be exponential.

24 Maiara F. Bollauf, Maja Lie, and Cong Ling

We point out that computing Lee weight profiles do not depend on the sam-
pling width s, so the choice of s does not impact the offline complexity of the
sampler. On the other hand, we can simplify the overall sampling procedure if
we allow s to be sufficiently above smoothing. For sufficiently large values of s,
we can sample by choosing codewords uniformly at random, since the sampled
lattice vectors now appear uniformly distributed over Rn/Λ. This comes at a
loss of increasing the sampling width.

Limitations. As a consequence, the sampling algorithm for Construction D with
arbitrary q and level L is not usually efficient. This is expected since the major
challenge of our sampling method relies on sampling codewords with respect to
Lee weight profiles, which is a hard problem. Even for the simplest case when
L = 1, we may not be able to sample a codeword of specific Hamming weight
w efficiently. However, given that the codewords can be sampled efficiently, the
sampling method is consequently efficient (and in particular, we can make the
sampling width s close to the smoothing parameter of the associated lattice).
Sampling codewords can be done efficiently for codes of reasonably small di-
mensions by enumeration or codes with some special structure [8, p. 167]. For
example, the (n, n − 1)2 code consists of all n-tuples with an even number of
non-zero coordinates. Due to its special structure, we can sample such a code
by randomly sampling a subset of coordinates of even size. It is unclear how
to optimize the computation of Lee weight profiles using the properties of the
Schur product for certain structured codes. We provide some details for this in
Appendix C.2.

6 Sampling Remarkable Lattices

We provide applications of our sampler to some remarkable lattices. Recall that
our method only applies to lattices that can be expressed via a code formula as
in (1).

6.1 Sampling Root Lattices

A Dn lattice is constructed from the (n, n − 1)2 even weight code C1. We can
sample Dn using Algorithm 2.

We can efficiently sample the exceptional root lattices E7 and E8. The Barnes-
Wall lattice in dimension 8 will cover the case of E8. We can build E7 from
Construction A using the (7, 4)2 Hamming code.

Alternatively, we can use the fact that En ≜ D+
n from [11,14] when n is even.

All cosets of Dn +(1/2, . . . , 1/2) have equal theta series by [8, Prop. 3]. Denote the
probability that a lattice point in D+

n lies in the Dn part of the decomposition
as DD+

n ,s(Dn) = ΘDn
(z)/ΘD+

n
(z). With probability DD+

n ,s(Dn), sample from
Dn. Otherwise, sample from Dn +(1/2, . . . , 1/2). This is done by sampling c ∈ Pn

uniformly at random since all cosets of Dn +(1/2, . . . , 1/2) have equal theta series.

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 25

To sample from E8 +t, we have that E8 +t = D+
8 +t. With probability

DE8 +t,s(D8 +t) = ΘD8 +t(z)/ΘE8 +t(z), we use the sampler for D8 +t as in Sec-
tion 5.2. Otherwise we modify the sampler from Section 5.2 to sample from
D8 +(1/2, . . . , 1/2) + t.

6.2 Sampling Leech Lattice

We propose an alternative way to [8, Sec. VII] of sampling the Leech lattice Λ24.
We can write a scaled version of the Leech lattice as

Λ24 = (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4O24 + 8Z24), (12)

where G24 is the (24, 12)2 Golay code, P24 is the (24, 23)2 parity-check code
and O24 is a coset of P24 containing all codewords in F24

2 with odd weights,
i.e., O24 = {x ∈ F24

2 :
∑24

j=1 xj ≡ 1 mod 2} = (1, 0, . . . , 0) + P24. Note that
O24 = P24 + (1, 023) so we can rewrite this as

Λ24 = (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4O24 + 8Z24)

= (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4P24 + (4, 023) + 8Z24)

= (0+ 2G24 + 4P24 + 8Z24) ∪ (1+ 2G24 + 4(2Z24 + P24 + (1, 023)))

= 2ΛB(G24) ∪ (1+ 2G24 + 4D24),

where Dn = Dn +(1, 0n−1). By the decomposition given by Dn = (Dw ⊕Dn−w)∪
(Dw ⊕Dn−w) in [8], we have that

Dn = Dn +(1, 0n−1)

= (Dw +(1, 0w−1)⊕Dn−w) ∪ (Dw + (1, 0w−1)⊕Dn−w)

= (Dw ⊕Dn−w) ∪ (Dw +(2, 0w−1)⊕Dn−w)

∼= (Dw ⊕Dn−w) ∪ (Dw ⊕Dn−w),

since (2, 0w−1) ∈ Dw. Consider a coset of the form 4D24+2c+1. By [8, Eq. 10],
we have that

ΘD24+c/2+(1/424)(16z) = ΘDw +(3/2,1/2w−1)+(1/4w)(16z)ΘDn−w +(1/4n−w)(16z)

+ΘDw +(1/2w)+(1/4w)(16z)ΘDn−w +(1,0n−w−1)+(1/4n−w)(16z)

= ΘDw +(7/4,3/4w−1)(16z)ΘDn−w +(1/4n−w)(16z)

+ΘDw +(3/4w)(16z)ΘDn−w +(5/4,1/4n−w−1)(16z),

so the theta series depends on the Hamming weight w of c ∈ G24. The Hamming
weight distribution of the Golay code is well known, which can be read off of
the Hamming weight enumerator WG24

(x, y) = x24 + 759x8y16 + 2576x12y16 +
759x16y8 + y24 [35].

26 Maiara F. Bollauf, Maja Lie, and Cong Ling

6.3 Sampling Barnes-Wall Lattices

Dimensions 4 and 8. The Barnes-Wall lattices BW4 and BW8 are simply Con-
struction A lattices from RM(1, 2) and RM(1, 3), respectively. Reed-Muller codes
of order 1 have codewords with weight either 0, n/2 or n. When w = 0, n we have
either 0 or 1. When w = n/2, there are 2m+1−2 codewords of weight w. These are
all of the codewords in RM(1,m) except the all ones or all zeros codeword. We
can sample from this weight class using rejection sampling with (2m+1−2)/2m+1

iterations. As m increases, this goes to 1.

Dimension 16. The Barnes-Wall lattice BW16 is a Construction B lattice given
by the code formula 4Z16 + 2RM(3, 4) + RM(1, 4), since RM(1, 4) is a doubly
even code. Therefore, we can apply the sampler proposed in Section 5.2 and
need only to sample a codeword of fixed weight w from RM(1, 4). To do this, we
apply rejection sampling with = 1.067 iterations.

Dimension 32. The Barnes-Wall lattice BW32 has the code formula 4Z32 +
2RM(3, 5) + RM(1, 5) where RM(3, 5) is not the parity-check code. Therefore,
we are in the case of Section 5.3, which requires us to sample a codeword c2 ∈
RM(3, 5) first by Hamming weight and c1 ∈ RM(1, 5) by computing Lee weight
profiles. For sampling c2 by Hamming weight, we can enumerate the codewords
of weight w using design theory which is detailed in the Appendix D. We can
compute Lee weight profiles for the second step offline or even move this step
online since the size of RM(1, 5) is only twice the dimension of the lattice.

Dimensions ≥ 64. As the dimensions of the Barnes-Wall lattices grow, so do
the dimensions of the Reed-Muller codes used to construct them. The online
complexity will increase in response since we need to sample with respect to a
chosen Lee weight profile over large codes.

Similarly to Barnes-Wall lattices, we briefly mention a family of Construction
D lattices not addressed in the work of [14], denoted as Bn with n = 2m, which
are built from a tower of BCH codes. When the dimensions of the associated
BCH codes are reasonably small, our sampler can be applied efficiently. These
lattices are considered good packings in the sense that they are dense and have
efficient decoding algorithms [4, 29].

7 Improvements to State-of-the-Art Sampling

We discuss the improvements of our sampling method in some families of lattices,
focusing on efficiency and restrictions on the sampling width. A summary is
presented in Table 1 and supporting Sage [35] code can be found here https:
//anonymous.4open.science/r/q-ary-sampling-3337.

Given that the samplers in [14] mostly rely on Z samplers and do not require
much additional computation whereas we require sampling codewords, we esti-
mate a lower bound for the running time of our sampling algorithms by counting

https://anonymous.4open.science/r/q-ary-sampling-3337
https://anonymous.4open.science/r/q-ary-sampling-3337

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 27

the number of calls to a Z sampler, which is used in a black-box manner. We as-
sume the weight enumerators of all cosets of a linear code are known and ignore
the costs of sampling codewords (which is cheap for small lattices), so this will
give a reasonable estimate of the speed-up. Instead of explicitly stating these
costs, we give some explanation on how one might sample codewords efficiently
in several cases.

Root lattices. In [14], the authors provide base samplers for the root lattices Dn

(n ≥ 1) and En (n = 6, 7, 8). We can sample these lattices with the method
proposed in Section 5.2 using n one-dimensional samplers of Z or Z + 1/2. This
is compared to the sampler in [14], which performs n one-dimensional samplers
of Z twice on average. The width of the sampler in [14] is approximately the
smoothing parameter s ≈ ηϵ(Dn) whereas the sampler proposed in Section 5.2
allows us to choose s = ηϵ(Dn) exactly. In terms of the number of calls to a Z
sampler, our sampler is approximately twice as fast as [14]. This is supported by
simulations performed in [35] for n = 8, 16, 24.

We can sample from E7 as a Construction A lattice with the (7, 4)2 Hamming
code. The codewords of weight 3 form a 1-(7,3,3) design, so every codeword
of weight 3 uniquely decodes to a block in the design (see Appendix D). We
can sample a codeword of weight 3 by sampling a block in the design via a
choosing procedure as in [8, Sec. VII], then decoding. To sample a codeword of
weight 4, we simply add the all-ones vector to a codeword of weight 3 due to
the code’s symmetry. Overall, we require 7 one-dimensional samplers of shifts
of Z whereas [14] requires repeating the E8 base sampler 4 times on average,
which results in 64 one-dimensional Z samplers, so our sampler is roughly 9
times faster. Our simulation compares by sampling 100,000 samples 8.64 times
faster.

Regarding the E8 (or BW8) lattice, an improved gadget framework was pro-
posed in [14, Sec. 10]. It was shown a gain of 9 bits in security and 113 bytes of
the signature size for Eagle-1024 while maintaining tight sampling. We can re-
place their E8 sampler with our sampler, which is more efficient and still samples
at the smoothing parameter, preserving the security gains.

Recall that E8 is a Construction A lattice given by the code formula 2Z8 +
RM(1, 3). Using the Construction A sampler, we first sample a weight w ∈
{0, 4, 8}, and then we sample a codeword with the corresponding weight. If
w = 0, 8, we obtain either all-zero or all-one codeword. Otherwise, all remaining
codewords have weight 4. We apply rejection sampling to obtain a codeword
of weight 4 with 1.143 iterations on average. The sampler then applies 8 one-
dimensional samplers of Z and Z + 1/2. Without the small cost of sampling
codewords via rejection sampling, the complexity of our E8 sampler is domi-
nated by sampling over the integers 8 times. In contrast, the sampling method
from [14] requires sampling a shift of D8 with rejection sampling repeated 11
times to optimize the sampling width, which itself uses 8 samplers over Z twice
on average. As a result, we expect our algorithm to be around 22 times faster. In
fact, our simulations showed that our algorithm obtains 100,000 samples ≈ 25
times faster than [14].

28 Maiara F. Bollauf, Maja Lie, and Cong Ling

Barnes-Wall lattices up to Dimension 64. For the Barnes-Wall lattices of dimen-
sion 4,8, and 16, our sampler coincides with the Construction A and B samplers.
In the state-of-the-art sampling of [14], the authors apply their idea of domain
extension to sample a Barnes-Wall lattice BWn using BWn/2 twice. They can
sample a distribution of statistical distance at most 6ϵ to DBWn,s given that they
have a discrete Gaussian sampler of BWn/2 with s > ηϵ(BWn/2) [14, Cor. 1].

Compared to the state-of-the-art sampling in [14], we can improve the sam-
pling for BW4 and BW8 using Construction A sampling. For BW16, our sampler
is 22 times faster and samples at a width equal to ηϵ(BW16). This is because
to sample BW16 in [14], we sample BW8 which requires, on average, 16 one-
dimensional Z samplers due to rejection sampling and gets repeated 11 times on
average to optimize the sampling width s ≈ ηϵ(E8). Compared with our sampler
for BW16, we sample a shift of D16 since this is a Construction B lattice, which
translates to 16 one-dimensional samplers of shifts of Z. In fact, we find that for
general BWn, if we can sample with respect to Lee weight profiles efficiently, we
estimate our sampler to be 11 times faster than in [14]. For our simulation with
BW16, we obtain 100,000 samples 9.41 times faster than [14], which is reasonably
close to our expectation.

Leech lattice. The running time of sampling the Leech lattice for Espitau et.
al [14] is dominated by the complexity of a E8 sampler by their choice of filtration
2E8 ⊂ Tθ ⊂ T where Tθ ∼= T ∼= E8 [14, Sec. 8.2.3]. This requires 3 calls to an E8

sampler and samples at a width that is approximately the smoothing parameter
of E8 [14, Alg. 12], which is above ηϵ(Λ24).

Recall Λ24 = ΛB(G24)∪ (1+2G24+4D24). We sample from the Construction
B part, as detailed in [8, p. 169], or from the 1 + 2G24 + 4D24 part using the
Hamming weight of codewords in G24 following the procedure in [8, Sec. 6]. This
samples twice as fast with s = ηϵ(Λ24) since we require 24 samplers of a shift of
Dn, which in turn requires 24 one-dimensional samplers of shifts of Z [8, Alg. 7].
In comparison, the E8 sampler in [14] requires, on average, 16 one-dimensional
Z samplers, which get called upon three times to sample the Leech lattice.

Hexagonal lattice. Even if A2 is not a Construction A lattice, we include it
here for completeness since we use a technique based on coset decomposition [8,
Sec. V].

Espitau et al. [14] propose an efficient sampler for the A2 root lattice, which
the authors apply to sample in Rm = Z[ζm] where m = 2ℓ3k for Mitaka. Using
the fact that Rm

∼=
⊕m/6

i=1 R3, they sample in Rm by independently sampling A2
m/6 times [14, Sec. 9]. The width of the proposed A2 sampler is at the smoothing
parameter ηϵ(A2) for sufficiently small ϵ [14, p. 40] and, on average, requires 9
repetitions of the E8 sampler to acquire four samples in A2.

Following [8, Sec. V], we have the coset decomposition A2 =
⋃

t∈T Λ
′ +

t where Λ′ = Z ⊕
√
3Z and T = {(0, 0), (1/2,

√
3/2)}. Sample t = (0, 0) with

probability DA2,s(Z⊕
√
3Z), then sample x ∈ Z⊕

√
3Z from DZ⊕

√
3Z,s(x) using

two (scaled) one-dimensional samplers of Z. Otherwise, sample t = (1/2,
√
3/2)

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 29

with remaining probability DA2,s(Z⊕
√
3Z+ t) and a lattice vector x+ t with

probability DZ⊕
√
3Z+t,s(x + t). We can sample x + t with two (scaled) one-

dimensional samplers of Z+ 1/2. This outputs four samples in A2 approximately
18 times faster. This comes from the fact that to obtain four samples of A2, the
coset decomposition sampler requires 8 samplers over a shift of Z whereas the
sampler in [14] repeats an E8 sampler 9 times on average which itself requires
2 repetitions of 8 samplers over Z. In terms of the number of samplings over
the integers, we expect our sampler to be 18 times faster. We compared our
algorithm with the running time of the E8 sampler in [14] repeated the expected
9 times, which is the main work behind their A2 sampler. Our simulation showed
that it performed better than estimated and was ≈ 32 times faster over 100,000
samples.

References

1. Abdelghany, N., Wood, J.A.: Failure of the MacWilliams identities for the Lee
weight enumerator over Zm, m ≥ 5. Discrete Mathematics 343(11), 112036 (2020)

2. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-
est vector problem in 2n time using discrete Gaussian sampling: extended abstract.
In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Com-
puting. STOC ’15, Association for Computing Machinery, New York, NY, USA
(2015)

3. Aggarwal, D., Dadush, D., Stephens-Davidowitz, N.: Solving the closest vector
problem in 2n time – the discrete Gaussian strikes again! In: 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science. pp. 563–582 (2015)

4. Barnes, E.S., Sloane, N.J.A.: New lattice packings of spheres. Canadian Journal of
Mathematics 35(1), 117–130 (1983)

5. Bollauf, M.F., Lin, H.Y., Ytrehus, Ø.: Secrecy gain of formally unimodular lattices
from codes over the integers modulo 4. IEEE Transactions on Information Theory
70(5), 3309–3329 (2023)

6. Borwein, J., Borwein, P.: Pi and the AGM: a study in analytic number theory and
computational complexity. Wiley-Interscience and Canadian Mathematics Series
of Monographs and Texts, Wiley (1987)

7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing. pp. 575–584. Association for Computing Machinery, New
York, NY, USA (2013)

8. Campello, A., Belfiore, J.: Sampling algorithms for lattice Gaussian codes. In: 24th
International Zurich Seminar on Communications. pp. 165–169 (2016)

9. Cascudo, I., Gundersen, J.S., Ruano, D.: Squares of matrix-product codes. Finite
Fields and Their Applications 62(2) (2020)

10. Charpin, P.: Weight distributions of cosets of two-error-correcting binary BCH
codes, extended or not. IEEE Transactions on Information Theory 40(5), 1425–
1442 (1994)

11. Conway, J., Sloane, N.: Sphere packings, lattices and groups, A Series of Compre-
hensive Studies in Mathematics, vol. 290. Springer, 3rd edn. (1999)

12. Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Advances in Cryptology – EU-
ROCRYPT 2022. pp. 643–673. Springer International Publishing, Cham (2022)

30 Maiara F. Bollauf, Maja Lie, and Cong Ling

13. Duke, W.: On codes and Siegel modular forms. International Mathematics Research
Notices 1993(5), 125–136 (1993)

14. Espitau, T., Wallet, A., Yu, Y.: On Gaussian sampling, smoothing parameter
and application to lattice signatures. In: Guo, J., Steinfeld, R. (eds.) Advances
in Cryptology – ASIACRYPT 2023. pp. 65–97. Springer Nature Singapore, Singa-
pore (2023)

15. Forney, D.: Coset codes I: introduction and geometrical classication. IEEE Trans-
actions on Information Theory 34(5), 1123–1151 (1989)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing. p. 197–206. STOC ’08, Association for Computing
Machinery, New York, NY, USA (2008)

17. Harshan, J., Viterbo, E., Belfiore, J.: Construction of Barnes-Wall lattices from
linear codes over rings. In: 2012 IEEE International Symposium on Information
Theory. pp. 3110–3114. IEEE (2012)

18. Hörmann, F., van Woerden, W.: FuLeakage: Breaking FuLeeca by learning attacks.
In: Advances in Cryptology – CRYPTO 2024. Lecture Notes in Computer Science,
vol. 14925, pp. 253–286. Springer (2024)

19. Hu, S., Nebe, G.: Strongly perfect lattices sandwiched between Barnes–Wall lat-
tices. Journal of the London Mathematical Society 101 (2018)

20. Kositwattanarerk, W., Oggier, F.E.: Connections between Construction D and
related constructions of lattices. Designs, Codes and Cryptography 73, 441–455
(2013)

21. Ling, C., Belfiore, J.C.: Achieiving AWGN channel capacity with lattice Gaussian
coding. IEEE Transactions on Information Theory 60(10), 5918–5929 (2014)

22. Ling, C., Luzzi, L., Belfiore, J.C., Stehlé, D.: Semantically secure lattice codes for
the Gaussian wiretap channel. IEEE Transactions on Information Theory 60(10),
6399–6416 (2014)

23. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-
Holland, Amsterdam, The Netherlands (1977)

24. Maher, D.P.: Lee polynomials of codes and theta functions of lattices. Canadian
Journal of Mathematics 30(4), 738–747 (1978)

25. Micciancio, D., Nicolosi, A.: Efficient bounded distance decoders for Barnes-Wall
lattices. In: 2008 IEEE International Symposium on Information Theory. pp. 2484–
2488 (2008)

26. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM Journal on Computing 37(1), 267–302 (2007)

27. Micciancio, D., Regev, O.: Lattice-based cryptography, pp. 147–191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

28. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10402, pp. 455–485. Springer (2017)

29. Mook, E., Peikert, C.: Lattice (list) decoding near Minkowski’s inequality.
IEEE Transactions on Information Theory 68, 863–870 (2020), https://api.
semanticscholar.org/CorpusID:221994997

30. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) Advances in Cryptology – CRYPTO 2010. pp. 80–97. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2010)

https://api.semanticscholar.org/CorpusID:221994997
https://api.semanticscholar.org/CorpusID:221994997

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 31

31. Randriambololona, H.: On products and powers of linear codes under component-
wise multiplication. Contemporary Mathematics 637, 3–78 (2015)

32. Regev, O., Stephens-Davidowitz, N.: A reverse Minkowski theorem. In: Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. p.
941–953. Association for Computing Machinery, New York, NY, USA (2017)

33. Ritterhoff, S., Maringer, G., Bitzer, S., Weger, V., Karl, P., Schamberger, T.,
Schupp, J., Wachter-Zeh, A.: FuLeeca: A Lee-based signature scheme. In: Esser, A.,
Santini, P. (eds.) Code-Based Cryptography. pp. 56–83. Springer Nature Switzer-
land, Cham (2023)

34. Shparlinski, I.E., Steinfeld, R.: Noisy Chinese remaindering in the Lee norm. Jour-
nal of Complexity 20(2), 423–437 (2004)

35. The Sage Developers: SageMath, the Sage Mathematics Software System (2022),
https://www.sagemath.org, dOI 10.5281/zenodo.6259615

36. Wan, Z.X.: Quaternary codes. World Scientific (1997)
37. Weger, V., Khathuria, K., Horlemann, A.L., Battaglioni, M., Santini, P., Per-

sichetti, E.: On the hardness of the Lee syndrome decoding problem. Advances
in Mathematics of Communications 18(1), 233–266 (2024)

A Weight Distribution of the Coset of a Code

We start with a binary code. Consider a (n, k)2 code C. Then, it is possible to
describe the weight distribution (resp. the weight enumerator) of a coset C + t,
where t ∈ Fn

2 . In particular, we generalize [10, Lemma 1], originally presented
for BCH codes, to any binary linear code C.

Consider the weight enumerator of the coset C + t, i.e.,

WC+t(x, y) =
∑

ν∈C+t

xn−wH(ν)ywH(ν) =

n∑
j=0

Ajx
n−jyj

where Aj(C + t) = #{ν ∈ C + t : wH(ν) = j}, with 0 ≤ j ≤ n, is the number
of codewords in C + t that have Hamming weight wH. Also, C⊥ = {y ∈ Fn

2 :
⟨x,y⟩ ≡ 0 mod 2, ∀x ∈ C} refers to the dual code of C.

Lemma 2. Consider a (n, k)2 code C, t ∈ Fn
2 and set Ct = C ∪ (C + t). Then

WC+t(x, y) =
1

2n−k

(
2WC⊥

t
(x+ y, x− y)−WC⊥(x+ y, x− y)

)
.

Proof. If t ∈ C, then WC+t(x, y) = WC(x, y) = 1
2n−kWC⊥(x + y, x − y), which

coincides with the MacWilliams identity [23, Th. 1, p. 127].
Otherwise, if t /∈ C, Ct is a binary linear code with 2k+1 codewords. Then,

applying the MacWilliams identity to Ct, we get

WCt(x, y) =
1

2n−(k+1)
WC⊥

t
(x+ y, x− y),

but WCt(x, y) =WC(x, y) +WC+t(x, y). Thus,

WC+t(x, y) =
1

2n−(k+1)
WC⊥

t
(x+ y, x− y)− 1

2n−k
WC⊥(x+ y, x− y)

=
1

2n−k

(
2WC⊥

t
(x+ y, x− y)−WC⊥(x+ y, x− y)

)
.

https://www.sagemath.org

32 Maiara F. Bollauf, Maja Lie, and Cong Ling

Therefore, the relationship between the theta function of a binary Construc-
tion A lattice and the weight enumerator of the code (see Theorem 3) together
with Lemma 2 allows us to calculate

∑
ν∈C+tΘ2Zn+ν(z) and proceed with our

sampling technique.
For larger alphabets, q > 2, although a similar identity to the one presented in

Lemma 2 holds for the Hamming weight enumerator of a code over Zq, provided
that also the MacWilliams identity is satisfied [23, Ch. 6, §6], the symmetrized
weight enumerator requires more efforts. Moreover, it is known that for q ≥
5, it does not exist a version of the MacWilliams identity for the Lee weight
enumerator [1]. It means that expressing the symmetrized weight enumerator
of a coset C + t of a q-ary code C is more challenging and might not have a
formulation in terms of its dual.

B Dual of a Construction A Lattice

The generator matrix of the scaled q-ary Construction A lattice is

B =
1
√
q

(
I A
0 qI

)
,

where G = [I A] is a generator matrix of the q-ary linear code C. This is a square
matrix, so B−T is the basis of the dual lattice. We will now demonstrate that it
generates qZn + C⊥. Indeed,

B−T =
1
√
q

(
qI 0

−AT I

)
.

Permuting rows does not change the lattice generated by this basis, hence

B∗ =
1
√
q

(
−AT I
0 qI,

)
which is the same format as B. We have that H = [−AT I] is the parity check
matrix of G, so it is a generator for C⊥. It follows that B∗ is a basis for the q-ary
lattice qZn + C⊥ as desired.

C Improving the Complexity via Schur Products

C.1 Calculating Lee Weight Profiles

We show that the Schur product allows us to obtain a solvable system of equa-
tions that gives the exact Lee weight profile. Furthermore, we show that the
positions of the nonzero elements in a codeword completely determine the fre-
quency of each Lee weight profile. For instance, we consider a 3-level construction
with code formula 8Zn + 4C3 + 2C2 + C1.

The second stage of the sampling process involves calculating the Lee weight
profile [ω0,0(c2, c3), wH(c2), ω0,1(c2, c3)] for each codeword c2 ∈ C2, once c3 ∈ C3
has been fixed. We proceed in the following way:

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 33

1. Compute the component-wise or Schur product of c2 ⋆ c3 for all c2 ∈ C2. As
we perform each iteration for all c2, take note of wH(c2) = ω1,0(c2, c3) +
ω1,1(c2, c3).

2. Compute the binary Hamming weight of each product c2 ⋆ c3, which corre-
sponds to ω1,1(c2, c3).

3. Since we c3 is fixed, we know its binary Hamming weight wH(c3). It follows
that wH(c3) = ω0,1(c2, c3) + ω1,1(c2, c3). We solve for ω0,1.

4. From wH(c2), we can solve for ω1,0. It remains to compute ω0,0 = n−ω1,0−
ω1,1 − ω0,1. Record the Lee weight profile t ≜ [ω0,0, wH(c2), ω0,1].

5. Count the number of recurring tuples. For a given tuple t, denote the number
of codewords associated with it by At.

Performing the Schur product for all c2 ∈ C2 takes O(n|C2|) operations, which
is intractable for codes with high dimension. Algorithm 4 samples c1 with respect
to 8Zn+4c3+2c2+C1. The probability of a coset of this lattice depends on the
Lee weight tuple of a codeword defined by 4c3 + 2c2 + c1 over Z8. We similarly
calculate such a tuple as before. In steps 1 and 2, we fix c3 and c4. Therefore, we
know the binary Hamming weights wH(c3), wH(c2) and d1,1(c2, c3). We compute
c1 ⋆ c2 ⋆ c3 for all c1 ∈ C1. The Hamming weight of this product corresponds
to ω1,1,1(c1, c2, c3). We have ω1,1(c2, c3) = ω0,1,1(c1, c2, c3) + ω1,1,1(c1, c2, c3)
and solve for ω0,1,1. We can also compute c1 ⋆ c2 and c1 ⋆ c3 for all c1 ∈ C1
to obtain ω1,1(c1, c2) = ω1,1,0(c1, c2, c3) + ω1,1,1(c1, c2, c3) and ω1,1(c1, c3) =
ω1,0,1(c1, c2, c3) + ω1,1,1(c1, c2, c3). We can therefore solve for ω0,1,1 and ω1,0,1.
Finally, from

wH(c3) = ω1,1,1 + ω0,1,1 + ω1,0,1 + ω0,0,1

wH(c2) = ω1,1,1 + ω0,1,1 + ω1,1,0 + ω0,1,0

wH(c1) = ω1,1,1 + ω1,0,1 + ω1,1,0 + ω1,0,0

we solve for ω1,0,0, ω0,1,0, ω0,0,1 and ω0,0,0. However, it is redundant to perform
the Schur product three times. We can perform all of the necessary multiplica-
tions by performing the technique twice. This is because the element-wise prod-
uct ⋆ is commutative and associative [31], so we only need to compute c1 ⋆ c2
and c1 ⋆ c3 for all c1 ∈ C1. It follows that c1 ⋆ c2 ⋆ c1 ⋆ c3 = c1 ⋆ c2 ⋆ c3 for all
c1 ∈ C1. Therefore, the complexity of this operation is 2 ·O(n|C1|) = O(n|C1|).

Overall, computing the Lee weight profiles for a 3-level construction has
complexity O(n|C2|) + O(n|C1|) = O(n|C2|) where the equality comes from the
fact that C1 ⊆ C2. Equivalently, we can say the complexity is O(n2k2) where k2 is
the dimension of C2. It is straightforward to extend this technique for higher-level
constructions.

C.2 Schur Product of Reed-Muller Codes

Given that the Reed-Muller codes are well-behaved under the Schur product,
we state some properties that may be useful to optimize this operation in future
work. First, we recall the definition Schur product of sets and of linear codes.

34 Maiara F. Bollauf, Maja Lie, and Cong Ling

Definition 15. [31, Def. 1.2, 1.3] Let F be a field. If S,S ′ ⊆ Fn are two subsets,
we define

S⋆̇S ′ = {c ⋆ c′ : (c, c′) ∈ S × S ′}

where ⋆ is the element-wise product. If C, C′ ⊆ Fn are two linear subspaces, i.e.
two linear codes of the same length n, we define

C ⋆ C′ = ⟨C⋆̇C′⟩

as the linear span of C⋆̇C′, which we call the Schur product of two codes.

The operation ⋆ is commutative, associative and distributive. The Schur
product of Reed-Muller codes is particularly special since RM(r,m)⋆RM(r′,m) =
RM(r+r′,m) as long as r+r′ ≤ m [31]. It follows that RM(r,m) = RM(1,m)⋆

r

where we perform the Schur product r times.
Consider when the sampler of a Barnes-Wall lattice needs to sample a coset

representative with respect to a scalar version of the sublattice 4Zn+2RM(r,m)+
RM(r′,m). Following our procedure, we will have already sampled a codeword
c ∈ RM(r,m). The probability of selecting a coset in the sublattice 4Zn + 2c+
RM(r′,m) depends on frequency tuples of the form [ω0,0(c, c

′), wH(c
′), ω0,1(c, c

′)]
where c′ is any codeword in RM(r′,m). As shown in the previous section, we
can use the element-wise product to compute ω1,1(c, c

′) and with the knowledge
of wH(c) and wH(c

′) we can compute the number of each tuple. To avoid having
to perform the Schur product c⋆c′ for each c′ ∈ RM(r′,m), we use the fact that
RM(r′,m) = RM(1,m)⋆

r′

. Since for a single codeword c ∈ C, {c} is not linear,
we consider it as a singleton set for formality and use the ⋆̇ operation.

c⋆̇RM(r′,m) = c⋆̇⟨RM(1,m)⋆̇ . . . ⋆̇RM(1,m)︸ ︷︷ ︸
r′ times

⟩

= ⟨c⋆̇RM(1,m)⋆̇ . . . ⋆̇RM(1,m)⟩
= ⟨(c⋆̇RM(1,m)) ⋆̇ . . . ⋆̇RM(1,m)⟩,

where we have considered the linearity and associativity of the element-wise
product.

If we get lucky, we may recover a large portion of the code using the Schur
product, so we may be able to minimize the number of linear combinations of
codewords that we need to take to recover the entire code. Unfortunately, it is
not clear when that is the case. In general, taking the linear span increases the
complexity significantly.

Example 3. To demonstrate the method for a small example, consider c⋆̇RM(2, 2).
For a general codeword c = (c1, c2, c3, c4), we compute

(c1, c2, c3, c4)⋆̇RM(1, 2) ={(0, 0, 0, 0), (c1, c2, c3, c4), (c1, c2, 0, 0), (0, 0, c3, c4),
(0, c2, c3, 0), (c1, 0, 0, c4), (c1, 0, c3, 0), (0, c2, 0, c4)}.

On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight 35

For each element x in this set, we compute x⋆̇RM(1, 2). We obtain the set

{(0, 0, 0, 0), (c1, c2, c3, c4), (c1, c2, 0, 0), (0, 0, c3, c4),
(0, c2, c3, 0), (c1, 0, 0, c4), (c1, 0, c3, 0), (0, c2, 0, c4),

(c1, 0, 0, 0), (0, c2, 0, 0), (0, 0, c3, 0), (0, 0, 0, c4)}.

Note that this is nearly equal to the Schur product with the entire code given
by

(c1, c2, c3, c4)⋆̇RM(2, 2) ={(0, 0, 0, 0), (c1, c2, c3, c4), (c1, c2, 0, 0), (0, 0, c3, c4),
(0, c2, c3, 0), (c1, 0, 0, c4), (c1, 0, c3, 0), (0, c2, 0, c4),

(c1, 0, 0, 0), (0, c2, 0, 0), (0, 0, c3, 0), (0, 0, 0, c4),

(c1, c2, c3, 0), (c1, c2, 0, c4), (c1, 0, c3, c4), (0, c2, c3, c4)}.

We only need to do 4 linear combinations to recover the rest of the set. From this
example, it is clear that the positions of the nonzero coordinates of c completely
determine the number of c ⋆ c′ associated with a fixed value of ω1,1(c

′, c) for
c′ ∈ RM(2, 2). In particular, if c = (1, 0, 0, 0) then the number of codeword
products with ω1,1(c

′, c) = 1 is equal to 8, which is the number of codewords in
c⋆̇RM(2, 2) in which the c1 position appears. ♢

It is not clear how we can further optimize the Schur product, particularly
for special codes like the Reed-Muller codes, to make the sampling procedure
more efficient. It may be of interest that Reed-Muller codes are also Plotkin
construction codes which have some nice properties under the Schur product [9].
We leave this as an interesting open question.

D Enumerating Codewords from RM(3, 5)

We provide the details for enumerating codewords of a given Hamming weight
w for the Reed-Muller code RM(3, 5) using design theory.

Definition 16 (t-design [23, p. 58]). Let X be a set of v elements. A t-design
is a collection of distinct k-subsets (blocks) of X with the property that any t-
subset of X is contained in exactly λ blocks. We denote this as a t − (v, k, λ)
design.

A t-design is specified by its incidence matrix A = (ai,j) where ai,j = 1 if an
element pj is contained in the block Bi and 0 otherwise. When t = 1, we call the
design a Steiner system. For every block in a Steiner system, we can associate a
row of the incidence matrix, which we can interpret as a codeword. This forms
a constant weight code or a code that consists of codewords of the same weight
w. Consequently, a single block in a Steiner system can be uniquely decoded to
a codeword of some weight w. Furthermore, the following result gives conditions
for when a linear code produces a t-design for more general t.

36 Maiara F. Bollauf, Maja Lie, and Cong Ling

Theorem 6 (Assmus-Mattson Theorem). Let C be a (n, k)2 linear code with
minimum Hamming weight d and C⊥ be the dual code with minimum weight d⊥.
Let t < d. If C has at most d⊥−t non zero weights less than or equal to n−t, then
for each weight w with d ≤ w ≤ n − t, then B = {supp(c) : c ∈ C, wH(c) = w}
are blocks forming a t-design. That is, the set of codewords of weight w form a
t-design. Furthermore, the dual code also forms t-designs.

The dual of RM(r,m) is RM(m − r − 1,m). Thus, RM(3, 5)⊥ = RM(2, 5)
which has minimum distance 8. Applying Assmus-Mattson, we get that for a
weight w such that 4 ≤ w ≤ 29, the support design in RM(3, 5) is a 3-design. The
codewords of minimum weight form a Steiner system, so every vector of weight
3 in F32

2 uniquely decodes to a codeword of weight 4, so to sample a codeword
of minimum weight from RM(3, 5) we can perform a 3-out-of-32 choosing proce-
dure and use state-of-the-art decoding for Reed-Muller codes. Unfortunately, for
the 3-designs which are not Steiner systems, we cannot uniquely decode blocks
to codewords. However, we can notice that the blocks of the design still cor-
respond to the supports of the codewords of weight w > 4 in RM(3, 5), so we
can precompute the blocks of each design for each weight w ≤ 16. To sample
a codeword of weight w ≤ 16, we can uniformly sample from the blocks of the
corresponding design. We can sample codewords of weight w > 16 by adding all
ones vector 1 to a codeword of weight 32− w.

	On Gaussian Sampling for q-ary Lattices and Linear Codes with Lee Weight

