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Abstract. Cryptocurrencies have emerged as a critical medium for digital financial transactions, driv-
ing widespread adoption while simultaneously exposing users to escalating fraud risks. The irreversible
nature of cryptocurrency transactions, combined with the absence of consumer protection mechanisms,
leaves users vulnerable to substantial financial losses and emotional distress. To address these vul-
nerabilities, we introduce Insured Cryptocurrency Transactions (ICT), a novel decentralized insurance
framework designed to ensure financial recovery for honest users affected by fraudulent cryptocur-
rency transactions. We rigorously formalize the ICT framework, establishing strong security guarantees
to protect against malicious adversaries. Furthermore, we present Insured Cryptocurrency Exchange
(ICE), a concrete instantiation of ICT tailored for centralized cryptocurrency exchanges. ICE relies
primarily on a standard smart contract and provides a robust mechanism to compensate users in cases
of security breaches, insolvency, or fraudulent activities affecting the exchange. We have implemented
ICE’s smart contract and evaluated its on-chain costs. The evaluation results demonstrate ICE’s low
operational overhead. To our knowledge, ICT and ICE represent the first formal approaches to decen-
tralized insurance frameworks in the cryptocurrency domain.
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1 Introduction

Cryptocurrencies have become a prominent financial and technological innovation, attracting attention from
investors, entrepreneurs, and the general public. Their growing prominence is evidenced by substantial daily
trading volumes. As of early 2025, the daily trading volume across all cryptocurrencies exceeds $162 bil-
lion [23]. With the increasing popularity of cryptocurrencies, malicious actors have become more active in
seeking to exploit this market. Cryptocurrency fraud has surged in recent years, resulting in substantial finan-
cial losses documented by government agencies and regulatory bodies. According to the Financial Times,
losses due to cryptocurrency fraud in the UK rose by 41% year-on-year, reaching £306 million in the 12
months leading up to March 2023, compared to £216.5 million in 2022. Notably, over a third of these losses
occurred in November 2022, coinciding with the collapse of the cryptocurrency exchange FTX [88]. The FBI
reported that losses from cryptocurrency-related investment fraud in the USA surged to $3.94 billion in 2023,
reflecting a 53% increase from the previous year [37]. Unlike traditional banking transactions, cryptocurrency
transactions lack consumer protections and are generally irreversible. If users fall victim to fraud, there is
no established process for fund recovery, unlike credit card dispute resolution mechanisms [38]. Moreover,
cryptocurrency transactions operate without intermediaries, such as banks, to assist with disputes or refunds.

The true cost of cryptocurrency fraud extends beyond immediate financial loss, often imposing additional
burdens such as investigative costs, legal fees, and an emotional toll. Victims may incur significant expenses
by hiring specialized cybersecurity firms or private investigators to trace stolen funds and gather evidence. In
some cases, the victims pursue legal action through civil litigation or by involving law enforcement. Retaining
legal representation and dealing with the complexities of the legal process can lead to substantial legal fees,
further worsening the financial impact. Beyond financial losses, the emotional toll of cryptocurrency fraud
can be profound. Victims may experience a sense of violation, betrayal, and loss of trust, which can lead
to considerable psychological distress, including anxiety, depression, and, in extreme cases, post-traumatic
stress disorder [31,34,66].

Currently, there is no scientific, formal, and technical mechanism to assist victims of cryptocurrency fraud
in receiving reimbursement for their financial losses. To fill this void, we propose a robust formal insurance
mechanism. Implementing this solution offers a practical and effective approach for several key reasons:
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– Financial Recovery : Insurance can provide victims with a means to recover financial losses incurred due
to fraud. This can help alleviate the immediate financial burden and offer a safety net, ensuring that
individuals and businesses are not completely devastated by such incidents [95].

– Market Stability : Insurance helps protect users from the uncertainties and risks of the cryptocurrency
market, encouraging greater participation with confidence [84]. By offering a safety net, it enhances the
market’s stability and credibility.

– Addressing Regulatory Concerns: Regulatory bodies often express concerns about consumer protection
in the cryptocurrency ecosystem [49]. Implementing a dependable insurance mechanism demonstrates a
commitment to safeguarding users’ interests, potentially alleviating future regulatory pressures [80].

1.1 Our Contributions

In this work, we present “Insured Cryptocurrency Transactions” (ICT), a generic decentralized insurance
framework that insures clients’ financial cryptocurrency transactions with online service providers, i.e.,
servers. It guarantees that an honest client, who has made a payment but fails to receive the promised
services, will receive financial compensation. Figure 1 provides an abstract view of ICT.
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Verif
y com

pla
int

s

<latexit sha1_base64="F4iUr9rdUA7E/4dVIO1tXcgAGcs=">AAACGHicbZDNSgMxFIUz/jv+jbp0EyyCqzLTRXUpunEjKNhWqEO5k962oZlkSDKFMvRFxK0+hztx687H8A1M6yy0eiDwcc69hHuSTHBjw/DDW1hcWl5ZXVv3Nza3tneC3b2mUblm2GBKKH2XgEHBJTYstwLvMo2QJgJbyfBimrdGqA1X8taOM4xT6Eve4wysszpBcAVDpECZSjMBXNpOUAmr4Uz0L0QlVEip607wed9VLE9RWibAmHYUZjYuQFvOBE78o7lYaT5CFhdCSGYm/n1uMAM2hD62HUpI0cTF7LAJPXJOl/aUdk9aOnN/bhSQGjNOEzeZgh2Y+Wxq/pe1c9s7jQsus9yiZN8f9XJBraLTlmiXa2RWjB0A09ydQtkANDDruvRdR9F8I3+hWatG9Wr9plY5Oy/bWiMH5JAck4ickDNySa5JgzAyIo/kiTx7D96L9+q9fY8ueOXOPvkl7/0LBFSgSA==</latexit>

Make a complaint

<latexit sha1_base64="Ogs7CWdBDuwzpZxPao6erXT9uCc=">AAACHXicbVDLSsNAFJ3UV42vqLhyM1gKrkrSRXVZdOOyin1AG8pketsOnUnCzKRQQr9F3Op3uBO34mf4B07aLLT1wMDhnHu4c08Qc6a0635ZhY3Nre2d4q69t39weOQcn7RUlEgKTRrxSHYCooCzEJqaaQ6dWAIRAYd2MLnN/PYUpGJR+KhnMfiCjEI2ZJRoI/WdswegwKaAJTARJFIJCDXuOyW34i6A14mXkxLK0eg7371BRJMsTDlRquu5sfZTIjWjHOZ2ecWOpNlJ/ZTzkKq53UsUxIROyAi6hoZEgPLTxXVzXDbKAA8jaZ7520L9nUiJUGomAjMpiB6rVS8T//O6iR5e+ykL40RDSJeLhgnHOsJZVXjAJFDNZ4YQKpk5BdMxkYRqU6htOvJWG1knrWrFq1Vq99VS/SZvq4jO0QW6RB66QnV0hxqoiShK0TN6Qa/Wk/VmvVsfy9GClWdO0R9Ynz+Ly6K0</latexit>

Receive reimbursment
<latexit sha1_base64="apne4/3q9l5rXjbbrbPxB0cve74="></latexit>

Client<latexit sha1_base64="F7Br/rDM9FZxEiFT+UOKuSDaTpU="></latexit>

Server

<latexit sha1_base64="5obJDQTMQ2LLnEXxCbINJMCcwb4="></latexit>

Auditors
<latexit sha1_base64="Zm7wISIUqQKuetE5A5jUN5yT75Y="></latexit>

Insurance Operator

Fig. 1: A high-level illustration of the ICT platform.

We rigorously define ICT and establish its fundamental security guarantees. These assurances are vital for
maintaining the framework’s security, particularly in scenarios where either clients or servers are corrupted
by malicious adversaries seeking to exploit vulnerabilities. Developing precise definitions has demanded far
more than merely formalizing the intuitive, informal requirements of decentralized insurance. Our formalisms
expand on standard foundational concepts (e.g., signatures [13,14,18] and encryption [45,54,28]), which
account for strong adversaries with access to multiple oracles and queries both before and during the execution
of the scheme instances. This framework enables adversaries to observe the outputs of various algorithms
within the scheme prior to corrupting a party, ensuring a robust and comprehensive security model.

We also introduce Insured Cryptocurrency Exchange (ICE), a concrete instantiation of ICT, tailored
for scenarios where the service provider is a centralized cryptocurrency exchange. We focus on centralized
exchanges due to their broader adoption. For example, Binance, the largest centralized exchange, reported
over $10 billion in 24-hour trading volume in mid-2024, compared to Uniswap, the largest decentralized
exchange, with $640 million—over 15 times less [81,82]. Along the way, we introduce an abstract formal
definition of a centralized cryptocurrency exchange. ICE ensures that users are compensated if the exchange
encounters various issues such as security breaches, insolvency, or fraudulent activities. ICT and ICE offer
several advantages over traditional insurance companies, including (a) decentralized dispute resolution, en-
suring fairness and impartiality through external auditors; (b) real-time access and transparency, allowing
immediate visibility into transactions and claims; (c) fixed policy and terms, guaranteeing unchangeable
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agreements through smart contracts; and (d) minimized human intervention, reducing errors and biases with
automated processes. See Section 8.2 for a detailed discussion. We have implemented ICE’s smart contract
and made the source code publicly accessible [1]. Our cost analysis indicates that the on-chain process, in-
cluding smart contract deployment, incurs a total cost of approximately $10 in a single client-server scenario.
Of this, around $7.9 is a one-time cost for deploying the smart contract, which can subsequently serve other
clients as well.

Summary Of Our Contributions. In this work, we make the following key contributions:

• Introduce, for the first time, a formal concept of Insured Cryptocurrency Transactions (ICT).
• Propose Insured Cryptocurrency Exchange (ICE), a concrete instantiation of ICT, and rigorously prove
its security.
• Implement and deploy ICE’s smart contract, followed by an analysis of its overhead.

Further Applications. The concept of ICT can be extended to a variety of applications beyond cryptocur-
rency exchanges. Potential applications include:

– E-commerce Transactions: ICT can be used to insure purchases made on e-commerce platforms. In this
case, if a customer pays for a product but does not receive it due to fraud, delivery issues, or receives a
counterfeit item [92], they are compensated.

– Online Lending : When a loan is issued through a blockchain-based peer-to-peer lending platform, the
funds are transferred from the lender to the borrower [63]. Using ICT, these transactions can be insured
to ensure that the lender’s capital is protected. If a borrower defaults on a repayment, the ICT mechanism
ensures that the lender receives compensation.

– Rental Services: For platforms offering blockchain-based rental services (e.g., Bee Token [83], Dtraverl
[30], or Propy [72]), ICT can insure both renters and owners against non-fulfillment of rental agreements.

– Event Ticketing : ICT can be used to insure transactions for blockchain-based event tickets (e.g., Aven-
tus [11]), ensuring buyers receive valid tickets or are compensated if there are issues such as cancellations
or fraud.

– Central Bank Digital Currencies (CBDCs) and Stablecoins: ICT can contribute to the CBDC [16,15,55]
and stablecoin [62,86,76] ecosystems by mitigating risks such as fraud and operational disruptions through
loss coverage.

– Proofs of Storage: Our platform can be used to insure users against data loss within the context of
blockchain-based proof of storage [57]. If a storage provider fails to store the data correctly or loses it,
the user can claim compensation through the ICT framework.

– Verifiable Computation: ICT can also be utilized in verifiable computation [12] to provide insurance
against incorrect results. It guarantees that if a server delivers an incorrect computation result, the
client is compensated accordingly.

– Supply Chain: ICT can insure transactions within blockchain-based supply chains (e.g., IBM Food Trust
[51]), ensuring that payments are made for goods that are actually delivered, reducing the risk of fraud,
and enhancing transparency.

2 Related Works

This section provides an overview of the solutions utilizing blockchain and smart contracts to improve
insurance systems. Appendix A presents a survey of related works. Briefly, despite their potential, these
approaches share a significant limitation: the absence of formal methodologies for cryptocurrency insurance,
including well-defined security models, provable constructions, and formal proofs. Further limitations of these
solutions are outlined below.
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2.1 Blockchain-Based Insurance

Zhou et al. [94] propose MIStore, a blockchain-based medical insurance storage system designed for stor-
ing data on a blockchain. MIStore employs multiple servers to enhance system security but relies on a
centralized insurance company for claim processing and is limited to health insurance. Several high-level
blockchain-based cyber-insurance frameworks have been explored. Lepoint et al. [58] propose a system to
assist centralized insurance companies by facilitating insurer-customer interactions through Hyperledger, a
permissioned blockchain. Farao et al. [35] present a framework designed to support cybersecurity investment
and insurance pricing decisions, using blockchain to record data, enhance transparency, and automate claim
processing.

A scheme has been proposed to construct a smart contract encapsulating agreements between a customer
and an insurance company [40], leveraging Ethereum to record information and transfer funds. However,
it lacks rigorous technical details and depends on a centralized company. Loukil et al. [61] introduce a
decentralized insurance system to automate policy management and claim processing. While implemented
using Ethereum smart contracts, it is restricted to policies fully executable by smart contracts. Bhawana
et al. [56] propose a framework that integrates fire detection and insurance systems into a unified platform
for managing fire brigade service requests and insurance claims efficiently. Conceptually, it is an intriguing
system. Nevertheless, it remains dependent on a centralized insurance company and lacks broad applicability.
A recent cyber-insurance framework incorporates “Know Your Customer” (KYC) procedures [36]. It utilizes a
decentralized identity management system to verify participant identities and facilitate KYC but still heavily
relies on a centralized insurance company. Deb et al. [26] introduces an economic model and mechanism for
insurance in Proof-of-Stake (PoS) blockchains. It aims to provide cryptoeconomic safety, to ensure that no
honest users of the blockchain suffer financial losses even in the event of attacks on the blockchaian safety,
e.g., chain reorganizations. Nevertheless, it lacks generality, due to its focus on only PoS and specific attack
vectors.

2.2 Commercial Cryptocurrency Insurance

Several commercial cryptocurrency insurance platforms [24,43,70,59,8,64,17] have been developed, providing
coverage against cyberattacks and technical failures. For example, “OneInfinity” [70] provides cryptocurrency
wallet insurance, offering coverage against the risk of losing wallet private keys due to natural disasters,
physical damage, or cyberattacks. However, these platforms suffer from a lack of detailed documentation
and transparent methodologies, making it challenging to evaluate their security effectively.

2.3 Reversible Cryptocurrency Transactions

To mitigate theft-related losses in the blockchain ecosystem, Eigenmann [32] introduced the concept of
reversible transactions, enabling payees to withdraw payments within a set time frame using standard ERC-
20 contract templates. This approach was later enhanced by incorporating a panel of judges who review
user queries and determine whether a transaction should be reversed [89,90]. Reversible transactions can
be useful in certain situations, particularly when transactions involve indecent content [10]. However, their
effectiveness in financial transactions is questionable, as a committee’s authority to decide payment outcomes
could undermine trust in the cryptocurrency system, leaving users vulnerable to losing funds based on the
committee’s decisions. This is not the case in ICT, as funds obtained by recipients are never subject to
reversal.

3 Preliminaries

3.1 Notations and Assumptions

A scheme for Insured Cryptocurrency Transactions (ICT) involves five types of entities. Below, we informally
explain each of them. We will provide a formal definition of the scheme in Section 4.
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• Insurance operator (O): A trusted third party that registers servers and auditors into a smart contract
after local verification.
• Servers (S1, . . . ,Sk): Service providers that accept digital currency in exchange for their services.
• Clients (C1, . . . , Cn): Customers of servers, referred to as victims if subjected to cryptocurrency fraud.
• Smart contract (SC): A standard blockchain-based smart contract, e.g., in Ethereum.
• Committee of auditors (D1, . . . ,Dm): Third-party authorities that handle complaints and issue ver-
dicts.

We assume that parties perform their off-chain interactions over a secure communication channel and
that the operator remains honest. Other parties may be corrupted by a malicious (i.e., active) adversary [44],
(however, in the security games, the adversary should specify a challenge pair of a client and a server such
that not both parties are corrupted). Additionally, a minority of auditors may be corrupted. The default
value of any variable is ⊥.

3.2 Distributed Ledger

We adopt the definitions of persistence and liveness for public transaction ledgers as described in [41]. These
properties are critical for ensuring the consistency and progress of a distributed ledger. Here, we provide
brief and informal definitions. Definitions 5 and 6 formally state them.

– Persistence. It ensures that once a transaction is incorporated into the blockchain of an honest participant
at a depth of more than k blocks from the chain’s end, it will, with overwhelming probability, be included
in the blockchain of every other honest participant. Furthermore, the transaction will occupy a fixed and
permanent position in the ledger.

– Liveness. It guarantees that all transactions initiated by honest account holders will eventually reach
a depth greater than k blocks in the blockchain of at least one honest participant. Consequently, the
adversary is unable to execute a selective denial-of-service attack against transactions originating from
honest account holders.

Smart Contracts. Cryptocurrencies like Bitcoin [67] and Ethereum [91] offer more than just decentral-
ized currency functionality; they also enable computational operations on transactions. These platforms allow
users to encode specific computational logic into programs known as smart contracts. Currently, Ethereum
is the leading cryptocurrency framework that supports the definition and deployment of arbitrary smart
contracts. In this framework, contract code is stored on the blockchain and executed by all participants
maintaining the cryptocurrency. The correctness of execution is guaranteed by the security of the underlying
blockchain infrastructure. In this work, we utilize standard public (Ethereum) smart contracts.

4 Formal Framework

4.1 Predicates and Functions

An ICT scheme is parameterized by a set of predicates and functions, defined below.

– Validate(C)(stCi
, adrSj

, adrSC)→ â: A predicate run by a client Ci. It is used to check whether a server Sj

has been registered in a specific smart contract and is reliable. It takes as input Ci’s state stCi
(which may

contain information about Sj), Sj’s address adrSj
, and the smart contract’s address adrSC. It returns 1

if the verification passes, and 0 otherwise.
– Validate(O)(plcλ, stO,msgP ) → b̂: A predicate run by operator O. It is used to check whether a party

P is reliable according to the insurance’s policy. It takes as input, O’s policy: plcλ, O’s state: stO, and
P ’s message: msgP (that may contain P ’s address, adrP ). It returns 1 if the verification passes, and 0
otherwise.
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– CalPremium(stateSC, adrSj
, reqCi

) → τ : a function that determines the amount of premium that a Ci
should pay. It can be run by any party. It takes as input smart contract state stateSC, S’s address adrSj

,
and Ci’s request reqCi

that includes the amount α a client Ci wants to pay to a server Sj for its service,
and maybe a description of the service for which it wants to send α amount.5 It returns the amount of
premium τ .

– CompRemAmount(plcλ, γ, reqCi
, pp)→ amount: a function that determines the amount of reimbursement

a victim of fraud should receive. It takes insurance policy plcλ, the total amount of coins γ (including
premium) that Ci sent, Ci’s request reqCi

for a service (that includes the amount α of the service payment
that Ci wants to cover), and public parameters pp. It returns the reimbursement amount amount that
Ci should receive.

– ExtractVerdict(plcλ, e1, . . . , em, adrCi
)→ r̂: a predicate that determines whether a client Ci must be reim-

bursed. It takes as input policy plcλ (which may contain an integer t defining a threshold), all auditors’
votes e1, . . . , em, and Ci’s address adrCi

. It returns 1 if Ci should be reimbursed. It returns 0 otherwise.
– UpdateList(list, T, θ) → list: an algorithm that takes a list of triples list = {(., ., T1), . . . , (., ., Tm)} and

value θ, where T is current time, Ti is a specific time, and θ is a positive value. It deletes each (., ., Ti)
in the list if T − Ti > θ. It returns the updated list.

– CheckBudget(reqCi
, adrSj

, adrSC, balance, stateSC, plcλ, γ, pp, Lpnd) → ŵ: a predicate that determines if a
smart contract SC has enough budget to serve a new client Ci. It takes (1) reqCi

: Ci’s request that includes
the amount α the client wants to send, (2) adrS : address of Sj, (3) balance: the amount of usable funds
held by SC, (4) plcλ: policy of Sj, (5) γ: the total amount (that includes service payment plus premium)
that Ci wants to pay, (6) pp: public parameters, and (7) Lpnd: a list of pending transactions. If SC has
enough budget, it returns 1. Otherwise, it returns 0.

– Update.State(stP , pp, skP , dataledger)→ stP : an algorithm executed by a party P . It takes P ’s state stP ,
public parameters pp, P ’s secret key skP , and the blockchain’s state dataledger. The algorithm updates
stP and returns an updated state stP .

4.2 Syntax

An ICT scheme comprises a set of algorithms and protocols, which we formally define below. The complexity
of the presented syntax arises from our deliberate effort to capture a broad range of real-world scenarios in
the context of insurance while preserving generality. These scenarios include: (i) enabling clients to withdraw
funds, (ii) allowing the operator to vet auditors and servers, (iii) allowing clients or servers to decide whether
to transact with their counterparts based on their responses, and (iv) permitting the decentralized insurance
system to determine whether to serve a client based on its available budget.

For each party P , we define a state stP that incorporates its background knowledge about other parties.
During the execution of certain algorithms or protocols, the party updates its state.6

– Operator.Setup(1λ, plcλ)→ (stO, pp, adrSC, ⟨SC⟩, skO): an algorithm run by O. It takes as input the
security parameter 1λ and the insurance policy plcλ, where plcλ specifies (i) an insurance period Θ: the
duration that a client is insured, and (ii) a transaction period ∆: a fixed period during which certain
processes must be executed with respect to this time frame. It generates a public-secret key pair for the
operator (skO, pkO); it also generates a smart contract SC (which encodes plcλ), an initial state stO for
O, and public parameters pp that include pkO,Θ, and ∆. Let ⟨SC⟩ denote the code of SC. The algorithm
deploys SC on the blockchain, initialized with a deposit of Γ coins, where Γ is specified in plcλ. SC
maintains a variable balance← Γ and a (pending) list Lpnd initialized as empty. Let adrSC be the address
of the deployed SC. It returns stO, pp, adrSC, ⟨SC⟩, and skO. The operator O publishes adrSC and sends
pp to SC.

5 In traditional insurance, this would be known as the policy limit or cover.
6 Defining a dynamic state offers two distinct advantages: (i) it enables us to capture the real-world context in which
each party assesses its interactions with other parties based on the background knowledge it possesses about them,
and (ii) it allows us to account for the dynamic nature of a party’s background knowledge, which evolves over time
in response to its counterparts’ past known behavior.
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– Party.GenParams(1λ, (P, adrP ))→ (skP , pkP ): an algorithm run by each client, server, and auditor, de-
noted as P . It takes as input the security parameter 1λ and the address adrP associated with P , and
returns the secret and public parameters (skP , pkP ).

– Register
(
⟨P (msgP , skP ),O(stO, adrSC, skO)⟩

)
→ ĉ: a protocol between O and a party P , where P is

either an auditor or a server. The party P initiates registration by sending a message msgP to O. The
message msgP includes adrP and, if P is a server, also includes the description of the service function
FP and a set VP of clients’ inputs that are valid for the service provided by P . O takes as input the
state stO, the address adrSC, and the secret key skO. It reads plcλ from SC and runs Validate(O)(plcλ, stO,

msgP ) → b̂. If b̂ = 1, O sets ĉ ← 1 and registers P by sending (adrP , ĉ, FP , VP , αP ) or (adrP , ĉ) to SC,
depending on whether P is a server or an auditor, respectively. If b̂ = 0, O sets ĉ ← 0 and sends the
message (Registration, ĉ) to SC.

– C.Init(inptCi
, skCi

, pkCi
, adrSj

, adrSC, stCi
)→ (inpt∗Ci

, â, ppCi
): an algorithm run by a client Ci. It takes

as input Ci’s input inptCi
(which may depend on a specific service of interest), Ci’s secret and public

keys (skCi
, pkCi

), the address of a server adrSj
, as well as adrSC and the state stCi

. The algorithm runs

Validate(C)(stCi
, adrSj

, adrSC)→ â to check whether Sj has been registered and is considered reliable. If:

• â = 1, it generates public parameters ppCi
(including an identifier id inptCi

linked to inptCi
), and the

input’s representation inpt∗Ci
that includes id inptCi

. It returns (inpt∗Ci
, â, ppCi

). Ci sends (inpt∗Ci
, adrCi

)
to Sj and ppCi

to SC.
• â = 0, it returns (⊥, â,⊥), and Ci takes no further action.

– S.Init(inpt∗Ci
, adrCi

, skSj
, pkSj

, stSj
, adrSC)→ (ê, respSj

): an algorithm run by Sj upon receiving (inpt∗Ci
,

adrCi
) from Ci. It takes as input inpt∗Ci

, adrCi
, skSj

, pkSj
, stSj

, and adrSC. The algorithm reads ppCi
and

pp from SC and checks the validity of inpt∗Ci
. If the check passes, it sets ê← 1. Otherwise, it sets ê← 0.

It returns ê and a server’s response respSj
. Sj sends (id inptCi

, ê, respSj
, adrCi

) to SC.
– SendTransaction(Ci(id inptCi

, skCi
, inptCi

, stCi
, α, adrSj

,adrSC),SC)→ (γ, txi, reqCi
): a protocol between

Ci and SC. Ci takes as input id inptCi
, skCi

, inptCi
, stCi

, the amount α that Ci wants to pay for a service
that will be offered by Sj, adrSj

, and adrSC. It reads SC, including ê, respSj
, and pp. It decides whether

it wants to proceed (based on Sj’s response) by running the predicate Decide(stCi
, α, inptCi

, respSj
) that

outputs q̂. It proceeds only if ê = 1 and q̂ = 1 (else, Ci outputs ⊥). It generates a service request
reqCi

(that includes id inptCi
and α) and sets γ ← CalPremium(stateSC, adrSj

, reqCi
) + α. Client Ci

sends reqCi
, adrSj

, and γ coins to SC which checks if it holds sufficient budget to serve Ci, by call-
ing CheckBudget(reqCi

, adrSj
, adrSC, balance, stateSC, plcλ, γ, pp, Lpnd) → ŵ. If the check does not pass,

it returns ⊥ and transfers γ coins to Ci and takes no further action. Otherwise, it generates a unique
transaction identifier txi (that includes adrCi

and adrSj
), and sets two flags f̂ and ĝ to 0. Let T1 be the

time when txi was generated. SC appends (txi,CompRemAmount(plcλ, γ, reqCi
, pp), T1) to Lpnd. When

SC does not return ⊥, Ci sends (txi, inptCi
) to Sj.

– VerRequest(adrSC, txi, inptCi
)→ f̂ : an algorithm run by Sj upon receiving (txi, inptCi

) from Ci. It takes
as input adrSC, txi, and inptCi

. It reads SC (including adrCi
, ê, respSj

, reqCi
, and ppCi

associated with txi

and pp). It proceeds if ê = 1. It checks the validity of reqCi
. If the check passes, it sets f̂ ← 1. It returns

f̂ . Subsequently, S sends f̂ to SC.
– Withdraw(adrCi

, pp, txi, T, T1)→ ĝ: it is run by SC (invoked by Ci). It takes as input adrCi
, pp, txi,

current time T , and the time T1 when Ci registered a transaction txi. It checks whether Ci is entitled to
withdrawal. If the check passes, it returns γ coins (that Ci paid via transaction txi) to address adrCi

,
updates Lpnd, and sets ĝ ← 1. Otherwise, it sets ĝ ← 0. It returns ĝ.

– Transfer(ê, f̂ , ĝ, txi, α, γ,∆, T, T1)→ ĥ: an algorithm run by SC (invoked by Sj). It takes as input

ê, f̂ , ĝ, txi, the amount α (specified in reqCi
) to be sent to Sj (specified in txi), the amount γ sent to SC

via txi, ∆, current time T , and time T1 when Ci registered txi. It proceeds if ê = 1, T −T1 > ∆, and ĝ = 0
(else, it outputs ⊥). Let stateSC[T1] be the data added to SC before time T1. If f̂ = 0, it returns ĥ = 0 and

SC sends γ coins back to Ci, updates Lpnd, and does not take any action regarding txi. If f̂ = 1, it proceeds
as follows. It reads request reqCi

associated with txi. If γ ≥ CalPremium(stateSC[T1], adrSj
, reqCi

) + α, it
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(i) transfers α coins to Sj, (ii) keeps CalPremium(stateSC[T1], adrSj
, reqCi

) coins, accordingly updates its

balance, (iii) returns the remaining of γ to C
i
, and (iv) sets ĥ← 1. Otherwise, it (i) sends γ coins back

to the sender C
i
of the coins, (ii) updates Lpnd, and (iii) sets ĥ ← 0. Let T2 be the time that Transfer

algorithm is completed.
– Serve(skSj

, adrSC, txi)→ (servicej, πj): an algorithm run by Sj upon receiving α coins from SC for

transaction txi. It takes as input skS , adrSC, and txi. It reads SC. It proceeds only if the bit ĥ associated
with txi is 1 (else, it outputs ⊥). It sets servicej to the output of FSj

(inpt∗Ci
, reqCi

, pp) and sets πj to the
detail of the service delivery (that may include proof of the service delivery). When the service is not
delivered, it sets servicej and πj to ⊥. It returns (servicej, πj). Sj sends servicej to Ci and πj to SC.

– GenComplaint(skCi
, servicej, txi, adrSC)→ complainti: an algorithm run by Ci upon receiving servicej

from Sj or if the current time is greater than T2 +∆ (where ∆ ∈ pp) and Ci has received no service. It
takes as input skCi

, servicej, txi, and adrSC. It reads SC (including πj and reqCi
). It verifies if the service

has been delivered. If verification does not pass, it generates a complaint complainti (that contains
evidence, adrCi

, and txi). Otherwise, it sets complainti ← ⊥. In either case, it returns complainti. If
complainti ̸= ⊥, Ci sends complainti to SC. Let T3 be the time complainti is registered in SC.

– Reimburse
(
⟨D1(adrSC, skD1

), . . . ,Dm(adrSC, skDm
),SC(plcλ, α,γ, complainti, pp)⟩

)
→ amounti: a proto-

col run among registered auditors D1, . . . ,Dm and SC. Each Dℓ takes the following steps: (i) reads SC (in-
cluding T2, complainti, and plcλ); (ii) makes a voting decision d̂ℓ ∈ {0, 1}; and (iii) sends (complainti, d̂ℓ)

to SC before time T = T3 +∆. Upon receiving the decision bits d̂1, . . . , d̂m from auditors (if auditor Dℓ

is not registered or it did not send its decision bit until time T = T3 + ∆, then d̂ℓ is set to ⊥) and on

input plcλ, α, γ, complainti, and pp, SC takes the following steps: (i) calls ExtractVerdict(plcλ, d̂1, . . . , d̂m,
adrCi

) → r̂ to determine the final verdict; (ii) if r̂ = 0, sets amounti = 0; (iii) if r̂ = 1, determines
the amount of reimbursement that Ci must receive by calling CompRemAmount(plcλ, α, γ, reqCi

, pp) →
amounti (where reqCi

is the request linked to txi contained in complainti); (iv) if amounti ̸= 0, updates
as balance← balance− amounti, deletes (txi, ·, ·) from Lpnd, and sends amounti coins to adrCi

.

4.3 Properties

An ICT must meet correctness and security properties. Informally, correctness entails that when both the
client and server are honest:

• when a client does not want to withdraw its payment from SC within a certain period, then at the
conclusion of the protocol’s execution: (i) the operator registers the servers and auditors, (ii) the server
accepts the client’s input, (iii) the server accepts the client’s request (iv) SC pays the server, and (v) the
client accepts the service, its proof, and does not invoke the auditors.

• when a client wants to withdraw its payment from SC within a predefined period, then: (i) the operator
registers the servers and auditors, (ii) the server accepts the client’s input, (iii) the server accepts the
client’s request, and (iv) the client fully recovers its payment from SC.

Security states that: (a) an honest client does not accept an invalid service or it will receive a predefined
compensation for an invalid service delivered by a server, (b) an honest server will not accept an invalid
request from a client, and (c) a client will not receive reimbursement if the server delivered a valid service.

5 Security Model

5.1 Special Commands

Each property of an ICT scheme is formalized through a game between a challenger Ch and the adversary
A. The challenger Ch initially runs Operator.Setup(1λ, plcλ) and plays the role of the honest parties, e.g., it
maintains the variable balance and the list Lpnd of SC. Also, A controls the corrupted parties and orchestrates
the execution by issuing the following types of special commands:
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– (Params Generation, adrP ): if this is the first time that it has received this command and party P is
honest, Ch executes Party.GenParams(1λ, adrP ), which produces a pair (skP , pkP ); otherwise, it returns
⊥ to A. It sends pkP to A.

– (Registration,msgP ): if this is the first time that it has received this command and P is an auditor or
a server, Ch executes O’s steps in the Register protocol (else it returns ⊥ to A). The format of msgP

should be such that it includes adrP and, if P is a server, the description of (i) the service function FP ,
(ii) the set VP of clients’ inputs that are valid for the service that P provides, and (iii) the expected
amount α to be paid for delivering its service (else it returns ⊥ to A). Then, it updates the data added

to SC according to the output b̂ of Validate(O)(plcλ, stO,msgP ).
– (Client Init, inptCi

, adrCi
, adrSj

): if it has previously received the command (Params Generation,
adrCi

) and Ci is honest, Ch runs the algorithm C.Init(inptCi
, skCi

, pkCi
, adrSj

, adrSC, stCi
) (else it re-

turns ⊥ to A). If the algorithm outputs (⊥, 0,⊥), it takes no further action. If the algorithm outputs
(inpt∗Ci

, 1, ppCi
), Ch adds ppCi

to SC and sends (inpt∗Ci
, adrCi

) to Sj.
– (Send Transaction, id inptCi

, α, adrCi
, adrSj

): if Ci is honest and there exists a tuple (id inptCi
, ê,

respSj
, adrCi

) in dataSC, Ch runs SendTransaction(Ci(id inptCi
, skCi

, inptCi
, stCi

, α, adrSj
, adrSC),SC)→

(γ, txi, reqCi
) between Ci and SC (else it returns ⊥ to A). Specifically, Ch runs Decide(stCi

, inptCi
, respSj

)
that outputs q̂. It proceeds if ê = 1 and q̂ = 1 (else, it returns ⊥ to A). It generates a request reqCi

for the service, including id inptCi
and α, and computes an amount γ ← CalPremium(dataSC, adrSj

,
reqCi

)+α. It adds (id inptCi
, γ, adrSj

) to SC. It checks if there is sufficient budget to serve Ci, by calling
CheckBudget(reqCi

, adrSj
, adrSC, balance, dataSC, plcλ, γ, pp, Lpnd) → ŵ. If the check passes, it generates

a transaction identifier txi and sets two associated flags f̂ , ĝ to 0 (if there is no sufficient balance, it
returns γ coins to Ci and ⊥ to A). It sends (txi, inptCi

) to Sj on behalf of Ci.
– (Withdraw, adrCi

, txi): Ch reads the current time T , the delay parameter ∆, and the time T1 when Ci
registered transaction txi (if txi is not registered, it returns ⊥ toA). It runs Withdraw(adrCi

, pp, txi, T, T1)
that updates a flag ĝ associated with txi. It sends ĝ to A.

– Advance Clock: Ch increments the time counter by 1 and returns ⊤ to A.
– (Corrupt, adrP ): Ch marks party P (client, server, or auditor) as corrupted and returns its state stP

to A along with the party’s secret parameters skP (if already generated).

5.2 Correctness

Broadly speaking, an ICT protocol satisfies correctness if, for any valid inputs provided by the participating
parties, the following condition holds. When the servers and clients honestly follow the protocol and provide
valid inputs, the protocol ensures that each party correctly receives its designated output. In this scenario, (i)
clients always receive the services, they never generate complaints, and they will never receive compensation,
and (ii) the servers are always paid for the services they provide.

Overview of Correctness Game GΣICT,A
correct

(1λ, S,C,D, plcλ). The game is parameterized by the security
parameter λ, sets of servers S = {S1, . . . ,Sk}, clients C = {C1, . . . , Cn}, and auditors D = {D1, . . . , Dm}, and
a family of policy descriptions plc = {plcλ}λ∈N. The size of parameters k, n,m, and plc are polynomial in λ.
The game comprises four phases: Initialization, Execution, Challenge, and Termination.

– In the Initialization phase, the challenger Ch initializes the insurance operator and the smart contract.
It provides the adversary A with: the public parameters and all parties’ descriptions and addresses.

– In the Execution phase, Ch and A engage in an interaction where the latter is allowed to send all types
of commands described in Section 5.1. Thus, besides adaptively corrupting the parties of its choice, A
orchestrates the execution, including the engagement of the honest parties.

– In the Challenge phase, A provides Ch with the addresses of a client C̃ and a server S̃, C̃’s input inptC̃,
and an amount α̃.

– In the Termination phase, the winning conditions for A are specified. Informally, A wins the game if:
1. C̃ and S̃ are honest, their secret and public parameters have been generated, and S̃ is successfully

registered, and
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2. Either of the following holds:
(a) C̃ does not validate S̃’s reliability or registration status.
(b) S̃ rejects a valid inptC̃.
(c) C̃ makes a late withdrawal request, but the smart contract SC carries out the request execution.
(d) SC does not complete a withdrawal request from C̃ that was submitted on time.
(e) S̃ does not deliver the correct service as requested by C̃.
(f) C̃ does not validate a service honestly executed by S̃.

Detailed Correctness Game. We proceed to formally present the correctness game GΣICT,A
correct (1λ,S,C,D,

plcλ), in Figure 2.

The Correctness game GΣICT,A
correct (1λ,S,C,D, plcλ).

– Initialization: On behalf of O, Ch runs Operator.Setup(1λ, plcλ), which outputs (stO, pp, adrSC). It
sets a time counter to 0 and generates an address adrP for every party P ∈ S ∪C ∪D. It provides A
with pp, adrSC, and {(P, adrP )}P∈S∪C∪D.

– Execution: Ch and A engage in an interaction where Ch plays the role of O, SC, and the honest parties,
while A controls the corrupted parties and can send the commands described in Section 5.1.

– Challenge: A provides Ch with challenge addresses adrC̃ and adrS̃ , an input inptC̃, and an amount α̃.
– Termination: The game returns a bit as follows:
1. If there is no registered auditor, then the game returns 0.
2. If adrC̃ is not the address of an honest C̃ or adrS̃ is not the address of an honest S̃, the game returns

0.
3. If A has not sent commands (Params Generation, adrC̃), (Params Generation, adrS̃), the

game returns 0.
4. If A has not sent (Registration,msgS̃) such that Ch has returned 1, the game returns 0. If A has

sent such a command (i.e., S̃ is registered), let FS̃ be the service function and VS̃ be the set of valid
clients’ inputs for the service that S̃ provides.

5. Ch runs C.Init(inptC̃, skC̃, pkC̃, adrS̃ , adrSC, stC̃).
6. If the algorithm C.Init outputs (⊥, 0,⊥), the game returns 1 (C̃ considered S̃ non-registered or

unreliable).
7. If C.Init outputs (inpt∗C̃, 1, ppC̃), Ch runs S.Init(inpt∗C̃, adrC̃, skS̃ , pkS̃ , stS̃ , adrSC).
8. If S.Init outputs (ê, respS̃) such that ê = 0 and inptC̃ /∈ VS̃ , the game returns 0.
9. If S.Init outputs (ê, respS̃) such that ê = 0 and inptC̃ ∈ VS̃ , the game returns 1 (S̃ rejected a valid

client’s input).
10. If S.Init outputs (ê, respS̃) such that ê = 1, then Ch runs protocol

SendTransaction(C̃(id inptC̃, skC̃, inptC̃, stC̃, α̃, adrS̃ , adrSC), SC). If Decide(stC̃, α̃, inptC̃, respS̃)
outputs q̂ = 0, the game returns 0. If SC sends ⊥ to C̃ (no sufficient balance), the game returns
0. Otherwise, the protocol outputs an amount γ̃, a unique transaction identifier t̃x and a client’s
request reqC̃. Let T1 be the time that t̃x was registered.

11. Ch runs VerRequest(adrSC, t̃x, inptC̃). If VerRequest outputs f̂ = 0, the game returns 1 (S̃ rejected
a valid client’s request).

12. If the VerRequest outputs f̂ = 1, Ch provides A with (t̃x, reqC̃).
13. A can send a number of Advance Clock commands of its choice. It provides Ch with a bit g̃.
14. If g̃ = 0, then Ch runs Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1), where T is the current time, and goes to

Step 20.
15. If g̃ = 1, Ch runs Withdraw(adrC̃, pp, t̃x, T, T1)—recall ∆ ∈ pp.
16. If Withdraw returns 1 and T − T1 ≤ ∆, the game returns 0.
17. If Withdraw returns 1 and T − T1 > ∆, the game returns 1 (SC completed a withdraw request that

was submitted too late).
18. If Withdraw returns 0 and T − T1 ≤ ∆, the game returns 1 (SC did not perform a withdrawal that

was submitted on time).
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19. If Withdraw returns 0 and T − T1 > ∆, Ch runs Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1).

20. If Transfer outputs ĥ ̸= 1, the game returns 0.
21. If Transfer outputs ĥ = 1, Ch runs Serve(skS̃ , adrSC, t̃x) that outputs (serviceS̃ , π̃).
22. If serviceS̃ ̸= FS̃(inpt

∗
C̃, reqC̃, pp), the game returns 1 (S̃ did not deliver the correct service as re-

quested by C̃).
23. Ch runs GenComplaint(skC̃, serviceS̃ , t̃x, adrSC).
24. If GenComplaint outputs ⊥, the game returns 0.; else, it returns 1 (C̃ did not validate an honestly

executed service by S̃).

Fig. 2: The Correctness game for ΣICT w.r.t. plc = {plcλ}λ∈N between the challenger Ch and the adversary A
with the sets of servers S = {S1, . . . ,Sk}, clients C = {C1, . . . , Cn}, and auditors D = {D1, . . . ,Dm}.
Definition 1 (Correctness). Let λ be the security parameter and k, n,m be integers polynomial in λ.
Let ΣICT be a ICT scheme with sets of servers S = {S1, . . . ,Sk}, clients C = {C1, . . . , Cn}, and auditors
D = {D1, . . . ,Dm}. Let plc = {plcλ}λ∈N be a family of policy descriptions of size polynomial in λ. Then, ΣICT

satisfies Correctness w.r.t. plc, if for every PPT adversary A, it holds that:

Pr [GΣICT,A
correct (1λ,S,C,D, plcλ) = 1] = negl(λ).

5.3 Client-Side Security

Informally, client-side security ensures that an honest client does not accept an invalid service or receives a
predefined compensation for an invalid service delivered by a server.

Overview of Client-side t-Security Game GΣICT,A
t−cln.sec (1

λ, S,C,D , plcλ). The game is parameterized by
λ, a real number t ∈ [0, 1), S = {S1, . . . ,Sk}, C = {C1, . . . , Cn}, D = {D1, . . . ,Dm}, and plc = {plcλ}λ∈N. The
parameters k, n,m, plc are polynomial in λ. The game comprises four phases, where phases Initialization,
Execution, and Challenge are the same as the ones discussed in the Correctness game (Section 5.2). In
the Termination, the winning conditions for A are specified. Informally, A wins the game (i.e., the game
outputs 1) if the following conditions are met:

1. Client C̃ is honest and its secret and public parameters have been generated and the server S̃ is corrupted.
2. A has corrupted less than t fraction of all registered auditors.
3. At least one of the following conditions holds: (i) C̃ validates S̃’s reliability and registration, but S̃ is not

registered, (ii) C̃ accepts an invalid service provided by S̃, or (iii) C̃ generated a complaint for an invalid
service of S̃, but Reimburse concludes that C̃ should not be reimbursed.

Detailed Description of Client-Side Security Game. Next, we present a detailed description of the
game GΣICT,A

t−cln.sec (1
λ, S,C,D, plcλ) for client-side security, in Figure 3.

The Client-side t-Security game GΣICT,A
t−cln.sec (1

λ, S,C,D, plcλ).

– Initialization: On behalf of the insurance operator O, Ch runs Operator.Setup(1λ, plcλ) that outputs
(stO, pp, adrSC). Then, it sets a time counter to 0 and generates an address adrP for every party
P ∈ S ∪C ∪D. It provides A with pp, adrSC and {(P, adrP )}P∈S∪C∪D.

– Execution: Ch and A engage in an interaction where Ch plays the role of O, SC and the honest
parties, while A controls the corrupted parties and can send commands Params Generation,
Registration, Client Init, Send Transaction, Withdraw, Advance Clock, Corrupt, as
described in Section 5.1.

– Challenge: A provides Ch with challenge addresses adrC̃ and adrS̃ , an input inptC̃, and an amount α̃.
– Termination: The game returns a bit as follows:

1. If A has corrupted at least t fraction of all successfully registered auditors or if there is no
successfully registered auditor, then the game returns 0.
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2. If adrC̃ is not the address of an honest client C̃ or adrS̃ is not the address of a corrupted server S̃,
then the game returns 0.

3. If A has not sent a command (Params Generation, adrC̃), then the game returns 0.
4. Ch runs the algorithm C.Init(inptC̃, skC̃, pkC̃, adrS̃ , adrSC, stC̃).
5. If the algorithm C.Init outputs (⊥, 0,⊥), the game returns 0.
6. If the algorithm C.Init outputs (inpt∗C̃, 1, ppC̃), but A has not sent a command (Registration,

msgS̃) such that Ch has returned 1, then the game returns 1 (C̃ validated a non-registered server).
7. If the algorithm C.Init outputs (inpt∗C̃, 1, ppC̃) and S̃ is successfully registered, let FS̃ be the

service function and VS̃ be the set of valid clients’ inputs for the service that S̃ provides. If
inptC̃ /∈ VS̃ , then the game returns 1. If inptC̃ ∈ VS̃ , Ch provides A with (inpt∗C̃, ppC̃).

8. A provides Ch with a bit ẽ and a response respS̃ .
9. If ẽ = 0, the game returns 0. If ẽ = 1, Ch adds (id inptC̃, ẽ, respS̃ , adrC̃) to SC and runs the

protocol SendTransaction(C̃(id inptC̃, skC̃, inptC̃, stC̃, α̃, adrS̃ , adrSC),SC). If Decide(stC̃, α̃, inptC̃,
respS̃) outputs q̂ = 0, then the game returns 0. If SC sends ⊥ to C̃ (no sufficient balance), then
the game returns 0. Otherwise, the protocol outputs an amount γ̃, a unique transaction identifier
t̃x and a client’s request reqC̃. Let T1 be the time that t̃x was registered. Ch provides A with
(t̃x, reqC̃).

10. A can send a number of Advance Clock commands of its choice. Then, it provides Ch with
bits f̃ and g̃.

11. If f̃ = 0, then the game returns 0.
12. If g̃ = 0, then Ch runs the algorithm Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1), where T is the current

time, and goes to Step 16.
13. If g̃ = 1, Ch executes the algorithm Withdraw(adrC̃, pp, t̃x, T, T1).
14. If the algorithm Withdraw returns 1 or T − T1 ≤ ∆, then the game returns 0.
15. If the algorithm Withdraw returns 0 and T −T1 > ∆, Ch runs Transfer(1, 1, 0, t̃x, α̃, γ̃, ∆, T, T1).

16. If the algorithm Transfer outputs ĥ ̸= 1, the game returns 0.
17. If the algorithm Transfer outputs ĥ = 1, then Ch provides A with ĥ. Let T2 be the time that

Transfer algorithm is completed.
18. A can send a number of Advance Clock commands of its choice. Upon receiving any such

command, Ch also checks if T −T2 > ∆ (and no service has been received). If so, then it runs the
algorithm GenComplaint(skCi

,⊥, t̃x, adrSC) and goes to Step 22.
19. A provides Ch with a pair (serviceS̃ , π̃).
20. If serviceS̃ = FS̃(inpt

∗
C̃, reqC̃, pp), then the game returns 0.

21. If serviceS̃ ̸= FS̃(inpt
∗
C̃, reqC̃, pp), Ch runs GenComplaint(skCi

, serviceS̃ , t̃x, adrSC).

22. If the algorithm GenComplaint outputs ⊥, then the game returns 1 (C̃ validated an incorrect
service provided by S̃).

23. If algorithm GenComplaint outputs complaintC̃, Ch engages with A in an execution of the protocol

Reimburse
(
⟨D1(adrSC, skD1

), . . . ,Dm(adrSC, skDm
),SC(plc, α̃, γ̃, complaintC̃, pp)⟩

)
as follows:

(a) Let I be the subset of [m] that specifies the subset of corrupted auditors. Playing the role of

every honest auditor Dℓ′ , Ch decides a bit d̂ℓ′ , where ℓ′ ∈ [m] \ I.
(b) It provides A with all honest decision bits {d̂ℓ′}ℓ′∈[m]\I.

(c) A replies with the corrupted decision bits {d̂ℓ}ℓ∈I of its choice. If the decision bit of some
non-registered corrupted auditor is not ⊥, then the game returns 0.

(d) Ch runs ExtractVerdict(plc, d̂1, . . . , d̂m, adrC̃) that outputs the final verdict bit r̂.
(e) If r̂ = 0, then the game returns 1 (C̃ will not be reimbursed although S̃ did not provide the

correct service). Otherwise, the game returns 0.

Fig. 3: The Client-side t-Security game for ΣICT w.r.t. plc = {plcλ}λ∈N between the challenger Ch and the ad-
versary A with the sets of servers S = {S1, . . . ,Sk}, clientsC = {C1, . . . , Cn}, and auditorsD = {D1, . . . ,Dm}.
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Definition 2 (Client Security). Let λ be the security parameter, k, n,m be integers polynomial in λ, and
t ∈ [0, 1). Let ΣICT be a ICT scheme with sets of servers S = {S1, . . . ,Sk}, clients C = {C1, . . . , Cn}, and
auditors D = {D1, . . . ,Dm}. Let plc = {plcλ}λ∈N be a family of policy descriptions of size polynomial in λ.
Then, ΣICT satisfies Client-side t-Security w.r.t. plc and D, if for every PPT adversary A, it holds that:

Pr [GΣICT,A
t−cln.sec (1

λ,S,C,D, plcλ) = 1] = negl(λ).

5.4 Server-Side Security

Server-side security ensures that an honest server will not accept an invalid input or request from a client,
and that the client will not receive reimbursement if the server has delivered a valid service.

Overview of Server-side t-Security Game GΣICT,A
t−srv.sec (1

λ, S,C,D, plcλ). The game comprises four
phases, where Initialization, Execution are similar to the ones in the Correctness game. In the Chal-
lenge phase, the adversary provides the challenger with the addresses of a client C̃ and a server S̃. In the
Termination, the winning conditions for A are specified; A wins the game, if the following conditions are
satisfied:

1. The server S̃ is honest, its secret and public parameters have been generated and it is registered, and C̃
is corrupted.

2. A corrupted less than t fraction of registered auditors.
3. At least one of the following conditions holds: (i) S̃ accepts an invalid (encoded) input from C̃, (ii) S̃

accepts an invalid request from C̃, or (iii) C̃ received reimbursement although S̃ provided a valid service.

Detailed Description of Server-Side Security Game. Now we provide a detailed description of the
game GΣICT,A

t−srv.sec (1
λ, S,C,D, plcλ), which models server-side security, in Figure 4.

The Server-side t-Security game GΣICT,A
t−srv.sec (1

λ,S,C,D, plcλ).

– Initialization: On behalf of the insurance operator O, Ch runs Operator.Setup(1λ, plcλ) that outputs
(stO, pp, adrSC). Then, it sets a time counter to 0 and generates an address adrP for every party
P ∈ S ∪C ∪D. It provides A with pp, adrSC and {(P, adrP )}P∈S∪C∪D.

– Execution: Ch and A engage in an interaction where Ch plays the role of O, SC and the honest
parties, whileA controls the corrupted parties and can send commands of type Params Generation,
Registration, Client Init, Send Transaction, Withdraw, Advance Clock, Corrupt, as
described in Section 5.1.

– Challenge: A provides Ch with two challenge addresses adrC̃ and adrS̃ .
– Termination: The game returns a bit according to the following steps:

1. If A has corrupted at least t fraction of all successfully registered auditors or if there is no
successfully registered auditor, then the game returns 0.

2. If adrC̃ is not the address of a corrupted client C̃ or adrS̃ is not the address of an honest server S̃,
then the game returns 0.

3. If A has not sent a command (Params Generation, adrS̃), then the game returns 0.
4. If A has not sent a command (Registration,msgS̃) such that Ch has returned 1, then the game

returns 0. If A has sent such a command (i.e., S̃ is successfully registered), let FS̃ be the service
function and VS̃ be the set of valid clients’ inputs for the service that S̃ provides.

5. A provides Ch with a triple (inpt∗C̃, â, ppC̃).
6. If â ̸= 1, the game outputs 0. Otherwise, Ch runs S.Init(inpt∗C̃, adrC̃, skS̃ , pkS̃ , stS̃ , adrSC).
7. If the algorithm S.Init outputs (ê, respS̃) such that ê = 0, then the game returns 0.
8. If the algorithm S.Init outputs (ê, respS̃) such that ê = 1, then if inptC̃ /∈ VS̃ , then the game

returns 1 (S̃ accepted an invalid client’s input). Otherwise, Ch sends (id inptC̃, ê, respS̃ , adrC̃) to
SC and provides A with (id inptC̃, 1).
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9. A provides Ch with a request reqC̃ that specifies an amount α̃ and an amount of γ̃ coins.
10. Ch (playing the role of SC) runs CheckBudget(reqC̃, adrC̃, adrSC, balance, dataSC, plcλ, γ̃, pp, Lpnd)→

ŵ. If ŵ = 0, then the game returns 0. Otherwise, it generates a unique transaction identifier t̃x
and provides A with t̃x. Let T1 be the time that t̃x was registered.

11. A provides Ch with an input inptC̃.
12. Ch runs the algorithm VerRequest(adrSC, t̃x, inptC̃).

13. If the algorithm VerRequest outputs f̂ = 0, then the game returns 0.
14. If VerRequest outputs f̂ = 1, if (inptC̃, reqC̃, pp) /∈ Domain(FS̃), the game returns 1 (S̃ accepted

an invalid input or an invalid request from C̃). Otherwise, Ch sends f̂ to SC.
15. A can send a number of Advance Clock commands of its choice. It provides Ch with a bit g̃.
16. If g̃ = 0, then Ch runs Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1), where T is the current time, and goes

to Step 20.
17. If g̃ = 1, Ch executes the algorithm Withdraw(adrC̃, pp, t̃x, T, T1).
18. If the algorithm Withdraw returns 1, then the game returns 0.
19. If Withdraw returns 0, Ch runs Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1).

20. If the algorithm Transfer outputs ĥ ̸= 1, the game returns 0.
21. If the algorithm Transfer outputs ĥ = 1, then Ch runs the algorithm Serve(skS̃ , adrSC, t̃x) that

outputs (serviceS̃ , π̃). Then, it provides A with serviceS̃ .
22. A can send a number of Advance Clock commands of its choice. Then, it provides Ch with a

complaint complaintC̃.
23. If complaintC̃ = ⊥, the game returns 0. Otherwise, Ch engages with A in the execution of protocol

Reimburse
(
⟨D1(adrSC, skD1

), . . . ,Dm(adrSC, skDm),SC(plc, α̃, γ̃, complaintC̃, pp)⟩
)
as follows:

(a) Let I be the subset of [m] that specifies the subset of corrupted auditors. Playing the role of

every honest auditor Dℓ′ , Ch decides a bit d̂ℓ′ , where ℓ′ ∈ [m] \ I.
(b) It provides A with all honest decision bits {d̂ℓ′}ℓ′∈[m]\I.

(c) A replies with the corrupted decision bits {d̂ℓ}ℓ∈I of its choice. If the decision bit of some
non-registered corrupted auditor is not ⊥, then the game returns 0.

(d) Ch runs ExtractVerdict(plc, d̂1, . . . , d̂m, adrC̃) that outputs the final verdict bit r̂.
(e) If r̂ = 1, then the game returns 1 (C̃ will be reimbursed although S̃ provided the correct

service). Otherwise, the game returns 0.

Fig. 4: The Server-side t-Security game for ΣICT w.r.t. plc = {plcλ}λ∈N between the challenger Ch and the ad-
versary A with the sets of servers S = {S1, . . . ,Sk}, clientsC = {C1, . . . , Cn}, and auditorsD = {D1, . . . ,Dm}.

Definition 3 (Server Security). Let λ be the security parameter, k, n,m be integers polynomial in λ, and
t ∈ [0, 1). Let ΣICT be a ICT scheme with sets of servers S = {S1, . . . ,Sk}, clients C = {C1, . . . , Cn}, and
auditors D = {D1, . . . ,Dm}. Let plc = {plcλ}λ∈N be a family of policy descriptions of size polynomial in λ.
Then, ΣICT meets Server-side t-Security w.r.t. plc and D, if for every PPT adversary A, it holds that:

Pr [GΣICT,A
t−srv.sec (1

λ,S,C,D, plcλ) = 1] = negl(λ).

5.5 ICT Security

An ICT scheme is secure, if it satisfies client-side and server-side security, regarding Definitions 2 and 3,
respectively. Formally,

Definition 4. Let λ be the security parameter, k, n,m be integers polynomial in λ, and t ∈ [0, 1). Let
ΣICT be a ICT scheme with sets of servers S = {S1, . . . ,Sk}, clients C = {C1, . . . , Cn}, and auditors D =
{D1, . . . ,Dm}. Let plc = {plcλ}λ∈N be a family of policy descriptions of size polynomial in λ. We say that ΣICT

is t-secure w.r.t. plc and D if it satisfies (i) Client-side t-Security and (ii) Server-side t-Security according
to Definitions 2 and 3, respectively.
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6 Insured Cryptocurrency Exchange

This section presents a concrete instantiation of ICT for centralized cryptocurrency exchange scenarios,
using a modular approach. We first define the syntax of the Centralized Cryptocurrency Exchange (CCE) in
Section 6.1, followed by key subroutines in Section 6.2. We present an abstract overview of the ICE protocol
in Sections 6.3, followed by a high level description of its various phases in Section 6.4. Subsequently, we
construct the Insured Cryptocurrency Exchange (ICE) protocol in Section 6.5, building on CCE and the
subroutines.

6.1 Centralized Cryptocurrency Exchange

At an abstract level, a CCE scheme consists of (i) a client Ci, who seeks to exchange a specified amount of
one cryptocurrency for another, and (ii) a server S, which facilitates the exchange and is commonly known
as the exchange. Typically, S informs the public about the currency types it can accommodate. It publishes
a list ppS containing (i) the identifiers of currencies [C1, . . . , Cz] valid for exchange and (ii) the corresponding
maximum allowed amount per transaction [M1, . . . ,Mz]; specifically, no more than an amount Mi in currency
Ci can be exchanged by the server per transaction. The service function FS that S supports is defined as:
FS(Cℓ, Cℓ′ , α, ρ)→ (α · ρ, Cℓ′) which expresses the transaction where α amount of coins in Cℓ are exchanged
to α · ρ amount of coins Cℓ′ with rate ρ.
The server’s state stS is initialized as (i) a vector AF = ⟨(β1, C1), . . . , (βz, Cz)⟩, where βℓ denotes the initial
available funds in Cℓ coins, (ii) a z × z matrix RT = [ρℓ,ℓ′ ], where ρℓ,ℓ′ is the rate for exchanging Cℓ to Cℓ′ ,
and (iii) an adjustment factor η, a parameter that adjusts the exchange rate based on changes in available
funds. A client Ci’s valid input is defined as a tuple inptCi

= (α,X, Y ), that has identifier id and encodes the
statement “I want to exchange an amount of α in currency X to currency Y ”.

Underlying Functions. A typical CCE scheme may make use of the following two procedures:

– Decide(stC, α, inptC, inptS) → q̂: a predicate run by a client C. It parses inptC as (α∗, X, Y ) and inptS
as (ρ, µ), where ρ is the exchange’s proposed rate and µ is the amount for exchange in currency Y for
this transaction. It determines if C wants to transact with S based on C’s state stC, C’s input inptC,
and S’s input inptS . It returns 1 if it concludes that C will transact with S and returns 0 otherwise.
In Section 6.5, we will use this predicate to help a client decide whether to interact with the exchange.
The implementation is straightforward, with the predicate containing an internal constant value diff .
It verifies the following conditions: (i) α = α∗, (ii) ρ is at least the difference between C’s ideal rate
(specified in stC) and diff , and (iii) µ ≥ α · ρ. If the conditions are met, it returns 1. Else, it returns 0.

– UpdateRate(RT,AF, req, η)→ RT: an algorithm used by the exchange. It takes as input (1) a z×z ma-
trixRT = [ρℓ,ℓ′ ], where ρℓ,ℓ′ is the rate for exchanging Cℓ to Cℓ′ , (2) a vectorAF = ⟨(β1, C1), . . . , (βz, Cz)⟩,
where βℓ denotes the available funds in Cℓ coins, (3) a current customer’s request req = (α,Cx, Cy, ρx,y),
where α is the amount of money/coins in the source currency Cx, Cy is the destination currency, and
ρx,y is the current exchange rate, and (4) an adjustment factor η, a parameter that adjusts the exchange
rate according to changes in available funds. The algorithm updates its input matrix and returns an
updated matrix RT. There are various methods available for implementing this algorithm. In our case,
we can use a relatively straightforward approach to implement it. It initially computes a new rate ρ′x,y
for exchanging Cx to Cy as:

ρ′x,y = ρx,y ·
(
1 + η ·

(
βy + α · ρx,y

βx − α
− βy

βx

))
It updates its current related rates as: ρx,y ← ρ′x,y and ρy,x ← 1

ρ′
x,y

. Note that η is a theoretical parameter

used to model how an exchange rate might dynamically adjust in response to changes in supply and
demand. In real-world financial markets and exchanges, several parameters influence exchange rates,
including liquidity and all current (buy and sell) demands.
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Description. We define CCE via the following six algorithms.

– CCE.C.Init(inptCi
, IDS , ppS)→ inpt∗Ci

: it is run by a client Ci. It parses inptCi
as (α,X, Y ). It returns

inpt∗Ci
= (X,Y ). Ci sends inpt∗Ci

to S.
– CCE.S.Init(inpt∗Ci

, IDCi
, stS)→ (ê, ρ): it is executed by a server S upon receiving inpt∗Ci

from Ci. It reads
inpt∗Ci

as (XCi
, YCi

). If XCi
, YCi

∈ ppS , then it sets a bit ê to 1, reads the matrix RT ∈ stS and fetches (i)
the rate ρ∗ in RT that corresponds to the pair (XCi

, YCi
); (ii) the available funds βCi

in AF for YCi
; and

(iii) the maximum amount per transaction MCi
∈ ppS for YCi

. It sets ρ ← ρ∗ and µ ← min{βCi
,MCi

}.
Otherwise, it sets ê to 0 and ρ, µ to ⊥. S sends (ê, (ρ, µ)) to Ci.

– CCE.C.Request(inptCi
, α, IDS , (ρ, µ), stCi

)→ reqi: it is run by Ci upon receiving (ê, (ρ, µ)) from S. It
runs Decide(stCi

, α, inptCi
, (ρ, µ)) that outputs q̂. If q̂ = 1, it generates a request reqCi

= (α,XCi
, YCi

, ρ);
Ci sends reqCi

to S. Else, it returns ⊥.
– CCE.S.VerRequest(reqCi

, IDCi
, stS)→ f̂ : it is run by S upon receiving reqCi

from Ci. It reads α,XCi
, YCi

,

and ρ from reqi and fetches ρ∗, βCi
, and MCi

as in CCE.S.Init. If ρ∗ = ρ and min{βCi
,MCi

} ≥ α · ρ, it
sets a bit f̂ to 1; otherwise, it sets f̂ to 0. It adds (f̂ , α,XCi

, YCi
, ρ) to stS . Server S returns f̂ to Ci.

– CCE.C.Transfer(reqi, f̂ , IDS)→ (α,XCi
): it is run by Ci. It reads α,XCi

from reqi. If f̂ = 1, client Ci
sends α amount of XCi

to S.
– CCE.S.Serve(reqCi

, α∗, X∗, IDCi
, stS)→ (ϕ, YCi

): it is run by S upon receiving α∗ amount of X∗ from

Ci. It parses reqCi
as (α,XCi

, YCi
, ρ). If there is a (1, α,XCi

, YCi
, ρ) in stS , α = α∗, and XCi

= X∗; and if
there is at least α · ρ of YCi

then it computes FS(XCi
, YCi

, α, ρ) → (ϕ, YCi
), where ϕ = α · ρ. It updates

stS as follows: (i) in AF, it increases the available funds in XCi
by α and reduces the funds in YCi

by
ϕ, (ii) in RT, it updates the rates by calling UpdateRate(RT,AF, reqi, η) → RT, and (iii) it deletes
(1, α,XCi

, YCi
, ρ) from stS . Server S sends ϕ amount of YCi

to Ci.

6.2 Subroutines

Subroutine for Updating State. During the execution of certain algorithms, such as Register and
C.Init, it is crucial for each party to maintain an updated state. An up-to-date state enables a party
to decide whether to engage with its counterpart. To facilitate state updates, we introduce the algorithm
Update.State, which incorporates records of disqualified service providers and qualified auditors into the
party’s state. Figure 5 provides a detailed explanation of Update.State.
The algorithm makes a black-box call to another algorithm, Find.SusAccount(dataledger, param)→ v, which
can be executed by a party P to identify suspicious blockchain accounts. It takes as input the latest blockchain
state dataledger and a set of parameters param, returning suspicious account addresses. Various machine-
learning-based approaches [3,52,93] can implement Find.SusAccount.7

Subroutines to Check Parties’ Status. To enable both the operator O and the client C to verify
the reliability of their counterparts, we introduce two algorithms Validate(O) and Validate(C). The algorithm
Validate(O) enables O to ensure the integrity of a party P by checking if it has a clean record and is qualified
as an auditor. This step is important for maintaining the trustworthiness of the system, as it safeguards
against potential malicious actors or unqualified entities. The algorithm Validate(C) allows C to verify the
legitimacy of a server. By employing this algorithm, C can confirm that the server is not flagged as a known
bad actor and has previously undergone the necessary registration process facilitated by O. This verification
mechanism ensures that clients interact only with trustworthy servers that have been vetted by O. Figures 6
and 7 present detailed descriptions of Validate(O) and Validate(C), respectively.

7 Throughout this paper, we assume that Find.SusAccount produces no false positives, i.e., it never flags honest
parties, as correctness would otherwise be compromised.
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Update.State(stP , pp, skP , dataledger)→ stP

– Input. stP = (stSP , st
D
P ): current state; pp: public parameters including point-

ers to two databases, (i) dbS : disqualified service providers’ database and
(ii) dbD: approved auditors’ database; dataledger: the blockchain’s state.

– Output. stP : updated state.

1. Call Find.SusAccount(dataledger, param)→ v.
2. For every element e of dbS that is not in stSP , insert e to stSP . Similarly, for

every e′ of dbD not in stDP , insert e
′ to stDP .

3. For every e ∈ v if e /∈ stSP , then insert e to stSP .
4. Return stP := (stSP , st

D
P ).

Fig. 5: Algorithm to update party P ’s state.

Validate(O)(plcλ, stO,msgP )→ b̂ ∈ {0, 1}

– Input. plcλ:O’s policy stating P must not be a bad actor server or unqualified
auditor, stO: the state of O, and msgP : party P ’s message that contains P ’s
address adrP .

– Output. b̂ = 1: if P is considered valid; a = 0: otherwise.

1. Set b̂ as follows.

– if P is a server (i.e., server ∈ msgP ), check if P is not a known bad
actor, i.e., adrP /∈ stSO. If the check passes, set b̂ = 1. Otherwise, set
b̂ = 0.

– if P is an auditor (i.e., auditor ∈ msgP ), check if P is a qualified auditor
, i.e., adrP ∈ stDO. If the check passes, set b̂ = 1. Otherwise, set b̂ = 0.

2. Return b̂.

Fig. 6: Operator’s algorithm to check the status of a server or auditor.

Validate(C)(stCi
, adrP , adrSC)→ â ∈ {0, 1}

– Input. stCi
: state of the client and adrP : P ’s address.

– Output. â = 1: if P is considered valid; â = 0: otherwise.

1. Set â as follows.

– check if P is not a known bad actor, i.e., adrP /∈ stSCi
, where stSCi

∈ stCi
.

If the check passes, set â = 1. Else, set â = 0.
– check if adrP has been registered in SC.
– if the two checks pass, set â = 1. Otherwise, set â = 0.

2. Return â.

Fig. 7: Client’s algorithm to check the status of a server.

Subroutine to Check Budget. Ensuring that a smart contract SC can evaluate its financial capacity to
accommodate new clients is important for maintaining its functionality, particularly when managing client
premiums. To facilitate this capability, we define the CheckBudget algorithm. It serves as a vital mechanism
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for SC to evaluate its available budget against the coverage requested by new clients and its commitment to
its existing clients. A detailed description of this algorithm is provided in Figure 8.

CheckBudget(reqC, adrS , adrSC, balance, dataSC, plcλ, γ, pp, Lpnd)→ ŵ

– Input. (1) reqC: C’s request, of the form (id inptC, α, Cℓ, Cℓ′ , ρ), where α
amount of coins in Cℓ are exchanged to α · ρ amount of coins Cℓ′ with rate
ρ, (2) adrS : address of S, (3) balance: the amount of usable funds held by
SC, (4) plcλ: policy of S, (5) γ: the total amount (that includes service
payment plus premium) that C wants to pay, (6) pp: public parameter, and
(7) Lpnd: a list of pending transactions. This list consists of triples of the
form (t̃x, ṽ, T̃ ), where t̃x is a transaction identifier, ṽ is a compensation
amount associated with t̃x, and T̃ is the time when t̃x was registered.

– Output. ŵ = 1: if SC has enough budget to serve C; ŵ = 0: otherwise.

1. Calculate the amount of premium that C must pay, by calling: a ←
CalPremium(dataSC, adrS , reqC).

2. Determine the amount of compensation C will receive, by calling: b ←
CompRemAmount(plcλ, γ, reqC, pp).

3. Set ŵ as follows. If balance+a < b+
∑

(t̃x,ṽ,T̃ )∈Lpnd

ṽ, then set ŵ = 0; otherwise,

set ŵ = 1.
4. Return ŵ.

Fig. 8: SC’s algorithm to check its budget.

Subroutine to Check Exchange. To enable a client to check if it has received the exchanged coins from
the exchange Sj, we define an algorithm VerifyExchage, presented in Figure 9. It allows the client to access
its account and check if it has the amount that Sj was supposed to transfer as a result of a coin exchange.

Subroutine for Final Verdict Extraction. To let SC determine the final verdict based on the individual
decisions of all auditors regarding whether a client should be reimbursed, we define a specific algorithm
ExtractVerdict(plcλ, e1, . . . , em, adrP )→ r̂. This algorithm, presented in Figure 10, consolidates the auditors’
verdicts into a final decision. The algorithm returns 1, in favor of the client, if at least a predefined number
of honest auditors have decided so.

6.3 An Overview of ICE

Initially, the insurance operator O deploys a smart contract SC and publishes its details. O deposits a certain
amount of coins into SC to cover future legitimate claims. O registers the details of a set of servers (i.e.,
cryptocurrency exchanges) and auditors in SC. When a client C wishes to exchange a certain amount of coins,
they send a message to SC and one of the registered servers, S, who processes C’s request and provides the
exchange rate to SC. If C decides to proceed, they transfer the desired amount of coins to SC for the server
to exchange. Additionally, C transfers a specified premium to SC to receive coverage. Given this amount,
SC determines whether it can serve C. SC refunds C when it concludes that it cannot serve C. Otherwise, it
withholds C’s coins for a certain period. In this case, C notifies S by sending a request detailing the amount
of exchange. S verifies C’s request.
During the predefined period within which SC holds C’s coins, C can request a withdrawal. This feature helps
prevent fraud if C quickly concludes that S may not be trustworthy. If the coins have not been withdrawn,
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VerifyExchage(skC, reqC, πj)→ (ẑ, ζC)

– Input. skC: secret key skC of a client C, reqC: the client’s request which includes
the amount of transfer and the currency to which the amount is transferred to,
and πj : a proof/statement provided by Sj and asserts that the amount has been
transferred.

– Output. ẑ = 1: if the amount specified in reqC has been transferred; in this case
ζC = ⊥. ẑ = 0: if the specified amount has not been transferred; in this case, ζC is
set to C’s account statement, summarizing the financial transactions in the account
over a certain period of time.

1. Access the account to which the exchanged coins are transferred (the account type
is specified in reqC), as follows.

– if it is a private account (e.g., a bank account), then log in to the account using
skC.

– otherwise (if it is a public account, e.g., Ethereum), access the public account.

2. Verify πj by checking if the transfer took place.
– if the check passes, then set ẑ = 1 and ζC = ⊥.
– otherwise, set ẑ = 0 and ζC = AccountStatement.

3. Return (ẑ, ζC).

Fig. 9: Client’s algorithm to check if the requested exchange occurred.

ExtractVerdict(plcλ, e1, . . . , em, adrP )→ r̂

– Input. plcλ: operator O’s policy including a threshold t specifying the fraction of po-
tential corrupt registered auditors; auditors’ verdicts: e1, . . . , em; the address adrP
of client P for which the verdict is decided.

– Output. r̂ = 1: if P must be reimbursed; r̂ = 0: otherwise.

1. Set final verdict r̂ as follows.

– initiate an empty vector v⃗ec.
– append every binary verdict to v⃗ec as follows.

∀j, 1 ≤ j ≤ m : if ej ∈ {0, 1}, then v⃗ec← ej

– count the total number of votes in favor of a client: counter ←
|v⃗ec|∑
i=1

ei, where

ei ∈ v⃗ec.
– if |v⃗ec|= 0, then set counter ← 0.
– if counter ≥ |v⃗ec|·(1− t), set r̂ = 1. Else, set r̂ = 0.

2. Return r̂.

Fig. 10: SC’s algorithm to retrieve final verdict.

SC retains C’s premium and transfers the rest of C’s payment to S after a certain period. Upon receiving the
payment, S transfers the required amount in the destination currency to C. Then, S sends the transaction’s
proof to SC, which may not necessarily be a cryptographic proof. If C later concludes that the service has not
been provided in accordance with their agreement, they submit a complaint to SC. Each registered auditor
reviews the complaint and provides their verdict to SC. If the auditors’ verdicts support the complaint, SC
reimburses C from its budget.
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6.4 Overview of Each Phase of ICE

To enhance conceptual understanding of the various phases of ICE, this section provides a high-level overview
of each phase, along with Figures 11 and 12 depicting parties’ interactions within these phases.

1. Insurance Operator-side Setup: The insurance operator develops and deploys a smart contract into a
blockchain, e.g., Ethereum. It publishes the address of this smart contract, so that everyone can access
it. This smart contract will primarily function as a conventional insurer, while also offering additional
features. The operator stores a comprehensive insurance policy within the smart contract and deposits in
it an initial capital amount, which serves as the starting funding for the insurance. The operator updates
its state, by adding to it the details of known misbehaving servers and qualified auditors.

2. Key Generation: Each party that wants to use the platform independently generates their pair of private
and public keys to send transactions to the smart contract and receive payments. They publish their
public key.

3. Operator-side Registration: When the operator receives a request from a party seeking registration in
the smart contract (as either a server which will provide currency exchange or an auditor), it initiates a
verification process. This process ensures that the requesting party is not a known bad actor, in the case
of server registration, or that they meet the qualifications required to be an auditor. Upon successful
verification, the operator registers the party’s details in the smart contract, along with the specifics of the
service they will provide, if the party is being registered as a server. The operator may register different
parties at different times.

4. Client-side Initiation: When a client wishes to exchange a certain amount of cryptocurrency for another
currency, it first retrieves a list of registered servers from the smart contract. The client then filters this
list to identify servers it considers valid. After selecting one of the valid servers, the client sends a request
to both the server and the smart contract, including the details of the desired exchange.

Fig. 11: Algorithms 1–6.

5. Server-side Initiation: Upon receiving a request from a client, the server first checks the validity of the
request. If the request is deemed valid, the server then determines the exchange rate for the specific
transaction. It subsequently sends this rate to the smart contract.

6. Transaction Transmission: Given the rate provided by the server, the client decides whether to accept
the offer. If the client chooses to proceed, it generates a new request and calculates the required premium.
The client then submits this request, along with the necessary funds to cover both the exchange amount
and the premium, to the smart contract. Upon receiving the request, the smart contract verifies whether
it has sufficient funds to complete the transaction. If the smart contract confirms it cannot fulfill the
request, it will refund the client.

7. Request Verification: Upon receiving the client’s final request and payment, the server verifies two main
conditions: (i) whether it accepts the client’s requested rate, and (ii) whether it has sufficient budget
to fulfill the client’s request. If both conditions are met, the server sends a flag, set to 1, to the smart
contract.
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8. Withdrawal: Upon receiving a message from the client, the smart contract determines if the client is
eligible for withdrawal by verifying that the request was made within a predefined time window. If this
condition is met, the smart contract processes the refund to the client.

9. Fund Transfer: After the withdrawal period has expired, the smart contract initiates several checks to
ensure the following: (1) the server has approved the client’s request, (2) the client has not already
withdrawn the payment, and (3) the client has transferred a sufficient amount of coins. If conditions (1)
and (3) are not met, the smart contract automatically refunds the client. If all conditions are satisfied,
the contract deducts the premium amount from the client’s payment, adds it to its balance, and transfers
the server’s share. If the client has overpaid, the contract refunds the excess amount to the client.

10. Serving a Customer: After receiving the client’s payment via the smart contract, the server fulfills the
client’s request by transferring the specified amount of money or cryptocurrency in the quoted currency,
based on the agreed-upon rate. As proof, the server sends the confirmation of this transaction to the
smart contract. The server then updates its local ledger to reflect the transaction.

Fig. 12: Algorithms 7–12

11. Generating a Complaint: The client verifies whether the service has been completed and the agreed-upon
amount has been transferred. If the verification fails, the client generates a complaint and sends it to the
smart contract, including the transaction details through which the amount was transferred.

12. Reimbursing a Customer: Each auditor retrieves the client’s complaint and processes it locally. After
evaluation, each auditor generates a verdict and submits it to the smart contract. The smart contract
then determines whether the client should be reimbursed, based on the collective verdicts and a predefined
function. If the final decision favors the client, the smart contract calculates the reimbursement amount
according to predefined rules and transfers the funds to the client. The smart contract also updates its
state to reflect this transaction.

6.5 Detailed Description of ICE

We present the ICE protocol, assuming all parties sign outgoing messages and verify signatures before
processing them locally.

1. Insurance Operator-side Setup: Operator.Setup(1λ, plcλ)→ (stO, pp, adrSC, ⟨SC⟩, skO)
O takes the following steps.
(a) initiates an empty set pp. It generates a pair of a private key skO and a public key pkO. It appends

pkO to pp.
(b) develops a smart contract SC and deploys it. Let adrSC be the address of the deployed SC. It publishes

the address adrSC of SC, e.g., on its website.
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(c) records its policy plcλ in SC, where plcλ includes (i) insurance period: Θ, (2) transaction period
∆, (3) a list Lpnd initially empty, (4) a parameter t determining the fraction of potential corrupted
registered auditors, and (5) a pointer to two databases: (i) dbS , the database of disqualified service
providers and (ii) dbD, the database of qualified/approved auditors. It stores pp in SC which appends
plcλ to pp.

(d) deposits Γ amount in SC, where Γ is specified in plcλ.
(e) initiates its state by setting stO = ∅.
(f) updates its stO by calling Update.State(stO, pp, skO, adrSC)→ stO.
(g) locally stores stO.

2. Key Generation: Party.GenParams(1λ, adrP )→ (skP , pkP )
Each party P generates a pair of a private key skP and a public key pkP for the blockchain’s signature
scheme.

3. Operator-side Registration: Register
(
⟨P (msgP , skP ),O(stO, adrSC, skO)⟩

)
→ ĉ

It involves O and a party P that can be an auditor or a server.

(a) P sends message msgP to O, where msgP contains the address of the party and also when the party is
the server it contains: (i) the service function FS which is the function’s description: “cryptoExchange”
and (ii) a pair VS defined as a set of triple = (val,X, Y ) containing a possessive integer val and the
identifiers of currencies valid for exchange from type X to supported types Y specified in the list
ppS .

8

(b) upon receiving msgP , O updates its state stO by reading from the blockchain permanent state and

then calling algorithm Validate(O)(plcλ, stO,msgP )→ b̂, presented in Figure 6.

– If b̂ = 1: sets ĉ ← 1. If P is a server S, it stores (adrS , ĉ,FS , ppS , VS) in SC. If P is an auditor
D, it stores (adrD, ĉ) in SC.

– If b̂ = 0, it sets ĉ← 0 and sends (Registration, ĉ) to SC.
4. Client-side Initiation: C.Init(inptCi

, skCi
, pkCi

, adrSj
, adrSC, stCi

)→ (inpt∗Ci
, â, ppCi

)
This phase involves a client Ci.
(a) updates its state: Update.State(stCi

, pp, skCi
, adrSC)→ stCi

.
(b) validates server Sj: Validate

(C)(stCi
, adrSj

, adrSC) → â. If â = 0, it returns (⊥, â,⊥) and does not
proceed to the next steps. Otherwise (when â = 1), it proceeds to the next step.

(c) if inptCi
/∈ VSj

, it returns (⊥, 0,⊥) and halts.
(d) expresses interest in being served by Sj with address adrSj

by taking the following steps.
i. executes CCE.C.Init(inptCi

, adrSj
, ppSj

)→ (X,Y ), where inptCi
= (α,X, Y ) and ppSj

∈ SC.
ii. chooses a unique identifier id inptCi

.
iii. sends inpt∗Ci

= (id inptCi
, X, Y ) and adrCi

to Sj.
iv. sets ppCi

← inpt∗Ci
and sends ppCi

to SC.
5. Server-side Initiation: S.Init(inpt∗Ci

, adrCi
, skSj

, pkSj
, stSj

, adrSC)→ (ê, respSj
)

This phase involves Sj.

(a) checks if there are registered auditors; if not, sets ê ← 0 and respSj
← ⊥, sends (inpt∗Ci

, ê, respSj
,

adrCi
) to SC and halts.

(b) checks the validity of inpt∗Ci
, by calling CCE.S.Init((X, Y ), adrCi

, stS)→ (ê, (ρ, µ)).
(c) sets respSj

← (ρ, µ) and sends (inpt∗Ci
, ê, respSj

, adrCi
) to SC which stores them if the server has

already been registered.

6. Transaction Transmission: SendTransaction(Ci(id inptCi
, skCi

, inptCi
, stCi

, α, adrSj
, adrSC),SC) →

(γ, txi, reqCi
)

It involves Ci and SC.
(a) client Ci takes the following steps:

i. reads the content of SC, including ê, respSj
and pp. It proceeds only if ê = 1 (otherwise, outputs

⊥).
8 X can be viewed as a native digital asset of the underlying blockchain, while Y is a digital asset supported by that
blockchain and exists within its ecosystem.
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ii. runs Decide(stCi
, α, inptCi

, inptSj
)→ q̂. It proceeds if q̂ = 1.

iii. generates a request: CCE.C.Request(inptCi
, α, adrSj

, respSj
, stCi

)→ req∗
Ci

= (α,X, Y, ρ). It sets
reqCi

← (id inptCi
, req∗

Ci
).

iv. calculates the total amount it must pay by setting: γ ← CalPremium(stateSC, adrSj
, reqCi

) + α.
v. sends γ amounts of coin, adrSj

, and reqCi
to SC.

(b) SC takes the following steps:

i. parses Lpnd as a list of triples of the format (t̃x, ṽ, T̃ ), where (i) t̃x is a transaction identifier, (ii)
ṽ is a compensation amount associated with t̃x, and (iii) T̃ is the time when t̃x was registered.
Let T be the current time.

ii. updates its pending list, UpdateList(Lpnd, T, θ) → Lpnd, to ensure that the transactions that will
not receive insurance coverage will be excluded from the list.

iii. checks if it has enough budget to serve Ci through calling:
CheckBudget(reqCi

, adrSj
, adrSC, balance, stateSC, plcλ, γ, pp, Lpnd)→ ŵ.

iv. if ŵ = 0: the algorithm returns ⊥. This indicates that there is no sufficient balance to guarantee
compensation for this transaction. In this case, it takes no further action. Otherwise (when

ŵ = 1): SC generates a unique transaction identifier txi and sets two associated flags f̂ and ĝ to
0. The identifier txi includes the addresses adrCi

and adrSj
.

v. adds (txi,CompRemAmount(plcλ, γ, reqCi
, pp), T1) to Lpnd.

(c) Ci sends (txi, inptCi
) to Sj.

7. Request Verification: VerRequest(adrSC, txi, inptCi
)→ f̂

This phase involves Sj.

(a) given adrSC and txi, reads ê, reqi, and adrCi
from SC. It proceeds to the next steps, only if ê = 1.

(b) verifies reqCi
by first checking if reqCi

= (id inptCi
, α,X, Y, ρ) includes inptCi

(i.e., if inptCi
=

(α,X, Y )). If so, it runs CCE.S.VerRequest((α,X, Y, ρ), adrCi
, stSj

)→ f̂ . Else, it sets f̂ ← 0.

(c) sends f̂ to SC, that stores it if Sj has already been registered.

8. Withdrawal: Withdraw(adrCi
, pp, txi, T, T1)→ ĝ

This phase involves SC, which itself is invoked by Ci.
(a) checks if T − T1 ≤ ∆, where ∆ is a delay parameter in pp.
(b) if the checks pass, returns γ amount (that Ci paid via transaction txi) to address adrCi

, deletes
(txi, ·, ·) from Lpnd, and sets ĝ ← 1. Otherwise, it proceeds to the next step.

(c) keeps ĝ as its public state.

9. Fund Transfer: Transfer(ê, f̂ , ĝ, txi, α, γ,∆, T, T1)→ ĥ
This phase involves SC, which can be invoked by any party.

(a) checks the value of ê = 1 and proceeds only if ê = 1, Sj is registered, T − T1 > ∆, and ĝ = 0 (else, it
outputs ⊥).

(b) if f̂ = 0, returns ĥ = 0 and sends γ coins back to Ci, deletes (txi, ·, ·) from Lpnd, and does not take

any action regarding txi. If f̂ = 1, it reads reqCi
associated with txi and checks γ.

– if γ ≥ CalPremium(stateSC[T1], adrSj
, reqCi

) + α, it:

i. calls CCE.C.Transfer(reqCi
, f̂ , adrSj) → (α,XCi

) which transfers α amount of coins in XCi

to Sj.
ii. keeps CalPremium(stateSC[T1], adrSj

, reqCi
) amount of coins.

iii. updates its balance by executing: balance← balance+ CalPremium(stateSC[T1], adrSj
, reqCi

).
iv. returns γ − CalPremium(stateSC[T1], adrSj

, reqCi
)− α amount to C

i
.

v. sets ĥ← 1.

– if γ < CalPremium(stateSC[T1], adrSj
, reqCi

) + α, it:

i. sends γ amount of coins back to C
i
.

ii. deletes (txi, ·, ·) from Lpnd.

iii. sets ĥ← 0.

(c) returns ĥ.
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10. Serving a Customer: Serve(skSj
, adrSC, txi)→ (servicej, πj)

This phase involves Sj.

(a) reads SC. It proceeds if bit ĥ associated with txi equals 1 (else, it outputs ⊥). It initially sets servicej

and πj to a special symbol ⊥. It reads from SC request reqCi
associated with txi.

(b) calls CCE.S.Serve(req∗
i , α,XCj

, adrCi
, stS)→ (ϕ, YCi

), where ϕ = α · ρ.
(c) sets servicej to (ϕ, YCi

) and returns servicej. By invoking CCE.S.Serve, Sj sends ϕ amount of coins
of type YCi

to Ci. Let πj be the transaction confirmation. Sj sends πj to SC.
11. Generating a Complaint: GenComplaint(skCi

, servicej, txi, adrSC)→ complainti
This phase involves Ci.
(a) reads SC, including πj and reqCi

associated with txi.
(b) checks whether the service has been delivered, by calling VerifyExchage(skC, reqC, πj)→ (ẑ, ζC).
(c) if verification does not pass, i.e., ẑ = 0, generates complainti (that contains ζC and txi). Otherwise,

it sets complainti = ⊥.
(d) if complainti ̸= ⊥, Ci sends complainti to SC. Let T3 be the time complainti is registered in SC.

12. Reimbursing a Customer: Reimburse
(
⟨D1(adrSC, skD1), . . . , Dm(adrSC, skDm),SC(plcλ, α, γ, complainti,

pp)⟩
)
→ amounti

This phase involves the registered auditors D1, . . . ,Dm and SC.
(a) each Dℓ takes the following steps:

i. reads SC (including T3, complainti, and plcλ).

ii. decides its verdict d̂ℓ ∈ {0, 1}.
iii. sends (complainti, d̂ℓ) to SC before time T = T3 +∆.

(b) SC takes the below steps, upon receiving d̂1, . . . , d̂m from auditors and on input
plcλ, αSj

, γ, complainti, and pp.

i. if Dℓ has not been registered or it did not send its verdict before time T = T3 +∆, then sets d̂ℓ

to ⊥.
ii. calls ExtractVerdict(plcλ, d̂1, . . . , d̂m, adrCi

)→ r̂ to determine the final verdict.

– if r̂ = 0, sets amounti = 0 and takes no further action.
– otherwise (when r̂ = 1), it:

A. determines the amount of reimbursement that Ci must receive by calling the algorithm
CompRemAmount(plcλ, γ, reqCi

, pp)→ amounti, where reqCi
is the request associated with

txi contained in complainti.
B. updates its balance as balance← balance− amounti.
C. deletes (txi, ·, ·) from Lpnd. It sends amounti coins to address adrCi

, where adrCi
∈

complainti.

7 Correctness and Security Analysis

In this section, we state and prove our main ICE Correctness and Security Theorem 1, under the assumptions
that the blockchain and the corresponding signature scheme are secure. First, we describe the algorithmic
steps that an (honest) auditor should take so that set of auditors guarantees ICE security.

7.1 Auditor Description for ICE Security

Below, we present the algorithmic Dℓ(stDℓ
, complaintC) steps that each of the (non-corrupted) auditors

should follow to guarantee client-side and server-side security w.r.t. corruption threshold t.

– Input. stDℓ
: the auditor’s state. complaintC: the complaint generated by client C.

– Output. dℓ = 1: if C must be reimbursed; dℓ = 0: otherwise.
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⋄ Decide verdict dℓ as follows.

– parse complaintC as pair (ζ, tx).
– if tx does not include the address adrC of C or the address adrS of some server S, then return dℓ ← 0.
– if tx is a transaction identifier such that (completed, tx) is in stDℓ

, then return dℓ ← 0.
– let T be the current time and T1 be the time when transaction tx was registered. If the insurance

period of C has expired, i.e., T > T1 +Θ, then return dℓ ← 0.
– if tx is such that any of the following associated information is missing from the SC:
• C’s public parameters ppC including identifier id inptC;
• the response information from S: (id inptC, 1, respS , adrC);
• the triple (reqC, adrS , γ) submitted by C, where reqC = (id inptC, α,X, Y, ρ);

• S’s acceptance of C’s request (i.e., f̂ associated with tx is set to 1);
• the withdrawal status ĝ is set to 0;
• the transfer status ĥ is set to 1;

then add (completed, tx) to stDℓ
and return dℓ ← 0.

– if ζ = ⊥, add (completed, tx) to stDℓ
and return dℓ ← 0.

– if ζ ̸= ⊥, then parse ζ as string AccountStatement and read S’s associated proof/statement π.
– if (i) AccountStatement is a statement asserting S did not transfer α · ρ coins to the account of
C and (ii) π is an invalid statement of the transaction, then add (completed, tx) to stDℓ

, then add
(completed, tx) to stDℓ

and return dℓ ← 1. Else, add (completed, tx) to stDℓ
and return dℓ ← 0.9

7.2 ICE Correctness and Security Theorem

Below, we state our main Correctness and Security Theorem for the ICE scheme described in Section 6.5.

Theorem 1. Let ΣICE be the ICE protocol described in Section 6.5 w.r.t. (i) the policy family plc = {plcλ}λ∈N

and (ii) the set of auditors D, where every (honest) auditors behaves according to the steps in Section 7.1.
Assume that the underlying blockchain has persistence (Definition 5) and liveness (Definition 6), and the
digital signature scheme (Definition 7) used in the smart contract is existentially unforgeable under a chosen
message attack (Definition 8). Then, for every t ∈ [0, 1

2 ], ΣICE is correct (Definition 1) and t-secure (Defini-
tion 4) w.r.t. plc and D.

7.3 Proof of Correctness

Let A be an adversary that participates in the Correctness security game defined in Section 5.2. After com-
pleting the Initialization and Execution phases of the game, A provides Ch with two challenge addresses,
adrC̃ and adrS̃ , an input inptC̃, and an amount α̃.

Proof. Without loss of generality, we may assume that: (i) there is at least one successfully registered auditor,
(ii) C̃ is an honest client that has generated its key pair, and (iii) S̃ is an honest server that has generated
its key pair and is also registered. Indeed, if any of these conditions do not hold, the adversary would lose
the game in one of Steps 1-4 (see Section 5.2). Hence, Step 5 in Section 5.2 is run by Ch, which invokes
C.Init(inptC̃, skC̃, pkC̃, adrS̃ , adrSC, stC̃).
Given the correctness of Find.SusAccount (i.e., an honest server is not identified as suspected), and considering
that: (i) the initial state of C̃ contains no bad actors, and (ii) adrS̃ is registered in SC, it follows that
Validate(C)(stC̃, adrS̃ , adrSC) will output 1 (and will not output (⊥, 0,⊥), ensuring that A will not win due
to the condition in Step 6. Thus, Ch will invoke S.Init(inpt∗C̃, adrC̃, skS̃ , pkS̃ , stS̃ , adrSC), where inpt∗C̃ is the
output of CCE.C.Init(inptC̃, adrS̃ , ppS̃) (Step 7 will then be executed).
Assume that S.Init outputs (ê, respS̃) such that ê = 0. Given that there is at least one successfully registered
auditor, this can occur only if the underlying CCE.S.Init(inpt∗Ci

, adrCi
, stS) returns ê = 0. In turn, this can

9 If both AccountStatemnt and π are valid, or if AccountStatemnt is invalid, then the auditor decides that the client
should not be reimbursed. Note that concurrent validity of AccountStatemnt and π (i.e., concurrent evidence that
the transaction took place and that it did not take place) is an inconsistency that will not happen in our setting.
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happen only if inpt∗C̃ specifies a pair (X,Y ) of cryptocurrencies that the server cannot support. This implies
that inptC̃ /∈ VS̃ , and, following the condition in Step 8, A will lose the game. Therefore, without loss of
generality, we can assume that inptC̃ ∈ VS̃ , i.e., (X,Y ) is a valid pair, which implies that S.Init outputs
ê = 1 and a response respS̃ = (ρ, µ) (thus, A will not win due to the condition in Step 9). Thus, Ch will
execute the protocol SendTransaction(C̃(id inptC̃, skC̃, inptC̃, stC̃, α̃, adrS̃ , adrSC),SC) (Step 10 will then be
executed).
Then, according to the ICE protocol description, Ch will execute CCE.C.Request(inptC̃, α̃, adrS̃ , (ρ, µ), stC̃).
If Decide(stC̃, α̃, inptC̃, respS̃) outputs q̂ = 0, then A will lose the game. Hence, by the description of the
Decide(·) function and without loss of generality, we may assume that: (i) α̃ matches the amount specified
in inptC̃ (i.e., inptC̃ = (α̃,X, Y )), (ii) C̃ accepts ρ, and (iii) µ ≥ α̃ · ρ. The execution of CCE.C.Request will
produce a request reqC̃ = (id inptCi

, α̃,X, Y, ρ).
Ch computes the amount γ̃ ← CalPremium(stateSC, adrS̃ , reqC̃) + α̃ as described in the ICE protocol
and checks if there is sufficient balance. Without loss of generality, we assume that CheckBudget(reqC̃,
adrS̃ , adrSC, balance, stateSC, plcλ, γ̃, pp, Lpnd) → 1 (otherwise, SC outputs ⊥ and A loses the game). At the
end of this step, Ch has computed a unique transaction identifier t̃x along with γ̃ and reqC̃. It records T1 at
the time at which t̃x is registered.
Ch runs VerRequest(adrSC, t̃x, inptC̃) (Step 11 is executed). Given that ê = 1 and since reqC̃ includes inptC̃
where inptC̃ = (α̃,X, Y ), Ch will run CCE.S.VerRequest((α̃,X, Y, ρ), adrC̃, stS̃). In particular, it fetches the
rate ρ∗ in RT that corresponds to the pair (X,Y ). Since the rate has not changed from the beginning of
the challenge phase10, and given that reqC̃ has been honestly generated, it holds that ρ∗ = ρ. Additionally,
the available funds βC̃ have not changed from the beginning of the challenge phase11, which implies that
min{βC̃,MC̃} = µ. Since the output of Decide(stC̃, α̃, inptC̃, respS̃) is 1, we have that µ ≥ α̃ · ρ. Hence,
min{βC̃,MC̃} ≥ α̃ · ρ. Therefore, both checks of CCE.S.VerRequest pass, and VerRequest(adrSC, t̃x, inptC̃)

outputs f̂ = 1 (so, A will not win due to the condition in Step 12).
After the execution of Step 13, Ch provides A with (t̃x, reqC̃). In turn, in Step 14, A advances the clock and
provides Ch with a bit g̃.
If g̃ = 1, then Ch executes Withdraw(adrC̃, pp, t̃x, T, T1) (Step 16). By the description of Withdraw, the algo-
rithm will output 1 if and only if T−T1 ≤ ∆ (recall that the withdrawal bit ĝ is by default set to 0). Therefore,
A will not win due to the condition of either Step 17 or Step 18. In addition, if Withdraw(adrC̃, pp, t̃x, T, T1)
outputs 1, then A will lose the game. So, without loss of generality, we may assume that either of the two
following cases holds for g̃: either (i) g̃ = 0 (Step 15), or (ii) g̃ = 1 and Withdraw(adrC̃, pp, t̃x, T, T1) outputs
0 and T − T1 > ∆ (Step 20). We observe that in both above cases (i) and (ii), it holds that ĝ = 0 and Ch
runs Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1) and then goes to Step 21.

By the description of Transfer and the facts that ê = f̂ = 1 and ĝ = 0, the algorithm will not output 1
unless one of the two conditions holds: (i) T − T1 ≤ ∆; (ii) γ̃ < CalPremium(stateSC, adrS̃ , reqC̃) + α̃. The
second condition does not hold since γ̃ has been set equal to CalPremium(stateSC, adrS̃ , reqC̃)+ α̃. Regarding
the first condition, we may assume that A advances the clock such that T − T1 > ∆ (otherwise, A loses the
game in Step 21).

By the above discussion, Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1) outputs ĥ = 1, and SC has transferred α̃ amount
of coins to S̃. Then, on behalf of S̃, Ch runs Serve(skS̃ , adrSC, t̃x), which outputs (serviceS̃ , π̃) (Step 22 will
be executed). By the description of Serve, the algorithm CCE.S.Serve(reqC̃, α̃, X, adrC̃, stS̃) will be invoked,
producing the output (α̃ ·ρ, Y ). Thus, it holds that serviceS̃ = FS̃(inpt

∗
C̃, reqC̃, pp), hence, A will not win due

to the condition of Step 23. Next, Ch will run GenComplaint(skC̃, serviceS̃ , t̃x, adrSC), which will verify the
transfer via VerifyExchage(skC̃, reqC̃, π̃)→ (1,⊥). Therefore, GenComplaint will output ⊥, and the adversary
will lose the game. □
10 Note that ρ ∈ RT and RT get updated by calling UpdateRate upon receiving a request. The assumption is that

the game between the adversary and the challenger is based on a fixed request in this game. As a result, there is
no change in the rate because no other requests are being processed concurrently.

11 Recall, for the same reason discussed earlier, that since there are no other requests, the available funds remain
unchanged, similar to the exchange rate.
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7.4 Proof of Client-Side Security

Let A be an adversary that participates in the Client-side security game defined in Section 5.3. After
completing the Initialization and Execution phases of the game, A provides Ch with two challenges
addresses adrC̃ and adrS̃ , an input inptC̃, and an amount α̃.

Proof. Without loss of generality, we may assume that:(i) there is at least one successfully registered auditor,
(ii) A has corrupted less than t fraction of all successfully registered auditors, (iii) C̃ is an honest client that
has generated its key pair, and (iv) S̃ is corrupted. Indeed, if any of these conditions do not hold, then the
adversary would lose the game in one of Steps 1-3 (see Section 5.3). Therefore, Step 4 in Section 5.3 will be
executed by Ch, which invokes C.Init(inptC̃, skC̃, pkC̃, adrS̃ , adrSC, stC̃).
By the description of C.Init, if S̃ is recorded as a bad actor or it has not been registered in SC,
then Validate(C)(stCi

, adrP , adrSC) will return 0, and in turn, C.Init will output (⊥, 0,⊥), so the adver-

sary will lose the game due to Step 5. Therefore, we assume that S̃ is successfully registered via a valid
(Registration,msgS̃) command which implies that A cannot win w.r.t. the condition of Step 6 in Sec-
tion 5.3. Let FS̃ be the service function and VS̃ be the set of valid clients’ inputs for the service that S̃
provides. By the description of C.Init, the client C̃ will verify the validity of inptC̃. Thus, we assume that
inptC̃ is a valid input that parses as (α∗, X, Y ) (otherwise C.Init will output (⊥, 0,⊥) and the adversary
will lose the game due to Step 5 in Section 5.3). Therefore, A cannot win w.r.t. the condition of Step 7 in
Section 5.3. In addition, Ch provides A with (inpt∗C̃, ppC̃), where ppC̃ = inpt∗C̃ = (id inptC̃, X, Y ).
According to Step 8 in Section 5.3, A provides Ch with a bit ẽ and a response respS̃ . By Step 9 in Section 5.3,
we may assume that ẽ = 1 (otherwise A loses the game).
Thus, Ch will append (id inptC̃, ẽ, respS̃ , adrC̃) to SC and run protocol SendTransaction(C̃(id inptC̃, skC̃,
inptC̃, stC̃, α̃, adrS̃ , adrSC),SC). Initially, Ch runs Decide(stC̃, α̃, inptC̃, respS̃) that we may assume it out-
puts q̂ = 1 (otherwise the adversary loses the game). By the description of Decide, the above implies
that (i) respS̃ can be parsed as a pair (ρ, µ), (ii) α̃ = α∗, (iii) µ ≥ α̃ · ρ. Subsequently, the execution
of CCE.C.Request will produce a request reqC̃ = (id inptCi

, , α̃,X, Y, ρ). Next, Ch computes the amount
γ̃ ← CalPremium(stateSC, adrS̃ , reqC̃)+ α̃ as described in the ICE protocol and checks if there is sufficient bal-
ance. Without loss of generality, we assume that 1← CheckBudget(reqC̃, adrS̃ , adrSC, balance, stateSC, plcλ, γ̃,
pp, Lpnd) (otherwise, SC outputs ⊥ and A loses the game). At the end of this step, Ch has computed a unique
transaction identifier t̃x along with γ̃ and reqC̃. It records T1 at the time at which t̃x is registered. Ch provides
A with (t̃x, reqC̃).
According to Step 10 in Section 5.3, A can send a number of Advance Clock commands of its choice.
Then, it provides Ch with two bits f̃ , g̃. By Step 11 in Section 5.3, we may assume that f̃ = 1 (otherwise
A loses the game). If g̃ = 1 and the current time T is such that T − T1 ≤ ∆, then the execution of
Withdraw(adrC̃, pp, t̃x, T, T1) (Step 13 in Section 5.3) will output ĝ = 1 and A will lose the game (Step 14 in
Section 5.3). Therefore, without loss of generality, we may assume that g̃ = 0 or T − T1 > ∆ (i.e., Withdraw
will preserve the public state as ĝ = 0 consistently with step 15 in Section 5.3) holds. Hence, in any case,
Ch runs the algorithm Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1) and Step 16 in Section 5.3 will be checked. Recall
that γ̃ = CalPremium(stateSC, adrS̃ , reqC̃) + α̃. Besides, we assumed that T − T1 > ∆ and Transfer runs on

input (1, 1, 0, t̃x, α̃, γ̃, ∆, T, T1) (implicitly ê = ẽ = 1, f̂ = f̃ = 1, ĝ = 0). So, it holds that Transfer outputs

ĥ = 1 (the check in Step 16 in Section 5.3 does not pass). Thus, α̃ amount of coins in X will be transferred

to S̃ and Ch provides A with ĥ (Step 17 in Section 5.3). Let T2 be the time that Transfer algorithm is
completed.
According to Step 18 in Section 5.3, A sends a number of Advance Clock commands of its choice. Upon
receiving any such command, Ch also checks if T −T2 > ∆ (and no service has been received). We distinguish
the following cases:

– Case 1: T − T2 > ∆ (and no service has been received). Let π̃ be the proof that S̃ has posted in
SC (possibly empty). In this case, Ch runs the algorithm GenComplaint(skCi

,⊥, t̃x, adrSC) and goes to
Step 22. Since service ˜srv = ⊥, GenComplaint will run VerifyExchage(skC̃, reqC̃, π̃). By the soundness of
transaction statements, π̃ is invalid (A cannot create a valid confirmation of a transaction for a service
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that did not take place), so VerifyExchage will return ẑ = 0 and ζC̃ = AccountStatement. Therefore,
GenComplaint outputs a complaint complaintC̃ that includes (AccountStatement, t̃x), so A cannot win
w.r.t. the condition of Step 22 in Section 5.3. Since A has corrupted less than a fraction of t registered
auditors, at least a fraction of 1 − t registered auditors will run the algorithmic steps, described in
Section 7.1. Each such auditor will check that t̃x is associated with a fresh transaction for which no
missing information is missing (recall that ê = ẽ = 1, f̂ = f̃ = 1, ĝ = 0, ĥ = 1). In addition, since
VerifyExchage was honestly executed, it holds that AccountStatement is valid while the fact that no
service took place implies that π̃ is invalid. By the description in Section 7.1, each honest auditor will
decide 1. Therefore, by the description of the subroutine ExtractVerdict in Figure 10 the counter counter
will be at least R · (1− t), where R > 0 is the number of successfully registered auditors, which implies
that the output of ExtractVerdict will be r̂ = 0 and the adversary will lose the game.

– Case 2: At time T ≤ T2+∆, A provides Ch with a pair (serviceS̃ , π̃). By Step 20 in Section 5.3, we assume
that serviceS̃ does not specify a valid transfer of α̃ · ρ coins in Y to the account C̃ (otherwise A loses
the game). Therefore, according to Step 21, Ch will run the algorithm GenComplaint(skCi

, serviceS̃ , t̃x,
adrSC), for an incorrect service serviceS̃ . By the soundness of transaction statements, π̃ is invalid (A
cannot create a valid confirmation of a transaction for an incorrect service), so VerifyExchage will return
ẑ = 0 and ζC̃ = AccountStatement. The rest of the analysis is similar to Case 1. We conclude that in
any case, A will lose the game. □

7.5 Proof of Server-Side Security

Let A be an adversary that participates in the Server-side security game defined in Section 5.4. After com-
pleting the Initialization and Execution phases of the game, A provides Ch with two challenge addresses,
adrC̃ and adrS̃ .

Proof. Without loss of generality, we may assume that:(i) there is at least one successfully registered auditor,
(ii) A has corrupted less than t fraction of all successfully registered auditors, (iii) S̃ is an honest registered
server that has generated its key pair, and (iv) C̃ is corrupted. Indeed, if any of these conditions do not hold,
then the adversary would lose the game in one of Steps 1–4 (see Section 5.4). Therefore, upon receiving the
triple (inpt∗C̃, â, ppC̃) from A (Step 5 in Section 5.4), Ch will execute Step 6 in Section 5.4, which invokes
S.Init(inpt∗C̃, adrC̃, skS̃ , pkS̃ , stS̃ , adrSC).
By the description of S.Init, inpt∗C̃ is parsed as (id inptC̃, X, Y ) and its validity is checked by calling
CCE.S.Init((X,Y ), adrC̃, stS̃). By the description of CCE.S.Init, if the exchange from X to Y is not sup-
ported by S̃, then ê will be set to 0 and A will lose the game (Step 7 in Section 5.4). Therefore, we assume
that (X,Y ) ∈ ppS̃ and that S.Init will output ê = 1 and a response respS̃ = (ρ, µ) (i.e., Step 8 in Section 5.4
will be executed). Subsequently, Ch sends (id inptC̃, ê, respS̃ , adrC̃) to SC and provides A with (id inptC̃, 1).
By Step 9 in Section 5.4, A provides Ch with a request reqC̃ an amount of γ̃ coins. In particular, we may
assume that reqC̃ is parsed as a tuple of the form (id inpt′C̃, α̃, Cℓ, Cℓ′ , ρ

′), where α̃ is an amount, Cℓ, Cℓ′

are identifiers of currencies, ρ′ is a rate, and id inpt′C̃ is some input identifier. Otherwise, the CheckBudget
algorithm would output 0 and A would lose the game according to Step 10 in Section 5.4. We assume that
CheckBudget(reqC̃, adrC̃, adrSC, balance, dataSC, plcλ, γ̃, pp, Lpnd) outputs ŵ = 1. So, Ch provides A with a
unique transaction identifier t̃x. Let T1 be the time that t̃x was registered.
Upon receiving an input inptC̃ from A (Step 11 in Section 5.4), Ch runs VerRequest(adrSC, t̃x, inptC̃) (Step 12
in Section 5.4). According to the description of VerRequest, we assume that inptC̃ and reqC̃ are consis-
tent; namely, reqC̃ is parsed as (id inptC̃, α̃,X, Y, ρ′) and inptC̃ as (α̃,X, Y ). Also, since VerRequest invokes
CCE.S.VerRequest((α,X, Y, ρ′), adrC̃, stS̃), it should hold that ρ′ = ρ. Indeed, if the above relation does
not hold, then VerRequest will output 0 and A will lose the game (Step 13 in Section 5.4). For the same

reason, we assume that the amount α̃ will be such that µ ≥ α̃ · ρ. So, VerRequest will output f̂ = 1 while
(inptC̃, reqC̃, pp) is a valid input of the service function FS̃) which means that A will not win the game w.r.t.
the condition of Step 14 in Section 5.4. Moreover, Ch sends 1 to SC.
According to Step 15 in Section 5.4, A can send a number of Advance Clock commands of its choice.
Then, it will provide Ch with a bit g̃. We will show that for every value of g̃, Ch will run the algorithm
Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1) (where T is the current time) or A will lose the game.
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– If g̃ = 0, then this is straightforward for the case (Step 16 in Section 5.4).
– If g̃ = 1, Ch executes the algorithm Withdraw(adrC̃, pp, t̃x, T, T1) (Step 17 in Section 5.4). By the

description of Withdraw, we assume that T − T1 > ∆ otherwise Withdraw will output 1 and A will lose
the game (Step 18 in Section 5.4). Besides, if T − T1 > ∆, then Withdraw will output 0 and, by Step 19
in Section 5.4, Ch will run the algorithm Transfer(1, 1, 0, t̃x, α̃, γ̃,∆, T, T1).

By the description of Transfer, even if g̃ = 0, we assume that T − T1 > ∆, else Transfer outputs ⊥
and A loses the game (Step 20 in Section 5.4). Recall that implicitly, the algorithm runs on inputs ê = 1,

f̂ = 1, and ĝ = 0. Therefore, in order for Transfer to output ĥ = 1, it is necessary and sufficient that
γ̃ ≥ CalPremium(stateSC, adrS̃ , reqC̃)+ α̃. The latter implies the transfer of α̃ amount of coins in X to S̃ and
the execution of Serve(skS̃ , adrSC, t̃x) by Ch (Step 21 in Section 5.4).
By executing Serve on behalf of S̃, Ch (i) completes serviceS̃ , i.e., the transfer of α̃ · ρ amount of cur-
rency in Y and (ii) sends π̃ to SC. Then, it provides A with serviceS̃ that, in turn, can send a number
of Advance Clock commands of its choice and provides Ch with a complaint complaintC̃ (Step 22 in
Section 5.4).
Without loss of generality, we assume that complaintC̃ ̸= ⊥, otherwise A would lose the game (Step 23 in

Section 5.4). Therefore, Reimburse
(
⟨D1(adrSC, skD1

), . . . ,Dm(adrSC, skDm
), SC(plc, α̃, γ̃, complaintC̃, pp)⟩

)
will be executed. Recall that a fraction of at least 1 − t registered auditors are honest, so they follow the
algorithm in Section 7.1. By the description of this algorithm,

– If complaintC̃ specifies an identifier tx that is either previously recorded in the auditors’ states, or is
invalid then the auditor will decide as 0.

– Note that the only new and valid identifier is t̃x. If complaintC̃ specifies t̃x, then
• If A has advanced the clock such that T − T1 > Θ (insurance period has expired), then the auditor
will decide as 0.

• Otherwise, if T −T1 > Θ, then since π̃ is valid statement confirming the transaction, the auditor will
decide 0.

We conclude that in any case, all honest registered auditors will decide 0. Therefore, less than a fraction of
t registered auditors (all corrupted ones) can contribute a decision bit equal to 1. Given that t ≤ 1

2 , we have
that t ≤ 1− t which implies that less than a fraction of 1− t registered auditors can contribute a decision bit
equal to 1. By the description of ExtractVerdict in Figure 10, the counter will never reach the critical value
that will set the final verdict to r̂ = 1. Hence, r̂ will be equal to 0 and the adversary will lose the game. □

8 Further Discussions

8.1 Fair Exchange Versus ICT

Fair exchange [65,2,20] is an interesting problem in which two mutually distrustful parties want to swap
digital items such that neither party can cheat the other, in the sense that either each party gets the other’s
item, or neither party does. Solutions to the problem are often certain cryptographic schemes, called fair
exchange protocols (or fair exchange for short). Fair exchange protocols can be used to deal with a variant of
Authorized Push Payment (APP) fraud, called purchase fraud, where a service provider may wish to receive
a certain amount of coin without delivering the service. We refer readers to [85] for further discussion about
APP fraud.
Thus, fair exchange could be seen as closely related to the concept of insured cryptocurrency transactions.
In this section, we provide a detailed comparison between these two concepts from various perspectives,
highlighting their distinct characteristics and implications.

– Timing of Transactions. The timing of transactions plays a crucial role in differentiating fair exchange
protocols from insured cryptocurrency transactions. In fair exchange protocols, neither party receives
the counterparty’s item unless both parties have fulfilled their obligations. This ensures an atomic and
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fair exchange. In contrast, insured cryptocurrency transactions follow a different timing structure. For
example, in financial transactions, once one party sends funds, there is no immediate requirement for
the receiving party to provide a service or return an asset to the sender. Instead, the sender relies on
insurance mechanisms to guarantee the return of funds if necessary, offering security without the need
for an immediate reciprocal transaction.

– Risk Involved. Another key difference lies in the level and nature of risk associated with each type
of transaction. In fair exchange protocols, the risk is minimal, as the exchange is atomic, ensuring that
neither party can gain an advantage over the other. This built-in fairness limits the scope for risk. On
the other hand, insured cryptocurrency transactions inherently involve risk. The value transfers between
the involved parties do not always occur simultaneously or atomically. As a result, the party initiating
the transfer depends on insurance mechanisms to mitigate potential risks, including malicious behaviors,
such as failure to send the promised asset.

– Coverage and Protection. In fair exchange protocols, the coverage is generally limited; it only protects
against the completion of unfair transactions and does not account for external risks, such as third-
party fraud12 or post-transaction losses13. In contrast, insured cryptocurrency transactions offer broader
protection. This protection extends beyond the transaction conditions, encompassing risks such as third-
party fraud, service failures, and losses not directly associated with the transaction execution itself.

– Dispute Resolution. Fair exchange protocols generally require minimal dispute resolution. Since the
transaction is cryptographically enforced, both parties are automatically ensured of fulfilling their obli-
gations without requiring intermediary intervention. On the other hand, insured cryptocurrency transac-
tions involve a mechanism for claim evaluation and dispute resolution. This process is crucial to ensure
that insurance claims are handled fairly, particularly when disagreements arise, such as when one party
claims that the terms were not met or that a loss occurred due to factors beyond the transaction’s
execution.

– Post-Transaction Processes. In fair exchange protocols, once the exchange is completed, the trans-
action is considered final. No further actions are typically required, as the cryptographic enforcement
ensures that both parties have met their obligations. Conversely, insured cryptocurrency transactions of-
ten involve post-transaction processes. These may include preparing and submitting claims, undergoing
evaluation, and processing payouts. The insurance mechanism may require additional steps to resolve
issues or provide compensation, depending on the terms of the insurance agreement and the specific
circumstances surrounding the transaction.

– Economic Impact. The economic impact of fair exchange protocols is generally low to moderate due
to their limited coverage. The scope of protection in fair exchange is confined to ensuring fairness in
the transaction itself, without significantly affecting broader economic activities. In contrast, insured
cryptocurrency transactions have a moderate to high economic impact. Their broader scope of protection
promotes innovation, job creation, and business growth within the cryptocurrency ecosystem. By relying
on insurance mechanisms, entities involved in these transactions contribute to greater participation and
investment.

– Fraud Prevention and Protection. Both fair exchange protocols and insured cryptocurrency transac-
tions offer measures to deal with fraud, but the extent of their protection differs. Fair exchange protocols
prevent certain types of fraud, such as cryptocurrency purchase fraud [68]. However, insured cryptocur-
rency transactions provide a more comprehensive range of fraud protection. They cover victims of various
types of fraud, including purchase fraud, investment fraud, cryptocurrency theft, and money exchange
fraud. This extended coverage helps mitigate a wider range of fraudulent activities.

8.2 ICT Versus Traditional Insurance

ICT and accordingly ICE offer various advantages over traditional insurance companies, such as:

12 For instance, situations where an external entity, not directly involved in the transaction, deceives one or both
parties. For example, a third party may impersonate one of the counterparties and defraud the other.

13 For instance, scenarios where one party suffers a loss after the transaction is completed, such as when a cryptocur-
rency wallet is hacked after the exchange.
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– Decentralized Dispute Resolution: Disputes are resolved by a committee of external auditors who are
selected based on explicit, publicly accessible policies. This approach mimics the real-world jury system
and can enhance overall fairness, transparency, and trust in the system. In contrast to traditional insur-
ance companies, where disputes are resolved either internally or by independent arbitrators or mediation
firms [19] paid by the insurance companies, this method ensures greater impartiality. External auditors
in the decentralized system who are selected according to explicit terms are less likely to be influenced
by financial relationships or internal biases, thus providing a more trustworthy resolution process.

– Real-Time Access and Transparency : Clients and service providers can access transaction data in real
time. This means they have immediate visibility into the status of their interactions and any insurance
claims, allowing them to monitor progress and detect any issues promptly. In contrast, when dealing with
a traditional insurance company, clients often receive periodic updates on the status of their transactions
and claims, which can lead to delays in getting important information [48]. Insurance companies have a
limited capacity to process claims, which may lead to a backlog and the claimant may need to contact
the insurance company to request updates. The processes and criteria used by insurance companies to
handle claims and transactions are often lengthy from the perspective of the claimant as insurers need
to ensure that a claim is not fraudulent. Further, whilst most regulated insurance companies will be
required to adhere to a declared standard of fairness, insurance buyers may have a perception that the
claims process is subjective and not fully transparent [74].

– Fixed Policy and Terms: Once deployed, the insurance policy and terms encoded in a smart contract
cannot be changed. This ensures that all parties are bound by the original agreement, providing cer-
tainty and clarity. However, traditional insurance policies can be modified by the insurance company,
often through policy amendments or updates [5]. While these changes are typically communicated to
policyholders, they can create uncertainty.

– Minimized Human Intervention: Automation through smart contracts can reduce the need for human
intervention, minimizing the potential for errors, biases, or fraud. In contrast, traditional insurance pro-
cesses rely heavily on human intervention for tasks such as policy management and claims handling. This
reliance increases the likelihood of errors. The manual nature of these processes may lead to inconsisten-
cies and delays [42], undermining the efficiency and reliability of the insurance system.

8.3 ICT as an Insurance Paradigm for Cryptocurrency Transactions

We briefly sketch out the relevance of the ICT protocol to conventional commercial insurance. There are
many different types of insurance and markets for risk transfer.14 The simple principle of insurance is that
a customer makes a payment to an insurance company, known as a premium, in return for indemnification
against a specified (usually financial) risk. It is common to divide insurance into personal and commercial
lines. Personal lines are areas such as car, home, or travel insurance. Commercial lines provide cover for
companies against specified perils. The most relevant application of this work would be insurance against
financial liability arising from fraud [7,21].
It is unlikely that consumers would want to buy insurance from a third-party provider to cover the risk of
fraudulent transactions. The most likely implementation of insurance is that the provider of transactional
services (e.g., our ICT) agrees to indemnify the user against fraud. This poses an accumulation risk to
the insurer in the event of widespread fraudulent activity. The insurer may elect to purchase insurance to
cover the potential costs (direct, legal, or indirect) of fraudulent activity in excess of a certain amount. In
commercial contracts, it is usual that the insured retains some level of losses, which is known as a deductible
or a self-insured retention (SIR). It should be noted that within the realm of cybersecurity, an advantage
of insurance is that it provides the insured with access to remedial services as part of the policy (see, for
example, [9] and associated references). There is a parallel with ICT, in that those wishing to develop business
ventures may gain higher trust if partnering with an insurance operator deploying ICT.
For insurance markets to function, there needs to be some level of confidence in the process of handling
claims [69,4,25]. Our ICT provides a robust algorithmic framework for dealing with claims and fraud.

14 For suitable introductory references see, among many, [71,73].
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Often it is the case that a single insurance company insures multiple large corporations to spread the risk
(diversification), as it is done in our ICT which provides coverage for different users against various servers.
Alternatively, the coverage limits might be allocated between different insurers. For example, consider the
scenario under which a user wants coverage of $30mn against fraud but the maximum line size available
from any single insurer is $10mn. In this case, multiple insurers may collaborate to provide this coverage. In
this case, the insurer bearing the first $10mn of losses is known as the primary carrier, the insurer bearing
the next $10mn as the first excess and the insurer bearing the final $10mn as the second excess. In the
commercial insurance markets, this is known as an insurance tower [6], which can be applied to ICT too.
Finally, it should be noted that insurance companies may have greater legal resources at their disposal
to potentially recover misappropriated funds than individuals. The process whereby insurers attempt to
recover the costs of claims from third parties is called subrogation [47]. Recovering cryptocurrency assets
is not always straightforward [53] yet there are anecdotal examples of successful recovery of ransomware
payments, for example [77].

8.4 Claim Accumulation Risk

A key concern for an organization providing insurance coverage is for a catastrophic accumulation of claims
that in a worst-case scenario results in the insurance company becoming insolvent (this is known as a ruin
in the insurance literature). With a new protocol or insurance application where no historical data on claims
exists, insurance pricing is difficult to achieve using conventional actuarial methods. Accordingly, insurers
either solve the issue of catastrophic claims using reinsurance products or by adopting a test-the-water
approach and granting only small limits in order to build claims data. Importantly, ICT is compatible with
both of these strategies. In relation to reinsurance, it is possible that services that wish to build their customer
base are willing to supply or pool capital to fund the insurance provided by ICT.
In terms of product development and market construction, the robustness and transparency of ICT reduce
the potential for disputes to emerge during compiling claims — where the purchaser and provider of insurance
disagree about the amount that should be paid on the claim. In conventional insurance, there is a difference
in claims data between claims allegedly incurred by an insured and those paid after loss adjustment. ICT
helps to mitigate that uncertainty. In essence, ICT is an algorithmic loss adjuster, which reduces the risk of
perceived subjectivity in claims handling.

8.5 Relation of ICT to Economic Theory on Insurance Pricing

The classical economic formulation of insurance usually begins with an analysis of the utility function of the
insurance buyer, see [78] for an extensive discussion. One starts with the basic concept of a utility function,
Utility, which must be continuous and twice differentiable. This represents the preferences of either insurance
buyer or seller in respect of losses and is often referred to as risk tolerance [46].
Commonly used utility functions15 exhibit specific properties, such as constant absolute risk aversion

(CARA), such that the coefficient of absolute risk aversion A(x) = −u′′(x)
u′(x) = ᾱ, or constant relative risk

aversion (CRRA), where the coefficient of relative risk aversion R(x) = −x·u′′(x)
u′(x) = γ̄. CARA utility functions

are of the form u(x) = 1 − ᾱ · e−ᾱ·x and CRRA of the form u(x) = x1−γ̄−1
1−γ̄ for γ̄ ̸= 1 and u(x) = ln(x) for

γ̄ = 1. The utility function of each individual client, C, can be defined as:

UC = π̄C · UtilityC(WC − µ− l + ai) + (1− π̄C) · UtilityC(WC − µ) (1)

where UC is the total utility of the client, UtilityC is the client utility function, WC is the wealth of the client, l
is the value of loss, π̄C is the subjective probability of covered loss believed by client C, and µ is the amount of
premium paid for an amount of cover ai. One possible formulation of the decision problem for the insurance
seller may be framed in terms of wealth — the following discussion is abridged from [79]:

15 These are very well-established and standard results and, accordingly, a detailed discussion is outside the scope of
this paper. [46] is recommended as a good introductory text.
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W = W0 + µ̄−
∫ A

0

X · dF (X) (2)

In this case, W0 is the initial capital of the insurance operator, µ̄ are the premiums received from clients
purchasing insurance — the sum of µ in Equation 1, X is the total claims paid out over a period, and
F (X) is the subjective probability distribution (of the insurance operator) of such claims. Finally, A is the
amount of claims at which both capital and premium income is fully depleted and the insurance operator
faces insolvency. The problem for the insurance operator is to balance premium income with the probability
of loss at a premium rate which is utility-enhancing for the insurance buyer relative to their baseline of not
insuring against loss. The function CheckBudget in ICT optimizes Equation 2 in real time. Within the ICT
protocol, the worst possible outcome is considered, i.e., the protocol assumes full funding for all claims. In
insurance, this is rarely the case; insurers will be capitalized to be able to pay expected claims up to a certain
probability threshold — for example, 99.5% in the Solvency 2 framework [27]. Over time, if losses prove to
be infrequent, it might be possible to relax the capital restrictions of CheckBudget to a similar threshold.

9 Cost Analysis of ICE

9.1 Asymptotic Cost Analysis

In this section, we present a detailed evaluation of ICE’s costs. Table 1 summarizes the complexities of
different parties in ICE.

Table 1: Complexities of different parties in ICE.

Party Computation Cost Communication Cost

Operator O O(|dbD|+|dbS |+|dataSC|+k +m) O(k +m)

Client Ci O(|dbD|+|dbS |+|dataSC|) O(1)

Server Sj O(1) O(1)

Smart contract SC O(m) O(1)

Auditor Di O(1) O(1)

Total O(|dbD|+|dbS |+|dataSC|+k +m) O(k +m)

Cost of Operator O. The computation cost of O in Phase 1 is constant O(1), with respect to the number
of parties, as it develops a smart contract with a few functions. However, the dominant cost in this phase is
O(|dbD|+|dbS |+|dataSC|) stemming from the invocation of Update.State. The complexity of O in Phase 3 is
O(k +m) as it needs to invoke Validate(O) linearly with the number of servers and auditors. Thus, the total
computation complexity of O is O(|dbD|+|dbS |+|dataSC|+k +m). The communication cost of O in Phase 1
is O(1), with respect to the total number of parties involved. The communication cost of O in Phase 3 is
O(k +m).

Cost of Client Ci. Overall, Phase 6 imposes a negligible overhead to Ci because it primarily involves (i)
CCE.C.Request that itself relies on predicate Decide consisting of a few basic arithmetic and comparison
operations, and (ii) CalPremium which also involves a few arithmetic operations. The cost of Ci in Phase 11 is
dominated by the overhead of executing VerifyExchage. However, this cost is negligible as it mainly requires
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Ci to log in to its account and read its most recent transactions. Hence, Ci’s overall computation complexity
is O(|dbD|+|dbS |+ |dataSC|).
Next, we estimate the communication cost of Ci. In Phase 4, its cost is O(1) with respect to the number of
servers and auditors, as it sends only three messages (where the size of each message is at most 128-bit) to
Sj and two messages to SC. In Phase 6, step 6(a)v, it sends six messages to SC while in step 6c, it sends
at most three messages to Sj. In Phase 11, Ci sends at most two messages to SC to register its complaint.
Therefore, the overall communication complexity of Ci is O(1).

Cost of Server Sj. The computation complexity of a server Sj in Phase 5 is low and O(1) as it mainly
involves reading its internal state, given a value. Its cost in Phase 7 is also low because it involves a few
arithmetic operations as a result of executing CCE.S.VerRequest. The primary computation cost of Sj in
Phase 10 stems from the invocation of FSj

and UpdateRate in step 10b. The computation cost of executing
FSj

is low as it involves transferring a certain amount of coin/money to the client. Similarly, UpdateRate
mainly involves updating its record of rates that requires a few arithmetic operations. Hence, the computation
complexity of Sj, for each client, is O(1) with respect to the number of auditors.
We proceed to estimate the communication cost of Sj. In Phase 3, it sends a constant number of messages to
O, where the size of each message is at most 256 bits. In Phase 5, it sends only five messages to SC, where
the size of each message is at most 256 bits. In Phase 7, it sends only a binary value to SC. In Phase 10, it
sends out a constant number of messages as a result of delivering the service. In the same phase, it transmits
a single message to SC. Thus, the communication complexity of Sj is O(1).

Cost of the Smart Contract SC. Overall, the computation overhead of SC is low, as the main operations
that SC performs involve basic arithmetic operations, in Phases 6, 8, 9, and 12. However, unlike other parties
in the protocol, the computation complexity of SC is linear with the number of auditors, O(m). Next, we
estimate its communication cost. In each of Phases 6 and 9, it transmits at most two messages. While in
each of Phases 8 and 12, it transmits a single transaction. Thus, the party that involves SC will have at most
O(1) communication cost.

Cost of an Auditor Di. The computation complexity of Di is O(1), as in Phase 12, for each client, it
processes the client’s claim and computes a verdict. Its communication complexity is also O(1) because in
Phase 3 it sends a single message and in Phase 12 it sends two messages to SC.

9.2 Concrete Gas Consumption in ICE

Experimental Setup. We have implemented [1] the smart contract SC of ICE in Solidity and estimated
the gas consumption of its main functions. In the implementation, for the sake of simplicity, we assumed
that the server always accepts (i.e., S.Init returns 1) the request a client sends to it (as a result of C.Init
invocation). The implementation does not rely on any external library. In our experiment, we report the
gas consumption of each function as estimated by the Remix IDE in “Gwei” during the execution of that
function. To convert the gas consumption from Gwei (where each Gwei is approximately 10−9 ether) to US
Dollars (USD), we used the price of each “ether” which, at the time of writing, was approximately 3183.44
USD according to Coinbase, a cryptocurrency trading website [22].
In the experiment, we have allocated seven different addresses to different auditors an allocated to each client,
server and operator an address. The experiment was repeated an average of 10 times. We have implemented
a version of CalPremium(dataSC, adrS , reqC)→ µ that computes the output as:

µ = α× adjustedRiskFactor × adjustedDuration× coverage

where
adjustedRiskFactor = riskFactor × 30%
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adjustedDuration = Θ× 30%

riskFactor is an integer indicating a risk factor of the server, coverage is the percentage of the transaction
amount α covered by the policy plcλ already stored in SC, (riskFactor,Θ, coverage) ∈ SC, and α ∈ reqC .
We multiplied riskFactor and Θ by a rate (i.e., 30%) to normalize the original values and ensure they
impact the premium amount in a controlled way. Without this scaling, the premium could grow fast with
higher riskFactor and Θ, even surpassing the transaction amount. The choice of 30% is based on a set
of empirical observations. Depending on specific use cases, a different value may be adopted. We have also
implemented a simple version of CompRemAmount(plcλ, γ, reqC, pp)→ amount that generates an output as:
amount = α× coverage.

Result. Table 2 presents the gas consumption and corresponding monetary cost (in USD) for deploying
and executing the smart contract on the Ethereum test network. The listed costs reflect the amount of gas
required by each function and its equivalent value in US dollars. As illustrated in Figure 13, there is a notable
variation in gas usage across different smart contract operations.

Table 2: Gas consumption of primary functions of SC in ICE. Each Gwei is 10−9 ether.

Operation
Gas Consumption

Gwei USD

Smart contract deployment 2,828,379 7.9

Register 78,763 0.2

SendTransaction 334,370 0.9

VerRequest 66,910 0.1

Withdraw 59,047 0.1

Transfer 71,670 0.2

GenComplaint 63,889 0.1

Reimburse 180,843 0.5

Total 3,683,871 10

The deployment of the smart contract incurs the highest gas cost, amounting to 2,828,379 Gwei (7.9 USD).
This result is expected, as smart contract deployment is typically one of the most resource-intensive phases,
as discussed in [29]. This suggests that optimizing this process could lead to considerable cost savings. Future
efforts might focus on optimizing deployment by simplifying initialization procedures or using libraries.
Among the functions, SendTransaction consumes the highest amount of gas, 334,370 Gwei (0.9 USD), due
to several factors: (i) multiple checks to validate conditions like Ether sufficiency, server registration, and
contract budget, (ii) creation and storage of a multi-field transaction structure, and (iii) invocation of a hash
function to generate a transaction ID. The other functions such as Reimburse, Transfer, and GenComplaint

show lower gas consumption, ranging from 0.5 to 0.1 Gwei.

9.3 Transaction Latency

The transaction latency in our schemes primarily depends on the consensus protocol employed by the under-
lying blockchain. In Ethereum, block mining requires an average of 12 seconds per block [33]. However, to
mitigate the risk of forks and ensure a high probability that a block remains part of the canonical chain, it
is customary to wait for six subsequent blocks, resulting in an effective latency of approximately 72 seconds.
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Fig. 13: Gas consumption (in Gwei) for SC’s operations (logarithmic scale) in ICE.

By comparison, Byzantine Fault Tolerant (BFT) blockchains, such as Hyperledger Fabric, adopt a different
approach by avoiding proof-of-work mining altogether. Instead, they leverage deterministic consensus pro-
tocols that enable faster finality. For example, Hyperledger Fabric can achieve transaction confirmation in
around 35 seconds when operating with 20 nodes [50]. This significant reduction in latency makes BFT-based
blockchains particularly attractive for applications requiring quick transaction finality.

10 Conclusion and Future Works

In this work, we introduced Insured Cryptocurrency Transactions (ICT), a novel decentralized insurance
framework designed to safeguard users against fraud within the cryptocurrency ecosystem. By formalizing
ICT and developing the Insured Cryptocurrency Exchange (ICE), we provided both a rigorous theoretical
foundation and a practical demonstration of how decentralized insurance can enhance user protection in the
context of centralized exchanges. Our implementation, accompanied by a cost analysis, demonstrates that
such frameworks can offer robust security guarantees with minimal on-chain overhead, positioning them as
practical solutions for contemporary financial technologies. These solutions not only mitigate financial losses
but also have the potential to improve market stability and trust within digital currency ecosystems.
As future work, the integration of ICT within decentralized exchanges (DEXs) could be explored, along with
the development of automated policy adaptation mechanisms, such as dynamic premium rates, coverage
limits, and reimbursement criteria, using machine learning models for real-time risk assessment and adaptive
decision-making.
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A Survey of Related Works

In this section, we explore relevant blockchain-based solutions for insurance. Several studies have proposed
integrating blockchain technology to enhance traditional insurance models by leveraging smart contracts and
transparent, decentralized ledgers. These approaches aim to detect, reduce, and prevent fraud, streamline
insurance processes, and ensure data integrity. Works in this area lack general formal analysis, modeling,
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and security proofs, leaving potential security and reliability concerns unaddressed. For brevity, we do not
mention this limitation for each work in the following. To the best of our knowledge, our work is the first to
formally model and analyze insurance for cryptocurrency transactions. We provide a detailed and formalized
definition of insurance within the context of blockchain, offering a comprehensive and precise conceptual
framework that can be critically assessed and practically applied within the industry.
MIStore [94] introduces a blockchain-based medical insurance storage system in which data is stored on
the blockchain and it is publicly verifiable. The key participants include a medical institution, a patient,
an insurance firm, and several servers. A medical institution implements a threshold protocol involving a
patient, an insurance company, and several servers. Initially, the institution securely stores confidential data
on the blockchain. The design ensures that the servers cannot make sense of the data if (at maximum) up to
t out of n servers are corrupted (it is impossible for anyone, including the insurance company, to derive any
information with fewer than t responses). The servers are able to perform efficient homomorphic operations
(e.g., additions and multiplications within a finite field) which are optimized for performance. Following this,
when the insurance company submits a request to the blockchain and gathers t accurate replies from servers,
it can then access the information it seeks.
Each server can confirm if its specific share, provided by the medical institution, has been accurately cal-
culated. Moreover, the insurance company is able to verify if the responses it receives from the servers are
correctly generated, and the patient also has the ability to ensure that their data has been properly processed
by the relevant institution. The recipient of a transaction does not need to repeat the verifications carried
out by the chain verifiers. Instead, the recipient only needs to conduct minimal, specific verifications unique
to them (this is because of the inclusion of key data within the transaction’s payload, much of which is
accessible for public verification). This approach reduces the computational effort required for verification
by users. While this system offers support for health insurance billing by enabling insurers to accurately
assess patients’ total medical expenses, it is primarily tailored to this specific application domain. The ap-
proach relies on hospitals uploading medical cost data, which insurers can query through the blockchain,
yielding responses that outline patients’ expenses. However, this design is highly specialized and has not been
demonstrated in other contexts, making its applicability to broader insurance (e.g., financial applications)
uncertain.
Romanosky et al. [75] provide a comprehensive analysis of the cyber insurance market through the exami-
nation of over 100 cyber insurance policies filed with state insurance commissioners. Romanosky et al. [75]
highlight significant shortcomings in the cyber insurance market, revealing difficulties in accurately assessing
the security posture of customers. The study identifies static assessment methods, such as security question-
naires, lack of attention to technical infrastructure, and simplistic premium computation formulas as key
issues, emphasizing a critical lack of data for accurate risk assessment in the cyber insurance markets.
BlockCIS [58] introduces a blockchain-based cyber insurance system designed to address the challenges men-
tioned by Romanosky et al. [75]. BlockCIS establishes a continuous feedback loop among insurers, customers,
third-party services, and auditors using a private, permissioned blockchain based on the open-source Hy-
perledger framework. BlockCIS has an incentive structure, which motivates entities in need of insurance to
join the system. It enables insurers to customize premiums based on a company’s cybersecurity measures,
allowing companies to demonstrate coverage for potential cyber incidents. The system provides tailored pre-
miums, and proof of coverage for cyber incidents (e.g., policyholders can show that their cyber insurance
would cover them if a cyber incident happened). The system lacks a mechanism to verify the accuracy of the
information provided by policyholders or monitor changes in their infrastructure. This could be problematic
because it means the system might not detect false information or important changes that could affect secu-
rity (BlockCIS has not addressed measures to prevent false insurance claims or ensure that all parties have
access to the same information, which is essential for fairness and trust).
Vakilinia et al. [87] introduce a cyber insurance crowdfunding framework based on blockchain, which records
all transactions and information, ensuring data integrity and preventing malicious misuse of the system.
Their framework addresses the challenge of traditional cyber-insurance models which mainly cover businesses
against liabilities related to digital assets, data breaches, and operational disruptions. These traditional
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models, however, struggle to accurately assess the cyber-risks due to the vast diversity and complexity of IT
services.
They focus on insuring a specific cyber-product, thereby narrowing the scope of potential threats and sim-
plifying risk estimation. The associated smart contract developed for this purpose manages crowdfunding
initialization, bidding, wrapping, and reimbursement. The system involves four main participants: vendor,
customer, auditor, and insurer. The process begins when a vendor requests insurance for a cyber-product.
Interested insurers then participate in a sealed-bid auction, submitting their bids to provide the insurance
service at their preferred premium rates. The insurers who win the auction are chosen to cover the product.
In the event of a claim, an auditor verifies the legitimacy of the request. Following this verification, the claim
function is activated to allocate the appropriate amount from the collected funds to address the indemnity
request.
They lack the necessary security measures, in their approach to cybersecurity data collection and fraud
prevention, to guard against cyber threats, such as identity theft and the loss of sensitive information.
Additionally, the proposed system’s current analysis lacks a thorough evaluation of the processes used by
insurance companies to verify policyholder attributes. It overlooks the need for a system that can adapt to
changes in the policyholder’s infrastructure.
Authors of [52] discuss the issue of Ponzi schemes and fraudulent activities on blockchain platforms, par-
ticularly focusing on Ethereum. A Ponzi scheme is a fraudulent investment scam promising high rates of
return with little risk to investors, which pays earlier investors with the capital from newer investors until it
inevitably collapses. The authors aim to address the problem of detecting and preventing such scams using
data mining-based methods. Ponzi scheme detection can have two types of features that can be used for
detection: 0-day features (available as soon as a smart contract is uploaded) and behavior-based features
(related to the actions of the contract). They incorporate new features and classification models for detecting
Ponzi schemes (with both 0-day and behavior-based features).
The SECONDO framework [35] supports organizations with decisions related to cybersecurity investments
and cyber-insurance pricing. It is a specialized platform designed for evaluating and efficiently managing
cybersecurity risks. It takes a quantitative approach that considers both technical and non-technical factors,
including user behavior, which impact cyber exposure. The project provides analysis to enhance risk man-
agement by suggesting optimal investments in cybersecurity controls. It assesses residual risks, calculates
cyber insurance premiums based on the insurance company’s business strategy, and reduces information gaps
between the policyholder and the insurance company.
To securely store information, SECONDO incorporates Blockchain and utilizes smart contracts, ensuring
transparency, tracking, and verifying adherence to agreed-upon insurance policies in instances of disputes.
The smart contracts automate the processing of agreements, notify the involved parties when an agreement
is established, and streamline premium and commission payments. The SECONDO project actively gathers
cybersecurity data from policyholders and records it on the blockchain. The collected data is crucial for
refining future cyber insurance processes, such as underwriting. SECONDO reduces the information gap
between policyholders and insurance companies by using cyber insurance policy ontology. The system lacks
a proactive mechanism to prevent fraud by ensuring only eligible policyholders can submit claims. It does
not have a strategy to verify the eligibility of policyholders before they submit a claim, nor does it ensure
the accuracy of the policyholders’ data collected during the cyber insurance process.
CioSy [61] is a collaborative blockchain-centered insurance system designed for the management and ex-
ecution of insurance transactions. This paper addresses the oversight that has been present in current
methodologies regarding the concept of collaborative insurance in pursuit of an automated, transparent,
and tamper-resistant resolution. CioSy is specifically oriented towards the automation of insurance policy
management, claims processing, and disbursements through the utilization of smart contracts. Insurance
policies and claims are both machine-readable and self-executing based on voting mechanisms and external
oracles (e.g., the interactions with external oracles automatically initiate claims and transfer the claimed
amounts to the policyholders).
Specifically, CioSy utilizes smart contracts to enable insurers—such as individuals, banks, and insurance
companies—to collaborate, and pool their resources. These smart contracts encapsulate the insurance poli-
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cies, representing agreements between insurers and the insured. They present an experimental prototype
based on the Ethereum blockchain to demonstrate the practicality of the proposed approach in terms of
both time and expenses. The adoption of blockchain in this model ensures adherence to the collaborative
insurance paradigm by all participants, enhances transaction transparency, enforces the non-repudiation
principle among potentially distrustful entities, automates and accelerates insurance business processes from
registration to claim resolution, and reduces costs by minimizing manual interactions.
Franco et al. [39] present SaCI, a Blockchain-powered method designed to boost trust and automation in the
communication between a policyholder and its insurer. They assessed SaCI’s efficacy by conducting a proof
of concept deployed on Ethereum. This approach synchronizes critical aspects of customers with the require-
ments of cyber insurance companies, including business information, contractual limitations, and security
considerations. They employ smart contracts to manage various aspects of the cyber insurance procedure,
such as handling premium payments, updating contracts, processing damage coverage requests, resolving
disputes, and verifying contract information and integrity. SaCI is capable of automatically transferring
funds between stakeholders to fulfill payment obligations, including premium payments and compensations
for losses arising from cyberattacks, provided that funds are accessible and contractual conditions are met.
It also provides a reliable record of contract coverage and all subsequent modifications which serves as an
impartial record or evidence in dispute situations, such as when a customer claims for a loss due to a cy-
berattack that the insurer has refused to cover. This system lacks a method for verifying the legitimacy of
policyholders before they submit a claim request. There is no analysis of how insurance companies verify the
attributes of policyholders.
Wang et, al. [89] propose reversible versions of ERC-20 and ERC-721 token standards16 (denoted by ERC-
20R and ERC-721R respectively), allowing for a temporary reversal of transactions during a defined dispute
period, with the consensus of decentralized judges. The paper highlights the increasing frequency of thefts
in both ERC-20 and ERC-721 contracts, underlining the need for mechanisms that can reduce the impact
of such incidents. In cases of theft or accidental losses, the inability to reverse transactions has resulted in
substantial losses in the blockchain ecosystem. These attacks were often discovered soon after the theft took
place. Hence, the authors looked at ways to reverse the offending transaction(s) within a short dispute period
(e.g., four days) –as in traditional finance– to reduce the damage. The affected party submits a request to
freeze the transaction to a governance contract, along with relevant evidence and a stake.
A decentralized panel of judges decides whether to approve or deny the freeze request (only the party directly
impacted by the transaction can initiate this freeze request.). If approved, they command a governance
contract to execute the freeze function on the relevant ERC-20R or ERC-721R contract. As a result, the
assets in question are immobilized and cannot be transferred. They consider scenarios where stolen assets
may be dispersed or transferred through various accounts. The involved parties present their evidence to the
judges, who then make a final decision. Depending on this decision, the governance contract is instructed to
either execute the reverse function, returning the disputed assets to their original owner, or the rejectReverse
function, leaving the assets in their current position. This trial could extend over several weeks or even
months.
In the event of a dispute concerning an ERC-721 NFT, a freeze is imposed on the current holder, whether
it is the original attacker or an honest user who bought the stolen NFT from the attacker. If the judges
determine that a theft occurred, the ERC-721R contract returns the NFT to the pre-theft owner, resulting in
the current owner losing the NFT. In cases of disputes involving stolen ERC-20 tokens, the complexity arises
from the dispersed nature of the funds across various downstream accounts, some of which may be honest
while others are dishonest. To address this, a proposed algorithm assigns fractional responsibility to each
downstream account that received a portion of the stolen funds, allowing for a partial freeze to be applied to
those specific accounts. If the judges determine a theft occurred, the ERC-20R contract then transfers the
frozen tokens from the obligated accounts to the pre-theft account. A reversible-token to reversible-token

16 ERC-20 and ERC-721 are Ethereum token standards with different purposes. ERC-20 defines fungible tokens,
where each token is identical and interchangeable, ideal for currencies or utilities. ERC-721, on the other hand,
defines non-fungible tokens (NFTs), where each token is unique, making it suitable for digital collectibles, artwork,
and one-of-a-kind assets.
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exchange can settle instantly, but a reversible-token to a non-reversible-token exchange may need to be
delayed (e.g., four days) until the reversible tokens are sufficiently old.
FLAME [56] introduces a framework aimed at improving fire detection and insurance claim processes through
the use of blockchain. The authors present a system model that integrates multiple subsystems, including
smart fire detection mechanisms, a monitoring station, a fire department management system, and an in-
surance company. This integration aims to enhance the efficiency and reliability of fire brigade services and
insurance claims handling. The proposed sensing network and connectivity model leverages a variety of
sensors to ensure accurate fire detection and efficient communication with the monitoring station, thereby
facilitating prompt responses from fire brigade services.
The study emphasizes the automation of critical processes through the implementation of smart contracts.
These contracts automate the dispatch of fire brigade services and the processing of insurance claims, thereby
reducing response times and mitigating the risk of insurance fraud. The paper also includes a security analysis,
highlighting the system’s robustness against potential cyber threats. The FLAME framework is specifically
designed to address the context of fire detection and fire-related insurance claims, the current implementation
focuses on the unique challenges associated with fire emergencies. Thus, the FLAME framework is not
intended as a general-purpose insurance solution for arbitrary applications but rather as a specialized system
for fire-related services and insurance claims.
INCHAIN [36], addresses challenges in the cyber insurance industry by introducing a novel architecture lever-
aging blockchain. The authors identify key issues such as data insufficiency, manual processing inefficiencies,
fraudulent claims, and identity theft. They propose the INCHAIN architecture to enhance data transparency
and traceability through blockchain, automate processes with smart contracts, and ensure identification us-
ing self-sovereign identity (SSI). This integrated approach aims to mitigate fraudulent claims, streamline
operations, and secure sensitive information, thereby providing a more efficient and trustworthy cyber insur-
ance ecosystem. It offers an overview of the existing challenges within the cyber insurance sector, evaluates
the current research that incorporates blockchain and smart contracts, and proposes a novel architecture to
address these issues.
While the INCHAIN architecture provides an approach to tackling challenges in the cyber insurance sector,
it lacks a formal definition and detailed formal treatment of cyber insurance concepts. INCHAIN offers a
non-technical and high-level description of its proposed solutions without delving into the rigorous formal
analysis that is necessary for a comprehensive understanding and implementation.
In the domain of cryptocurrency insurance services and blockchain insurance providers, several platforms
and entities claim to offer solutions that protect users against potential losses due to cyber attacks, techni-
cal failures, or other unforeseen events [24,43,70,60,59,8,64,17]. Despite their claims, a critical examination
reveals a significant gap in the formal documentation and clarity of their methodologies and operational
frameworks from a cryptographic point of view. The information available on the associated websites and
promotional materials often describes their services in broad and general terms without delving into the
formal specifics of their risk assessment models, underwriting processes, the exact nature of the coverage
provided, and so forth. This lack of formal treatment raises concerns about the robustness and reliability of
their insurance solutions. Consequently, users and researchers alike are left without a clear understanding
of the detailed procedures and standards these providers adhere to, making it challenging to evaluate the
efficacy and trustworthiness of their offerings comprehensively.

B Additional Definitions

B.1 Distributed Ledgers

We adopt the definitions of persistence and liveness for public transaction ledgers as described in [41]. These
properties are critical for ensuring the consistency and progress of a distributed ledger. To formalize these
concepts, an oracle Txgen is introduced, which manages a set of accounts and generates transactions on their
behalf. Txgen is defined as follows: (i) GenAccount(1κ): It generates an account a. (ii) IssueTrans(1κ, t̃x):
It returns a transaction tx provided that t̃x is some suitably formed string, or ⊥.
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The notation C(·, ·) denotes when two transactions, tx1 and tx2, are in conflict. A valid ledger is defined as
one that does not include any pair of conflicting transactions. An oracle Txgen is said to be unambiguous if,
for every PPT adversary A, the probability that ATxgen generates a transaction tx′ such that C(tx′, tx) = 1,
for some tx issued by Txgen, is negligible in the security parameter κ. In this context, only unambiguous
Txgen oracles are considered. A transaction tx is called neutral if C(tx, tx′) = 0 for any other transaction tx′.

Definition 5 (Persistence). It ensures that once a transaction is incorporated into the blockchain of an
honest participant at a depth of more than k blocks from the chain’s end, it will, with overwhelming probability,
be included in the blockchain of every other honest participant. Furthermore, the transaction will occupy a
fixed and permanent position in the ledger. For a depth parameter k ∈ N, if, during a given round, an honest
participant reports a ledger containing a transaction tx located in a block more than k blocks away from the
ledger’s end (rendering tx “stable”), then every honest participant will report tx at the same position in the
ledger from that round onward.

Definition 6 (Liveness). It guarantees that all transactions initiated by honest account holders will even-
tually reach a depth greater than k blocks in the blockchain of at least one honest participant. Consequently,
the adversary is unable to execute a selective denial-of-service attack against transactions originating from
honest account holders. For parameters u, k ∈ N (representing “wait time” and “depth” respectively), any
transaction that is either (i) issued by Txgen, or (ii) neutral, and is continuously provided as input to all hon-
est participants for u consecutive rounds, will eventually be reported by all honest participants at a position
more than k blocks from the end of the ledger, i.e., all participants will report it as stable.

B.2 Digital Signatures

Definition 7 (Digital Signature Schemes). Let Γ = (K,S,V) denote a digital signature scheme. This
scheme is characterized by the following components:

– K (Key generation): A probabilistic algorithm that, given a security parameter λ, outputs a key pair
(sk, vk), where sk is the private signing key and vk is the public verification key.

– S (Signature generation): A (potentially probabilistic) algorithm that, given the private key sk and a
message µ from the message domainM, produces a signature σ ∈ Ξ, represented as σ ← Ssk(µ).

– V (Signature verification): A deterministic algorithm that, given the public key vk, a message µ ∈M,
and a purported signature σ′ ∈ Ξ, outputs a binary decision β ∈ {0, 1}. The output β = 1 indicates that
σ′ is a valid signature for µ under vk, while β = 0 indicates rejection.

It is required that Vvk(µ,Ssk(µ)) = 1 for all messages µ ∈M and all key pairs (sk, vk) generated by K.

Definition 8 (EU–CMA Security). A digital signature scheme Γ = (K,S,V) is said to be existentially
unforgeable under a chosen message attack (EU-CMA) if, for every PPT adversary A, the success probability
AdvEU-CMA

A (λ) in the following experiment is negligible in the security parameter λ:

AdvEU-CMA
A (λ) ≤ negl(λ).

The EU-CMA experiment, denoted ExpEU-CMA
Γ (A, λ), is defined between a PPT adversary A and a challenger

as follows:

1. The challenger runs K(1λ) to produce a key pair (vk, sk) and sends the public key vk to A.
2. The adversary A queries a signing oracle Ssk(·), providing messages µ ∈ M. For each query, the chal-

lenger computes and returns the signature σ = Ssk(µ). All queried messages are logged in a set Q (the
query history).

3. Eventually, A outputs a forgery attempt consisting of a message-signature pair (µ∗, σ∗), where µ∗ ∈ M
and σ∗ ∈ Ξ.

4. The adversary A succeeds if:
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– µ∗ /∈ Q (i.e., µ∗ was not previously queried to the signing oracle), and
– Vvk(µ∗, σ∗) = 1 (i.e., σ∗ is a valid signature for µ∗ under vk).

The adversary’s advantage AdvEU-CMA
A (λ) is defined as:

AdvEU-CMA
A (λ) = Pr[ExpEU-CMA

Γ (A, λ) = 1].
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