
Fast, private and regulated payments in asynchronous networks
Maxence Brugeres

LTCI, Telecom Paris, Institut Polytechnique de Paris

Paris, France

Forvis Mazars

Paris, France

maxence.brugeres@telecom-paris.fr

Victor Languille

LTCI, Telecom Paris, Institut Polytechnique de Paris

France

EDF

Palaiseau, France

victor.languille@telecom-paris.fr

Petr Kuznetsov

LTCI, Telecom Paris, Institut Polytechnique de Paris

Paris, France

Hamza Zarfaoui

LTCI, Telecom Paris, Institut Polytechnique de Paris

Paris, France

ABSTRACT
We propose a decentralized asset-transfer system that enjoys full
privacy: no party can learn the details of a transaction, except for its

issuer and its recipient. Furthermore, the recipient is only aware of

the amount of the transaction. Our system does not rely on consen-

sus or synchrony assumptions, and therefore, it is responsive, since
it runs at the actual network speed. Under the hood, every trans-

action creates a consumable coin equipped with a non-interactive

zero-knowledge proof (NIZK) that confirms that the issuer has suf-

ficient funds without revealing any information about her identity,

the recipient’s identity, or the payment amount. Moreover, we equip

our system with a regulatory enforcement mechanism that can be

used to regulate transfer limits or restrict specific addresses from

sending or receiving funds, while preserving the system’s privacy

guarantees.

Finally, we report on Paxpay, our implementation of Fully Private

Asset Transfer (FPAT) that uses the Gnark [8] library for the NIZKs.

In our benchmark, Paxpay exhibits better performance than earlier

proposals that either ensure only partial privacy, require some kind

of network synchrony or do not implement regulation features.

Our system thus reconciles privacy, responsiveness, regulation

enforcement and performance.

KEYWORDS
Anonymous, Asset Transfer, Asynchronous System, Responsive-

ness, Byzantine-Fault Tolerant, CBDC, NIZK, Payment System, Pri-

vacy, Regulation, Scalability, zk-SNARK

1 INTRODUCTION
Bitcoin [32] revolutionized the world of finance by proposing a

fully decentralized asset-transfer system that allows an open set

of users to consistently exchange assets without any mutual trust.

Instead of relying on a central authority, users repeatedly engage in

a form of consensus [16, 20] to maintain a replicated ledger—an ever-

growing record of all transactions. It was later observed [23, 24]

that, strictly speaking, global consensus, a notoriously hard task

that requires partial synchrony [11, 14, 15, 20], is not required in

a large array of applications. In most common cases, when every

account is maintained by a dedicated user, asset transfer can be

implemented in an asynchronous, responsive way on top of the

reliable-broadcast primitive [10].

Reliable broadcast is weaker than consensus as it allows the cor-

rect users to eventually agree on the set of issued transactions but

not on their order. However, it turned out to be sufficient to prevent

double spending, a major issue in asset-transfer systems. This obser-

vation gave rise to a series of purely asynchronous, consensus-free
asset-transfer systems [5, 13, 30].

However, a decentralized asset-transfer system, as any replicated

service, still faces a vital challenge of preserving privacy of its users.

Indeed, in all the mentioned payment protocols, all transactions

are inherently public and every user’s activities are traceable.

A number of proposals addressed the issue of privacy in pay-

ment systems. Zerocash [7] was one of the first protocol to address

this issue. Using NIZK (non-interactive zero-knowledge proof), it

makes sure that transactions’ details, such as the amount and the

identities of the sender and receiver, remain unknown to other

users. Hiding the amount offers confidentiality and hiding the iden-

tities of the sender and receiver offers anonymity. Private payment

systems ought to offer both confidentiality and anonymity. Zero-

cash is based on a blockchain and is, thus, consensus-based. Its low

transaction throughput, high latency, and high computational over-

head for crafting transactions make it less attractive as a practical

payment protocol. Some protocols get rid of consensus to decrease

transaction latency at the expense of providing weaker anonymity

guarantees [6].

Additionally, many important use cases, such as Central Bank

Digital Currency (CBDC) [4], require mechanisms for regulatory
enforcement. Several proposals describe payment systems that pro-

vide privacy and regulatory compliance, while maintaining de-

cent performance [35, 36, 40, 41]. However, this comes with limi-

tations: some require a synchronous network [35, 40, 41], others

offer weaker anonymity guarantees [35, 40], and some rely on

additional trust assumptions about system participants to ensure

privacy [35, 36]. All the existing distributed asset transfer systems

arbitrate a trade-off between the four following aspects: (a) Pri-
vacy, (b) Model assumptions, (c) Regulation enforcement, (d)
Performance. Table 1 provides a detailed comparison of several

payment systems across these dimensions. This table and its con-

tent are detailed and discussed in Section 8. Reconciling these four

aspects is a complex challenge, as strengthening one aspect often

weakens another. In this paper, we address this reconciliation.

We formalize the problem by introducing the Fully Private Asset
Transfer abstraction (FPAT) that maintains conventional safety

and liveness properties of a payment system (informally, no asset

1

is spent twice and every transaction takes effect), while at the

same time making sure that no transaction’s detail is leaked to a

non-involved party. We then describe the Paxpay protocol, a FPAT

implementation over an asynchronous network. Paxpay has been

implemented in Golang using Gnark library [8].

Paxpay leverages several cryptographic primitives such as hash

functions, blind signatures, and non-interactive zero-knowledge

proofs (NIZK). As in UTXO transactions [32], to execute a trans-

fer, the sender spends a set of old coins it has received earlier and

generates a set of new coins of the same total value. Every coin is

uniquely identified by its serial number. Every coin should be signed
by a sufficiently large set (a 2/3 quorum) of validators, dedicated
parties that maintain lists of spent coins and make sure that no user

spends a same coin twice. The protocol is proved to be correct in an

asynchronous network, even if any number of users and less than

one third of validators are Byzantine (deviating arbitrarily from its

algorithm). The rest of the validators are considered semi-honest
(follow its algorithm but may share any data they receive during its

execution with the adversary). To ensure that the transfer is legal,

several assertions have to be checked: the total value of the spent

coins equals the total value of the new coins, the user that calls

the transfer is the owner of the spent coins, all the coins are prop-

erly signed, etc. To provide full privacy, each of these assertions is

verified in an NIZK.

We ensure that transfers are unlinkable: in particular, given two

transfers, we cannot say that they come from the same sender,

destined to the same recipient or carry the same amount. This is

achieved by using a blind signature scheme at the validators’ side

and verifying these signatures within an NIZK, allowing not to

reveal the coins or their signatures when spending them. To ver-

ify these signatures efficiently, we implemented the NIZK using

the Groth16 [22] scheme and employed a pairing-based signature

scheme [34]. We then selected a pair of elliptic curves that form

a chain to instantiate these cryptographic primitives, allowing ef-

ficient verification of the signature within the NIZK (we refer to

Section 7 for more details).

Furthermore, we describe and implement a regulation enforce-

ment mechanism that can be built on top of our system. This mech-

anism introduces an additional coin, referred to as the compliance
coin. At each transfer, the compliance coin of the sender must be

spent with the old coins and recreated as a new compliance coin

that caries the update of the transfer. To obtain an initially signed

compliance coin, each user must register with a regulatory author-

ity. We make sure that a user can only have one valid compliance

coin at a time.

Our regulation framework incurs very low impact on the trans-

action throughput. It mainly affects the transaction proving time,

which we do not consider a primary performance factor. Similar to

PEReDi and PARScoin [35, 36], our approach allows setting limits

on individual transfer amounts or the cumulative amount trans-

ferred by a user since they joined the system.

Regulations for CBDCs mandate stringent measures for Anti-

Money Laundering (AML) and Countering the Financing of Terror-

ism (CFT). These measures go beyond limiting transaction amounts.

PEReDi and PARScoin [35, 36] address these requirements and en-

able validators to reveal the details of a transfer. However, this

approach relies on additional trust assumptions for the validators.

To avoid such trust assumptions, we equip users with a mecha-

nism to generate cryptographic proofs summarizing the entirety

of their transaction histories, giving them the capability to prove

arbitrary statements on the histories. Additionally, we incorporate a

sanction list mechanism, empowering the regulator to impose sanc-

tions on specific addresses. This type of mechanism is important to

comply with traditional financial sanctions emitted by the central

banks or intergovernmental organizations, such as the UN. Further-

more, it is explicitly required by the European Central Bank for

the digital Euro [4]. Addresses under sanctions are prevented from

engaging in any interactions with other users, ensuring compliance

without undermining the privacy of non-sanctioned participants.

Finally, we prove that our system performs well compared to

other distributed payment systems that provide either regulatory

enforcement or privacy-preserving features. In our benchmark

(detailed in Section 7.2), we witness that Paxpay can process at least

8 times more transactions per second than any of theses systems

under similar conditions. The benchmark on AWS EC2 instances

demonstrates a throughput of 925 transactions per second. This

performance gain can be explained by the use of Groth16 as a

succinct NIZK with low verification cost. This comes at the cost of

heavy computations required to generate a proof. The time required

to create a transfer request with limited computational resources in

Paxpay on a one-core benchmark is up to 7𝑠 for example. However,

given the throughput gains, this appears to be a good trade-off.

Moreover, Paxpay’s design allows for pushing the throughput even

further by parallelizing the validator’s load on several machines.

Contribution. To sum up our contribution:

• We formalize the problem by introducing the Fully Private
Asset Transfer abstraction (FPAT).

• Wepropose Paxpay, a protocol that implements a FPAT object,

and prove its correctness.

• We implement Paxpay in Golang, mainly leveraging on the

Gnark [8] library.

• Paxpay achieves a true reconciliation of (a) Privacy, (b)
Model Assumptions (network synchrony and trust assump-

tions for validators), (c) Regulation Enforcement, and (d)
Performance. Unlike previous works that propose trade-
offs, Paxpay excels in each of these aspects simultaneously,

bringing together the best of all these dimensions:

– Regarding Privacy, transactions in Paxpay are confi-
dential, fully anonymous, and unlinkable, ensuring the

most robust privacy guarantees.

– Regarding Model Assumptions, the system tolerates

up to one-third Byzantine validators, with the remain-

ing validators only required to be semi-honest, and does
not rely on the network synchrony.

– Regarding Regulation, Paxpay provides a compre-

hensive enforcement framework by enabling users to

generate proofs about their transaction history, setting

spending limits, and incorporating a sanction mech-

anism preventing sanctioned addresses to receive or

spend funds.

– Regarding Performance, our implementation out-

performs all existing protocols. Also, the transaction

throughput scales with the computational power of

2

validators. The system can thus increase its supported

throughput by distributing validators across additional

machines.

• Paxpay can find a variety of use cases such as a standalone

payment system, a layer 2 solution on top of a blockchain

(brings scalability, compliance, or privacy) or a CBDC.

Table 1: Paxpay vs. Zcash [17], Lelantus [26], Quisquis [19],
Zef [6], PRCash [40], PEReDi [35] and PARScoin [36].

Zc
as
h

Le
la
nt
us

Q
ui
sq
ui
s

Ze
f

PR
Ca

sh
PE

Re
D
i

PA
RS

co
in

Pa
xp
ay

PRIVACY PROPERTIES
Confidential transfers:

Yes ∥ No ∥ Partial ● ● ● ● ● ●

Sender-anonymous transfers:
Yes ∥ No ∥ Partial ● ● ● ❍ ●

Receiver-anonymous transfers:
Yes ∥ No ● ● ● ● ● ● ● ●

Unlikable transfers:
Yes ∥ No ● ● ● ❍ ● ● ●

Anonymity strategy:
Full ∥ AS (Anonymity Set)

Full AS AS Full Full Full Full Full

MODEL ASSUMPTIONS
Asynchronous network:

Yes ∥ No ❍ ❍ ❍ ● ❍ ❍ ● ●

Correct validators model:
H (Honest) ∥ SH (Semi-Honest)

SH SH SH SH SH H H SH

REGULATION FEATURES

Limited held amount per user ❍ ❍ ❍ ❍ ❍ ● ❍ ❍

Limited spendable amount per tx ❍ ❍ ❍ ❍ ● ● ●

Limited spendable amount in total ❍ ❍ ❍ ❍ ❍ ● ● ●

Full asset tracing ❍ ❍ ❍ ❍ ❍ ● ● ❍

Sanction list ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

Provable transaction history ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

PERFORMANCE
Transaction throughput

(tx/s) 25 N/A N/A 88 N/A N/A N/A 925

Transaction latency
(s) 1000 N/A N/A < 1 N/A N/A N/A < 1

NIZK Proving time
(ms) 21K 2378 2110 438 100 3100 392 6959

NIZK Verification time
(ms) 9 40 251 142 96 518 159 5

Road map. The rest of the paper is organized as follows. Sec-

tion 2 overviews the related work and Section 3 recalls our model

assumptions. Section 4 introduces the specification of the FPAT

abstraction. Section 5 presents Paxpay protocol, our FPAT imple-

mentation. Section 6 builds a regulatory enforcement on top of our

protocol. Section 7 describes Paxpay implementation in Golang

and discusses its performance. In Section 8, we elaborate on some

choices made in our protocol design, discuss its use cases and make

a comparison with other protocols. Section 9 concludes the paper.

2 RELATEDWORK

Consensus-free payment systems.Guerraoui et al. [23] proposed
a payment system that relies on the secure broadcast primitive [10,

31] instead of consensus. The key property exported by secure

broadcast is source ordering: if two correct validators deliver two

messages from the same sender, then they should deliver them in

the same order. To prevent double spending, the transactions are

broadcast with sequence numbers, incremented each time the user

issues a new transaction. Astro [13], FastPay [5] and Zef [6] use

the same idea to build a payment system without consensus, on

top of an asynchronous network.

Private payment systems without regulation. Zerocash [7],

Zexe [9], Monero [33], Quisqus [19] and Lelantus [26] are examples

of payment systems that provide privacy on top of blockchains

(and thus require consensus and synchronous network). They rely

on NIZK or ring signatures to ensure anonymity of transactions,

hiding the sender, the receiver and the amount of payments.

In Zerocash and Zexe [7, 9], users can exchange coins that are

represented as secret commitments. Theses coins can be seen as

private unspent transactions (UTXO) in Bitcoin. These commit-

ments are organized in a shared Merkle tree. If a user wants to

spend a coin, she provides an NIZK that confirms the inclusion

of her commitment in the Merkle tree. Then the user reveals the

nullifier used in the commitment, which is added to the list of spent

nullifiers. This list ensures that double spending cannot take place.

The users engage in consensus to agree both on the list of valid

commitments and the list of nullifiers.

Monero [33] describes a payment system designed for private

transactions. Like Zerocash, Monero operates on a blockchain

where users manage UTXOs. However, while Zerocash conceals the

sender or receiver’s identity among all users of the system, Monero

limits this obfuscation to a smaller group, known as the anonymity
set. Monero achieves this through the use of ring signatures. These

signatures enable any member of the anonymity set (referred to

as the ring) to sign a transaction, confirming that she belongs to

the set without disclosing her identity. To prevent double spending,

the ring signature scheme incorporates a feature called linkability,
which ensures that if the same member of the ring signs multiple

transactions originating from the same ring, it can be detected.

Quisquis [19] presents another private payment system built on

a blockchain. Similar to Monero, Quisquis leverages anonymity

sets to hide user identities during transactions. A distinguishing

feature of Quisquis is its use of updatable keys, which enable users

to update public keys without altering the associated secret keys, so

that the updated public keys are indistinguishable from ones that

are freshly generated with new private keys. To initiate a payment,

the sender updates the input keys and provides an NIZK that veri-

fies, among others, the correctness of the update. This mechanism

ensures that a public key cannot be used as an input more than

once, effectively preventing double spending. Compared to Monero,

Quisquis offers stronger privacy guarantees in certain scenarios.

Indeed, there are specific transaction configurations in Monero

where an attacker could potentially de-anonymize the transaction,

by comparing intersections of anonymity sets. In contrast, such de-

anonymizations are precluded in Quisquis thanks to the updatable

public keys, although it also relies on anonymity sets.

Lelantus [26, 27] proposes a private payment system built on a

blockchain, and uses anonymity sets to provide privacy. Lelantus

uses NIZK to provide privacy but requires less advanced crypto-

graphic assumptions than Zerocash. For instance, it does not require

any trusted setup. In the protocol, validators can verify batches of
proofs, which help maintain a good overall performance by limiting

the average verification time of a single proof.

3

All payment systems mentioned so far are built on a blockchain

and, thus, require consensus. Baudet et al. [6] describe Zef, a private

payment system, that assumes an asynchronous network but only

provides partial anonymity and confidentiality: when a payment

is made, the receiver and the amount are hidden but the sender is

known (thus, no sender-anonymity). Also, Zef does not guarantee

that payments amount are entirely confidential. Indeed, when a

user makes a payment, she reveals coin commitments that were pre-

viously sent by other users, and thus known by other users. These

previous senders can, therefore, deduce some information about the

amount of the payments being made if they recognize a spent coin

that they created. To improve performance, the transaction data in

Zef is distributed over a set of authorities. Each authority can be

sharded — i.e. distributed over several machines as in Astro [13].

The throughput of Zef grows linearly with the number of shards

for each authority, which allows it to be “arbitrarily” scalable.

Our FPAT (Fully-Private Asset Transfer) specification state is

inspired by Albouy et al. [1].

Private payment systems with regulation. PRCash [40], Platy-

pus [41], PEReDi [35], and PARScoin [36] incorporate certain regu-

latory features into private payment systems. A common element

in their designs is the reliance on NIZK.

PRCash [40] introduced one of the first regulated private pay-

ment systems built on blockchains. Similar to some of the systems

mentioned above, PRCash operates with commitments that are

consumed and created during each transaction. PRCash only offers

partial privacy. Like Zef, it provides only partial confidentiality,

as some details about the payment amount can leak to the users

who created the input commitments. Also, PRCash only ensures

partial anonymity, as the sender of a payment is known to the

receiver, making anonymous donations impossible. Validators can

also link certain transactions, violating transaction unlinkability.

Since PRCash is blockchain-based, it incorporates a concept of time

defined by the number of blocks. Regulation features proposed by

PRCash are limited to one: users cannot spend more than a prede-

fined amount set by the regulator within a certain time window.

Platypus [41] introduces regulations that includes features such

as holding limits, receiving limits, and spending limits. It utilizes

a type of NIZK with low verification costs. However, unlike other

payment systems described in this section, Platypus is a centralized

payment system rather than a distributed one.

Sarencheh et al. introduced PEReDi [35] which provides a more

comprehensive regulatory framework compared to PRCash. It op-

erates as an account-based system: users have blinded accounts

that are signed by a quorum of validators. Transfers are executed

by creating a joint transaction between the sender ant receiver.

They compute their new account state after the transfer, proving

through an NIZK that the accounts are updated correctly. The reg-

ulation framework enforces spending and receiving limits for each

transaction and imposes restrictions on the maximum amount a

user can hold. Additionally, the system allows validators to trace

funds and reveal details of certain payments by encrypting the

transaction details with a threshold encryption scheme. Validators

can reconstruct the transaction details using their shares of the

encrypted transaction. However, this approach comes with several

drawbacks: it assumes a synchronous network and provides only

partial anonymity, as the receiver of a payment knows the sender.

Moreover, the system tolerates fewer Byzantine validators, allow-

ing less than 1/5 validators to be Byzantine, compared to 1/3 in
most of other systems we discussed. Also, due to the tracing capa-

bility granted to validators, 4/5 of the correct (i.e., non-Byzantine)
validators must also be honest (i.e., strictly follow the protocol and

avoid seeking additional information). In contrast, most systems

discussed here (as well as ours) are designed to tolerate semi-honest
correct validators. Another noticeable drawback is the high verifi-

cation time of a transaction, which limits the overall transaction

throughput.

Concurrently with this submission, the same authors have re-

cently proposed PARScoin [36], a payment system designed to

handle stable coins exchange in a private and regulated manner. Its

construction is close to PEReDi’s but mitigates some of its draw-

backs. PARScoin allows to issue payments without the help of the

receiver to form a transaction, which turns the interaction between

the sender and the receiver asynchronous. However, PARScoin

still requires the non-Byzantine validators to be strictly honest to

preserve user’s privacy.

The verification time of the NIZK is also reduced. Also, neither

PRCash, PARScoin nor PEReDi have conducted latency tests to

evaluate the system’s maximum transaction throughput or assess

its scalability.

3 MODEL
3.1 Participants and adversary
The system is composed of two types of participants:

• A setU of𝑈 users of the payment system.

• A setV of 𝑁 = 3𝑓 + 1 validators.

Here 𝑓 denotes the maximum number of validators that can go

Byzantine, i.e., deviate from the protocol. A non-Byzantine (faithful

following the protocol) is called correct. Correct validators may,

however, be semi-honest [18]: a correct party may try to learn as

much as possible from the messages they receive from other parties,

which may involve colluding and pooling their views together. In

contrast, honest validators that are not trying to learn any infor-

mation. The correct participants are thus following the protocol

but they may exchange information with any other participant

(Byzantine or not) to learn as much as possible.

As we shall see, Byzantine participants pose challenges to all

correctness aspects of our system (safety, liveness and privacy),

while semi-honest participants affect only privacy.

The adversary A thus controls any number of users and all

validators, but at most 𝑓 validators can deviate from the protocol.

A can be seen as a hybrid adversary between honest and semi-

honest. We assume thatA is static and network-ignorant: the set of
Byzantine participants controlled by A is chosen a priori, and A
has no information about message delay between the validators and

the other participants. It can delay themessages but must eventually

deliver them. Conventionally, the adversary A is computationally

bounded. More precisely, A is probabilistic polynomial-time (PPT).
Every participant is provided with a pair of distinct public and

secret addresses denoted 𝑎𝑝𝑘 and 𝑎𝑠𝑘 . These addresses are used to

identify users and validators. The public addresses of the validators

4

are known to every participant. Otherwise, a user only needs to

know the identifiers of the users she engages in transfers with.

3.2 Network and communications
Concerning the network, we assume asynchronous but reliable com-

munication. The participants can communicate via anonymous,
secure, and asynchronous network channels. The channels do not

modify or create messages. If a correct participants sends a message

to a correct one, the message is eventually received, though we

assume no bounds on the communication delays. The sender’s iden-

tity is not known to the receiver, but the receiver can still respond

to the sender. No other participant can tell who is the sender or

the receiver, or tamper with the message content. We could use a

network based on Syverson et al. [38] work. We consider that the

latency distribution is the same for all the channels.

3.3 Cryptographic tools
Our protocol makes use of several cryptographic tools that we

list below. Due to the space constraints, we only give informal

definitions and refer to [21] for more details. Also, in the algorithms

mentioned below, we omit the security parameters taken as inputs.

Some primitives require a setup phase, which will be handled by a

trusted third party T . Note that these setups could be carried out

via MPC [18] between the validators.

(𝑘, 𝑁)-Threshold Blind Signature Scheme . Tuple of algorithms

Πsig= (SETUPSig,BLIND, SIGN,UNBLIND,AGGREGATE,
VERIFYSig) allowing to divide a secret key 𝑠𝑘 in 𝑛 fragments

[𝑠𝑘𝑖]𝑛𝑖=1 between 𝑛 signers, such that valid signatures from any

subset of 𝑘 signers can be aggregated into a valid signature on

behalf of the corresponding public key 𝑝𝑘𝑎𝑔𝑔 . Each fragment 𝑠𝑘𝑖
has a corresponding public key 𝑝𝑘𝑖 so that a partial signature 𝜎𝑖
generated with 𝑠𝑘𝑖 can be verified with respect to 𝑝𝑘𝑖 . Moreover,

the signers sign a blinding version �̃� of a message𝑚 such that no

information on𝑚 can be derived from �̃�. A valid signature with

respect to 𝑚 can then be computed. Signature are unforgeable,

which means that no PPT adversary can forge a valid partial

signature 𝜎𝑖 of a message 𝑚 that correctly verifies against 𝑝𝑘𝑖
without the knowledge of 𝑠𝑘𝑖 . As a blind signaure, this should not

also be possible for a signer to eventually make the link between

the signature is has issued, and the final signature (after UNBLIND
and AGGREGATE). The following details Πsig:

• SETUPSig (𝑘, 𝑁) → ([𝑠𝑘𝑖]𝑛𝑖=1, [𝑝𝑘𝑖]
𝑁
𝑖=1

, 𝑝𝑘𝑎𝑔𝑔): Randomised

algorithm run by a trusted party. Takes as input threshold

parameters (𝑘, 𝑁) and returns a list of 𝑁 signing keys

[𝑠𝑘𝑖]𝑁𝑖=1 and one corresponding verification key 𝑝𝑘𝑎𝑔𝑔 .

• BLIND(𝑚,𝑏) → (�̃�): Takes as input a message 𝑚 and a

blinding factor 𝑏, returns a blinded message �̃�.

• SIGN(�̃�, 𝑠𝑘𝑖) → 𝜎𝑖 : Takes as input a blinded message �̃� and

a secret key 𝑠𝑘𝑖 , and returns a partial blinded signature 𝜎𝑖 .

• UNBLIND(�̃�, �̃�𝑖 , 𝑏) → 𝜎𝑖 : Takes as input a blinded message

�̃�, the blinding factor𝑏 used to blind𝑚 and the corresponding

partial blinded signature 𝜎𝑖 , and returns a valid partial

signature 𝜎𝑖 for the original message m.

• AGGREGATE([𝜎𝑖]𝑘𝑖=1) → 𝜎 : Takes as input a list of 𝑘

signatures [𝜎𝑖]𝑘𝑖=1 and produce a signature 𝜎 such that 𝜎

is a valid signature on behalf of the public key 𝑝𝑘𝑎𝑔𝑔 if and

only if all 𝜎𝑖 are valid signatures for distinct public keys 𝑝𝑘𝑖 .

• VERIFYSig (𝑚,𝜎, 𝑝𝑘) → 𝑏: Takes as input a partial or

aggregated signature 𝜎 of a message 𝑚 and returns a bit

𝑏 of value 1 if 𝜎 is valid with respect to 𝑝𝑘 and 0 otherwise.

The signature can be a partial or aggregated signature.

Collision-Resistant and Preimage-Resistant Pseudorandom
Function Family [21]. A family of functions PRF = {PRF𝑠 :

{0, 1}∗ → {0, 1}𝑂 (|𝑠 |) }𝑠 , where 𝑠 denotes a seed, computationally

indistinguishable from a random function family. Collision-
Resistance means here that it is computationally infeasible to find

couples (𝑠, 𝑥) ≠ (𝑠′, 𝑥 ′) such that PRF𝑠 (𝑥) = PRF𝑠′ (𝑥 ′). Preimage-
Resistance means that it is computationally infeasible, given 𝑦, to

find (𝑠, 𝑥) such that PRF𝑠 (𝑥) = 𝑦.

Non-Interactive Zero-Knowledge Proof (NIZK) [21].A tuple of

algorithms Πproof = (SETUPNIZK, PROVE,VERIFYNIZK) allowing
a prover to prove to a verifier that, given a statement defined by

an NP relation R(𝑎, 𝑏) and an instance public_input, she knows a
witness private_input such that R(public_input, private_input).

• SETUPNIZK (R) → ppNIZK: Randomised algorithm run by

a trusted party. Takes as input a relation R and outputs

public parameters ppNIZK (also known as common reference

string). These public parameters are taken as input by the

two following algorithms PROVE and VERIFY, but we omit

it to lighten the notation.

• PROVE(public_input, private_input, ppNIZK) → 𝜋 :

Randomised algorithm. Takes as inputs instance and

witness. Outputs a proof 𝜋 such that :

R(public_input, private_input).
• VERIFYNIZK (public_input, ppNIZK, 𝜋) → b: Takes as input

an instance public_input and a proof 𝜋 . Outputs 1 if the proof
is valid and 0 otherwise.

Incremental commitment scheme: A tuple of algorithms

Π𝑐𝑜𝑚 = (COM, INCR) that allows us, given a sequence of

messages [𝑚𝑖]𝑛𝑖=1 and a random sequence [𝑟𝑖]𝑛𝑖=1, to produce a

commitment 𝑐 . The commitment is hiding, i.e., no information

on [𝑚𝑖]𝑛𝑖=1 can be derived from 𝑐 without prior knowledge on

[𝑟𝑖]𝑛𝑖=1. The commitment is also binding, meaning that given a

sequence of couples [(𝑚𝑖 , 𝑟𝑖)]𝑛𝑖=1 that commits to a value 𝑐 , it should

be computationally infeasible for a PPT adversary to compute

[(𝑚′
𝑖
, 𝑟 ′
𝑖
)]𝑛
𝑖=1

such that [(𝑚′
𝑖
, 𝑟 ′
𝑖
)]𝑛
𝑖=1

≠ [(𝑚𝑖 , 𝑟𝑖)]𝑛𝑖=1 also commits

to 𝑐 . The commitment scheme is also incremental: let us consider
a sequence [(𝑚𝑖 , 𝑟𝑖)]𝑛𝑖=1, its commitment 𝑐 and a couple (𝑚′, 𝑟 ′).
Given the knowledge of 𝑐,𝑚′ and 𝑟 ′, it is possible to compute 𝑐′

that commits to [(𝑚1, 𝑟1), (𝑚2, 𝑟2), ..., (𝑚𝑛, 𝑟𝑛), (𝑚′, 𝑟 ′)]:

• COM([(𝑚𝑖 , 𝑟𝑖)]𝑛𝑖=1) → 𝑐 takes as input a sequence of

messages and randomness and returns the corresponding

commitment. COM is hiding and binding.

• INCR(𝑐,𝑚′, 𝑟 ′) → 𝑐′ takes as input a commitment 𝑐

of a sequence [(𝑚𝑖 , 𝑟𝑖)]𝑛𝑖=1, a new message 𝑚 and a

randomness 𝑟 ′. It returns 𝑐′, the commitment of the sequence

[(𝑚1, 𝑟1), (𝑚2, 𝑟2), ..., (𝑚𝑛, 𝑟𝑛), (𝑚′, 𝑟 ′)].
5

4 FULLY PRIVATE ASSET TRANSFER (FPAT)

State and interface. At the abstract level, the state of the FPAT
object is represented as an array of 𝑈 positive integer values

[𝑣𝑘]𝑈𝑘=1, one for each user, interpreted as the current balances of

the users’ accounts. Let [𝑣𝑖𝑛𝑖𝑡
𝑘
]𝑈
𝑘=1

be the initial state of the object.
The object exports two operations: transfer and balance. Assuming

that a user 𝑢 invokes an operation, they are defined as follows:

• transfer𝑢 (𝑣,𝑤)/𝑟 takes as inputs a value 𝑣 and a user

identifier𝑤 . It transfers the amount 𝑣 from 𝑢 to𝑤 : updates

a state [𝑣𝑘]𝑈𝑘=1 to the state [𝑣 ′
𝑘
]𝑈
𝑘=1

where 𝑣 ′
𝑘

= 𝑣𝑘 + 𝑣 if

𝑘 = 𝑤 ∧ 𝑢 ≠ 𝑤 , 𝑣 ′
𝑘
= 𝑣𝑘 − 𝑣 if 𝑘 = 𝑢 ∧ 𝑢 ≠ 𝑤 and 𝑣 ′

𝑘
= 𝑣𝑘

otherwise. It returns a response 𝑟 = confirm if it succeeds

and 𝑟 = fail otherwise.
• balance𝑢 ()/𝑣𝑢 takes no inputs and returns the value 𝑣𝑢 stored

at location 𝑢 of the state [𝑣𝑘]𝑈𝑘=1.
Let O be a set of FPAT operations—invocations of transfer and

balances provided with matching responses, each associated with a

distinct user. Let transfer𝑢 (∗, ∗)/𝐶 (resp., transfer𝑢 (∗, ∗)/𝐹) denotes
a transfer operation invoked by a user 𝑢 that returns confirm (resp.

fail). For each user 𝑢, we define a function total𝑖 (O) as follows:

total𝑢 (O) = 𝑣𝑖𝑛𝑖𝑡𝑢 +
∑︁

transfer∗ (𝑣,𝑢)/𝐶∈O
𝑣 −

∑︁
transfer𝑢 (𝑣,∗)/𝐶∈O

𝑣

total𝑢 (O) is thus defined as the current balance of 𝑢 after all

successful transfers in O complete: the initial amount owned by 𝑢,

minus all the funds sent by 𝑢 plus all the funds received by 𝑢 in the

set of operation O.
A sequential history 𝑆 is a totally ordered set of FPAT operations,

let ≺𝑆 be this order. Let 𝑆 |𝑢 denotes the subsequence of 𝑆 consisting

of the events of user 𝑢. We say that 𝑆 is legal if:

(1) ∀𝑜 = 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑢 (𝑣,𝑤)/𝐶 ∈ 𝑆 𝑣 ≤ 𝑡𝑜𝑡𝑎𝑙𝑢 ({𝑜′ ∈ 𝑆 : 𝑜′ ≺𝑆
𝑜})

(2) ∀𝑜 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑢 ()/𝑣 ∈ 𝑆 𝑣 ≤ 𝑡𝑜𝑡𝑎𝑙𝑢 ({𝑜′ ∈ 𝑆 : 𝑜′ ≺𝑆 𝑜})
(3) If an operation balance𝑢 () returning 𝑣1 directly precedes

a transfer𝑢 (𝑣2,𝑤) operation in 𝐿 |𝑢 , and 𝑣2 ≤ 𝑣1, then the

transfer operation cannot return fail.

Histories and serializations. Consider an execution of a FPAT

algorithm: a sequence of events produced by the algorithm, such

as invocations and responses of FPAT operations, sending and

receiving messages, etc. A local history 𝐿𝑖 of a user 𝑖 is the sequence
of operations invoked by 𝑖 in that execution. We assume that correct

users arewell-formed—they never invoke a new operation before the

previous one returns, and thus if 𝑢 is correct, then 𝐿𝑢 is sequential.

In case the last operation of 𝐿𝑢 is incomplete (not followed by a

response), we can add any matching response and get a completion
of 𝐿𝑢 . Now a history 𝐻 is a vector (𝐿1, 𝐿2, ..., 𝐿𝑈) of local histories,
one for each user. Notice that if the history is produced by an

execution of a FPAT algorithm, only the local histories of correct

users are of interest for us: a Byzantine user is not obliged to follow

the protocol.

A sequential history 𝑆 is a serialization of a history 𝐻 =

(𝐿1, 𝐿2, ..., 𝐿𝑈) if for each correct user𝑢, there exists �̂�𝑢 , a completion

of 𝐿𝑢 , such that 𝑆 |𝑢 = �̂�𝑢 (≺𝑆 respects the local order ≺
�̂�𝑢
). 𝑆 can be

seen as a global interpretation of the local histories of correct users.

Notice that we allow any operations to be executed by Byzantine

users in 𝑆 , as long as it “makes sense” to the correct ones.

FPAT-Safety. An implementation of a FPAT-object is FPAT-Safe if
and only if, for any finite history of execution 𝐻 it produces, there

exists a serialisation 𝑆 of 𝐻 which is legal.

FPAT-Liveness. Liveness ensures that (1) all operations invoked by
a correct user eventually terminates and (2) considering two correct

users 𝑢 and𝑤 , if𝑤 transfers money to 𝑢, then 𝑢 eventually receives

this money. Let us consider the existence of a global time during

the execution of an implemented FPAT object. An implementation

of a FPAT-object is FPAT-Live if:
(1) All transfer and balance operations terminate for correct

users.

(2) Consider a correct user 𝑢. For all operation transfer∗ (∗, 𝑢)
completed during the execution at time 𝑡 , there exists a

time 𝑡 ′ ≥ 𝑡 such that any operation balance inserted at time

𝑡 ′′ ≥ 𝑡 ′ will return a value 𝑣 such that:

𝑣 ≥
∑︁

transfer∗ (𝑣+,𝑢)
invoked by correct users

completed before time 𝑡

𝑣+ −
∑︁

transfer𝑢 (𝑣−,∗)
completed before time 𝑡 ′′

𝑣−

FPAT-privacy.We capture the privacy guarantees of FPAT through

a distinguishing game G𝑝𝑟𝑖𝑣 defined as an interaction between the

following entities:

• Two copies of an oracle, O0 and O1. Each oracle takes as

input an abstract transfer query 𝑡𝑥 , which specifies a sender

𝑢, a receiver 𝑤 , and a transferred value 𝑣 . In response, the

oracle outputs the execution traces of all the involved parties

that would result if the sender 𝑢 had executed the transfer
operation with value 𝑣 and receiver𝑤 .

• An adversary A trying to gain information by making

abstract transfer queries.

• A challenger C, initializing the cryptographic primitives used

by the oracle, that acts as an interface betweenA and copies

of O.
At the beginning of the game, C samples a random bit 𝑏. Then

A sends a pair (𝑡𝑥0, 𝑡𝑥1) of abstract transfers to C. C checks the

following consistency conditions: if the receiver of one of the

transfer is controlled by A, the receiver of the other transfer must

also be controlled by A, and the transferred value 𝑣 must same in

both transfers.

If the consistency checks succeed, C forwards 𝑡𝑥0 to O0 and

𝑡𝑥1 to O1. The two oracles respectively send back execution traces

𝑇𝑟0 and𝑇𝑟1. The challenger C then computes (𝑇𝑟 |A
0

,𝑇𝑟
|A
1
), which

are the restrictions of 𝑇𝑟0 and 𝑇𝑟1 to the execution traces of the

parties controlled by the adversary. C provides the adversary with

the couple (𝑇𝑟 |A
𝑏

,𝑇𝑟
|A
1−𝑏). Finally, A outputs a guess 𝑏′ about the

bit 𝑏 sampled by the challenger. Intuitively, FPAT-privacy requires

that the probability 𝑃𝑟 (𝑏 = 𝑏′) (i.e., the probability that A wins

the game) is only negligibly higher than
1

2
. More details about the

distinguishing game G𝑝𝑟𝑖𝑣 are given in Appendix C.3.

FPAT-privacy has important implications that can be expressed

as a collection of properties. Let 𝜖 be a negligible function and 𝜆

6

the security parameter. Consider a protocol execution, let 𝐻 be

its history andU𝐵𝑦𝑧 the set of users controlled by the adversary,

among the 𝑈 users of the system. Let 𝑜 = transfer𝑢 (𝑣,𝑤) ∈ 𝐻 be

any transfer operation such that 𝑢 is honest. Then for each guess

(𝑢′, 𝑣 ′,𝑤 ′) made by an adversary with no prior knowledge, where

𝑢′ is the payment sender, 𝑣 ′ is the value, and 𝑤 ′ is the payment

recipient, the following properties hold:

(1) Sender-anonymity: P(𝑢′ = 𝑢) ≤ 1

𝑈 −|U𝐵𝑦𝑧 | + 𝜖 (𝜆), i.e., the
adversary only knows that the sender is not itself.

(2) Receiver-anonymity: If 𝑤 is honest, then P(𝑤 ′ = 𝑤) ≤
1

𝑈 −|U𝐵𝑦𝑧 | + 𝜖 (𝜆), i.e., the adversary only knows that the

receiver is not itself.

(3) Confidentiality: If 𝑤 is honest, then P(𝑣 ′ = 𝑣) ≤ 𝜖 (𝜆),
i.e.,the adversary cannot guess the amount of the transaction.

These three properties together constitute full privacy.
Additionally, FPAT-privacy implies unlinkability, meaning that,

given two transfers, no adversary can determine whether the

sender (or the receiver) is the same in both transfers.

5 PAXPAY PROTOCOL
We overview our FPAT implementation below and delegate detailed

algorithms and proofs of correctness to Appendices A and C.

Setup. Every user is identified by her public address 𝑎𝑝𝑘 that is

derived from a secret address 𝑎𝑠𝑘 as follows: 𝑎𝑝𝑘 = 𝑃𝑅𝐹𝑎𝑠𝑘 (0) 1
The protocol uses a (2𝑓 +1, 𝑁)-threshold blind signature scheme,

as defined in Section 3.3. The secret signing keys [𝑠𝑘𝑖]𝑁𝑖=1 are held
by each of the validators. The aggregated public key is denoted

by 𝑝𝑘𝑎𝑔𝑔 The protocol will also make use of NIZK, as defined in

Section 3.3. The setup for these primitives is described in Algorithm

1 in Appendix A.

Coin structure A coin is a tuple c = (𝑣, 𝑎𝑝𝑘, 𝜌) with:
• 𝑣 the (integer) value of the coin.

• 𝑎𝑝𝑘 the public address of the owner of the coin.

• 𝜌 the seed of the coin, from which the serial number is

derived.

Coins are similar to unspent transactions (UTXO) in Bitcoin: to

make a payment, a user “spends” old coins and creates new coins

whose owners are the payment recipients.

Coin validity Using a quorum of validators signatures (inspired by

Byzantine Consistent Broadcast), we decide whether a coin is valid

or not. In concrete terms, a coin is valid if it has been signed by

2𝑓 + 1 validators. During a transfer, several old coins [c𝑜𝑙𝑑
𝑖
]𝑖∈[1,𝑛]

are spent to create new coins [c𝑛𝑒𝑤
𝑗
] 𝑗∈[1,𝑚] . To make sure that a

coin it not spent twice, a unique serial number is derived from the

coin’s seed 𝜌 as 𝑠𝑛 = PRF𝑎𝑠𝑘 (𝜌). Each validator maintains a list

snList of the old coins’ serial numbers. The coins [c𝑜𝑙𝑑
𝑖
]𝑖∈[1,𝑛] are

considered spent when a quorum of 2𝑓 +1 validators have appended
the corresponding serial numbers [𝑠𝑛𝑜𝑙𝑑

𝑖
]𝑖∈[1,𝑛] to their snList.

Intuitively, as the computation of 𝑠𝑛𝑜𝑙𝑑
𝑖

is using the PRF and the

secret address of the payer, no party can link 𝑠𝑛𝑜𝑙𝑑
𝑖

to 𝜌𝑜𝑙𝑑
𝑖

or 𝑎𝑝𝑘𝑜𝑙𝑑
𝑖

,

and thus the sender-anonymity property is preserved. Algorithm 3

1
Algorithm 2 in Appendix A shows the address generation process by sampling a

random 𝑎𝑠𝑘 and deriving the 𝑎𝑝𝑘 .

initializes the balances for the initial set of users by creating coins

for each of them.
2

Local variables. User storage consists of:
• 𝑎𝑝𝑘/𝑎𝑠𝑘 : its public/secret address pair
• coinList = [(c𝑖 , 𝜎𝑖)]𝑖 : the set of coins owned by the user

associated with the aggregated signature of each coin.

• rhoList: the list of all seed 𝜌 corresponding to coins received

by the user

Validator storage consists of:

• 𝑠𝑘 : its secret signing key

• snList: the list of serial numbers identifying spent coins.

• signedCoinList: the list of all blinded coins signed by the

replica.

Transfer. Assuming a user has enough funds, she can issue

payments to several recipients [𝑎𝑝𝑘𝑛𝑒𝑤
𝑗
]𝑚
𝑗=1

in one transfer by

sending 𝑣𝑛𝑒𝑤
𝑗

to 𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

. For more details, see Algorithm 6

in Appendix A. The user first chooses 𝑛 (old) coins denoted

[c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

and their signatures [𝜎𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

from her coinList, where
c𝑜𝑙𝑑
𝑖

= (𝑣𝑜𝑙𝑑
𝑖

, 𝑎𝑝𝑘𝑜𝑙𝑑
𝑖

, 𝜌𝑜𝑙𝑑
𝑖
), such that the total value of the old

coins does not fall below the total value payed in the transfer:∑𝑛
𝑖=1 𝑣

𝑜𝑙𝑑
𝑖
≥ ∑𝑚

𝑗=1 𝑣
𝑛𝑒𝑤
𝑗

. (Otherwise, the transfer operation returns

fail.) The user then computes the serial number [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

of every

old coin as follows: 𝑠𝑛𝑜𝑙𝑑
𝑖

= PRF
𝑎𝑠𝑘𝑜𝑙𝑑

𝑖
(𝜌𝑜𝑙𝑑
𝑖
).

The 𝑗 new coins are then produced by the user

according to the values and addresses to pay: ∀𝑗 ∈ [1,𝑚],
c𝑛𝑒𝑤
𝑗

= (𝑣𝑛𝑒𝑤
𝑗

, 𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

, 𝜌𝑛𝑒𝑤
𝑗
). 𝜌𝑛𝑒𝑤

𝑗
is derived as 𝜌𝑛𝑒𝑤

𝑗
=

PRF𝜌𝑠𝑒𝑒𝑑 (𝑠𝑛𝑜𝑙𝑑1
| |...| |𝑠𝑛𝑜𝑙𝑑𝑛 | | 𝑗) , where 𝜌𝑠𝑒𝑒𝑑 is sampled randomly.

This binds each new coin to the old coins spent for its creation.

This way, we make sure that the validators signing c𝑛𝑒𝑤 mark the

same old coins as spent. Since the value of the chosen old coins

might exceed the value of the new coins, the user also produces a

redeem coin c𝑛𝑒𝑤
𝑚+1 = (𝑣

𝑛𝑒𝑤
𝑚+1, 𝑎𝑝𝑘

𝑛𝑒𝑤
𝑚+1, 𝜌

𝑛𝑒𝑤
𝑚+1), with 𝑎𝑝𝑘

𝑛𝑒𝑤
𝑚+1 = 𝑎𝑝𝑘 and

𝑣𝑛𝑒𝑤
𝑚+1 the exceeding value. The coins [c𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1

are then blinded.
The blinding of c𝑛𝑒𝑤

𝑗
is denoted c̃𝑛𝑒𝑤

𝑗
= BLIND(c𝑛𝑒𝑤

𝑗
, 𝑏 𝑗), where

𝑏 𝑗 is a randomly sampled blinding factor.

The sender of the payment then computes an NIZK with:

• public_input : ([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

, [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1
)

• private_input : ([c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

, [𝜎𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

, [𝑎𝑠𝑘𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

, [c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

,

[𝑏 𝑗]𝑚+1𝑗=1
, 𝜌𝑠𝑒𝑒𝑑)

This NIZK 𝜋𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 proves the following relations:

(1) Serial numbers [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

are correctly derived from the old

coins [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

.

(2) New coins [c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

are correctly derived from the old coins

[c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

.

(3) Blinded coins [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

are correctly derived from

[c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

and [𝑏 𝑗]𝑚+1𝑗=1
.

(4) Signatures [𝜎𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

of the coin [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

are correct.

2
As discussed in Section 8, depending on the use cases of the system, this algorithm

might not be executed. Instead, users might freely join the system and call a Mint
algorithm that provides them with new coins.

7

(5) Private addresses [𝑎𝑠𝑘𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

match the public address

[𝑎𝑝𝑘𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

.

(6) The sum of the values of the old coins [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

equals the

sum of the values of the new coins [c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

.

The user can now send the NIZK 𝜋𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 along with the public

inputs to all the validators. Algorithm 12 describes the algorithm

run by the validators. Once a validator receives the proof:

(1) It checks that none of the [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

appears in its snList;
(2) It checks that the proof 𝜋 is correct;

(3) If the last two conditions are fulfilled, it adds all [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

to

snList, add all [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

to signedCoinList, it signs all the

coins [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

and returns the blinded partial signatures.

(4) If any of the previous conditions is not fulfilled, the

validator checks if the blinded coins [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

appear

in signedCoinList. If they all do, then the validator still

sends back the signatures. This is done because a Byzantine

validator 𝑝 might receive a transfer request from a user 𝑢

and send it to other validators using a private channel. As

a result, other validators might answer 𝑝 before answering

𝑢, preventing 𝑢 from receiving the signatures while the old

coins are actually spent (their serial numbers would have

been added to snList already).

Once the user receives 2𝑓 + 1 valid partial signatures for the coins

[c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

from 2𝑓 + 1 validators, she can unblind and aggregate

them to form𝑚 + 1 signatures [𝜎 𝑗]𝑚+1𝑗=1
that are valid signatures for

[c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

. She can now send each couple (c𝑛𝑒𝑤
𝑗

, 𝜎𝑛𝑒𝑤
𝑗
) to 𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
.

The user 𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

only accepts the payment if 𝜌𝑛𝑒𝑤
𝑗

∉ rhoList𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

and VERIFYSig (c𝑛𝑒𝑤𝑗 , 𝜎𝑛𝑒𝑤
𝑗

, 𝑝𝑘𝑎𝑔𝑔) == 1.
3

Double spending. Consider a coin cold that has been spent. Hence,

a setV1 of 2𝑓 + 1 validators have claimed to have added 𝑠𝑛old to

their snList, and at least 𝑓 +1 out of them are correct. If a Byzantine

user tries to spend cold again, it should collect confirmations from

a set V2 of 2𝑓 + 1 validators that will have to add 𝑠𝑛old in their

snList again. Since there are 3𝑓 + 1 validators in total,V1 andV2

have at least one correct validator in common. It must refuse to

sign the second transaction because 𝑠𝑛old is already in its snList,
so double spending is prevented and FPAT-Safety guaranteed (see

Appendix C for the proof).

Example. Figure 1 depicts a transfer:
(1) Alice wants to pay 3 recipients with 2 coins. She generates 3

blinded coins and a matching NIZK, and sends them to the

validators.

(2) Each validator checks the validity of the NIZK and that the

old coins are not in its snList, and, if so, sign the blinded coins
and add the serial numbers to their snList.

(3) Alice receives the signatures.

(4) For each coin: once 2𝑓 + 1 blinded partial signatures are

received, Alice unblinds and then aggregates them into one

aggregated signature.

3
For convenience, we allow the Transfer algorithm to sendmoney to several recipients

in a single call, in contrast with the specification, which allows only one recipient at a

time. As explained in the proof in Appendix C, this more generic transfer can be seen

as a batch of successive transfer calls, each destined to a single user.

(5) Alice sends the coin tuples and their signatures to their

recipients.

Figure 1: Paxpay example: Alice pays 3 recipients with 2 old
coins

6 REGULATORY ENFORCEMENT
Paxpay is designed as a private payment system. As in PEReDi [35],

PRCash [40] or Platypus [41], the protocol can be enhanced to be

regulation-compiant. The use of succinct proofs limits the impact of

regulatory enforcement on the system’s performances. This section

describes how to build such a regulatory enforcement on top of the

protocol described above.

Our regulatory enforcement is achieved via compliance coins.
Each user owns its unique compliance coin. The coin commits to

some data related to the user and all his transactions. The user

must attach the compliance coin to each of it transactions as an

input and the validators will sign the updated compliance coin.

Well-formedness of the updated compliance coin is proved through

NIZK. As for a classical coin, the old compliance coin is spent by

revealing its serial number. As a result, a user has one one valid

compliance coin at a time and this coin acts as an append-only

tracing mechanism.

The European Central Bank (ECB) has published requirements

for the digital Euro, its future CBDC. Inspired by this, our regulatory

construction enforce the following for each transfer:

• The amount transferred in the given transfer does not exceed

𝑉𝑚𝑎𝑥𝑠𝑒𝑛𝑡 ;

• The total amount of money transferred so far by the user

does not exceed 𝑉𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

;

• The receivers of the transfer are not in the sanction list

𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡 .

𝑉𝑚𝑎𝑥𝑠𝑒𝑛𝑡 , 𝑉
𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

and 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡 are public parameters chosen and

potentially updated by the regulator. 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡 is represented as a

sorted Merkle tree, which allows efficient proof of non-membership.

8

Compliance coin The compliance coin of a user 𝑢 is defined as a

tuple 𝑐𝑐𝑢 = (𝑎𝑝𝑘, 𝜌, 𝑣, 𝑐𝑜𝑚) where:
• 𝑎𝑝𝑘 is 𝑢’s sole public address

• 𝜌 the coin seed, as for a normal coin

• 𝑣 is the total amount of money sent so far by 𝑢

• 𝑐𝑜𝑚 is the commitment of the list of all the transfer done by

𝑢 so far. For each coin created, it commits the tuple (𝑎𝑝𝑘, 𝑣)
with 𝑎𝑝𝑘 the public key of the receiver and 𝑣 the value sent. It

uses the incremental commitment introduced in Section 3.3

𝑐𝑜𝑚 allows to trace 𝑢’s activities and allows 𝑢 to prove additional

statements on her transaction history in case of an update of the

regulation.

Registration Adding a user registration process is essential for

regulatory enforcement, to comply with the know-your-customer
(KYC) and customer-due-diligence (CDD) checks. Additionally, it
ensures the uniqueness of the compliance coin for each physical

user.

To this end, the validator storage is provided with a new list

registeredList, the list of the enrolled users associated with their

public key. registeredList is used to make sure that a physical user

can only register once on the system. The registration process is as

follows for the user 𝑢:

(1) Generate a random 𝜌 and computes 𝑐𝑐𝑢 = (𝑎𝑝𝑘𝑢 , 𝜌, 0, 0) and
its blinding 𝑐𝑐𝑢 (with blinding factor 𝑏).

(2) Computes an NIZK 𝜋𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 that takes (𝑐𝑐𝑢 , 𝑎𝑝𝑘𝑢) as public

input and (𝑎𝑠𝑘𝑢 , 𝑐𝑐𝑢 , 𝑏) as private input. It proves that:

(a) 𝑐𝑐𝑢 = BLIND((𝑎𝑝𝑘𝑢 , 𝜌, 0, 0), 𝑏).
(b) 𝑎𝑠𝑘𝑢 and 𝑎𝑝𝑘𝑢 form a correct secret/public address pair.

(3) Send to each validator 𝜋𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 and (𝑐𝑐𝑢 , 𝑎𝑝𝑘𝑢).
(4) Upon correct KYC and CDD proving 𝑢’s identity, each

validator check if 𝜋𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 is correct and that: (𝑢, ∗) ∉

registeredList (𝑢 has registered no public address yet). If

so, they sign 𝑐𝑐𝑢 , send it back to 𝑢, and add (𝑢, 𝑎𝑝𝑘𝑢) to
registeredList.

(5) Once 𝑢 has received 2𝑓 + 1 partial signature, she can unblind

and aggregates the partial signatures to form a valid signature

for 𝑐𝑐𝑢 .

The detailed algorithm is described in Appendix A as Algorithm 11.

Transfer Section 5 described how a transfer is handled by a user

𝑢, by spending 𝑛 old coins [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

and creating𝑚 + 1 new coins

[c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

to pay𝑚 recipients (𝑚 coins are created to the pay the

recipient and a redeem coin is also created with index𝑚 + 1 to get

the excess of money back to 𝑢). Now the user also has to update

a compliance coin at each payment and prove that their transfer

is compliant. The following additional steps are thus required. She

generates𝑚 random values: [𝑟 𝑗]𝑚𝑗=1. The user provides an additional
proof 𝜋𝑐𝑜𝑚𝑝𝑙𝑦 . This proof takes the following public inputs:

• 𝑐𝑐𝑛𝑒𝑤𝑢 the blinding of the new compliance coin

• 𝑠𝑛𝑜𝑙𝑑𝑐𝑐 the serial number of the old compliance

• 𝑉𝑚𝑎𝑥𝑠𝑒𝑛𝑡 the maximum amount that can be transferred in one

transfer

• 𝑉𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

the total amount of money that 𝑢 can transfer in her

use of the system

• 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡 the list of addresses under sanctions

𝜋𝑐𝑜𝑚𝑝𝑙𝑦 takes the following as private input:

• 𝑐𝑐𝑜𝑙𝑑 = (𝑎𝑝𝑘𝑛𝑒𝑤𝑐𝑐 , 𝜌𝑜𝑙𝑑𝑐𝑐 , 𝑣𝑜𝑙𝑑𝑐𝑐 , 𝑐𝑜𝑚𝑜𝑙𝑑) the old compliance coin

• 𝑐𝑐𝑛𝑒𝑤 = (𝑎𝑝𝑘𝑛𝑒𝑤𝑐𝑐 , 𝜌𝑛𝑒𝑤𝑐𝑐 , 𝑣𝑛𝑒𝑤𝑐𝑐 , 𝑐𝑜𝑚𝑛𝑒𝑤) the new compliance

coin

• 𝑎𝑠𝑘𝑜𝑙𝑑𝑐𝑐 the secret address corresponding to 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐

𝜋𝑐𝑜𝑚𝑝𝑙𝑦 should verify the following clauses:

(1) ∀𝑖 ∈ [1, 𝑛], 𝑎𝑝𝑘𝑜𝑙𝑑
𝑖

= 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐

(2) 𝑎𝑠𝑘𝑜𝑙𝑑𝑐𝑐 = PRF
𝑎𝑠𝑘𝑜𝑙𝑑𝑐𝑐

(0)
(3) 𝑎𝑝𝑘𝑛𝑒𝑤

𝑚+1 = 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐

(4) 𝑎𝑝𝑘𝑛𝑒𝑤𝑐𝑐 = 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐
(5) 𝜌𝑛𝑒𝑤𝑐𝑐 = PRF𝜌𝑠𝑒𝑒𝑑 (𝑠𝑛𝑜𝑙𝑑1

| |...| |𝑠𝑛𝑜𝑙𝑑𝑛 | |𝑚 + 2)
(6) 𝑣𝑛𝑒𝑤𝑐𝑐 = 𝑣𝑜𝑙𝑑𝑐𝑐 +

∑
1≤ 𝑗≤𝑚 𝑣𝑛𝑒𝑤

𝑗

(7) 𝑐𝑜𝑚0 = 𝑐𝑜𝑚𝑜𝑙𝑑

∧ ∀𝑗 ∈ [1,𝑚], 𝑐𝑜𝑚 𝑗 = INCR(𝑐𝑜𝑚 𝑗−1, 𝑎𝑝𝑘𝑛𝑒𝑤𝑗
, 𝑣𝑛𝑒𝑤
𝑗

, 𝑟 𝑗)
∧ 𝑐𝑜𝑚𝑛𝑒𝑤 = 𝑐𝑜𝑚𝑚

(8)

∑
1≤ 𝑗≤𝑚 𝑣𝑛𝑒𝑤

𝑗
≤ 𝑉𝑚𝑎𝑥𝑠𝑒𝑛𝑡

(9) 𝑣𝑛𝑒𝑤𝑐𝑐 ≤ 𝑉𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

(10) 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐 ∉ 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡

(11) ∀𝑗 ∈ [1,𝑚], 𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

∉ 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡

Conditions (1) ensures that all the input coins belong to the

owner of the input compliance coin. Condition (2) ensures that

𝑢, the user that invokes transfer, is the owner of the compliance

coin. Condition (3) ensures that the redeem coin will belong to 𝑢.

Conditions (4), (5), (6) and (7) ensure that the new compliance coin

is well-formed. Condition (8), (9) and (10) ensure that the transfer

is compliant. (8) verifies that the amount of the transfer does not

exceed that maximum allowed for a single transfer. (9) verifies

that the total amount of money sent by 𝑢 does not exceed that

maximum amount. (10) verifies that the sender is not a user under

sanctions. (11) verifies that none of the receivers of the transfer is

under sanction.

The user storage is also augmented with a list comList, in which

she stores the tuples (𝑎𝑝𝑘, 𝑣, 𝑟) that she has used at each transfer. At
the end of the transfer described above, she thus append to comList
the following: ∀𝑗, 𝑗 ∈ [1,𝑚], (𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
, 𝑣𝑛𝑒𝑤
𝑗

, 𝑟 𝑗). She can later use

comList and her compliance coin to prove any statement about her

transaction.

Upon receiving correct proofs (𝜋𝑐𝑜𝑚𝑝𝑙𝑦, 𝜋𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟) and their

public parameters, the validators execute the same algorithm as for

a non regulated transfer, except that they verify both 𝜋𝑐𝑜𝑚𝑝𝑙𝑦 and

𝜋𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 . They can then sign the news coins and then send the

signature back.

The detailed algorithm is described in Appendix A as

Algorithm 9.

7 PAXPAY IMPLEMENTATION AND
PERFORMANCE

Paxpay implementation in Golang is available on Github. We came

up with two implementations, with and without regulation support.

Belowwe overview the cryptographic tools we employed and report

on the performance of our protocols.

9

7.1 Cryptographic building blocks

NIZK. NIKZ proofs are implemented using the Groth16 [22]

protocol. Groth16 allows for constructing succinct non-interactive

arguments of knowledge (SNARKs) with constant verification

complexity, regardless of the complexity of the relation R it attests

to. We instantiate this scheme with the BW6-761 [25] curve,

designed to cyclewith the BL12-377 [25] curve, allowing for efficient

pairing verification over BL12-377 within the SNARK.

Groth16 is weak simulation extractable [3] and it allows us to

prove the satisfiability of an arithmetic circuit that reflects the

relation R. It requires trusted setup that is specific to this arithmetic

circuit. When it comes to proving relations on transfers with 𝑛 old

coins and𝑚 new coins, in building the circuit, we need to choose

upper bounds for 𝑛 and𝑚. If a transfer involves more coins than

these limits, a different circuit, and thus a new trusted setup, would

be necessary. Adopting another SNARK protocol with a universal

trusted setup, such as Marlin [12], would allow transfers with an

arbitrary number of coins using a single trusted setup.

In the regulated version, each transfer requires two NIZK. For

performance reasons, these two proofs 𝜋𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 and 𝜋𝑐𝑜𝑚𝑝𝑙𝑦 are

merged into a single proof with a unique circuit. The proof of

non-membership in the merkle tree is implemented as follows:

the sanction list has the following form: 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡 = [𝑠1, 𝑠2, ..., 𝑠𝜉].
𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡 is supposed to be published sorted by the regulator. To

verify the non-inclusion of an address 𝑎𝑝𝑘 in the list, we prove that

there exist 𝑠𝑖 and 𝑠 𝑗 such that:

• 𝑠𝑖 and 𝑠 𝑗 are elements of 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡 .

• 𝑗 = 𝑖 + 1 (𝑠𝑖 and 𝑠 𝑗 are consecutive elements of 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡).

• 𝑠𝑖 < 𝑎𝑝𝑘 < 𝑠 𝑗 (𝑠1 and 𝑠𝜉 are set to 0𝑥00..00 and 0𝑥𝐹𝐹 ..𝐹𝐹 to

make sure this constraint can always be fulfilled).

Hash functions and PRF. To optimize the computational cost

of the proving algorithm in SNARK, we rely on MiMC [2]. MiMC

is an arithmetization-oriented, collision-resistant and preimage-

resistant hash function that is efficiently represented as arithmetic

circuits. We use it to derive the the seeds 𝜌 of created coins from

the serial numbers 𝑠𝑛 of spent coins. The pseudorandom function

family PRF𝑥 () is derived from a MiMC function H as PRF𝑥 (𝑚) :=
H(𝑚 | |𝑥).4

Incremental commitment scheme. The incremental

commitment scheme is also derived from the MiMC function

H. Given a commitment 𝑐𝑜𝑚𝑜𝑙𝑑 and a message 𝑚 to be added

to the commitment with a randomness 𝑟 , INCR(𝑐𝑜𝑚𝑜𝑙𝑑 ,𝑚, 𝑟) is
defined as follows: INCR(𝑐𝑜𝑚𝑜𝑙𝑑 ,𝑚, 𝑟) = H(𝑐𝑜𝑚𝑜𝑙𝑑 |𝑚 |𝑟). The
commitment function COM is then an iteration of increments

INCR over the sequence of messages and randomnesses provided.

(k,N)-threshold blind signature. Our signature scheme is based

on a slightly modified version of the Coconut scheme [37],

which itself is a variant of the Pointcheval and Sanders signature

scheme [34]. Indeed, certain checks originally performed using a

sigma protocol in Coconut are instead handled in the Groth16 proof

in our implementation, reducing the overall verification complexity.

4
The natural way to implement a PRF from a hash function is to consider

PRFx := H(m | |x) , however, replacing concatenation by an addition in the field does

not compromise security in our case while reducing the computational cost.

We instantiate this scheme with the BLS12-377 curve so that the

verification algorithm, which involves pairings, is efficient in the

Groth16 proof. (See Appendix B for more details).

7.2 Performance analysis
We now report on our comparative performance analysis.

NIZK Benchmark. We benchmarked our NIZK, implemented

using a Groth16 SNARK, on an Intel i7 @ 2.6 GHz CPU running

Ubuntu 22.04. The results are summarized in Table 2. Each value

is based on the average of 10 proving and verification runs. A

comparison with related protocols is provided in Table 1. The

data in this table was gathered from the respective research

papers, as the source codes of these protocols were not always

publicly available. However, the CPU used for our benchmark has

comparable performance to the machines reported in those works:

they all use Intel Core i7 CPUs except Zef. For Zef, a specific AWS

instance was used for their benchmark. To ensure a fair comparison,

we also ran our benchmark on the same AWS instance, with detailed

results provided in Table 3 in Appendix D.

Paxpay has two implementations: with and without the

regulatory feature. The benchmark was conducted on both. The

regulated version, running on a single core, serves as a reference

point. The results indicate that our SNARK verification time is

notably short, taking only 5.6 ms. As shown in Table 1, this

verification time is between 8 and 100 times shorter than the NIZK

verification times reported in other works (except for Zcash, which

takes approximately the same time but suffers from other major

issues discussed in Section 8). The verification time is a key metric

since slow verification limits the transaction throughput of the

system.

This fast verification comes at the cost of relatively slow proving,

requiring nearly 7 s to generate a proof for a transfer on a single

core. However, with 6 cores, the proving time drops to 2 s.

Table 2: SNARK Proving and Verification Times on an Intel
i7 2.6 GHz CPU, running Ubuntu 22.04.

Regulated Not Regulated

1 Core 6 Cores 1 Core 6 Cores

Proving time (ms)

6959
(± 13)

2001

(± 13)

3080

(± 6)

882

(± 5)

Verification time (ms)

5.61
(± 0.20)

5.38

(± 0.28)

5.22

(± 0.15)

4.71

(± 0.85)

Latency test and transaction throughput Apart from Zcash,

which is already deployed in real-world use, the only payment

system in the related work to report on its latency and throughput

is Zef [6]. To compare performance with Zef, we run our Paxpay

implementation in the same environment by deploying multiple

AWS EC2 instances (m5.8xlarge) and assigning one validator per

instance. For each version of Paxpay (regulated and non-regulated),

we conducted two tests: one with each validator running on a single

CPU core, and another with each validator using 16 CPU cores. The

results are presented in Figures 2a and 2b. We consider that the

system support a given throughput if the corresponding transaction

10

0 20 40 60 80 100

0

250

500

750

1,000

Transaction per sec [tx/s]

L
a
t
e
n
c
y
[
m
s
] No regulation

Regulation

(a) Average transaction latency with respect to the transaction
throughput. 𝑓 = 3, 𝑁 = 10. Each validator runs on 1 CPU core.

0 200 400 600 800 1,000 1,200
0

250

500

750

1,000

1,250

Transaction per sec [tx/s]

L
a
t
e
n
c
y
[
m
s
] No regulation

Regulation

(b) Average transaction latency with respect to the transaction
throughput. 𝑓 = 3, 𝑁 = 10. Each validator runs on 16 CPU cores.

latency is smaller than 500 ms. Our regulated implementation

achieves the throughput of 100 tx/s (transactions per second) in
the single-core setup and 925 tx/s in the 16-core setup. Under the

same conditions, Zef processes 5 tx/s and 88 tx/s, respectively.5 For
the non-regulated Paxpay implementation, the throughput reaches

115 tx/s in the single-core setup and 1200 tx/s in the 16-core setup.

These promising results can be attributed to the low verification

time of the SNARK presented in Tables 2 and 3. In the reference

setting (regulated implementation with 1-core validators), the

verification of the SNARK takes 9 ms in our implementation while

it takes 142 ms in Zef with the same setting (Table 3).

The difference in performance between the regulated and non-

regulated versions is due to the additional public parameters in

the regulated SNARK. This requires validators to perform more

point multiplications on the elliptic curve used in the Groth16

construction.

To improve scalability, an authority in Zef (equivalent to our

validator) can be sharded (run on multiple parallel machines). The

same approach could be applied to our system, though it has not

been implemented yet. A load balancer could efficiently distribute

transfer requests among the validators by assigning each shard of

a validator a specific range of serial numbers. Upon receiving a

request, the load balancer would determine the appropriate shard

to handle it based on these predefined ranges. Our experiments

show that Paxpay is scalable. The throughput can be improved even

further by allocating more computational power to the validators,

either by using more CPU cores per validator or by distributing the

workload across additional machines.

5
As stated in Zef [6], each authority is distributed over multiple shards, each running

in a single core. The 16-core result is extrapolated from the linear relationship between

throughput and the number of shards per validator, as shown in their paper.

8 DISCUSSION

Comparison with related protocols Table 1 provides a

comparison between Paxpay and the related protocols. Lelantus

appears to outperform Monero across all metrics in the table

and offers larger anonymity sets. Given the space constraints,

we therefore decided to omit Monero from the table. Similarly,

Platypus was not included in the table, as we focus exclusively on

decentralized payment systems. Details and explanations regarding

the data presented in the table can be found in Appendix D (Table 4).

Privacy. As shown in Table 1, Paxpay provides the strongest

privacy guarantees, comparable to those provided by Zcash,

whereas some protocols offer reduced privacy guarantees. This

is especially Zef and PRCash.

To ensure full privacy, it is important to "hide" coin details with

blind signatures, as well as to verify the signatures within the NIZK.

Indeed, suppose that, as in Zef [6], we resort to only using blind

signatures. Suppose that a user 𝐴 creates a coin c for a user 𝐵

during a transfer 𝑜1. 𝐴 requests the validators to sign the blinded

coin c̃, and then sends the aggregated signature to 𝐵. 𝐵 now spends

c during a transfer 𝑜2, and in process reveals c and the (randomized)

signature. Even though validators cannot reveal that the coin spent

in 𝑜2 was created in 𝑜1, 𝐴 knows c and, thus, can deduce the sender

of 𝑜2 and a lower bound on the amount spent during 𝑜2. The use of

NIZK obviates this problem, as now 𝐵 does not reveal c. Using a

plain signature scheme (instead of a blind one) and verifying the

signature in the NIZK will again infringe FPAT-privacy, as 𝐵 would

be able to identify 𝐴, as 𝐴 would have already revealed c in clear in

𝑜1.

Model assumptions Paxpay is responsive, meaning it can be

implemented in an asynchronous network. Among the related

protocols, only Zef and PARScoin also provide responsiveness.

However, PARScoin requires correct validators (those who follow

the protocol) to be honest, ensuring they do not share any

information with the adversary. In contrast, Paxpay tolerates

correct validators being semi-honest, meaning they can share

any information they receive or transmit during the protocol’s

execution without compromising the system’s privacy guarantees.

Regulation Table 1 includes the following regulation features that

are provided by Paxpay or related protocols:

• Limited held amount per user: Users cannot hold more than

𝑉𝑚𝑎𝑥
ℎ𝑒𝑙𝑑

.

• Limited spendable amount per tx: Users cannot spend more

than 𝑉𝑚𝑎𝑥𝑠𝑒𝑛𝑡 in one transaction.

• Full asset tracing: A trusted authority (centralized or

decentralized) can reveal the content of transaction to trace

back assets and users activities.

• Limited spendable amount in total: Users cannot spend more

than 𝑉𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

.

• Sanction list: Users cannot send money to another in the

sanction list. A user in the sanction list cannot send money

anymore.

• Provable transaction history: A user can prove arbitrary

statements about her transactions. For instance, reveal all of

11

her transaction and prove that the revealed set is complete

(no transactions are missing).

Paxpay does not support the Limited Held Amount per User
feature. PEReDi [35] implements this feature, requiring synchrony

between sender and receiver. PARScoin [36] claims a different

approach: the sender initiates a transaction to reduce their balance,

and the receiver can asynchronously claim funds later, provided

their balance remains within the imposed limit. However, this

method merely limits the amount a user can hold at a given time,

as receivers can bypass it by spending excess funds before claiming

the pending funds they have received. In practice, this mechanism

has the same effect as setting a limit on the amount that can be

spent in a single transaction. Similarly, limiting the cumulative

receivable amount of money is almost the same thing as defining a

limit on the total spent amount.

We believe that implementing a Limited Held Amount per User
feature is particularly challenging in a private and asynchronous

payment system. Such a feature would require that transfers

atomically change the balances of both the sender and the receiver,

to prove that receiver balance does not exceed a certain amount

after executing the transfer. However, to affect the balance of a user,

privacy typically requires this user to interact with another user or

the validators, in order to provide some secret data known only to

him (such as coin data or account commitments). Yet, asynchrony

precludes live protocols from relying on interaction between

senders and receivers. Indeed, in an asynchronous setting, the

sender who gets no response from the receiver cannot distinguish

whether this absence of response is caused by network delays or

by the receiver refusing to respond. Implementing Limited Held
Amount per User is thus hard without sacrificing synchrony or

privacy.

Paxpay also avoids Full Asset Tracing due to privacy risks.

Instead, it allows users to generate privacy-preserving proofs about

their transactions. For instance, a user can prove that her account

received funds from multiple addresses, each exceeding a certain

threshold, demonstrating legitimate income patterns. For example,

restaurants would use this proof to show compliance with AML

regulations while protecting their privacy and their customers’

privacy. This proof could demonstrate that the income pattern

is legitimate and consistent with regular business operations,

precluding money laundering (which might involve receiving a

large sum from a single address).

Additionally, Paxpay introduces a Sanction List feature, enabling
asset freezing for sanctioned users. This mechanism aligns with

CBDC requirements [4] and supports AML and CFT regulations by

preventing sanctioned individuals from transferring or receiving

funds. Such a mechanism could be hard and costly (in term of

performance) to implement in other protocols that use sigma

protocols [6, 35, 36, 40].

Performance. As mentioned in Section 7.2, Paxpay outperforms

all other protocols in terms of transaction throughput. This

performance advantage is directly attributed to its fast NIZK

verification, which surpasses all existing protocols. The only

exception is Zcash, which also benefits from a fast NIZK verification

but is constrained by the limitations of its underlying consensus

protocol.

Additionally, the system’s scalability, that is achieved by

increasing the computational power allocated to each validator,

further strengthens its practical applicability. The Visa payment

system processed an average of 7, 388 transactions per second in

2023 [39], which could be supported by Paxpay by distributing each

validator across 8 m5.8xlarge EC2 instances
6
.

As mentioned in Section 7.2, this high throughput comes at the

cost of a relatively slow transfer proving, requiring between 2 and

7 seconds depending on the user computational power. We believe

that this delay is acceptable from the user’s perspective, especially

since multiple payments can be aggregated into a single transfer. As

a result, even if a user needs to make numerous payments, she can

prove them all within a single transfer, requiring only one proof.

It is worth noting that the statement being proven in such cases

would be larger, which would still increase the proving time, though

less significantly compared to generating separate proofs for each

transfer.

Use cases. Our system is versatile and adaptable to various use

cases. It can function as a standalone payment system, a CBDC, or

a scaling solution for an existing blockchain (a so-called Layer 2).

It can be enriched with a Mint operation that user would call to

create new coins. Depending on the use case,Mint can be equipped

with a proof showing that the user has the right to mint a new coin.

For example, if Paxpay were used as a scaling solution for Bitcoin,

the Mint operation would take some SPV (Simplified payment

verification) [32] as input to prove the validators that some value

has been locked on Bitcoin. The implementation of theMint and
Redeem operations would vary depending on whether the system

is deployed as a CBDC or as a Layer 2 solution for a blockchain.

The impressive performance of Paxpay (Section 7.2) and its

potential to scale are key factors that enable our system to

effectively address these usem cases.

Future work. Our protocol can be reused with some slight

modifications to implement the same functionalities as in Zexe [9],

hence not only offering a payment system but private computation.
We can also considerably improve performance of our system

by introducing sharding in the implementation, or improve the

usability by moving to a different type of NIZK with universal

trusted setup.

9 CONCLUSION
In this paper, we focus on fully-private asset transfer (FPAT).

We propose Paxpay, an asynchronous FPAT protocol, prove its

correctness, make an implementation in Golang and analyzed

its performance. Paxpay leverages succinct non-interactive zero-

knowledge proofs and threshold blind signatures. Our system

demonstrates significant improvements over existing systems,

processing transactions at a higher rate while maintaining

full anonymity for the users and responsiveness. Paxpay also

ensures regulatory enforcement, including some features that

no other private payement system has managed to provide so

far. The flexibility offered by succinct NIZKs opens avenues for

incorporating other regulatory compliance features with minimal

6
This estimation assumes a direct linear relationship between throughput and the

computational power of the validators, as shown in Zef.

12

impact on the system’s performance. These elements make Paxpay

suitable for a wide range of applications, from a scaling solution

of blockchain to a standalone private payment system that can be

used as a technical layer for CBDCs.

REFERENCES
[1] Timothé Albouy, Emmanuelle Anceaume, Davide Frey, Mathieu Gestin,

Arthur Rauch, Michel Raynal, and François Taïani. 2024. Asynchronous

BFT Asset Transfer: Quasi-Anonymous, Light, and Consensus-Free.

arXiv:2405.18072 [cs.DC]

[2] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with

Minimal Multiplicative Complexity. In Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 10031), Jung Hee Cheon and Tsuyoshi

Takagi (Eds.). 191–219.

[3] Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. 2021.

Another look at extraction and randomization of Groth’s zk-SNARK. In Financial
Cryptography and Data Security: 25th International Conference, FC 2021, Virtual
Event, March 1–5, 2021, Revised Selected Papers, Part I 25. Springer, 457–475.

[4] European Central Bank. 2020. Report on a digital euro. https://www.ecb.europa.

eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.pdf

[5] Mathieu Baudet, George Danezis, and Alberto Sonnino. 2020. FastPay: High-

Performance Byzantine Fault Tolerant Settlement. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies. 163–177.

[6] Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George Danezis. 2023.

Zef: Low-latency, Scalable, Private Payments. In Proceedings of the 22ndWorkshop
on Privacy in the Electronic Society, WPES 2023, Copenhagen, Denmark, 26
November 2023, Bart P. Knijnenburg and Panos Papadimitratos (Eds.). ACM,

1–16.

[7] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. 459–474.
https://doi.org/10.1109/SP.2014.36

[8] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie.

2024. ConsenSys/gnark: v0.11.0. https://doi.org/10.5281/zenodo.5819104

[9] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and

Howard Wu. 2018. Zexe: Enabling Decentralized Private Computation. IACR
Cryptol. ePrint Arch. (2018), 962.

[10] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130–143.

[11] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. 1996. The weakest

failure detector for solving consensus. Journal of the ACM (JACM) 43, 4 (1996),
685–722.

[12] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,

and Nicholas P. Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal

and Updatable SRS. In Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 12105), Anne Canteaut and Yuval Ishai (Eds.). Springer,

738–768.

[13] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo

Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi,

Andrei Tonkikh, and Athanasios Xygkis. 2020. Online Payments by Merely

Broadcasting Messages. In 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2,
2020. IEEE, 26–38.

[14] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on information exchange for

Byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191–204.
[15] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for

Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.
[16] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1984. Consensus in

the Presence of Partial Synchrony (Preliminary Version). In Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing, Vancouver,
B. C., Canada, August 27-29, 1984, Tiko Kameda, Jayadev Misra, Joseph G. Peters,

and Nicola Santoro (Eds.). ACM, 103–118.

[17] Electric Coin Company and Zcash Contributors. 2023. Zcash: Protocol

and Reference Implementation. https://github.com/zcash/zcash. Accessed:

01/09/2024.

[18] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic
Introduction to Secure Multi-Party Computation. Now Publishers Inc. https:

//doi.org/10.1561/3300000019

[19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. 2018.

Quisquis: A New Design for Anonymous Cryptocurrencies. Cryptology ePrint

Archive, Paper 2018/990. https://eprint.iacr.org/2018/990

[20] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1983. Impossibility of

Distributed Consensus with One Faulty Process. In Proceedings of the Second
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March 21-
23, 1983, Colony Square Hotel, Atlanta, Georgia, USA, Ronald Fagin and Philip A.

Bernstein (Eds.). ACM, 1–7.

[21] Oded Goldreich. 2001. Foundations of Cryptography. Vol. 1. Cambridge University

Press. https://doi.org/10.1017/CBO9780511546891

[22] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II 35. Springer, 305–326.

[23] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-

Adrian Seredinschi. 2019. The Consensus Number of a Cryptocurrency. In

Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC ’19). ACM. https://doi.org/10.1145/3293611.3331589

[24] Saurabh Gupta. 2016. A Non-Consensus Based Decentralized Financial Transaction
Processing Model with Support for Efficient Auditing. Master’s thesis. Arizona

State University, USA.

[25] Youssef El Housni and Aurore Guillevic. 2020. Optimized and secure pairing-

friendly elliptic curves suitable for one layer proof composition. Cryptology

ePrint Archive, Paper 2020/351. https://eprint.iacr.org/2020/351

[26] Aram Jivanyan. 2019. Lelantus: A New Design for Anonymous and Confidential

Cryptocurrencies. Cryptology ePrint Archive, Paper 2019/373. https://eprint.

iacr.org/2019/373

[27] Aram Jivanyan and Aaron Feickert. 2021. Lelantus Spark: Secure and Flexible

Private Transactions. Cryptology ePrint Archive, Paper 2021/1173. https:

//doi.org/10.1007/978-3-031-32415-4_28

[28] A. B. Kahn. 1962. Topological sorting of large networks. Commun. ACM 5, 11

(Nov. 1962), 558–562. https://doi.org/10.1145/368996.369025

[29] Chelsea Komlo and Ian Goldberg. 2020. FROST: Flexible Round-Optimized

Schnorr Threshold Signatures. In Selected Areas in Cryptography - SAC 2020 -
27th International Conference, Halifax, NS, Canada (Virtual Event), October 21-23,
2020, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 12804), Orr
Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn (Eds.). Springer, 34–65.

[30] Petr Kuznetsov, Yvonne-Anne Pignolet, Pavel Ponomarev, and Andrei Tonkikh.

2023. Permissionless and asynchronous asset transfer. Distributed Comput. 36, 3
(2023), 349–371.

[31] Dahlia Malkhi and Michael K. Reiter. 1997. A High-Throughput Secure Reliable

Multicast Protocol. Journal of Computer Security 5, 2 (1997), 113–128.

[32] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf

[33] Shen Noether, Adam Mackenzie, and The Monero Research Lab. 2016. Ring

Confidential Transactions. Ledger 1 (Dec. 2016), 1–18. https://doi.org/10.5195/

ledger.2016.34

[34] David Pointcheval and Olivier Sanders. 2015. Short Randomizable Signatures.

Cryptology ePrint Archive, Paper 2015/525. https://eprint.iacr.org/2015/525

https://eprint.iacr.org/2015/525.

[35] Amirreza Sarencheh, Aggelos Kiayias, and Markulf Kohlweiss. 2022. PEReDi:

Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies.

Cryptology ePrint Archive, Paper 2022/974. https://eprint.iacr.org/2022/974

[36] Amirreza Sarencheh, Aggelos Kiayias, andMarkulf Kohlweiss. 2024. PARScoin: A

Privacy-preserving, Auditable, and Regulation-friendly Stablecoin. In Cryptology
and Network Security: 23rd International Conference, CANS 2024, Cambridge,
UK, September 24–27, 2024, Proceedings, Part I (Cambridge, United Kingdom).

Springer-Verlag, Berlin, Heidelberg, 289–313. https://doi.org/10.1007/978-981-

97-8013-6_13

[37] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and

George Danezis. 2018. Coconut: Threshold issuance selective disclosure

credentials with applications to distributed ledgers. arXiv preprint
arXiv:1802.07344 (2018).

[38] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. 1997. Anonymous

Connections and Onion Routing. In 1997 IEEE Symposium on Security and Privacy,
May 4-7, 1997, Oakland, CA, USA. IEEE Computer Society, 44–54. https://doi.

org/10.1109/SECPRI.1997.601314

[39] Visa. 2024. Visa Annual Report 2024. https://s29.q4cdn.com/385744025/files/

doc_downloads/2024/Visa-Fiscal-2024-Annual-Report.pdf

[40] Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. 2018. PRCash:

Fast, Private and Regulated Transactions for Digital Currencies. Cryptology

ePrint Archive, Paper 2018/412. https://eprint.iacr.org/2018/412

[41] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. 2021. Platypus:

A Central Bank Digital Currency with Unlinkable Transactions and Privacy

Preserving Regulation. Cryptology ePrint Archive, Paper 2021/1443. https:

//doi.org/10.1145/3548606.3560617

13

https://arxiv.org/abs/2405.18072
https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.pdf
https://www.ecb.europa.eu/pub/pdf/other/Report_on_a_digital_euro~4d7268b458.en.pdf
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.5281/zenodo.5819104
https://github.com/zcash/zcash
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://eprint.iacr.org/2018/990
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1145/3293611.3331589
https://eprint.iacr.org/2020/351
https://eprint.iacr.org/2019/373
https://eprint.iacr.org/2019/373
https://doi.org/10.1007/978-3-031-32415-4_28
https://doi.org/10.1007/978-3-031-32415-4_28
https://doi.org/10.1145/368996.369025
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.5195/ledger.2016.34
https://doi.org/10.5195/ledger.2016.34
https://eprint.iacr.org/2015/525
https://eprint.iacr.org/2015/525
https://eprint.iacr.org/2022/974
https://doi.org/10.1007/978-981-97-8013-6_13
https://doi.org/10.1007/978-981-97-8013-6_13
https://doi.org/10.1109/SECPRI.1997.601314
https://doi.org/10.1109/SECPRI.1997.601314
https://s29.q4cdn.com/385744025/files/doc_downloads/2024/Visa-Fiscal-2024-Annual-Report.pdf
https://s29.q4cdn.com/385744025/files/doc_downloads/2024/Visa-Fiscal-2024-Annual-Report.pdf
https://eprint.iacr.org/2018/412
https://doi.org/10.1145/3548606.3560617
https://doi.org/10.1145/3548606.3560617

A PROTOCOL

Network channel As explained in the model description in

Section 3, participants can use private channels. These private

channels are formalized as follows. Send(type, data, 𝑎𝑝𝑘𝑑𝑠𝑡) allows
to send data without revealing the sender identity. Send triggers

a callback Receive(type, data, 𝑎𝑝𝑘𝑠𝑟𝑐) on the receiver side. The

receiver can call Send(type, data, 𝑎𝑝𝑘𝑠𝑟𝑐) to send data back. To

show that the receiver can respond but without knowing the

identity of the sender, we denote by 𝑎𝑝𝑘𝑠𝑟𝑐 an anonymous version

of 𝑎𝑝𝑘𝑠𝑟𝑐 received by the receiver, that allows him to answer

without knowing 𝑎𝑝𝑘𝑠𝑟𝑐 . data is the payload of the message and

type its type. These notations will apply in the protocol below.

Setup Phase: During the setup phase, a trusted third party T
first runs the algorithm Setup (Algorithm 1), generating public

parameters over the NIZK and keys for the threshold signature

scheme. Depending on whether the protocol is run with or without

regulation, the public parameters are either pptx_no_regulNIZK (for the

transfer operation) in the non-regulated case or pptx_regulNIZK and

ppregisterNIZK (for the transfer and register operations) in the regulated

case.

The user𝑢 ∈ U generates her public/secret address pair running

AddrGen algorithm (Algorithm 2) and stores it. She also initializes

her list coinList (valid unused coins) and rhoList (seeds of the

received coins).

The trusted third party distributes initial values to each user via

the Initialisation algorithm (Algorithm 3).

Running Phase: The transfer operation for users is implemented

either as Transfer𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 (Algorithm 6) or Transfer𝑟𝑒𝑔𝑢𝑙
(Algorithm 9), depending on whether regulation enforcement

is applied. Algorithms 8 and 7 are used by Transfer𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 .
Algorithms 10 and 7 are used by Transfer𝑟𝑒𝑔𝑢𝑙 . Algorithms 8

and 10 generate the NIZK in the non-regulated and regulated

case. The proof in the regulated case is the same as the one in

the regulated case with some additional requirements explained

in Section 6 as 𝜋𝑐𝑜𝑚𝑝𝑙𝑦 . 𝜋𝑟𝑒𝑔𝑢𝑙 in Algorithms 10 is thus the

implemented merge of 𝜋𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 introduced in Section 5 and

𝜋𝑐𝑜𝑚𝑝𝑙𝑦 . If regulation enforcement is applied, user register via

the Register𝑟𝑒𝑔𝑢𝑙 algorithm (Algorithm 11).

The implementation of the balance operation is described in

Algorithm 4. When a user receives a transfer, Algorithm 5 is called.

If regulation enforcement is not applied, validators handle transfer

requests with Algorithm 12. If regulation enforcement is applied,

validators handle transfer and register requests with Algorithm 13.

Note that the algorithm for handling transfer operations is exactly

the same, regardless of whether regulation is enforced.

Algorithm 1: Setup()
1 ([𝑠𝑘𝑖]𝑁𝑖=1, 𝑝𝑘𝑎𝑔𝑔) ← SetupSig (2𝑓 + 1, 𝑁)
2 ppNIZK ← SetupNIZK (R)
3 for 𝑝 ∈ (V ∪ U) do
4 Send(type : setupnizk, (pp

tx_no_regul
NIZK | pptx_regulNIZK & ppregisterNIZK), 𝑝)

5 Send(type : setupsig, 𝑝𝑘𝑎𝑔𝑔, 𝑝)
6 end
7 for 𝑝 ∈ V do
8 Send(type : sk, 𝑠𝑘𝑝 , 𝑝)
9 end

Algorithm 2: AddrGen()

1 𝑎𝑠𝑘
$← {0, 1}𝜆 // Sample 𝑎𝑠𝑘 randomly

2 𝑎𝑝𝑘 ← PRF𝑎𝑠𝑘 (0)
3 return (𝑎𝑠𝑘, 𝑎𝑝𝑘)

Algorithm 3: Initialisation([𝑎𝑝𝑘𝑢]𝑢∈U)
1 for 𝑢 ∈ U do
2 Choose an initial value 𝑣𝑖𝑛𝑖𝑡𝑢

3 𝜌𝑖𝑛𝑖𝑡𝑢

$← {0, 1}𝜆 // Sample 𝜌𝑢 randomly

4 c𝑖𝑛𝑖𝑡𝑢 ← (𝑣𝑖𝑛𝑖𝑡𝑢 , 𝑎𝑝𝑘𝑢 , 𝜌
𝑖𝑛𝑖𝑡
𝑢)

5 for 𝑖 ∈ [1, 2𝑓 + 1] do
6 𝜎𝑢,𝑖 ← SIGN(c𝑖𝑛𝑖𝑡𝑢 , 𝑠𝑘𝑖)
7 end
8 𝜎𝑢 ← AGGREGATE([𝜎𝑢,𝑖]𝑛𝑖=1)
9 Send(type : coin, (c𝑖𝑛𝑖𝑡𝑢 , 𝜎𝑢),𝑢)

10 end

Algorithm 4: Balance()
1 Parse coinList as [c𝑖]𝑙𝑖=1 // 𝑙 is the total number or coins

in coinList
2 Parse [c𝑖]𝑙𝑖=1 as [(𝑣𝑖 , 𝑎𝑝𝑘𝑖 , 𝜌𝑖)]𝑙𝑖=1
3 return

∑𝑙
𝑖=1 𝑣𝑖

Algorithm 5: Receive()

1 Upon Receive(type : coin, (c𝑛𝑒𝑤 , 𝜎), 𝑎𝑝𝑘𝑠𝑟𝑐) :
2 Parse c𝑛𝑒𝑤 as (𝑣𝑛𝑒𝑤 , 𝑎𝑝𝑘𝑛𝑒𝑤 , 𝜌𝑛𝑒𝑤)
3 if (𝑎𝑝𝑘𝑛𝑒𝑤 = PRF𝑎𝑠𝑘 (0)) ∧ (VERIFYSig (𝜎, 𝑐𝑚, 𝑝𝑘𝑎𝑔𝑔) ==

1) ∧ (𝜌𝑛𝑒𝑤 ∉ rhoList) then
4 Append c to coinList

14

Algorithm 6: Transfer𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 ([𝑣𝑛𝑒𝑤𝑗]𝑚
𝑗=1

, [𝑎𝑝𝑘𝑛𝑒𝑤
𝑗
]𝑚
𝑗=1

)

1 Function Transfer([𝑣𝑛𝑒𝑤
𝑗
]𝑚
𝑗=1
, [𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
]𝑚
𝑗=1

):
Data: List of new coin owner [𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
]𝑚
𝑗=1

and value

[𝑣𝑛𝑒𝑤
𝑗
]𝑚
𝑗=1

.

Result: Values 𝑣𝑛𝑒𝑤
𝑗

are transferred to the users of address

𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

.

2 if ∃ [c𝑖]𝑛𝑖=1 ⊆ coinList ,
∑𝑛
𝑖=1 c𝑖 .𝑣 ≥ 𝑥 then

3 [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
← [c𝑖]𝑛𝑖=1

4 else
5 return fail

6 𝑣𝑛𝑒𝑤
𝑚+1 ←

∑𝑛
𝑖=1 𝑣

𝑜𝑙𝑑
𝑖
− ∑𝑚

𝑗=1 𝑣
𝑛𝑒𝑤
𝑗

// Redeemed to u

7 𝑎𝑝𝑘𝑛𝑒𝑤
𝑚+1 ← 𝑎𝑝𝑘

8 Remove [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

from coinList
9 ([𝑠𝑛𝑜𝑙𝑑

𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1

, [c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

, [𝑏 𝑗]𝑚+1𝑗=1
, 𝜌𝑠𝑒𝑒𝑑) ←

Tx([(c𝑜𝑙𝑑
𝑖
, 𝑠𝑘𝑜𝑙𝑑

𝑖
)]𝑛
𝑖=1
, [(𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
, 𝑣𝑛𝑒𝑤
𝑗
)]𝑚+1
𝑗=1
)

10 public_input← ([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
)

11 private_input←
([c𝑜𝑙𝑑

𝑖
]𝑛
𝑖=1
, [𝜎𝑜𝑙𝑑

𝑖
]𝑛
𝑖=1
, [𝑠𝑘𝑜𝑙𝑑

𝑖
]𝑛
𝑖=1
, [c𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1

, [𝑏 𝑗]𝑚+1𝑗=1
, 𝜌𝑠𝑒𝑒𝑑)

12 𝜋 ← Prove𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 (public_input, private_input, pp
tx_no_regul
NIZK)

13 Create𝑚 + 1 new empty lists: [sigList𝑗]𝑚+1𝑗=1
← [[]]𝑚+1

𝑗=1

14 for 𝑝 ∈ V do
// Send the request to each validator in V

15 async Send(type : tx, (([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), 𝜋), 𝑝)

// Receive �̃�
𝑝

𝑗
send by validator 𝑝:

16 Upon Receive(type : sig, [�̃�𝑝
𝑗
]𝑚+1
𝑗=1

, 𝑝) : for 𝑗 = 1, 2, . . .𝑚 + 1
do

17 𝜎
𝑝

𝑗
← UNBLIND(�̃�𝑝

𝑗
, 𝑏 𝑗)

18 if (𝜎𝑝
𝑗
∉ sigListj) ∧ (VERIFYSig (𝜎𝑝𝑗 , c

𝑛𝑒𝑤
𝑗

, 𝑝𝑘𝑝) == 1)
then

19 Append 𝜎
p
j to sigListj

20 if length(sigList) == 2𝑓 + 1 then
21 𝜎j ← AGGREGATE(sigListj)
22 Send(type : coin, (c𝑛𝑒𝑤

𝑗
, 𝜎 𝑗), 𝑎𝑝𝑘𝑛𝑒𝑤𝑗

)
23 return confirm

Algorithm7: Tx([(c𝑜𝑙𝑑
𝑖

, 𝑎𝑠𝑘𝑜𝑙𝑑
𝑖
)]𝑛
𝑖=1

, [(𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

, 𝑣𝑛𝑒𝑤
𝑗
)]𝑚
𝑗=1

)

1 Function Tx([(c𝑜𝑙𝑑
𝑖
, 𝑎𝑠𝑘𝑜𝑙𝑑

𝑖
)]𝑛
𝑖=1
, [(𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
, 𝑣𝑛𝑒𝑤
𝑗
)]𝑚
𝑗=1

):
Data: List of old coins to spend with the corresponding secret

address. Public address and values for the new coins

Result: Compute the needed data to sign the new coins

2 Parse [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

as [(𝑣𝑜𝑙𝑑
𝑖

, 𝑎𝑝𝑘𝑜𝑙𝑑
𝑖

, 𝜌𝑜𝑙𝑑
𝑖
)]𝑛
𝑖=1

3 [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
← [PRF

𝑎𝑠𝑘𝑜𝑙𝑑
𝑖
(𝜌𝑜𝑙𝑑
𝑖
)]𝑛
𝑖=1

4 𝜌𝑠𝑒𝑒𝑑
$← {0, 1}𝜆

5 [𝜌𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1
← [PRF𝜌𝑠𝑒𝑒𝑑 (𝑠𝑛

𝑜𝑙𝑑
1
| | ... | |𝑠𝑛𝑜𝑙𝑑𝑛 | | 𝑗)]𝑚+1

𝑗=1

6 [c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1
← [(𝑣𝑛𝑒𝑤

𝑗
, 𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
, 𝜌𝑛𝑒𝑤
𝑗
)]𝑚+1
𝑗=1

7 [𝑏 𝑗
$← {0, 1}𝜆]𝑚+1

𝑗=1

8 [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1
← [BLIND(c𝑛𝑒𝑤

𝑗
, 𝑏 𝑗)]𝑚+1𝑗=1

9 return ([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [˜𝑐𝑚𝑛𝑒𝑤𝑗]𝑚+1

𝑗=1
, [c𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1

, [𝑏𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

)

Algorithm8: Prove𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 (public_input, private_input, ppNIZK)
1 Function Prove𝑛𝑜_𝑟𝑒𝑔𝑢𝑙(public_input, private_input, ppNIZK):

Result: 𝜋𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 the proof for the transfer without regulation
2 Compute the proof 𝜋𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 using the NIZK function PROVE

with inputs (public_input, private_input) and public

parameters ppNIZK representing the following relation:

// Created notes are well-formed:

3 (([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), [c𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
) ==

Tx([(c𝑜𝑙𝑑
𝑖
, 𝑠𝑘𝑜𝑙𝑑

𝑖
)]𝑛
𝑖=1
, (𝑝𝑘𝑛𝑒𝑤

𝑗
, 𝑣𝑛𝑒𝑤
𝑗
))

// Balance is conserved:

4
∑𝑛
𝑖=1 𝑣

𝑜𝑙𝑑
𝑖

==
∑𝑚+1
𝑗=1 𝑣

𝑛𝑒𝑤
𝑗

// Secret addresses corresponding to each

consumed coin are known:

5 [𝑎𝑝𝑘𝑖]𝑛𝑖=1 == [PRF𝑎𝑠𝑘𝑖 (0)]𝑛𝑖=1
// Spent coins are signed by 2f+1 validators:

6 for 𝑖 ∈ [1, 𝑛] do
7 VERIFYSig (𝜎𝑖 , c𝑜𝑙𝑑𝑖 , 𝑝𝑘) == 1

// The blinding is correct

8 [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

== [BLIND(c𝑛𝑒𝑤
𝑗

, 𝑏 𝑗)]𝑚+1𝑗=1

9 return 𝜋𝑛𝑜_𝑟𝑒𝑔𝑢𝑙

15

Algorithm 9: Transfer𝑟𝑒𝑔𝑢𝑙 ([𝑣𝑛𝑒𝑤𝑗]𝑚
𝑗=1

, [𝑎𝑝𝑘𝑛𝑒𝑤
𝑗
]𝑚
𝑗=1

)

1 Function Transfer([𝑣𝑛𝑒𝑤
𝑗
]𝑚
𝑗=1
, [𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
]𝑚
𝑗=1

):
Data: List of new coin owner [𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
]𝑚
𝑗=1

and value

[𝑣𝑛𝑒𝑤
𝑗
]𝑚
𝑗=1

.

Result: Values 𝑣𝑛𝑒𝑤
𝑗

are transferred to the users of address

𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

.

2 if ∃ [c𝑖]𝑛𝑖=1 ⊆ coinList ,
∑𝑛
𝑖=1 c𝑖 .𝑣 ≥ 𝑥 then

3 [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
← [c𝑖]𝑛𝑖=1

4 else
5 return fail

6 𝑣𝑛𝑒𝑤
𝑚+1 ←

∑𝑛
𝑖=1 𝑣

𝑜𝑙𝑑
𝑖
− ∑𝑚

𝑗=1 𝑣
𝑛𝑒𝑤
𝑗

// Redeemed to u

7 𝑎𝑝𝑘𝑛𝑒𝑤
𝑚+1 ← 𝑎𝑝𝑘

8 Remove [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

from coinList
9 ([𝑠𝑛𝑜𝑙𝑑

𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1

, [c𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

, [𝑏 𝑗]𝑚+1𝑗=1
, 𝜌𝑠𝑒𝑒𝑑) ←

Tx([(c𝑜𝑙𝑑
𝑖
, 𝑠𝑘𝑜𝑙𝑑

𝑖
)]𝑛
𝑖=1
, [(𝑎𝑝𝑘𝑛𝑒𝑤

𝑗
, 𝑣𝑛𝑒𝑤
𝑗
)]𝑚+1
𝑗=1
)

10 Parse 𝑐𝑐𝑜𝑙𝑑 as (𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐 , 𝜌𝑜𝑙𝑑𝑐𝑐 , 𝑣𝑜𝑙𝑑𝑐𝑐 , 𝑐𝑜𝑚𝑜𝑙𝑑)
11 𝑎𝑝𝑘𝑛𝑒𝑤𝑐𝑐 ← 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐

12 𝜌 ← PRF𝜌𝑠𝑒𝑒𝑑 (𝑠𝑛
𝑜𝑙𝑑
1
| | ... | |𝑠𝑛𝑜𝑙𝑑𝑛 | |𝑚 + 2)

13 𝑣𝑛𝑒𝑤𝑐𝑐 ← 𝑣𝑜𝑙𝑑𝑐𝑐 +
∑𝑚
𝑗=1 𝑣

𝑛𝑒𝑤
𝑗

14 [𝑟 𝑗
$← {0, 1}𝜆]𝑚

𝑗=1

15 𝑐𝑜𝑚0 ← 𝑐𝑜𝑚𝑜𝑙𝑑

16 ∀ 𝑗 ∈ [1,𝑚], 𝑐𝑜𝑚 𝑗 = INCR(𝑐𝑜𝑚 𝑗−1, 𝑎𝑝𝑘𝑛𝑒𝑤𝑗
, 𝑣𝑛𝑒𝑤
𝑗

, 𝑟 𝑗)
17 𝑐𝑜𝑚𝑛𝑒𝑤 ← 𝑐𝑜𝑚𝑚

18 𝑏𝑚+2
$← {0, 1}𝜆

19 𝑐𝑐𝑛𝑒𝑤 ← (𝑎𝑝𝑘𝑛𝑒𝑤𝑐𝑐 , 𝜌𝑛𝑒𝑤𝑐𝑐 , 𝑣𝑛𝑒𝑤𝑐𝑐 , 𝑐𝑜𝑚𝑛𝑒𝑤)
20 𝑐𝑐 ← BLIND(𝑐𝑐𝑛𝑒𝑤 , 𝑏𝑚+2)
21 𝑠𝑛𝑜𝑙𝑑

𝑛+1 = PRF
𝑎𝑠𝑘𝑜𝑙𝑑𝑐𝑐

(𝜌𝑜𝑙𝑑𝑐𝑐)
22 public_input←

([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1

,𝑉𝑚𝑎𝑥𝑠𝑒𝑛𝑡 ,𝑉
𝑚𝑎𝑥
𝑡𝑜𝑎𝑙

, 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡, ˜𝑐𝑐𝑛𝑒𝑤)
23 private_input←

([c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [𝜎𝑜𝑙𝑑

𝑖
]𝑛
𝑖=1
, 𝑠𝑘, [c𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1

, [𝑏 𝑗]𝑚+2𝑗=1
, 𝜌𝑠𝑒𝑒𝑑 , 𝜎

𝑜𝑙𝑑
𝑐𝑐 ,

𝑐𝑐𝑜𝑙𝑑 , 𝑐𝑐𝑛𝑒𝑤)
24 𝜋 ← Prove𝑟𝑒𝑔𝑢𝑙 (public_input, private_input, pp

tx_regul
NIZK)

25 Append [(𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

, 𝑣𝑛𝑒𝑤
𝑗

, 𝑟 𝑗)]𝑚𝑗=1 to comList

26 Create𝑚 + 1 new empty lists: [sigList𝑗]𝑚+1𝑗=1
← [[]]𝑚+1

𝑗=1

27 for 𝑝 ∈ V do
// Send the request to each validator in V

28 async Send(type : tx, (([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), 𝜋), 𝑝)

// Receive �̃�
𝑝

𝑗
send by validator 𝑝:

29 Upon Receive(type : sig, [�̃�𝑝
𝑗
]𝑚+1
𝑗=1

, 𝑝) : for 𝑗 = 1, 2, . . .𝑚 + 1
do

30 𝜎
𝑝

𝑗
← UNBLIND(�̃�𝑝

𝑗
, 𝑏 𝑗)

31 if (𝜎𝑝
𝑗
∉ sigListj) ∧ (VERIFYSig (𝜎𝑝𝑗 , c

𝑛𝑒𝑤
𝑗

, 𝑝𝑘𝑝) == 1)
then

32 Append 𝜎
p
j to sigListj

33 if length(sigList) == 2𝑓 + 1 then
34 𝜎j ← AGGREGATE(sigListj)
35 Send(type : coin, (c𝑛𝑒𝑤

𝑗
, 𝜎 𝑗), 𝑎𝑝𝑘𝑛𝑒𝑤𝑗

)
36 return confirm

Algorithm10: Prove𝑟𝑒𝑔𝑢𝑙 (public_input, private_input, ppNIZK)
1 Function Prove𝑟𝑒𝑔𝑢𝑙(public_input, private_input, ppNIZK):

Result: 𝜋𝑟𝑒𝑔𝑢𝑙 the proof for the transfer without regulation
2 Compute the proof 𝜋𝑟𝑒𝑔𝑢𝑙 using the NIZK function PROVE

with inputs (public_input, private_input) and public

parameters ppNIZK representing the following relation:

// Created notes are well-formed:

3 (([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), [c𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
) ==

Tx([(c𝑜𝑙𝑑
𝑖
, 𝑠𝑘𝑜𝑙𝑑

𝑖
)]𝑛
𝑖=1
, (𝑝𝑘𝑛𝑒𝑤

𝑗
, 𝑣𝑛𝑒𝑤
𝑗
))

// Balance is conserved:

4
∑𝑛
𝑖=1 𝑣

𝑜𝑙𝑑
𝑖

==
∑𝑚+1
𝑗=1 𝑣

𝑛𝑒𝑤
𝑗

// Secret addresses corresponding to each

consumed coin are known:

5 [𝑎𝑝𝑘𝑖]𝑛𝑖=1 == [PRF𝑎𝑠𝑘𝑖 (0)]𝑛𝑖=1
// Spent coins are signed by 2f+1 validators:

6 for 𝑖 ∈ [1, 𝑛] do
7 VERIFYSig (𝜎𝑖 , c𝑜𝑙𝑑𝑖 , 𝑝𝑘) == 1

// The blinding is correct

8 [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

== [BLIND(c𝑛𝑒𝑤
𝑗

, 𝑏 𝑗)]𝑚+1𝑗=1

// Regulation checks

9 for 𝑖 ∈ [1, 𝑛] do
10 𝑎𝑝𝑘𝑜𝑙𝑑

𝑖
== 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐

11 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐 == PRF
𝑎𝑠𝑘𝑜𝑙𝑑𝑐𝑐

(0)
12 𝑎𝑝𝑘𝑛𝑒𝑤𝑐𝑐 == 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐

13 𝜌𝑛𝑒𝑤𝑐𝑐 == PRF𝜌𝑠𝑒𝑒𝑑 (𝑠𝑛
𝑜𝑙𝑑
1
| | ... | |𝑠𝑛𝑜𝑙𝑑𝑛 | |𝑚 + 2)

14 𝑣𝑛𝑒𝑤𝑐𝑐 == 𝑣𝑜𝑙𝑑𝑐𝑐 +
∑𝑚
𝑗=1 𝑣

𝑛𝑒𝑤
𝑗

15 𝑐𝑜𝑚0 ← 𝑐𝑜𝑚𝑜𝑙𝑑

16 ∀ 𝑗 ∈ [1,𝑚], 𝑐𝑜𝑚 𝑗 ← INCR(𝑐𝑜𝑚 𝑗−1, 𝑎𝑝𝑘𝑛𝑒𝑤𝑗
, 𝑣𝑛𝑒𝑤
𝑗

, 𝑟 𝑗)
17 𝑐𝑜𝑚𝑛𝑒𝑤 == 𝑐𝑜𝑚𝑚

18
∑𝑚
𝑗=1 𝑣

𝑛𝑒𝑤
𝑗
≤ 𝑉𝑚𝑎𝑥

𝑡𝑜𝑡𝑎𝑙

19 𝑣𝑛𝑒𝑤𝑐𝑐 ≤ 𝑉𝑚𝑎𝑥
𝑡𝑜𝑡𝑎𝑙

20 𝑎𝑝𝑘𝑜𝑙𝑑𝑐𝑐 ∉ 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡

21 ∀ 𝑗 ∈ [1,𝑚], 𝑎𝑝𝑘𝑛𝑒𝑤
𝑗

∉ 𝑆𝑎𝑛𝑐𝐿𝑖𝑠𝑡

22 return 𝜋𝑟𝑒𝑔𝑢𝑙

16

Algorithm 11: Register𝑟𝑒𝑔𝑢𝑙 ()
1 Function Register():

Result: 𝑐𝑐𝑢 an initial compliance coin

2 if ∃ [c𝑖]𝑛𝑖=1 ⊆ coinList ,
∑𝑛
𝑖=1 c𝑖 .𝑣 ≥ 𝑥 then

3 [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
← [c𝑖]𝑛𝑖=1

4 else
5 return fail

6 𝜌
$← {0, 1}𝜆

7 𝑐𝑐𝑢 ← (0, 𝜌, 0, 0)

8 𝑏
$← {0, 1}𝜆

9 𝑐𝑐𝑢 ← BLIND((𝑎𝑝𝑘𝑢 , 𝜌, 0, 0), 𝑏)
10 publicinput← (𝑎𝑝𝑘𝑢 , 𝑐𝑐𝑢)
11 privateinput← (𝑎𝑠𝑘𝑢 , 𝑐𝑐𝑢 , 𝑏)
12 Compute 𝜋𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 by calling PROVENIZK with inputs

(public_input, private_input) and public parameters ppregisterNIZK
that represent the following relations:

13 𝑐𝑐𝑢 == BLIND((𝑎𝑝𝑘𝑢 , 𝜌, 0, 0), 𝑏)
14 𝑎𝑝𝑘𝑢 == PRF𝑎𝑠𝑘𝑢 (0)
15 Create a new empty list: sigList← []
16 for 𝑝 ∈ V do

// Send the request to each validator in V
17 async Send(type : register, (𝑐𝑐𝑢 , 𝑎𝑝𝑘𝑢 ,𝑢, 𝜋𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟), 𝑝)

// Receive �̃�
𝑝
𝑐𝑐 send by validator 𝑝:

18 Upon Receive(type : sig, �̃�𝑝𝑐𝑐 , 𝑝) :
19 𝜎

𝑝
𝑐𝑐 ← UNBLIND(�̃�𝑝𝑐𝑐 , 𝑏)

20 if VERIFYSig (𝜎𝑝𝑐𝑐 , cc𝑢 , 𝑝𝑘𝑝) == 1 then
21 if length(sigList) == 2𝑓 + 1 then
22 𝜎cc ← AGGREGATE(sigList)
23 Store 𝜎𝑐𝑐 , 𝑐𝑐𝑢

24 return confirm

Algorithm 12: Validator𝑛𝑜_𝑟𝑒𝑔𝑢𝑙 ()

1 Storage:
2 snList // Stores all the serial numbers sn seen in

valid transactions. Used to avoid double
spending.

3 signedCoinList // Stores all the signed blinded coins
c̃ seen in valid transactions. Used to avoid
malicious replica attack.

4 Upon Receive(type : tx, (([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), 𝜋), 𝑎𝑝𝑘𝑠𝑟𝑐) :

5 if
(VERIFYNIZK (([𝑠𝑛𝑜𝑙𝑑𝑖]𝑛

𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), 𝑝𝑝𝑡𝑥_𝑛𝑜_𝑟𝑒𝑔𝑢𝑙

𝑁 𝐼𝑍𝐾
, 𝜋) ∧

(∀𝑖 ∈ [1, 𝑛], 𝑠𝑛𝑜𝑙𝑑
𝑖

∉ snList) ∨ ([c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1
⊆

singedCoinList) then
6 [�̃�𝑖 ← SIGN(c̃𝑛𝑒𝑤

𝑖
, 𝑠𝑘)]𝑛

𝑖=1
// Computes the blinded

coin’s signatures

7 for 𝑠𝑛 ∈ [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

do
8 Append 𝑠𝑛 to snList

9 Append [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

to signedCoinList

10 Send(type : sig, [�̃�𝑖]𝑚+1𝑖=1
, 𝑎𝑝𝑘𝑠𝑟𝑐)

11 else
12 Abort

Algorithm 13: Validator𝑟𝑒𝑔𝑢𝑙 ()

1 Storage:
2 snList // Stores all the serial numbers sn seen in

valid transactions. Used to avoid double
spending.

3 signedCoinList // Stores all the signed blinded coins
c̃ seen in valid transactions. Used to avoid
malicious replica attack.

4 registeredList // Stores a pair (u,apk) of user ID
associated with a public key for all the
registered users

5 Upon Receive(type : tx, (([𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), 𝜋), 𝑎𝑝𝑘𝑠𝑟𝑐) :

6 if (VERIFYNIZK (([𝑠𝑛𝑜𝑙𝑑𝑖]𝑛
𝑖=1
, [c̃𝑛𝑒𝑤

𝑗
]𝑚+1
𝑗=1
), 𝑝𝑝𝑡𝑥_𝑟𝑒𝑔𝑢𝑙

𝑁 𝐼𝑍𝐾
, 𝜋) ∧

(∀𝑖 ∈ [1, 𝑛], 𝑠𝑛𝑜𝑙𝑑
𝑖

∉ snList) ∨ ([c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1
⊆

singedCoinList) then
7 [�̃�𝑖 ← SIGN(c̃𝑛𝑒𝑤

𝑖
, 𝑠𝑘)]𝑛

𝑖=1
// Computes the blinded

coin’s signatures

8 for 𝑠𝑛 ∈ [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

do
9 Append 𝑠𝑛 to snList

10 Append [c̃𝑛𝑒𝑤
𝑗
]𝑚+1
𝑗=1

to signedCoinList

11 Send(type : sig, [�̃�𝑖]𝑚+1𝑖=1
, 𝑎𝑝𝑘𝑠𝑟𝑐)

12 else
13 Abort

14 Upon Receive(type : register, (𝑐𝑐𝑢 , 𝑎𝑝𝑘𝑢 ,𝑢, 𝜋), 𝑎𝑝𝑘𝑠𝑟𝑐) :
15 if (VERIFYNIZK ((𝑐𝑐𝑢 , 𝑎𝑝𝑘𝑢), 𝑝𝑝𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑁 𝐼𝑍𝐾

, 𝜋) ∧ ((𝑢, ∗) ∉
registeredList) ∨ (𝑐𝑐𝑢 ∈ singedCoinList)) then

16 �̃�𝑐𝑐 ← SIGN(𝑐𝑐𝑛𝑒𝑤𝑢 , 𝑠𝑘)// Computes the blinded

coin’s signature

17 Append 𝑐𝑐𝑢 to signedCoinList

18 Send(type : sig, �̃�𝑐𝑐 , 𝑎𝑝𝑘𝑠𝑟𝑐)
19 else
20 Abort

17

B IMPLEMENTATION DETAILS
B.1 Cryptographic building blocks

Pointcheval-Sanders. As explained in Section 7, the signature

scheme is a slightly modified version of the Coconut scheme [37],

which itself is a variant of the Pointcheval-Sanders signature

scheme [34]. It is based on type-3 bilinear pairing 𝑒 : G1×G2 → G𝑇
over secure groups G1,G2 and G𝑇 . We concretely instantiated it

with BLS12-377. We denote by F𝑞 its scalar field. First, let:

• H be a cryptographic collision and pre-image resistant

hash function with image in G1, so called hash-to-curve
7
.

• H be a cryptographic collision and pre-image resistant hash

function
8
with image in F𝑞 . Since the message𝑚 will be a

coin in the implementation, we allow H to take a tuple

(𝑚1,𝑚2, ...,𝑚𝑛) as input and return H(𝑚1 | |𝑚2 | |...| |𝑚𝑛).
𝑚 is thus always manipulated as H(𝑚) in the signature

scheme.

The signature scheme is as follows:

• SETUPsig () → ([ski]Ni=1, [pki]
N
i=1,𝑝𝑝, 𝑝𝑘𝑎𝑔𝑔): Operate two

Shamir secret sharing choosing two random polynomials

𝑃1, 𝑃2 ∈ F𝑞 [𝑋] of degree 𝑘 − 1 evaluating it in the points

0, 1, 2, ..., 𝑁 ∈ F𝑞 . Let the partial secret keys be the couples
[𝑠𝑘𝑖 = (𝑥𝑖 , 𝑦𝑖) = (𝑃1 (𝑖), 𝑃2 (𝑖))]𝑁𝑖=1. Sample a generator𝑔1, ∈
G1 and a generator 𝑔2 ∈ G2 and let the global verification

key be 𝑝𝑘𝑎𝑔𝑔 = (𝑋,𝑌) = (𝑔𝑃1 (0)
2

, 𝑔
𝑃2 (0)
2
). Compute and

publish the list [𝛾𝑖]𝑁𝑖=1 = [𝑔𝑦𝑖
1
]𝑁
𝑖=1

altogether with 𝑔1 and

𝑔2.

• BLIND(𝑚,𝑏) → �̃�: Sample a random 𝑠 ∈ F𝑞 , compute

𝑐𝑚 = PRF𝑠 (𝑚) and ℎ = H(𝑐𝑚). Let �̃� = (𝑐𝑚, ℎ, ℎH(𝑚)𝑔𝑏
1
)

and store𝑏. Compute a proof 𝜋𝑎𝑢𝑥 that �̃� is well computed
9

and send it altogether with �̃� to the signer.

• SIGN(�̃�, 𝑠𝑘𝑖) → 𝜎𝑖 : Parse �̃� as (�̃�1, �̃�2, �̃�3). Parse 𝑠𝑘𝑖
as (𝑥𝑖 , 𝑦𝑖). Check that H(�̃�2) = �̃�1 and 𝜋𝑎𝑢𝑥 is valid.

Compute 𝜎𝑖 = (˜𝜎𝑖,1, ˜𝜎𝑖,2) = (�̃�2, �̃�
𝑥𝑖
2
�̃�
𝑦𝑖
3
).

• UNBLIND(�̃�, 𝜎𝑖 , 𝑏) → 𝜎𝑖 : Parse 𝜎𝑖 as (˜𝜎𝑖,1, ˜𝜎𝑖,2). Compute

𝜎𝑖,2 = ˜𝜎𝑖,2𝛾
−𝑏
𝑖

. Compute 𝜎𝑖 = (˜𝜎𝑖,1, 𝜎𝑖,2).
• AGGREGATE([𝜎𝑖]𝑛𝑖=1) → 𝜎 : Compute 𝜎2 =

∏𝑛
𝑖=1 𝜎

𝜆𝑖
𝑖,2

where the 𝜆𝑖 =
∏
𝑗∈ (0,𝑘)\{𝑖 }

𝑗
𝑗−𝑖 are the Lagrange

coefficients. Sample a random 𝑡 to randomize the signature.

Let 𝜎 = (ℎ𝑡 , 𝜎𝑡
2
).

• VERIFYSig (𝑚,𝜎, 𝑝𝑘) → 𝑏: Parse 𝜎 as (𝜎1, 𝜎2). Parse 𝑝𝑘 as

(𝑋,𝑌). Check that 𝑒 (𝜎1, 𝑋𝑌H(𝑚)) == 𝑒 (𝜎2, 𝑔2)10.

7
https://pkg.go.dev/github.com/consensys/gnark-crypto@v0.13.0/ecc/bls12-

377#HashToG1

8
https://pkg.go.dev/github.com/consensys/gnark-crypto/ecc/bls12-377/fr/mimc

9
i.e 𝜋𝑎𝑢𝑥 has public inputs �̃� = (�̃�1, �̃�2, �̃�3) = (𝑐𝑚, ℎ,ℎH(𝑚)𝑔𝑏

1
) , private inputs

(𝑚,𝑠,𝑏) and statement (�̃�1 == PRF𝑠 (𝑚) ∧ �̃�3 == �̃�𝑚
2
𝑔𝑏
1
) . Computing first

𝑐𝑚 = PRF𝑠 (𝑚) and then H instead of directly computing H(𝑚 + 𝑘) saves us
from computing the costly hash-to-curve H inside of the NIZK. In our protocol,

this condition is verified within the proof 𝜋 in Transfer algorithm. The fact that

this modification doesn’t impact blinding property of the scheme is given proof of

FPAT-privacy. Preimage-Resistance of the PRF implies the security is neither impacted,

because it prevents the requester from reusing several times the group element ℎ.
10
Let 𝑠𝑘𝑎𝑔𝑔 = (𝑥, 𝑦) = (𝑃1 (0), 𝑃2 (0)) and (𝜎1, 𝜎2) a valid signature. For

left-hand side of the equation we have 𝑒 (𝜎1, 𝑋𝑌𝐻 (𝑚)) = 𝑒 (ℎ𝑡 , 𝑔𝑥
2
𝑔
𝑦𝐻 (𝑚)
2

) =

𝑒 (ℎ𝑡 , 𝑔𝑥+𝑦𝐻 (𝑚)
2

) = 𝑒 (ℎ,𝑔2)𝑡 (𝑥+𝑦𝐻 (𝑚)) , and for the right-hand side we have

Note that a great advantage of this signature scheme over

concurrent threshold signature schemes (as the popular FROST [29])

is that aggregation is completely non-interactive while working

on an unlimited number of messages, which makes it suitable for

usage in our asynchronous protocol.

C PROOFS
For convenience, our implementations of Transfer and Validator
(Algorithms 6 and 12) allow performing transfers to multiple

receivers in one Transfer call as explained in Section 5. This could

be seen as a batch of successive transfers with only one receiver.

The proofs below strictly follows the specification introduced in

Section 4 and only consider transfers with one receiver (𝑚 =

1). Then, the proofs can be extended to transfers with multiple

receivers. As a consequence, in this section, Transfer will creates

two coins: a coin c𝑛𝑒𝑤
1

for the recipient of the payment and a redeem

coin c𝑛𝑒𝑤
2

.

To simplify notations, we also assume that each user has exactly

one public/secret address pair. Thus, 𝑎𝑝𝑘𝑛𝑒𝑤
2

must equal the sole

public address of the sender.

The proofs concern the non-regulated protocol but can be

extended to the regulated protocol as explained in Appendix C.4.

C.1 FPAT-Safety
Let 𝐻 be the history of an execution of Paxpay (thus composed of

FPAT operations). Let us denote 𝐿𝑝 the local history of a participant

𝑝 . Notice that, as the Byzantine participants are not expected to

follow the protocol, the FPAT-safety specification allows us to assign

them arbitrary local histories, as long as the safety property for the

correct participants is met. There are only three ways for a correct

participant to receive a message:

• line 1 of Algorithm 5 - Receive (the participant is a user);
• line 16 of Algorithm 6 - Transfer (the participant is a user);

• line 4 of Algorithm 12 - Validator (the participant is a

validator).

In each of these cases, the message content is checked (lines 3 in

Algorithm 5, 18 in Algorithm 6 and 5 in Algorithm 12). Themessages

coming from Byzantine participants that do not pass these checks

are ignored, we thus do not consider them in our analysis.

Given the history 𝐻 = (𝐿1, ..., 𝐿𝑈) we now construct a legal

serialisation 𝑆 of 𝐻 . Considering successful transfer and balance
operations in 𝐻 , we build a directed graph 𝐺𝐻 , which accounts

of local histories 𝐿𝑝 for correct participants, as well as causality

relations across the operations. We then show that 𝐺𝐻 is acyclic

and construct a legal serialization of 𝐻 from it.

Let us first introduce some terms.We say that a transfer operation
𝑜 creates a coin c𝑛𝑒𝑤 if a correct user 𝑢 appends c𝑛𝑒𝑤 to coinList in
line 4 of Receive (Algorithm 5). We say that a transfer operation 𝑜
invoked by a correct user 𝑢 consumes a coin c𝑜𝑙𝑑 if the execution

of line 2 of Transfer (Algorithm 6) selects the coin c𝑜𝑙𝑑 . We say

that a balance operation invoked by correct user reads a coin c if
the execution of line 1 of Balance (Algorithm 4) parses c.

Lemma 1. No more than one transfer operation can consume a coin.

𝑒 (𝜎2, 𝑔2) = 𝑒 ((ℎ𝑥+𝑦𝐻 (𝑚))𝑡 , 𝑔2) = 𝑒 (ℎ𝑡 (𝑥+𝑦𝐻 (𝑚)) , 𝑔2) = 𝑒 (ℎ,𝑔2)𝑡 (𝑥+𝑦𝐻 (𝑚)) , so
equality holds.

18

Proof. Suppose that a transfer operation 𝑜1 ∈ 𝐻 consumes a

coin c𝑜𝑙𝑑 . We show that for any operation 𝑜2 ∈ 𝐻,𝑜2 ≠ 𝑜1, 𝑜2 does

not consume c𝑜𝑙𝑑 .
𝑜1 has been completed, hence a setV1 of at least 2𝑓 +1 validators

have added 𝑠𝑛𝑜𝑙𝑑 to their snList (line 7 of Validator). Consider

another successful operation 𝑜2. 𝑜2 consumes coins [c𝑖]𝑛𝑖=1. Thus,
a setV2 of 2𝑓 + 1 validators have added [𝑠𝑛𝑜𝑙𝑑𝑖]

𝑛
𝑖=1

to their snList.
Since their are 𝑁 = 3𝑓 + 1 validators in total, the intersection

of V1 and V2 is composed of at least 𝑓 + 1 validators. Hence, at

least one correct validator has added 𝑠𝑛𝑜𝑙𝑑 and [𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

to its

snList. Because of line 5 of Validator, 𝑠𝑛𝑜𝑙𝑑 is different from any

[𝑠𝑛𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1

. □

Lemma 2. If a transfer operation 𝑜 consumes a coin c𝑜𝑙𝑑 , either there
exists another transfer 𝑜′ that creates c𝑜𝑙𝑑 , or c𝑜𝑙𝑑 has been created
during the initialization.

Proof. Suppose that a transfer 𝑜 consumes a coin c𝑜𝑙𝑑 . By the

Algorithm 6 (line 2), this coin has been previously appended to

coinList. The only way to append a coin in coinList is either at
initialisation, or through the algorithm Receive (Algorithm 5) line

4. The second and third clause of the check in line 3 of Receive
(Algorithm 5), combined with the unforgeability of the signature

scheme, imply that this coin has been signed by 2𝑓 + 1 validators.
Indeed, the unforgeability of the signature scheme directly comes

from the one of the variant of the Pointcheval-Sanders signature

scheme which is randomizable and aggregatable. This holds under

the SXDH assumption, as stated in [34]. There are at 𝑓 + 1 correct
validators amongst them. Those correct validators only produce

these signatures if this coin has been created in the algorithm

Transfer or in the algorithm Initialisation. □

We can associate H with a directed graph 𝐺𝐻 defined as follows:

the set of vertices of 𝐺𝐻 is the set of all successful transfer and
balance operations in 𝐻 . There is a directed edge from an operation

𝑜1 to an operation 𝑜2 if and only if there exists a coin c such that

one of the following conditions holds:

• 𝑜1 and 𝑜2 are both transfer, 𝑜1 creates c and 𝑜2 consumes c
• 𝑜1 is a transfer, 𝑜2 is a balance, 𝑜1 creates c and 𝑜2 reads c
• 𝑜1 is a balance, 𝑜2 is a transfer, 𝑜1 reads c and 𝑜2 consumes c
The preimage-resistance of the PRF used to derive the seeds

𝜌𝑛𝑒𝑤 of the created coins from the seed 𝜌𝑜𝑙𝑑 of the consumed coins,

together with the lemma 1, guarantee that the graph 𝐺𝐻 is acyclic.

We use the Kahn algorithm [28] to run a topological sort on the

graph. The following version of Kahn algorithm applied to 𝐺𝐻
terminates and produces a sequence 𝑆 containing all successful

operations of 𝐻 .

At each iteration of the main loop (line 3), for a certain local

history 𝐿𝑖 , the smallest operation 𝑜 with respect to ≺𝐿𝑖 amongst

all the operations with no incoming edge is selected (line 5) and

appended to the sequence 𝑆 , so 𝑆 is by construction a serialization

of 𝐻 . We only need to prove the following lemma:

Lemma 3. Every sequence produced by the Kahn algorithm
(Algorithm 14) is legal.

Proof. Let us consider the couple formed by the sequence 𝑆 and

the set of vertices𝑉 defined line 1 (resp. line 2) of KahnAlgorithm 14,

Algorithm 14: Kahn Algorithm(𝐺𝐻)

1 Initialise sequence 𝑆

2 Initialise 𝑉 as the set of vertices of 𝐺𝐻 with no incoming

edge

3 while 𝑉 ≠ ∅ do
4 Choose 𝑜 ∈ 𝑉
5 while ∃𝐿𝑖 ∈ 𝐻, ∃𝑜′ ∈ 𝑉𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑜 ≺𝐿𝑖 𝑜′) do
6 (𝑜, 𝑜′) ← (𝑜′, 𝑜)
7 Remove 𝑜 from 𝑉

8 Append 𝑜 to 𝑆

9 for each node 𝑜′ with an incoming edge e from 𝑜 do
10 Remove e
11 if 𝑜′ has no other incoming edge then
12 Append 𝑜′ to 𝑉

13 return S

which is updated at each loop iteration. We denote by (𝑆𝑖 ,𝑉𝑖) the
state of this couple at the 𝑖𝑡ℎ iteration. (𝑆𝑖 ,𝑉𝑖) is said to be valid if

𝑆𝑖 is legal and remains legal by adding any operation 𝑜 from 𝑉𝑖 to

it. We will show by induction that the couple (𝑆𝑖 ,𝑉𝑖) remains valid

at each iteration of the loop line 3, which implies that the sequence

𝑆 returned by Algorithm 14 is legal.

At initialisation, 𝑆0 is void so trivially legal. By lemma 2, the only

transfer in the set𝑉0 are the ones consuming coins c𝑖𝑛𝑖𝑡 with value

𝑣𝑖𝑛𝑖𝑡 created by the trusted party T during the initialisation phase.

Similarly, the only balance operations in 𝑉0 are the ones reading

the coins c𝑖𝑛𝑖𝑡 . Thus, any operation picked from 𝑉0 at line 4 will

lead to a legal sequence 𝑆1.

Now suppose that (𝑆𝑖 ,𝑉𝑖) is valid. Let us prove that (𝑆𝑖+1,𝑉𝑖+1) is
also valid. 𝑆𝑖+1 is built by appending elements of𝑉𝑖 to 𝑆𝑖 during the

(𝑖)𝑡ℎ iteration. Hence, 𝑆𝑖 at the end of the (𝑖)𝑡ℎ iteration constitutes

a legal sequence by hypothesis (since the couple (𝑆𝑖 ,𝑉𝑖) is valid).
At the beginning of the (𝑖 + 1)𝑡ℎ iteration, 𝑆𝑖+1 equals 𝑆𝑖 at the end
of the (𝑖)𝑡ℎ iteration, and is thus legal. It remains to show that (𝑉𝑖+1,
𝑆𝑖+1) is valid, hence that 𝑆𝑖+1 is a legal sequence at the end of the

(𝑖 + 1)𝑡ℎ iteration. Let 𝑜 be any operation in 𝑉𝑖+1:

• Case 1. 𝑜 is a balance: By construction, the vertex representing
this operation has no incoming edge. Hence for each coin

c read by 𝑜 , the matching transfer operation that creates c
have already been appended to the sequence 𝑆𝑖+1. Also by

construction, these coins have not been spent yet by any

transfer operation since the transfers that spend them have

𝑜 as input. Hence, the concatenation of 𝑆𝑖+1 with 𝑜 is legal.

• Case 2.𝑜 is a transfer : By construction, the vertex representing
𝑜 has no incoming edge, hence all the coins that consumes 𝑜

have already been created. By lemma 1 and balance between

consumed and created value made line 4 of Algorithm 8, 𝑜

is the only 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 operation that consumes these coins.

Hence, the concatenation of 𝑆𝑖+1 with 𝑜 is legal.

Then, at the end of the (𝑖 + 1)𝑡ℎ iteration, 𝑆𝑖+1 is legal and thus

(𝑉𝑖+1, 𝑆𝑖+1) is valid. By induction, the sequence 𝑆 resulting of our

Khan algorithm is legal. □

19

Lemma 4. If a correct user 𝑢 invokes an operation 𝑜 = balance𝑢 ()
returning value 𝑣1 then, if the next operation transfer𝑢 (𝑣2,𝑤) invoked
is such that 𝑣2 ≤ 𝑣1, it does not return fail.

Proof. This condition is immediately verified because the only

event that can make a transfer operation invoked by a correct user

fail is non-existence of a list of coins [c𝑜𝑙𝑑
𝑖
]𝑛
𝑖=1
⊆ coinList such

that

∑𝑛
𝑖=1 c

𝑜𝑙𝑑
𝑖

.𝑣 ≥ 𝑥 (line 2 of Transfer). But no elements are

removed from coinList during protocol execution except in a later

step of Transfer algorithm. This guarantees that all coins read

(line 1) in the Balance algorithm called by the preceding balance
operation are still in coinList. By hypothesis they pass the check,

so the transfer does not return fail. □

Lemma 3 and 4 imply:

Theorem 1. Paxpay ensures FPAT-Safety.

Proof. By lemma 3, we can obtain a legal sequence 𝑆𝐶 of all

the operations that confirmed in 𝐻 . We can then insert in 𝑆𝐶 the

operations of 𝐻 that has failed (respecting the order of the local

histories 𝐿) to form a sequence 𝑆 .

With lemma 4, the sequence 𝑆 remain legal, and contain all

operations of H. □

As said in Section 5, our Transfer algorithm allows to transfer

money to several users in one call. Each call to Transfer can be

translated as successive 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 operations to a single user, thus

the Theorem 1 still holds for our algorithm Transfer.

C.2 FPAT-Liveness
We remind that 𝐹𝑃𝐴𝑇 -Liveness guarantees that (1) every operation

invoked by a correct user eventually terminates and (2) every

transfer operation 𝑡𝑥 performed by a correct user eventually takes

effect, i.e., there is a time after which balance operations at correct
users (sender or receiver) return values accounting for 𝑡𝑥 .

Theorem 2. Paxpay ensures FPAT-Liveness.

Proof. (1) Operation 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 is performed completely locally

and so trivially terminates. Concerning the 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 operation,

the only blocking instruction in the Transfer algorithm is the

request of coins’ signatures (line 16). The first clause of the check

performed line 3 of the Receive algorithm (Algorithm 5) ensures

that the calling user 𝑢 knows the secret key corresponding to all

the coins of her coinList. The second clause guarantees that all

these coins have valid signatures. Then, the completeness property
of the NIZK guarantees that the proof 𝜋 computed at line 12 of

Algorithm 6 is valid. The removal of spent coins from coinList at
line 8 of the Transfer algorithm, along with the last clause of the

check line 3 of the Receive algorithm guarantees that 𝑢 will not

try to spend the same coin twice. Moreover, the preimage-resistance
of the PRF guarantees that secret addresses 𝑎𝑠𝑘 of 𝑢 have not been

computed by any Byzantine participant. The same property of the

PRF implies that no Byzantine participant have computed the serial

numbers 𝑠𝑛 computed at line 3, so it does not already appears in the

snList of validators. Thus, since the serial number do not already

appear in their snList and the proof 𝜋 is valid, the correct validators

that receive the transfer request will sign the new coins and answer.

Then termination of transfer operation directly follows from the

network assumption (communication channels are reliable) and

from the model assumption (at least 2𝑓 + 1 validators are correct).
(2) There are only a finite number of transfer∗ (𝑣+, 𝑢) operation

completed before time 𝑡 and the channels are reliable. Thus, there

exists a time 𝑡 ′ after which all the coins that were sent to a correct

user 𝑢 before time 𝑡 are received by 𝑢. Because of the line 4 of the

Receive algorithm, these coins have been appended to 𝑢’s coinList.
Let 𝑜 be a 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 operation invoked by 𝑢 at time 𝑡 ′′ ≥ 𝑡 ′. The
only coins removed from her coinList have been removed during

completed transfers operation she has invoked before 𝑡 ′′. The coins
in her coinList at time 𝑡 ′′ are thus the coins that have been received

before 𝑡 ′ but not removed by the transfer operation she has called

before 𝑡 ′′. Hence:∑︁
transfer∗ (𝑣+,𝑢)

invoked by correct users

completed before time 𝑡

𝑣+ −
∑︁

transfer𝑢 (𝑣−,∗)
completed before time𝑡 ′′

𝑣−

Thus, FPAT-Liveness holds. □

C.3 FPAT-privacy
In this section we describe more precisely the game G𝑝𝑟𝑖𝑣 defining
FPAT-privacy.

Let 𝑃𝑟 (G𝑝𝑟𝑖𝑣) be the probability that the adversary wins the

game G𝑝𝑟𝑖𝑣 . By definition, FPAT-privacy means that it exists a

negligible function Adv such that, for a security parameter 𝜆:

|𝑃𝑟 (G𝑝𝑟𝑖𝑣) − 1

2

| ≤ Adv(𝜆)

First we give more details about the functioning of the Paxpay

oracle O𝑃𝑎𝑥𝑝𝑎𝑦 . Its provides the three following interfaces:

• An interface allowing the caller to create addresses. Upon

receiving such a 𝑐𝑟𝑒𝑎𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠 query, it runs Algorithm 2,

stores the generated private address 𝑎𝑠𝑘 and returns to the

caller the corresponding public address 𝑎𝑝𝑘 . It also initialises

an empty coinList attached to this address.

• An interface allowing the caller to append coins to the

coinList of the different users.
• An interface allowing the caller to submit abstract

transactions. Abstract transactions are tuples 𝑡𝑥 =

(𝑎𝑝𝑘𝑆 , [𝑐𝑖]𝑛𝑖=1, 𝑣, 𝑎𝑝𝑘𝑅) specifying a transaction sender’s

public key 𝑎𝑝𝑘𝑆 , a list consumed coins [𝑐𝑖]𝑛𝑖=1 belonging

to the coinList attached to 𝑎𝑝𝑘𝑆 , a transferred value 𝑣 , and a

receiver public address 𝑎𝑝𝑘𝑅 . Upon receiving such a query

𝑡𝑥 , O𝑃𝑎𝑥𝑝𝑎𝑦 runs Algorithm 6 with inputs (𝑣, 𝑎𝑝𝑘𝑅) (with
knowledge of the local storage of user 𝑎𝑝𝑘𝑆 , including

her coinList and 𝑎𝑝𝑘𝑆) as well as Algorithm 12, internally

simulating the interaction between the sender and validators.

Finally, it outputs the execution traces of all parties.

Remark: Algorithm 4, corresponding to balance operation,

as Algorithm 5, by which users receive funds, are performed

completely locally. So they trivially do not impact the privacy

guarantees of our protocol and we exclude them from our analysis.

20

We suppose the NIZK scheme is perfect zero-knowledge, with

a simulator taking as input a trapdoor 𝑡𝑑𝑁𝐼𝑍𝐾 generated with

the common reference string 𝑝𝑝𝑁𝐼𝑍𝐾 during execution of

SETUPtrapdoorNIZK , as it is the case for Groth16.

The distinguishing game G𝑝𝑟𝑖𝑣 is defined by following interactions

between the adversary A, and a challenger C:

Initialisation Phase:
• C chooses the security parameter 𝜆. He generates

public parameters 𝑝𝑝NIZK of the NIZK scheme running

SETUPtrapdoorNIZK , obtaining at the same time the corresponding

trapdoor 𝑡𝑑𝑁𝐼𝑍𝐾 taken as input by the NIZK simulator. C
also runs SETUPsig obtaining the public parameters 𝑝𝑝𝑆𝑖𝑔
of the signature scheme. C stores the secret key 𝑠𝑘𝑎𝑔𝑔 =

(𝑃1 (0), 𝑃2 (0)) corresponding to the threshold public key

𝑝𝑘𝑎𝑔𝑔 = (𝑔𝑃1 (0)
2

, 𝑔
𝑃2 (0)
2
).

C sends those public parameters (𝑝𝑝NIZK, 𝑝𝑝sig) to the

adversary A and uses them to initialise two oracles OPaxpay
1

and OPaxpay
2

.

• For each user, A sends a 𝑐𝑟𝑒𝑎𝑡𝑒𝐴𝑑𝑑𝑟𝑒𝑠𝑠 queries to C who

transmit it to the oracles. They outputs public keys to C, who
transmits them to A.

• A initialises the balances of the users generating coins

appended to the coinList of each participant in both oracles

OPaxpay
1

and OPaxpay
2

.

• C samples a random bit 𝑏.

Challenge Phase: The challenge phase consists in several

iterations of the following steps:

• A submits pairs of consistent abstract transactions (𝑡𝑥0, 𝑡𝑥1)
to the challenger C. Two transactions are consistent if and

only if the number 𝑛 of coins they consume are identical,

and, if the receiver 𝑎𝑝𝑘𝑅 is controlled byA in one of the two

transactions, then the receiver of the other transaction is the

same 𝑎𝑝𝑘𝑅 in the other transaction and the transferred value

𝑣 is also equal in both transactions.

• Receiving couple of abstract transactions (𝑡𝑥0, 𝑡𝑥1), the
challenger C checks its consistency. If the two abstract

transactions are consistent, he provides the oracles OPaxpay
1

and OPaxpay
2

respectively with 𝑡𝑥0 and 𝑡𝑥1, receiving as

output execution traces 𝑇𝑟0 and 𝑇𝑟1.

• Finally C provides A with the couple (𝑇𝑟 |A
𝑏

,𝑇𝑟
|A
1−𝑏) of the

restrictions of execution traces to the parties controlled by

A, in a permuted order depending on the bit 𝑏 sampled in

initialisation phase.

Decision Phase: At the end of the interactions with the challenger

C, the adversary A outputs a guess 𝑏′ about the bit 𝑏 sampled by

C at initialisation. A wins the game if 𝑏′ = 𝑏.

Proof: We give a sketch of proof of FPAT-privacy by an hybrid

argument. We describe a sequence [G𝑖]5𝑖=0 of games such that G0
is the game G𝑝𝑟𝑖𝑣 defining our security property, and G5 is a game

where the challenger’s responses to the adversary queries does

not depend on the bit 𝑏. We prove that for all 𝑖 in {0, ..., 5} the
adversary’s advantage in distinguishing game G𝑖 from game G𝑖+1
is negligible. Because the winning advantage ofA in G5 is trivially
null, this proof the adversary’s advantage is negligible in G𝑝𝑟𝑖𝑣 by
triangular inequality.

In Paxpay protocol, correct users only interact with the validators

by broadcasting a same message to all of them (message of type

tx line 15 of Transfer). Thus, the views of each validator are

identical up to the order of received requests. Moreover, network

assumptions states that, for each user 𝑢, communication channels

between 𝑢 and any validator have similar latency distributions. It

is thus sufficient to restrict our analysis to the view of a generic

validator. Indeed, the combined knowledge of all the Byzantine

validators leaks no more information to A than this generic

validator’s knowledge.

We note AdvPRF the advantage the adversary has in distinguishing

a random function from an element of the PRF family sampled

with an uniformly random seed. For the threshold blind signature

scheme, rather than with an abstraction, we reason directly on the

modified Coconut described in Appendix B.1. We note AdvDDH the

advantage in winning the Decisional Diffie-Hellman (DDH) game

in G1.

Game G1 is the same game as G0 excepts the NIZK in validator’s

trace is replaced by a simulated proof 𝜋𝑠𝑖𝑚 generated by the

challenger using the trapdoor 𝑡𝑑𝑁𝐼𝑍𝐾 corresponding to public

parameters 𝑝𝑝𝑁𝐼𝑍𝐾 computed at initialisation of the game. We

have:

𝑃𝑟 (G0) = 𝑃𝑟 (G1)

Proof. Straightforwardly follows from definition of perfect

zero-knowledge. □

Game G2 is the same as G1 with the blinded coins [c̃𝑗]𝑚𝑗=1 in

validator’s trace replaced by random values of corresponding

form. More precisely, each blinded coin c̃𝑗 = (𝑐c𝑗 , ℎ, ℎH(c𝑗)𝑔𝑏)
with 𝑐c𝑗 = PRF𝑠 (c𝑗) and ℎ = H(𝑐c𝑗), is replaced by a tuple

(𝑟 𝑗 ,H(𝑟 𝑗), 𝑔 𝑗) where 𝑟 𝑗 is a random element of the field F𝑞 , and
𝑔 𝑗 a random element of G1. C also replaces the proof 𝜋𝑎𝑢𝑥 of the

algorithm BLIND by a simulated one. We have:

|𝑃𝑟 (G1) − 𝑃𝑟 (G2) | ≤ 1 − (1 − AdvPRF)2

Proof. The seed 𝑠 used in the PRF to compute 𝑐c𝑗 being sampled

at random in Algorithm BLIND, it is indistinguishable from the

random element 𝑟 𝑗 . Moreover, element 𝑏 being chosen at random in

algorithm BLIND, 𝑔𝑏 is perfectly indistinguishable from a random

element of G1 and so is ℎH(c𝑗)𝑔𝑏 . Finally, 𝜋𝑎𝑢𝑥 is also perfectly

indistinguishable from a simulated proof by hypothesis and thus,

the above upper bound follows. The right-hand side is quadratic

in AdvPRF since two coins are created (the payment coin and the

redeem coin).

□
21

Game G3 is the same game as G2 with the serial numbers

[𝑠𝑛𝑖]𝑛𝑖=1 in validator’s trace replaced by truly random values of

corresponding size (concretely, an elements uniformly sampled in

F𝑞). We have:

|𝑃𝑟 (G2) − 𝑃𝑟 (G3) | ≤ 1 − (1 − AdvPRF)𝑛

Proof. The seed 𝑎𝑠𝑘 is chosen at random by the oracles (line 1

of Algorithm 2), and evaluated on the values 𝜌𝑖 which are unique

with overwhelming probability, so the upper bound directly follows

from the pseudorandomness property of the used PRF. □

Game G4 is the same as G3 except that the challenger C modifies

not only the generic validator’s trace, but also the receiver’s trace

in case it is controlled by A. C replaces the threshold signature 𝜎

received from the oracle by a signature 𝜎𝑠𝑖𝑚 generated by C with

𝑠𝑘𝑎𝑔𝑔 = (𝑥,𝑦). C generates 𝜎𝑠𝑖𝑚 sampling a random 𝜎𝑠𝑖𝑚,1 ∈ G1,

computing 𝜎𝑠𝑖𝑚,2 = 𝜎
𝑥+𝑦 ·H(𝑚)
𝑠𝑖𝑚,1

and letting 𝜎𝑠𝑖𝑚 = (𝜎𝑠𝑖𝑚,1, 𝜎𝑠𝑖𝑚,2).

|𝑃𝑟 (G3) − 𝑃𝑟 (G4) | ≤ AdvDDH

Proof. The randomisation step in algorithm AGGREGATE,

takes (𝜎1, 𝜎2) and compute (𝜎𝑡
1
, 𝜎𝑡

2
) with 𝑡 uniformly sampled in

{0, |G1 | − 1}. The not randomized signature is thus (ℎ,ℎ𝑥+𝑦H(𝑚)),
the randomized signature is (ℎ𝑡 , ℎ (𝑥+𝑦 ·H(𝑚)) ·𝑡) and the simulated

signature is (𝑧, 𝑧𝑥+𝑦 ·H(𝑚)), with 𝑧 a random element of G1.

With the knowledge of ℎ obtained from the blinded coin in the

validator’s trace, distinguish the randomized and the simulated

signature is equivalent to distinguish (ℎ,ℎ𝑡 , ℎ𝑡 (𝑥+𝑦𝐻 (𝑚))) from
(ℎ, 𝑧, 𝑧𝑥+𝑦𝐻 (𝑚)). The DDH problem reduces to it, as it is argued in

[34].

□

Game G5 is the same as G4 with a modification of the coin sent

to the receiver in case it is controlled by A. The coin c𝑛𝑒𝑤
𝑠𝑖𝑚

=

(𝑣, 𝑎𝑝𝑘A , 𝜌𝑛𝑒𝑤𝑠𝑖𝑚
) has the same value 𝑣 and public key 𝑎𝑝𝑘A as in

the game G4 (C extract it directly from the adversary’s queries

without calling any oracle), but 𝜌𝑛𝑒𝑤
𝑠𝑖𝑚

is a field element chosen at

random in G5. We have:

|𝑃𝑟 (G4) − 𝑃𝑟 (G5) | ≤ AdvPRF

Proof. 𝜌𝑛𝑒𝑤 is computed from a PRF with a seed 𝜌𝑠𝑒𝑒𝑑 chosen

uniformly at random (line 4 Algorithm 6) and evaluated on an input

𝑠𝑛1 | |𝑠𝑛2 | |...| |𝑠𝑛𝑛 | | 𝑗 which is unique with overwhelming probability,

so upper bound directly follows from definition of a PRF. □

C.4 Regulation impact
The various proofs provided above still apply to the regulated

version, as the transfer operation is handled in exactly the same

way by the validators. The main problem that could arise would

concern the privacy. While the NIZK proof differs between the

regulated and non-regulated versions, its public inputs remain the

same. The compliance coin is processed like any other coin from

an external perspective. Therefore, the revealed data includes the

blinding of the new compliance coin and the serial number of the

old compliance coin, just as it would for a standard coin in the

non-regulated NIZK.

D COMPARISON TABLE

Table 3: SNARK Proving and Verification Time on a
m5.8xlarge EC2 instance (AWS) with Ubuntu 22.

Regulated Not Regulated

1 Core 16 Cores 1 Core 16 Cores

Proving time (ms)

12079

(± 19)

1624

(± 40)

5471

(± 15)

783

(± 22)

Verification time (ms)

9.60

(± 0.01)

5.98

(± 0.04)

8.97

(± 0.02)

5.69

(± 0.04)

Table 4: Detailed comparison of Paxpay vs. Zcash [17],
Lelantus [26], Quisquis [19], Zef [6], PRCash [40],
PEReDi [35] and PARScoin [36].

Zc
as
h

Le
la
nt
us

Q
ui
sq
ui
s

Ze
f

PR
Ca

sh
PE

Re
D
i

PA
RS

co
in

Pa
xp
ay

PRIVACY PROPERTIES
Confidential transfers:

Yes ∥ No ∥ Partial ● ● ● 11 12 ● ● ●

Sender-anonymous transfers:
Yes ∥ No ∥ Partial ● ● ● ❍ 13 14 15 ●

Receiver-anonymous transfers:
Yes ∥ No ● ● ● ● ● ● ● ●

Unlikable transfers:
Yes ∥ No ● ● ● ❍ 16 ● ● ●

Anonymity strategy:
Full ∥ AS (Anonymity Set)

Full AS AS Full Full Full Full Full

MODEL ASSUMPTIONS
Asynchronous network:

Yes ∥ No ❍ ❍ ❍ ● ❍ ❍ ● ●

Correct validators model:
H (Honest) ∥ SH (Semi-Honest)

SH SH SH SH SH H H SH

REGULATION FEATURES

Limited held amount per user ❍ ❍ ❍ ❍ ❍ ● ❍17 ❍

Limited spendable amount per tx ❍ ❍ ❍ ❍ 18 ● ● ●

Limited spendable amount in total ❍ ❍ ❍ ❍ ❍ ● ● ●

Full asset tracing ❍ ❍ ❍ ❍ ❍ ● ● ❍

Sanction list ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

Provable transaction history ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

PERFORMANCE
Transaction throughput

(tx/s) 25 N/A N/A 88
19

N/A
20

N/A N/A 925
21

Transaction latency
(s) 1000

22
N/A N/A < 1 N/A N/A N/A < 1

NIZK Proving time
(ms) 21K 2378 2110 438 100 3100 392 6959

NIZK Verification time
(ms) 9

23
40
24

251
25

142
26

96
27

518
28

159
29

5
30

22

Table 3 details Paxpay NIZK benchmark on an AWS m5.8xlarge EC2 instance running Ubuntu

22.

Table 4 gives additional details. Note that the NIZK proving and verification time have been

tested in the same conditions for all the protocols.

11
The sender of the output coin will know a lower bound (or the exact value) on the

amount of the future payment during which the receiver will spend the coin.

12
The sender of the output coin will know a lower bound (or the exact value) on the

amount of the future payment during which the receiver will spend the coin.

13
The receiver knows the sender.

14
The receiver knows the sender.

15
The receiver of the transaction is the only one to know the sender’s identity. The

protocol could be sender-anonymous but it would weaken the regulatory enforcement.

In our construction, we circumvent this problem with the 𝑆𝑎𝑛𝑐𝑡𝑖𝑜𝑛𝐿𝑖𝑠𝑡 , proving that

the sender is legit within the NIZK.

16
Validators can link transactions emitted during the same epoch by the same user.

17
See Section 8, in the Regulation paragraph

18
PRCash as a limit defined per epoch, not per transaction.

19
Estimate from Zef [6] paper on the throughput for each validator running on 16

one-core shard, each shard running on a m5.8xlarge EC2 (AWS) machine equiped with

an Intel Xeon Platinum 8175 CPU.

20
PRCash paper provide a theoretical throughput that is only computed based on the

NIZK verification time, and provide no more information this metric.

21
Tests running on 16 CPU core of a m5.8xlarge EC2 instance equipped with an Intel

Xeon Platinum 8175 CPU, equivalent to Zef.

22
Considering immediate inclusion in a block and 15 block validation with 1min15

average block production time

23
Benchmark done on a computer equipped with an Intel Core i7 3.5GHz CPU, 32 GB

of RAM and Linux.

24
Over an anonymity set of 2

16
and a proof batch size of 50. Computed on an Intel

I7-4870HQ CPU.

25
Anonymity set of size 64. Computed on an Intel Core i7 2.8GHz CPU.

26
Tests running on one CPU core of a m5.8xlarge EC2 instance equipped with an

Intel Xeon Platinum 8175 CPU. The verification time has only a relative impact on the

scalability of the system since a validator can be efficiently distributed over several

machines, increasing the transaction throughput.

27
On one core of an Intel Core i7-4770 CPU. Range proof on 2

20

28
The benchmark was made on a computer with an Intel Core i7-9850H CPU at 2.60

GHz with 16 GB of RAM using Ubuntu 20.04.2 LTS. This value is computed with the

formula provided in the paper for 8 byzantine validators and all compliance parameters

set to 2
20 ≈ 1, 000, 000 (Considering a maximum value of 1000 coins with precision of

10
−3
).

29
The benchmark was made on a computer with an Intel Core i7-9850H CPU at 2.60

GHz with 16 GB of RAM using Ubuntu 20.04.2 LTS. This value is computed with the

formula provided in the paper for 8 byzantine validators and the maximum receivable

amount set to 2
20 ≈ 1, 000, 000 (Considering a maximum value of 1000 coins with

precision of 10
−3
).

30
Benchmark on one CPU core of an Intel i7 2.6 GHz CPU. The verification time has

a relative impact on the scalability of the system since a validator can be efficiently

distributed over several machines, increasing the transaction throughput.

23

	Abstract
	1 Introduction
	2 Related work
	3 Model
	3.1 Participants and adversary
	3.2 Network and communications
	3.3 Cryptographic tools

	4 Fully private asset transfer (FPAT)
	5 Paxpay Protocol
	6 Regulatory enforcement
	7 Paxpay implementation and performance
	7.1 Cryptographic building blocks
	7.2 Performance analysis

	8 Discussion
	9 Conclusion
	References
	A Protocol
	B Implementation Details
	B.1 Cryptographic building blocks

	C Proofs
	C.1 FPAT-Safety
	C.2 FPAT-Liveness
	C.3 FPAT-privacy
	C.4 Regulation impact

	D Comparison table

