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Abstract

A memory checking argument enables a prover to prove to a verifier that it is correctly processing
reads and writes to memory. They are used widely in modern SNARKs, especially in zkVMs, where the
prover proves the correct execution of a CPU including the correctness of memory operations.

We describe a new approach for memory checking, which we call the method of one-hot addressing
and increments. We instantiate this method via two different families of protocols, called Twist and Shout.
Twist supports read/write memories, while Shout targets read-only memories (also known as lookup
arguments). Both Shout and Twist have logarithmic verifier costs. Unlike prior works, these protocols do
not invoke “grand product” or “grand sum” arguments.

Twist and Shout significantly improve the prover costs of prior works across the full range of realistic
memory sizes, from tiny memories (e.g., 32 registers as in RISC-V), to memories that are so large they
cannot be explicitly materialized (e.g., structured lookup tables of size 264 or larger, which arise in Lasso
and the Jolt zkVM). Detailed cost analysis shows that Twist and Shout are well over 10× times cheaper
for the prover than state-of-the-art memory-checking procedures configured to have logarithmic proof
length. Prior memory-checking procedures can also be configured to have larger proofs. Even then, we
estimate that Twist and Shout are at least 2–4× faster for the prover in key applications.

Finally, using Shout, we provide two fast-prover SNARKs for non-uniform constraint systems, both of
which achieve minimal commitment costs (the prover commits only to the witness): (1) SpeedySpartan
applies to Plonkish constraints, substantially improving the previous state-of-the-art protocol, BabySpar-
tan; and (2) Spartan++ applies to CCS (a generalization of Plonkish and R1CS), improving prover times
over the previous state-of-the-art protocol, Spartan, by 6×.

∗Microsoft Research
†a16 crypto research and Georgetown University
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1 Introduction

A zero-knowledge virtual machine (zkVM) is a cryptographic protocol that allows an untrusted prover to
succinctly prove that it correctly ran some computer program Ψ on a witness. In a zkVM, the computer
program is specified to run on a specific CPU architecture, which is also called a virtual machine (VM) or an
instruction set architecture (ISA). In a zkVM proof, the prover proves that it correctly ran Ψ cycle-by-cycle.

Generally speaking, zkVMs produce short proofs and have fast verification. Even if the zkVM first produces a
proof π that is moderately large, π can be generically shrunk via SNARK composition. This means generating
a smaller proof π′ that establishes that the prover knows a valid π. Accordingly, the bottleneck in zkVM
performance is prover runtime. zkVM provers today remain hundreds of thousands of times slower than
native execution (i.e., the amount of work done to generate a proof π relative to that required to simply run
Ψ with no proof of correctness).

Background on zkVMs and memory checking. zkVM provers prove that they did two things correctly,
over and over. They first prove the correct execution of the “fetch-decode-execute” logic of the VM, once per
cycle. Second, they prove that reads and writes to registers and RAM were executed faithfully.

A state-of-the-art zkVM, called Jolt [AST24], turns almost everything a VM does into reads and writes to
memory. This includes the “fetch-decode-execute” logic of the VM. Roughly speaking, Jolt turns “fetch and
decode” into a lookup into a read-only memory storing the program bytecode. Meanwhile, executing each
primitive instruction is done via a lookup into a gigantic pre-determined table of size 264. Jolt accomplishes
this by using Lasso [STW24], which internally turns this one lookup into a giant table into a short sequence
of lookups into smaller tables, and combines the results to get the output of the instruction.

In summary, a key bottleneck for zkVM provers, and for the Jolt prover in particular, is proving that it
correctly processed all reads and writes to memory. The fastest known methods for this task are called
offline memory checking techniques. These techniques date back to work of Lipton [Lip89, Lip90] and
Blum et al. [BEG+91]. In the context of zkVMs, offline memory checking techniques allow a prover to commit
to a constant number of values, and perform a constant number of field operations, per memory operation
performed by the CPU. Jolt currently uses Spice [SAGL18] as its memory-checking argument for registers
and RAM, and Lasso [STW24] for read-only memories.

Our contributions. We describe a new approach to memory-checking that improves significantly on offline
memory checking techniques, promising substantial end-to-end speedups for zkVM provers. For reasons that
will become clear, we call our approach the method of one-hot addressing and increments.

We instantiate this method via two different families of protocols, called Twist and Shout. Twist supports
read/write memories, while Shout targets read-only memories (also known as lookup arguments).1 Both
families are parameterized by an integer d ≥ 1. The smaller the memory, the smaller d can be, and the
cheaper each memory operation is for the prover as a result.

Twist and Shout significantly improve on prior works across the full range of realistic memory sizes, from tiny
memories (e.g., 32 registers as in RISC-V), to read-only memories that are so large they can’t be explicitly
materialized (e.g., structured lookup tables of size 264 or larger, as arise in the Jolt zkVM).

Detailed cost analysis shows that Twist and Shout are over 10× cheaper for the prover than state-of-the-art
memory-checking procedures configured to have similar proof length. Prior memory-checking procedures can
also be configured to have larger proofs. Even then, we estimate that Twist and Shout are (at least) 2–4×
faster for the prover.

Not only do Twist and Shout significantly speed up the prover across all practical memory sizes, they also give
the prover a cost profile that more closely matches real CPUs. Unlike offline memory-checking techniques,
the method of one-hot addressing is significantly faster for small memories than big ones, and Twist is faster
for sequences of memory accesses with high locality (see Section 8.2.3 for details). This means that existing

1Twist is short for Tracking Write Increments via Sum-check Techniques and Shout for Sum-check-based Handling of
Unchanging Tables.
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compiler toolchains that optimize for program execution time on real CPUs are more likely to also lead to
fast zkVM provers once memory-checking is done via Twist and Shout.

At the highest level, Twist and Shout leverage the power of the sum-check protocol [LFKN90] to minimize the
amount of data the prover has to commit to, and to prove satisfaction of very large but very sparse constraint
systems (i.e., a huge number of witness variables, but almost all of them are 0) while only “paying” for the
sparsity of the witness (number of non-zeros) rather than the size of the witness.

The parameter d: where it comes from and what it buys. When applied to memories of size K,
the prover in the simplest variations of Twist and Shout commits to K − 1 0s and a single 1 per read or
write operation. This makes these protocols especially efficient when combined with elliptic-curve-based
commitment schemes, which are uniquely fast at committing to 0s: any committed 0s literally do not alter
the commitment so they are free to commit, and committing to a 1 requires a single group operation requiring
only 6–7 field operations. This performance profile is an excellent fit for the Jolt zkVM for RISC-V [And17],
which currently achieves state-of-the-art prover performance and uses elliptic curve commitment schemes
(specifically, HyperKZG [ZSC24] or Zeromorph [KT23]).

However, even when 0s are free to commit to, large memories are problematic for the simplest instantiations
of our methods, primarily because the commitment key (which must be stored by the prover) gets very
large.2 To address this, we describe an entire family of protocols in which, for any desired integer d ≥ 1, the
prover only commits to roughly d ·K1/d 0s per read or write operation. Using a large value of d comes at a
cost: the prover also commits to d 1s per read or write operation, and each committed 1 forces the prover to
perform one group operation. Hence, large values of d mean vastly fewer 0s are committed, which keeps the
commitment key size bounded, but it also means slightly more 1s are committed, which modestly slows down
the prover. Larger values of d also increase the amount of work the Twist and Shout provers do “outside
of commitments”, and proof size grows linearly with d too. So one wants to choose d as small as possible,
subject to the constraint that the commitment key is not too large.

Choosing a value d ≥ 2 renders our methods suitable for memory sizes K in the millions or billions. It also
allows our techniques to be productively instantiated with hashing-based multilinear commitment schemes
over binary fields like Binius [DP23], FRI-Binius [DP24], and Blaze [BCF+24]. Even though committing to
0s is not “free” with these schemes, committing to values that are known a priori to be in {0, 1} is cheap
enough that our results still offer improvements over prior works.3 For these commitment schemes, d should
be set just large enough to ensure that commitment time is not a prover bottleneck.

Since the Twist and Shout provers commit to dK1/d bits per address, to ensure committing with a hashing-
based scheme is sufficiently fast, dK1/d should be between a few dozen and a couple hundred bits, with larger
memories leading to larger values of d (and more committed bits).

To summarize, in applications we expect d to be between 1 and 4 if using an elliptic curve commitment
scheme and between 1 and 16 if using a binary-field hashing-based commitments. Larger memories necessitate
larger values of d. See Section 2.8 for details.

The high-level ideas of Twist and Shout. A simple observation underlying Twist and Shout is that
when memory addresses are specified in one-hot form, correctness of reads and writes becomes equivalent to
very simple (i.e., rank-one) constraint systems. This observation is already explicit in prior works on lookup
arguments [ZBK+22, ZGK+22, STW24, GM24].

These constraint systems can be directly checked for correctness via the standard sum-check-based zero-check
PIOP for, say, R1CS (see Section 3.6 for details). But there is a challenge: the constraint systems are very
large, so large that we cannot tolerate a prover that runs in time linear in the number of witness variables,
since for T operations into a memory of size K, there are (more than) K · T witness variables. Fortunately,
the constraint systems are highly sparse: although they involve a huge number of variables, only about T

2If the commitment key is structured, it must be generated via a trusted setup, which further limits its size.
3For memories consisting of just a few cells, such as the 2 registers in the Cairo Virtual Machine [GPR21, Section 2.4] and

even the 32 registers in RISC-V, our protocols improve on prior work even when hashing-based commitment schemes over
non-binary fields are used.
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of them are non-zero. This lets us implement the sum-check prover applied to these constraint systems
in roughly O(K + T ) time rather than O(K · T ) time. Roughly speaking, the sum-check prover does not
“pay” for 0-variables, and neither does the prover when committing to those variables, at least when using a
curve-based commitment scheme.

On top of this, for very large but “structured” read-only memories, where K = TC with C ≥ 1, by invoking
(and generalizing) the sparse-dense sum-check protocol from the Generalized-Lasso protocol [STW24], we can
implement Shout’s sum-check prover in time O(C · T )≪ O(K + T ).

When using parameter d > 1, Twist and Shout further exploit that every “one-hot” vector (meaning a vector
in {0, 1}K with exactly one entry equal to 1) can be expressed as a tensor product of d smaller one-hot vectors,
each of length K1/d. We use this to control the negative effects of large memory sizes K, especially the size of
the commitment key when using curve-based commitment schemes and the total number of committed bits
when using hashing-based commitment schemes. This does come at the cost of higher-complexity constraints
in the resulting constraint systems: they change from rank-1 to rank-d.

Twist needs to overcome an additional obstacle that threatens to bring in a Θ(K · T ) cost to the prover’s
runtime in the context of read/write memory. Specifically, a natural first attempt at designing Twist involves
the prover committing to the value of every register at every cycle. This would be K · T committed non-zero
values. Twist addresses this by instead having the prover commit to increments: the difference in value for
each register cycle-by-cycle. Since at most one register is written per cycle, this entails committing to only T
rather than K · T non-zero values (moreover, all T of these non-zero values are “small” and hence fast to
commit to). At the end of the sum-check protocol, when the verifier needs to compute a random evaluation
of (the multilinear extension of) the register values themselves, we offload that evaluation to the prover with
a second invocation of the sum-check protocol that relates the register values to the increments. At the end
of that sum-check, the verifier needs to evaluate the multilinear extension of the increments at a random
point, which it can do because the increments themselves were committed.

We give two different implementations of the Twist prover. An important property of one of them is that the
prover is faster when memory operations are local. Roughly, for a read or write operation to a memory cell
that was accessed at most 2i time steps prior, the Twist prover performs only O(i) field multiplications to
process that operation, less than the O(logK) multiplications that the prover performs per memory operation
in the worst case. In order to achieve this, this variant of the Twist prover binds variables in a different order
than the Shout prover: the Twist prover binds “cycle-count-specification” (i.e., time) variables first, rather
than “memory-address-specification” (i.e., memory) variables. This ensures that in the first logK rounds,
temporally-close accesses to the same memory cell quickly “coalesce”, which is what allows the prover to
benefit from locality of memory access. In other words, by binding time variables first, the sparsity (i.e.,
number of non-zeros) in the vectors the prover is processing falls quickly round-over-round when memory
accesses are local, and the prover’s runtime in each round grows only with the number of non-zeros in these
vectors.

Fast-prover SNARKs for non-uniform constraints. We also use Shout to give two new, fast-prover
SNARKs for non-uniform circuits or constraint systems. We call these SNARKs SpeedySpartan and Spartan++.
Both offer a a significant improvement in overall prover time relative to the previous state of the art,
BabySpartan [ST23], and in particular a 4× improvement in commitment costs. In SpeedySpartan and
Spartan++, the prover commits to the witness (the solution to the constraint system), and nothing else.

(At least this is the case when using polynomial commitment schemes with fast evaluation proof generation,
e.g., Hyrax [WTS+18], Dory [Lee21]). For other schemes like HyperKZG, Zeromorph, and Bulletproofs/IPA,
evaluation proofs themselves require committing to a linear amount of data.)

SpeedySpartan is concretely faster than Spartan++, due primarily to SpeedySpartan’s use of a lookup table that
is quadratically smaller than the one used by Spartan++. Hence, we consider SpeedySpartan to be of practical
interest and Spartan++ to be primarily of conceptual interest (although even Spartan++ is concretely almost
an order of magnitude faster than Spartan itself [Set20]). Spartan++’s most interesting performance property
is that its prover’s commitment costs grow linearly with the number of multiplication gates in the circuit and
not the total gate count (i.e., addition gates do not contribute to commitment costs). But both SpeedySpartan
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and Spartan++ reduce commitment costs so much that they are not a prover bottleneck, and hence this
property of Spartan++ does not translate to major improvements in concrete costs.

The high-level ideas of SpeedySpartan and Spartan++. SpeedySpartan and Spartan++ observe that
correct processing of circuit wires boils down to lookups. By circuit wires here, we mean which gate outputs
need to be treated as inputs to which other gates.

There are two different ways this reduction from wires to lookups can be done. One technique originates
in Spartan and its use of the Spark sparse polynomial commitment scheme [Set20]. The other originates in
BabySpartan [ST23]. SpeedySpartan is a major refinement of the BabySpartan approach, while Spartan++ is
a major improvement of the Spartan/Spark approach.

In the case of SpeedySpartan, BabySpartan already showed that each input to any gate can be computed
with a lookup into the table that stores all gate outputs. BabySpartan invokes Lasso as the lookup argument.
SpeedySpartan replaces Lasso with Shout. We further observe that this replacement allows certain polynomials
that were explicitly committed by the BabySpartan prover to instead be virtual : they are not committed by
the prover, and Shout nonetheless allows the verifier to evaluate these polynomials at the necessary evaluation
point. This leads to a 4× reduction in commitment costs, with field work improvements coming from the
improved efficiency of Shout relative to Lasso.

In the case of Spartan++, we directly give a major improvement of the Spark sparse polynomial commitment
scheme. In its evaluation proofs, Spark has the prover prove it correctly ran a fast algorithm for evaluating
the committed sparse polynomial at the requested evaluation point (see [STW24, Section 3.1] for details of
this view of Spark). This algorithm performs lookups into a large table that stores evaluations of multilinear
Lagrange basis polynomials at the requested (random) evaluation point. Spark effectively applies the Lasso
lookup argument to this table. This requires the prover to commit to two random values per non-zero coefficient
of the sparse polynomial (these random values are the results of lookups into “subtables” decomposing the
large table). We replace Lasso with Shout, and further observe that this allows for the values returned by the
lookups to be virtual polynomials. This eliminates the major prover bottleneck in Spark.

To summarize, SpeedySpartan and Spartan++ use lookups in very different ways to deal with circuit wires.
For circuits with n gates, SpeedySpartan computes a gate’s inputs via lookups into the size-n table storing all
gate outputs. Spartan++ performs lookups into a size-n2 table storing all evaluations of multilinear Lagrange
basis polynomials at a random evaluation point. Spartan++ pays increased costs relative to SpeedySpartan
because the lookup table it uses is quadratically bigger, its use of the larger table does enable its commitment
costs to grow linearly only with the number of multiplication gates.

2 Overview of Twist and Shout and their costs

2.1 Background

zkVMs and Jolt. The RISC-V instruction set architecture involves 32 registers. In each CPU cycle,
at most two registers are read and one is written. The Jolt zkVM [AST24] forces an untrusted prover to
correctly process reads and writes to registers (and random access memory) using an offline-memory-checking
procedure called Spice [SAGL18]. Spice’s application in Jolt currently accounts for about 20% of total prover
time today, with most of this cost coming from registers (which are read and written nearly every CPU cycle,
unlike RAM, which is accessed only via explicit load and store instructions).

On top of the cost of Spice for checking registers and RAM, another 25% of Jolt prover time is spent on
Lasso [STW24], an offline-memory-checking procedure tailored to read-only memories. Jolt uses Lasso to
ensure the prover correctly executes the appropriate primitive RISC-V instruction during each CPU cycle (Jolt
turns primitive instruction execution into a handful of lookups into fixed tables of size about 216). So in
total, the Jolt prover currently spends almost half of its time in offline-memory-checking procedures. We
anticipate that the fraction of Jolt’s prover costs will grow substantially over time, as other parts of the Jolt
protocol continue to be optimized.
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Polynomial IOPs and polynomial commitments. As with most SNARKs, Jolt consists of a polynomial
IOP (PIOP), which can be combined with any polynomial commitment scheme (for multilinear polynomials,
in the case of Jolt) to obtain a SNARK. A polynomial IOP is an interactive protocol where the prover is
allowed to send one or more large polynomials to the verifier, but the verifier is only allowed to query those
polynomials’ evaluation at, say, a single randomly chosen point.

A polynomial commitment scheme is a cryptographic protocol specifically designed to transform any polynomial
IOP into a succinct argument. Specifically, rather than having the polynomial IOP prover explicitly send
large polynomials to the verifier, a polynomial commitment scheme allows a prover to succinctly commit
to those polynomials, and later reveal only the evaluations of the polynomials that are queried by the
verifier (along with evaluation proofs, which prove that the returned evaluations are indeed consistent with
the committed polynomials). One can render the succinct argument non-interactive with the Fiat-Shamir
transformation [FS86a].

Jolt uses multilinear polynomial commitment schemes based on elliptic curves, like HyperKZG [ZSC24] and
Zeromorph [KT23]. The commitment to a polynomial of size n with these schemes consists of a single group
element, and evaluation proofs consist of O(log n) group elements.4 In the future, Jolt plans to incorporate
support for hashing-based commitment schemes over binary fields.

Costs of elliptic-curve-based commitments. When a polynomial IOP is combined with an elliptic
curve commitment scheme (e.g., HyperKZG [ZSC24]), the vast majority of the work done by the prover
consists of elliptic curve group operations and finite field operations (over the field F used by the polynomial
IOP, which is also the scalar field of an elliptic curve). For small memories, the method of one-hot addressing
substantially lowers both the number of field operations over F and the number of group operations performed
by the prover.

There are two facts about elliptic curve commitments that the method of one-hot addressing takes heavy
advantage of. The first is that committing to 0s is “free”. That is, when committing to a vector v ∈ Fℓ,
any i for which vi = 0 literally does not affect the commitment, and can just be “ignored” by the prover
when computing the commitment to v. The number of committed 0s does influence some other prover costs
arising in the protocol, especially the size of the commitment key, but it does not influence commitment time.
Fortunately, the effect of the 0s on these other costs can be controlled, see Section 3.1 for details. Hence, in
this informal overview it is both clearest and reasonably accurate to treat committed 0s as literally free for
the prover. Second, small (but non-zero) values are cheap (but not free) to commit to. For example, any i
such that vi = 1 costs the prover just one group operation when computing the commitment.

For simplicity, in this work we consider any value in {0, 1, . . . , 232 − 1} to be “small”. We select the threshold
of 232 − 1 as the limit of smallness for convenience of accounting: most zkVMs today use 32-bit data types,
and so registers store arbitrary elements of {0, 1, . . . , 232 − 1}.5 Since the prover has no choice but to commit
to the values read from or written to registers, it is convenient to call these values small. But this is also a
reasonable notion of smallness: at practical instance sizes, committing to a 32-bit value with an elliptic curve
commitment scheme takes roughly two group operations via Pippenger’s bucketing algorithm6. This is much
cheaper than committing to an arbitrary field element, which can require a dozen group operations or more.7

Costs of hashing-based commitments over binary fields. A nice property of hashing-based commit-
ment schemes relative to curve-based ones is that the commitment key is small (often it simply specifies
a cryptographic hash function), no matter the size of the vectors that need to be committed. However,
hashing-based commitments have a major downside: committing to 0s is not free. This is a challenge because,

4If p is a v-variate multilinear polynomial, then its size is 2v. This is because p is uniquely described by 2v coefficients, or
equivalently its evaluations over an interpolating set such as {0, 1}v , which has size 2v .

5In this work, we use the terms register and memory cell interchangeably.
6See [EHB22, Section 4] for a clear overview of Pippenger’s algorithm and its costs
7For maximal precision of cost accounting it may be useful to distinguish the “smallness” of elements of, say, {0, 1, . . . , 216−1}

vs. {216, . . . , 232 − 1}. The former take only about one group operation to commit to at practical instance sizes, while the latter
require about two group operations. To simplify our cost accounting, we do not make this distinction in this paper. However,
our findings would not be substantially changed if we did.
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when Twist and Shout (say, with d = 1) are applied to prove T memory operations into a memory of size K,
the prover needs to commit to K · T values, and we cannot tolerate Θ(K · T ) prover time.

Fortunately, all of these K ·T values are known a priori to be in {0, 1}: not only are almost all of the values 0,
the non-zeros are always equal to 1. There is one (recently-identified) subclass of hashing-based commitment
schemes that make such known-to-be-in-{0, 1} values sufficiently fast to commit to that Twist and Shout are
useful when combined with such commitments. These are hashing-based commitment schemes for multilinear
polynomials over binary fields, which allow the prover to “pack” 128 values into a single element of GF(2128),
and commit to the packed values with an appropriate multilinear commitment scheme defined over GF(2128).8

This packing technique results in a 128-fold reduction in the number of committed GF(2128) field elements,
compared to the naive approach of assigning an entire GF(2128)-element to represent each committed value.
Examples include Binius [DP23], FRI-Binius [DP24], and Blaze [BCF+24].

For tiny memories like the 32 registers in RISC-V, d = 1 is fine: the means the prover commits to 32 bits per
address, and four such addresses can be packed into a single GF(2128) field element before committing.9

As another attractive example, consider applying Twist with d = 4 to a memory with K = 220 cells (which
corresponds to a zkVM with about 4 MBs of memory). Rather than committing to K values in {0, 1} per
memory operation as in Twist with d = 1, with d = 4 the Twist prover commits to only 4 · 25 = 128 values
in {0, 1}. These 128 values can all be packed into a single element of GF(2128) before committing with the
above hashing-based commitment schemes. On the other hand, increments are not guaranteed to be in the
set {0, 1} (although most increments will be 0s). Each increment is guaranteed to be an element of GF(232),
so four increments can be packed into single element of GF(2128) before committing.

2.2 Formulation of the memory checking problem

Motivation. Most primitive RISC-V instructions read two registers (the “source registers” containing
the inputs to the primitive instruction executed at that cycle) and writes to one register (the “destination
register”) that stores the output of the primitive instruction. We denote the source registers ra1 and ra2 (ra
is short for read address), and the destination register by wa (short for write address).

To force an untrusted prover to prove that it is reading and writing to registers correctly, RISC-V zkVMs
demand that the prover commit to

• the register addresses ra1, ra2, and wa each cycle.

• the values that the prover claims is returned by the reads to ra1 and ra2,

• the value that is written to wa.

The goal of the memory checking problem is to devise a succinct argument that lets the prover prove that
indeed the value committed for every read operation is the value most recently written to the relevant register.

Formulation for read/write memories. Say there are K memory cells, which we will refer to as registers
for short (for example, there are K = 32 registers in RISC-V). In the case of read/write memory, let us
assume that operations alternate between reads and writes.10 Let T denote the number of cycles being
checked. More specifically, T denotes the number of read operations in the case of read-only memory. For
read/write memory, each cycle consists of a read followed by a write, so there are T reads and T writes (i.e.,
2T memory operations in total).

8All hashing-based polynomial commitment schemes ultimately need to work over a field that is at least 128 bits in size to
ensure adequate security.

9Committing to N GF(2128) elements with these schemes involves Θ(N) or Θ(N logN) GF(2128) multiplications to apply the
encoding procedure of an error-correcting code, followed by Θ(N) cryptographic hash evaluations. Computing evaluation proofs
for these schemes can be fairly expensive for the prover, due to various invocations of the sum-check protocol in order to relate
the “packed” committed values to the unpacked values.

10In a zkVM for RISC-V like Jolt, there are two committed register read operations and one committed register write operation
per CPU cycle. But since this paper is focused on memory-checking, we find it clearest to use the term cycle to refer to a single
memory operation rather than, say, a sequence of two reads and one write.
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The memory-checking problem begins with the prover sending commitments to four vectors: raf, waf, rv and
wv. We denote the j’th entry of these vectors with function notation, i.e., the j’th entry of raf is raf(j).

The j’th entries of raf and waf specify the address of the registers read and written in cycle j. In the context
of zkVMs (and in typical offline-memory checking procedures like Spice), each register is indexed by one field
element, and so raf and waf are also both in FT , with raf(j),waf(j) ∈ F specifying the register addresses read
and written at cycle j. Here, any injective mapping from registers to field elements suffices for the indexing.
In large prime-order fields, the K field elements used to address the registers can simply be {0, 1, . . . ,K − 1};
for simplicity, this is the mapping we use throughout this manuscript. We use the letter f at the end of
raf and waf to reflect that these are addresses specified via one field element per address. The j’th entry of
rv specifies the value returned by the j’th read operation, and wv specifies the value written by the write
operation. rv and wv are vectors in FT (i.e., registers store field elements).

The memory checking problem then demands that the prover establish that rv(j) equals wv(j′) where j′ < j
denotes the largest cycle number less than or equal to j such that waf(j′) = raf(j). If no such j′ exists, then
it is required that rv(j) = 0. Conceptually, this means that all registers are initialized to contain value 0, and
every read to a register is required to return the value most recently written to that register.

It is also possible to demand that the contents of memory be initialized to a set of values that is not identically
0. In this case, either the vector of initial memory values (one value per cell) is committed by an honest party,
or is simply public.11

Read-only memories. Our formulation of the memory-checking problem for read-only memories is identical
to read/write memories, except that the contents of the memory cells are public (i.e., known to both the
verifier and the prover) and each cycle involves only a read operation, rather than a read followed by a write.
We sometimes refer to the contents of the read-only memory as the lookup table.12

One-hot encoding of addresses. Recall that in the above formulation of the memory-checking problem,
each address is indexed by a single field element. This is how memory addresses are naturally specified in
zkVM contexts. For example, in RISC-V, when performing a load or store from RAM, the relevant address is
the value stored in the first source register, plus the “immediate” value for that instruction. Each zkVM
register naturally stores a single field element, and the immediate value for any instruction is naturally
represented by a single field element.

However, internal to the Twist and Shout proof systems, the register addresses must actually be specified
via one-hot encoding. This means that within the Twist and Shout protocols, each address is a unit vector
in {0, 1}K ⊆ FK . Accordingly, we introduce two vectors ra,wa ∈ FT ·K that, for a sequence of T memory
operations, specify all T memory addresses via one-hot encoding. We think of ra and wa as consisting of T
rows each of length K. If the prover is honest, then the j’th row of ra, denoted ra(j), specifies via one-hot
encoding the register read at cycle j, and similarly for wa. So if register ℓ is read at cycle j, then ra(j) is the
ℓ’th unit vector eℓ ∈ {0, 1}K . We denote the k’th entry of this vector by ra(k, j).

Because zkVMs naturally specify addresses via a single field element, when used within zkVMs, memory-
checking arguments do need to give the verifier “access” to the vectors raf and waf, in which each address
is specified via a single field element. In particular, the zkVM verifier needs to be able to evaluate the

multilinear extension polynomials r̃af and w̃af at a random point. Twist and Shout support this. Even though

r̃af and w̃af are not committed by the Twist and Shout provers (only r̃a and w̃a are), we still give a way for

the verifier to evaluate r̃af and w̃af at a random point.

11In many applications, the initial contents of memory have a description that is much smaller than explicitly listing the value
stored in each memory cell, and with some memory-checking arguments it is possible in these settings to avoid having the verifier
spending time linear in the size of the memory to “process” the initial values [STW24, AST24].

12Many lookup arguments, including Arya [BCG+18], plookup [GW20b], Caulk [ZBK+22], and LogUp [Hab22], actually solve
a different problem, which is sometimes referred to as unindexed lookups (in contrast to reads into read-only memory, which is
sometimes referred to as indexed lookups) [STW24]. Unindexed lookup arguments ensure that a vector of committed values all
reside somewhere in a read-only memory, but do not specify an address at which each value must reside. Unindexed lookup
arguments can be transformed into indexed ones, though the transformation adds prover and verifier overheads. See [STW24]
for details.
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To use a term coined in work on Binius [DP23], Twist and Shout can be integrated into zkVMs by treating r̃af

and w̃af as virtual polynomials: they are not explicitly committed by the prover, but can still be evaluated
by the verifier at any point, by asking the prover to provide the requested evaluation and then prove that

the evaluation is correct. This is done expressing the needed r̃af and w̃af evaluations in terms of r̃a and w̃a,
and then applying the sum-check protocol to compute this expression. This effectively reduces the verifier’s

task of evaluating r̃af and w̃af at a point, to the task of evaluating r̃a and w̃a at a different point. These
evaluations can be obtained directly from the commitments to r̃a and w̃a. See Section 4.1.2 for details.

Can read-values be virtual too? We formulated the memory-checking problem above to assume that
the vector rv of values returned by read operations are committed by the prover (or more precisely, their
multilinear extension polynomial r̃v is committed). However, the “correct” value of every read operation
is fully determined by the write operations and the read-addresses (or, in the case of read-only memories,
simply by the read-addresses r̃a). And in applications to zkVMs, the SNARK verifier only ever needs to
valuate r̃v at a random point r.13

So, in principle, r̃v need not be committed: as soon as the prover commits to r̃a and to any polynomials
specifying writes, r̃v is implicitly specified as well, and all we need to ensure is that the verifier is able to
evaluate r̃v at a random point r. Twist and Shout directly give a protocol to accomplish this: from the
verifier’s perspective, Twist and Shout use the sum-check protocol to reduce the task of evaluating r̃v(r) to
the task of evaluating different polynomials that are committed by the prover.

Hence, unlike prior memory-checking arguments, Twist and Shout do allow the polynomial r̃v to be virtual,
rather than committed by the prover. Our prover cost estimates throughout this work reflect this.

Relevant memory sizes. In the motivating example of 32 RISC-V registers, the memory size K is tiny
(32 cells), especially relative to the number of CPU cycles executed. Even simple computer programs often
run for at least 230 CPU cycles in total, and real computer programs often run for 250 cycles or more.14

Indeed, the clock rate of modern laptops allows for several billion CPU cycles to be executed per second, even
by a single thread. Our results are strongest (and cleanest to understand) in this parameter regime where
K ≪ T , since then our the O(K + T ) field operations incurred by the Twist and Shout provers is clearly
dominated by the T term.

However, all possible relationships between K and T are also of interest. For example, L1 cache in real CPUs
is often dozens of KBs, corresponding to K ≈ 213 memory cells, and L2 cache is an order of magnitude
larger (K ≈ 216).15 And many programs may only use MBs of main memory (RAM), while others can use
GBs (translating to 230 memory cells or even more).

Less intuitively, in the case of read-only memories, we are also interested in the situation where K ≈ 264 is
so big that the entire contents of the memory cannot possibly be materialized. This setting arises in Jolt,
where primitive instruction execution is handled by performing lookups into the “evaluation table” of the
primitive instruction, which has size 264. These tables are highly structured, which ensures no one ever needs
to materialize the entire gigantic memory. In other words, for “structured” read-only memories, one can
achieve a prover runtime that is sublinear in K.

2.3 Prior work: Arguments via offline memory checking

Memory-checking procedures such as Spice [SAGL18] work by reducing the task of proving that all reads and
writes were processed correctly, to the task of proving two related vectors a ∈ Fℓ and b ∈ Fℓ are permutations
of each other. The precise value of ℓ differs amongst different memory-checking procedures, but is typically
O(T +K). Confirming that a and b are permutations of each other is done via “Lipton’s trick” [Lip89, Lip90]:

13It is, of course, essential that the prover not be able to choose the polynomial r̃v with knowledge of the point r at which the
verifier will evaluate it.

14Though in zkVMs today, program executions are broken into “shards” consisting of only about 220 cycles each, with each
shard proved semi-independently, in order to keep the prover space bounded. See Section 3.1.1 for additional details.

15Reads into L1 cache on real CPUs typically take just 1-4 clock cycles, while reads into L2 cache often take 5-20 cycles.
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the verifier picks a random r ∈ F, and confirms that

ℓ∏
i=1

(ai − r) =

ℓ∏
i=1

(bi − r). (1)

Equation (1) clearly holds if a and b are permutations of each other, and if they are not, it holds with
probability at most ℓ/|F| over the random choice of r.

Appendix A provides a brief overview of how these transformations from checking read-write memories to
checking permutations work.

Offline memory-checking procedures confirm that Equation (1) holds using of a grand product argument : a
SNARK for computing the product of many committed values. Many memory-checking procedures in the
literature invoke grand product arguments that interpret the committed vectors as univariate polynomials,
and prove that a certain divisibility relationship holds between the committed polynomials. These arguments
can lead to excellent verifier costs (often with proofs consisting of only a constant number of group elements),
but generally lead to slow provers.

The grand product arguments used by Spice as instantiated in Jolt (as with the method of one-hot addressing)
interpret committed vectors as multilinear polynomials and invokes the sum-check protocol of Lund, Fortnow,
Karloff, and Nisan [LFKN90]. There are several such grand product arguments one can choose from, offering
various tradeoffs between prover time and verifier costs [Tha13, Set20, SL20]. Depending on which grand
product argument it invokes, Spice can have proofs of size between O(log2 n) and O(log n) field elements,
where n is the number of memory operations proven. The bigger the proofs, the faster the Spice prover.

As described in Appendix A, there are only a handful of known approaches to offline memory-checking
for read/write memory [SAGL18, ZGK+18]. For read-only memories there is somewhat more diversity in
solutions. Memory-checking arguments for read-only memories are also known as lookup arguments, and
examples include Arya [BCG+18], plookup [GW20b], cq [EFG22], Lasso [EFG22], LogUp [Hab22, PH23],
and others. We give a brief overview of this body of work in Appendix A.

Baselines for read/write memory: costs of Spice. We refer to Appendix A for an overview of how
Spice works. Here, we merely discuss its costs. On each read to memory, the Spice prover commits to 5
values. The first three of these are an address, value, and “timestamp”, while the remaining two arise during
range checks that are performed on values derived from the timestamp. In the context of memory-checking
within zkVMs like Jolt, all five of these values are “small”, and hence fast to commit to (see Section 3.1 and
Footnote 7 for details).16 (If proving more than 232 memory operations, the committed timestamps will not
actually meet our threshold for “smallness”. But we will treat them as small for simplicity of accounting–this
only leads to an underestimate of the speedups we achieve relative to Spice.)

On top of committing to these 5 values, each read contributes six additional terms contributed to various grand
products (see Equation (1)), and proving these grand products requires work by the prover. (Additionally,
irrespective of how many memory operations are processed, each memory cell contributes two committed
values and two factors to the grand product).

Using the fastest known grand product argument, due to Thaler [Tha13]17, the prover can process these six
factors per read with about six field multiplications each, so roughly 40 field operations in total. This grand
product argument has proofs of size O(log2 n). In total this means the Spice prover using Thaler’s grand
product argument does 40T + 40K field operations.

Setty and Lee, in a work called Quarks [SL20], describe an alternative that has proofs of size O(log n) but
has much higher prover costs. In particular, for computing a grand product over a vector of size n, the

16Whether we should count committed addresses and write-values towards the costs of the memory-checking procedure is
debatable, since the addresses and write-values have to be committed simply to specify the memory-checking instance that Spice
is applied to. We choose to count these two committed values towards prover costs. This accounting only has the effect of
reducing our claimed factor speedups relative to prior work, since it increases the costs of all memory-checking arguments by the
same absolute amount.

17Thaler’s grand product argument is a refinement of the GKR protocol [GKR15], and our cost accounting for it incorporates
recent optimizations [Gru24, DT24].
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prover has to commit to n partial products, which are going to be random field elements in our context.
In the memory checking context, in addition to performing about 40 field operations per read operation as
with Thaler’s grand product argument, the prover in Quarks’ has to commit to 6 random field elements per
operation.18 Committing to six random field elements is expensive, equivalent in cost to performing over 500
field operations. Quarks more generally describe a spectrum of grand product arguments that have prover
time and proof size costs “in between” the above two extremes.

Writes to memory in Spice have similar costs to reads; the only difference is that rather than the Spice prover
committing to 5 values, for each write it commits to 6 values.

The above describes Spice’s costs in large prime-order fields. Prover costs are slightly higher for fields of small
characteristic (e.g., binary fields), due to complications with how committed timestamps must be specified in
these fields [DP23, Section 4.4]. This applies to prior lookup arguments as well.

Baselines for read-only memory: Small or unstructured tables. Lasso’s prover [STW24] commits
to 3T +K small values in total, and performs about 12T + 12K field operations within the grand product
argument. Inspired by the use of Thaler’s grand product argument [Tha13] in Spark [Set20] and Lasso [STW24],
LogUpGKR [PH23] combines the LogUp lookup argument [Hab22] with GKR protocol. LogUpGKR’s prover
commits 2T +K small values, which is slightly fewer than the 3T committed by Lasso, at least when K ≤ T .
But LogUpGKR’s prover performs about twice as many field operations as Lasso’s prover. This stems from
LogUpGKR’s use of a “grand sum of rational values” in place of a grand product: summing two rationals,
a/b+ c/d, requires three products, namely a · d, b · c, and b · d, to ultimately derive a/b+ c/d = (ad+ bc)/bd.

We state the costs of these baselines in Figures 1–3. For all baselines, we incorporate all of the most recent
known optimizations to the prover in the GKR protocol and Thaler’s grand product argument [DT24, Gru24].
Further, we assume that the multilinear extension of the table values is efficiently evaluable by the verifier
(as is the case for all lookup tables in Jolt, see Footnote 11).

Another relevant baseline for read-only memories is FLI [GM24], a folding scheme for lookups. We discuss
FLI further in Section 2.4.2 below.

Baselines for read-only memory: Gigantic, structured tables. Lasso [STW24] gives two different
approaches to performing lookups into gigantic, structured tables. By gigantic, we mean the table size K is
on the order of TC for some integer C ≥ 2. One, called Generalized-Lasso, applies to any MLE-structured
table but requires the prover to commit to c random field elements, which is generally a bottleneck for the
prover. The other, called simply Lasso, applies to tables satisfying a natural decomposability property, which
roughly means that one lookup into the giant table can be turned into O(C) lookups into “subtables” of size
at most T 1/C (Lasso then applies a “base” lookup argument to prove validity of the O(C) subtable lookups).
Lasso does not require the prover to commit to any random field elements. Other works have considering
using different “base” lookup arguments within this approach [Dor24].

In order to prove that primitive instructions were correctly executed, Jolt applies Lasso to gigantic decom-
posable tables (namely, the entire evaluation table of the relevant primitive instruction). However, there
are some overheads that come from the interaction of how zkVMs work with Lasso’s use of decompositions.
Specifically, the addresses of the subtable lookups have two “parts”, with one part coming from the first input
to the primitive instruction, and the other coming from the second part. This forces inputs to be decomposed
into smaller chunks than would otherwise be necessary.

For example, to compute the bitwise XOR of two 32-bit inputs x and y, Jolt currently splits x and y each
into four 8-bit chunks, and uses one subtable lookup (into a subtable of size 216) to compute the bitwise XOR
of each chunk of x with the corresponding chunk of y. So even though the subtable addresses are 16 bits, x

18Two of these six random committed values are from Spice turning each read or write to memory into two separate operations.
The other four are from range checks (done using Lasso) that Spice must do to implement appropriate updates to “timestamps”
associated with each read and write to memory. See Appendix A for details. Given how expensive it is to commit to random
values, when using Quarks as the grand product argument, a naive range check based on bit-decomposition would actually result
in a faster prover than using Lasso. This would lower the Spice-with-Quarks-grand-product prover cost by a factor of about 2
compared to what is reported here, but it would not change the qualitative comparison to Twist.
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Read/write memory checker Non-zero committed values Field multiplications Proof size

Spice 5R+ 6W + 2K ≈ 11T 80T + 80K ≈ 80T O(log2 T )
Twist (d = 1) R+ 3W = 4T (5 log(K) + 16)T +O(K) O(d log T )
Twist (d = 2) 2R+ 4W = 6T (5 log(K) + 32)T +O(K) O(d log T )

Figure 1: Prover costs for Twist: read/write memory checking for R = T reads and W = T writes (R+W = 2T
memory operations in total). We report a worst-case bound on field multiplications for Twist. For d = 1,
the Twist prover performs many fewer field operations if memory accesses are local. Roughly, 2i-local
memory accesses (see Section 8.2.1 for a definition) cost only 5i field multiplications rather than 5 logK.
Appropriate values for d in Twist are discussed in Section 2.8. Reported Twist costs in this table include
Booleanity-checking costs.

Read-only memory checker Non-zero committed values Field multiplications Proof size

Lasso 3T +K 12T + 12K O(log2 T )

LogUpGKR 2T +K 21T + 21K O(log2 T )
Shout (d = 1) T 5T +O(K) O(d log T )
Shout (d = 2) 2T 12T +O(K) O(d log T )

Figure 2: Prover costs for Shout (read-only memory checking for T reads, into a memory of size K). All
committed values are small. Appropriate values for d in Shout are discussed in Section 2.8. Reported costs
for Shout are inclusive of field multiplications required to prove that committed addresses are valid one-hot
encodings (including Booleanity-checking).

and y must each be decomposed into only 8-bit chunks. Furthermore, these committed 8-bit chunks must all
be range-checked to confirm they are indeed field elements in {0, 1, . . . , 28 − 1}. As we will see, Shout avoids
any explicit table decomposition, and hence also avoids the above overheads when used in the context of a
zkVM such as Jolt.

Closest related work: Generalized-Lasso. Shout can be viewed as a natural generalization or im-
provement of the Generalized-Lasso protocol from [STW24]. Shout with d = 1 is in fact equivalent to
Generalized-Lasso, except that Shout uses any standard (i.e., dense) polynomial commitment scheme to
commit to the one-hot encodings of addresses, rather than the sparse polynomial commitment scheme Spark
[Set20] invoked by Generalized-Lasso. Shout thereby avoids Generalized-Lasso’s need to commit to random
field elements (which comes from Spark). However, setting d = 1 only works for very small lookup tables
due to the constraints described in Section 1. At the other extreme, Shout with d = logK (the largest
meaningful value of d) is roughly equivalent to combining Generalized-Lasso with a different sparse polynomial
commitment scheme called “Spark-Naive” [Set20]. Setting d this large brings high costs–see Remark 1 for
details.

From this standpoint, Shout can be viewed as an improvement in sparse polynomial commitment schemes
rather than in lookup arguments. Shout effectively identifies a family of sparse polynomial commitment
schemes, with all schemes in the family avoiding Spark’s need to commit to random field elements. There is a
different scheme for each value of d ≥ 1, where committing to bigger, sparser polynomials calls for higher
settings of d. Shout then simply combines Generalized-Lasso with this family of sparse polynomial commitment
schemes. This perspective, of Shout as an advance in the speed of sparse polynomial commitment schemes is
made explicit in Section 9.3.1 (as Spartan++, one of our SNARKs for non-uniform circuits, explicitly uses
such a Shout-based sparse polynomial commitment, which we call Spark++).

2.4 Costs of Twist and Shout

As with offline memory-checking techniques such as Spice, Twist and Shout can be formulated as a polynomial
IOPs for the memory-checking problem, and the PIOP can be turned into a SNARK by combining it with
any suitable polynomial commitment scheme. Recall that Twist and Shout actually refer to a family of PIOPs
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Read-only memory checker Non-zero committed values Number of field multiplications Proof size

Lasso ≥ 16T ≥ 144T O(log2 T )
Shout (d = 2) 2T 42T O(d log T )
Shout (d = 4) 4T 65T O(d log T )
Shout (d = 8) 8T 112T O(d log T )

Figure 3: Prover costs for Shout when doing T lookups into an appropriately structured read-only memory
of size K such that K1/C = o(T ) for integer C = 4. All committed values are small. Reported Shout costs
are inclusive of field multiplications required to prove that committed addresses are valid one-hot encodings
(including Booleanity-checking). For comparison, we report (optimistic estimates of) the costs of Lasso as
used today in Jolt, whereby each lookup into the table of size K ≈ 264 is decomposed into between 4 and 10
lookups into “subtables” of size 216, and where committing to the addresses for those subtables necessitates
committing to 2 small values per subtable address and range-checking each such value.

Memory checker Memory size Bits of Committed Data Field multiplications Proof size

Lasso K = 264 (structured) at least 928T at least 194T O(log2 T )
Shout (d = 16) K = 264 (structured) 256T 131T O(d log T )

Spice K = 32 421T 95T O(log2 T )
Twist (d = 1) K = 32 128T 35T O(d log T )

Figure 4: Amount of committed data measured in bits for Twist and Shout vs. prior work for two important
applications: the 32 read/write registers of the RISC-V instruction set, and lookups into structured tables of
size 264 used for proving correct primitive instruction execution in Jolt [AST24]. Bits of committed data is
the relevant measure of commitment costs when using binary-field hashing-based multilinear commitments
like Binius [DP23, DP24] and Blaze [BCF+24]. T denotes the number of reads in the read-only case, and the
number of alternating reads and writes in the read/write case (2T total memory operations). We assume
values read or written are 32 bits as in RISC-V, and that timestamps used in Spice are up to 32 bits (which
is roughly sufficient for values of T up to 230). For Twist and Shout, we omit the field multiplications needed
to prove Booleanity, as the commitment schemes themselves ensure this. For prior work (Lasso and Spice),
we incorporate the slightly larger prover costs these protocols incur in the setting of small-characteristic fields
[DP23, Section 4.4].

parametrized by an integer parameter d > 0 that helps control commitment key size (in the case of elliptic
curve commitment schemes) or commitment time (in the case of hashing-based commitment schemes). The
higher d is, the more non-zero values the Twist and Shout provers commit to, and the more field work the
Twist and Shout provers do. With elliptic curves commitment schemes d will typically be between 1 and 4,
and with hashing-based commitments d will typically be between 1 and 16. See Section 2.8 for details.

2.4.1 Proof size and verifier costs

Twist and Shout avoid invoking a grand product argument. They inherently invokes the sum-check protocol
a constant number of times, leading to proofs of size O(d · (log(T ) + log(K))), where T is the number
of memory operations and K the size of the memory. When combined with a commitment scheme that
has logarithmic-size evaluation proofs such as HyperKZG, Zeromorph, or Dory, they yield SNARKs for
memory-checking whose proofs consist of O(d(log(T ) + log(K))) field and group elements. Via standard
batching techniques, the verifier only needs to perform a single evaluation proof verification, which involves a
constant number of MSMs of size O(log(T ) + log(K)) and a constant number of pairing evaluations.

2.4.2 Prover time

Commitment costs. For read operations, both the Twist and Shout provers commit only to the address ra
specified via (d-dimensional) one-hot encoding. These commitments are unavoidable, as the memory-checking
problem formulation itself requires that the address to be committed. The values returned by any read
operation, captured by the multilinear polynomial r̃v, need not be committed: r̃v is a virtual polynomial.
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For write operations, the Twist prover commits to the address and the value written, plus a single additional
“small” value (which we call the write increment, a notion we will define later).

Field work. We give a variety of algorithms for quickly implementing the prover in the various sum-check
invocations throughout the Twist and Shout PIOPs. Which algorithm to use depends on various aspects
including: is the number of memory operations T significantly bigger than the memory size K? In the case
of Twist, are reads and writes to memory local? Here, we provide a concise summary of the prover times we
achieve in different contexts. We explicitly state Booleanity-checking costs in each regime (i.e., the cost of
proving that various committed values lie in {0, 1}), as Booleanity-checking can be omitted when using a
commitment scheme like Binius [DP23, DP24] that itself enforces Booleanity of committed values.19

Shout with K = o(T ). We hide additive terms of O(K) in this summary. The core Shout PIOP with d = 1
(Figure 5) costs 2T field multiplications for the prover (Section 6.1). The core Shout PIOP for d > 1 (Figure 7)
costs d2 +2 field multiplications (Section 6.2). Booleanity-checking (Section 6.3) costs an additional 3dT field
multiplications (other parts of the one-hot-encoding checking PIOP in Figure 8) contribute only low-order
costs for the prover). This translates to 5T multiplications in total when d = 1, 12T multiplications when
d = 2, and so forth.

Shout for gigantic structured memories. Let C = cd be a constant such that CK1/C = o(T ).20 Then the
core Shout PIOP (Figure 5) combined with one-hot-encoding-checking costs at most

(
7C + d2 + 3d+ c+ 2

)
T

field multiplications. For example, when C = 4 and d = 2, this translates to 40T multiplications. Of these,
(4C + 3d)T are due to Booleanity checking. See Section 7.5 for details.

In Appendix C, we describe a variation of Shout with prover work that has a linear rather than quadratic
dependence on d. Specifically, the d2T term in the prover time above is reduced to (8d− 7.5)T . This variant
is more efficient for values of d that are greater than or equal to 8. Such values of d naturally arise for
gigantic lookup tables when combining Shout with hashing-based commitment schemes, but not when using
commitments based on elliptic curves.

Twist costs. Again we assume K = o(T ) and suppress additive terms of O(K). The core Twist PIOP
(Figure 9) costs (5 log(K) + 2d2 + 4d+ 4)T field multiplications in the worst case (Section 8.3). However,
when d = 1, this calls falls substantially for local memory accesses. Specifically, if the bulk of the memory
accesses are 2i-local (meaning they access a cell that was previously accessed at most 2i cycles prior), then
the 5 logK term falls to just 5i. Booleanity-checking costs an additional 6dT field multiplications (again,
other parts of the one-hot-encoding checking PIOP are low-order costs).

Comparing to prior works. Figures 1–3 give precise comparisons of Twist and Shout to the previously
fastest provers in the context of elliptic-curve-based commitment schemes. Twist and Shout generally improve
on both field multiplications and commitment costs. This improvement holds even when Twist and Shout are
configured to have significantly shorter proofs than the prior works.

Exactly how big a prover-time improvement is achieved by Twist and Shout depends on context. Fortunately,
the biggest improvements are achieved in the two settings that are most central to the Jolt zkVM: lookups
into gigantic structured tables (i.e., how Lasso is current used in Jolt to prove correct execution of primitive
RISC-V instructions), and reads and writes into 32 RISC-V registers (two such reads and one such write
occur in Jolt for nearly every cycle of the RISC-V CPU).

In the case of gigantic structured lookup tables, Shout improves up to 8× in commitment costs and up to
about 3× in field multiplications relative to Lasso’s application in Jolt today. The largest improvements are
achieved when Shout is applied with d = 2, which is appropriate if using Dory as the polynomial commitment
scheme (see Section 2.8 for details). Shout actually achieves even bigger improvements for some lookup tables,

19Arguably, this merely pushes the field multiplication necessary for Booleanity-checking into the polynomial evaluation
protocol of the polynomial commitment scheme, as that phase itself invokes the sum-check protocol [DP24].

20C may be smaller than d when d is very large, e.g., d = 16. Such settings of C and d naturally arise when using hashing-based
commitments but typically not with elliptic curve commitments.
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since the costs of prior work depend on how “nicely decomposable” the table is, and that varies for the lookup
tables arising in Jolt.

In the case of 32 read/write registers, where d = 1 is appropriate regardless of the commitment scheme used
(again, see Section 2.8 for details), Twist improves over the commitment costs of Spice by about 3× and the
field multiplications of Spice by a factor of 2.

For larger read/write memories, we expect Twist to achieve more modest but still significant speedups over
prior work (while also achieving significantly reduced proof size).

Figure 4 compares Twist and Shout to prior works in the context of hashing-based commitment schemes.
For small memories, both the commitment costs and field work of Twist improve by 2×-3×. For very large
real-only memories (e.g., structured lookup tables of size 264 as arise in Jolt), Shout’s commitment costs
improve at least 3× compared to prior work, while prover field work improves more modestly. Again, Shout
achieves bigger improvements for some lookup tables.

Comparison of Shout to FLI. Shout with c = 1 has quite a bit in common with FLI [GM24]: They both
represent addresses via one-hot encoding, commit to the one-hot encodings with curve-based commitments
(at the cost of one group operation per address for the prover), and observe that given the one-hot encodings,
the validity of the lookups can then easily be expressed via R1CS. Unlike Shout, FLI then directly applies
a Nova-type folding scheme [KST22] to fold these R1CS instances. Shout instead applies the sum-check
protocol to directly prove satisfaction of the R1CS.

Inspired by Lasso [STW24], FLI also considers lookups into giant, decomposable tables. In this context, our
improvements over FLI are analogous to our improvements over Lasso: by avoiding table decompositions,
Shout lowers the amount of committed data (see Section 2.3 for details).

Ideas from FLI offer one possible approach to combining Shout with folding. In a nutshell, Shout can be
directly turned into a folding scheme using the NeutronNova framework [KS24b], achieving better efficiency.
More generally, Section 2.9.3 discusses various approaches to combining both Twist and Shout (and zkVMs
that use them) with folding techniques.

2.5 Overview of Shout

2.5.1 The sum-check protocol in a nutshell

Let g be an ℓ-variate polynomial over field F. From the verifier’s perspective, the sum-check protocol is an
efficient reduction from the task of computing ∑

x∈{0,1}ℓ

g(x) (2)

to the potentially easier task of evaluate g(r) for a r ∈ Fℓ chosen at random by the verifier over the duration
of the protocol. So long as g has constant degree in each of its variables, the proof length of the sum-check
protocol is O(ℓ) field elements, and the soundness error is O(ℓ/|F|).

2.5.2 The Shout PIOP when d = 1

Shout is targeted at read-only memories. Let Val(k) denote the fixed value of register k. Shout with d = 1 is
a special case: to obtain the best possible prover costs, our protocol for d = 1 deviates substantially from the
general case of d > 1.

As observed in Baloo [ZGK+22] and Lasso [STW24], the lookups are all valid if and only if for every cycle j,

∑
registers k

ra(k, j)Val(k) = rv(j). (3)
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Indeed, since ra(k, j) = 1 for the register k that was read at cycle j (and ra(k′, j) = 0 for all other registers
k′ ̸= k), Equation (3) holds if and only if rv(j) equals Val(k). To check that these constraints are satisfied,
the verifier picks a random rcycle ∈ Flog T , and the sum-check protocol is applied to confirm that:

r̃v(rcycle) =
∑

k∈{0,1}log K

r̃a(k, rcycle) · Ṽal(k). (4)

Here, r̃a, r̃v, and Ṽal are the multilinear extension polynomials of the vectors ra, rv, and Val respectively,

Indeed, the right hand side of Equation (4) is a multilinear polynomial in r′ and this polynomial agrees with
r̃v at all r′ ∈ {0, 1}log T if and only if all constraints from Expression (7) are satisfied. Hence, the right hand
side and left hand side of Equation (8) are equal as formal polynomials if and only if all constraints are
satisfied. By the Schwartz-Zippel lemma, up to soundness error log(T )/|F|, checking that Equation (8) holds
at a randomly chosen r′ ∈ Flog T is equivalent to checking all constraints are satisfied.

At the end of the sum-check protocol, the verifier has to evaluate r̃a(raddress, rcycle), Ṽal(raddress). for
random values raddress ∈ FlogK and rcycle ∈ Flog T chosen by the verifier. The verifier can can obtain the
r̃a(raddress, rcycle) evaluation from the commitment to that polynomial. For many lookup tables (including

all arising in the Jolt zkVM [AST24]), the verifier can evaluate Ṽal(raddress) on its own in O(logK) time.

Following Lasso [STW24], we call such tables MLE-structured. For non-MLE-structured tables, Ṽal can be
committed in advance by an honest party, and the verifier can force the prover to provide the necessary

evaluation of Ṽal.

This is the entire core Shout PIOP for d = 1. It is essentially just the Generalized-Lasso protocol from
[STW24], but without using the Spark sparse polynomial commitment scheme to commit to the r̃a polynomial.
Avoiding Spark is important, as Spark requires committing to several random values per lookup, which is a
prover bottleneck both concretely and asymptotically.

The core Shout PIOP sketched above assumes all committed addresses are valid one-hot encodings of values
in {0, 1, . . . ,K − 1}. In Section 4.1.2, we give a separate PIOP for confirming this is the case. This PIOP
amounts to identifying a straightforward (very large, but sparse) constraint system capturing correctness of
one-hot encodings, and showing that the satisfaction of all constraints can be proved in time proportional to
the sparsity of the constraint system rather than the size.

2.5.3 The Shout PIOP when d > 1

A more expensive but generalizable protocol for d = 1. The d = 1 case is special because only
when d = 1 is the right hand side of Equation (4) multilinear in rcycle. This allowed us to avoid a sum over
j ∈ {0, 1}log T on the right hand side of Equation (4). Before covering the d > 1 case, we give a slightly
different PIOP for the d = 1 case that does sum over j ∈ {0, 1}log T . This PIOP is less efficient than the one
in Section 2.5.2, but generalizes straightforwardly to d > 1.

Recall from Equation (3) that checking that all reads are correct is equivalent to confirming that for all cycles
j, the following constraint is satisfied: ∑

registers k

ra(k, j)Val(k) = rv(j).

To check that this, the verifier can pick a random r′ ∈ Flog T and apply the sum-check protocol to confirm
that:

r̃v(r′) =
∑

k∈{0,1}log K , j∈{0,1}log T

ẽq(r′, j) · r̃a(k, j) · Ṽal(k). (5)
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Here, r̃a, r̃v, and Ṽal are the multilinear extension polynomials of the vectors ra, rv, and Val respectively,
while ẽq is the multilinear extension of a standard function known as the equality function (see Section 3.2
for details).

At the end of the sum-check protocol, the verifier has to evaluate ẽq(r′, rcycle), r̃a(raddress, rcycle), Ṽal(raddress)
for random values raddress ∈ FlogK and r′, rcycle ∈ Flog T chosen by the verifier over the course of the protocol.
The verifier can compute the ẽq evaluations on its own in O(logK+log T ) time, and the remaining evaluations
are obtained exactly as in Section 2.5.2.

Obtaining a fast prover in this application of the sum-check protocol is a challenge that did not arise in the
simpler application of Section 2.5.2. The issue is that the sum in Equation (5) is over K · T terms, so naively
implemented, the prover in this application of sum-check would perform O(KT ) field operations. This would
make Shout more expensive than prior lookup arguments, except for very small memories (say, K ≤ 10 or so).

Fortunately, Equation (5) is a very special application of sum-check. For example, r̃a(k, j) is sparse: only T
out of KT of its evaluations are non-zero over the domain {0, 1}logK × {0, 1}log T . And there’s additional

structure on top of that, such as the fact that Ṽal depends only on k and not on j. Leveraging all of this
structure, one can implement the sum-check prover with just O(K) + 5T field operations (up to low-order
terms).

Shout for d > 1. Fix an integer d > 1 and let N = K1/d. We view the memory of size K as a d-dimensional
cube of length N in each dimension, indexing the cube by [N ]d where [N ] = {0, 1, . . . , N−1}. As in Section 2.2
for a sequence of T reads into memory, let raf(j) ∈ [K] ⊆ F denote the address read by the j’th memory
operation, with the address specified as a single field element. Reinterpret raf(j) as an element of [N ]d using
the natural bijection between [K] and [N ]d, and for i = 1, . . . , c, let rai(·, j) denote the one-hot encoding of
the i’th coordinate of raf(j), i.e., rai(k, j) equals 1 if the i’th coordinate of ra(j) equals k, and equals 0 for all
other k ∈ [N ]. We call this the d-dimensional one-hot encoding of raf(j).

The Shout prover commits to the d multilinear extension polynomials r̃a1, . . . , r̃ad. This entails committing to
dN field elements per cycle, of which exactly d per cycle are 1, and the rest of 0.

Because only dN = dK1/d rather than K field elements are committed, the size of the commitment key (when
using a polynomial commitment scheme like HyperKZG) falls from K group elements to dN group elements.
For example, by setting d = 2, a HyperKZG commitment key of size 2 · 220 suffices to prove 220 reads into
a memory of size K = 220, and this commitment key is under 100 MBs in size. This can be reduced even
further at the cost of a small increase in verifier costs via standard batching techniques (see Section 3.1.1).

Then the Shout PIOP applies the sum-check protocol to compute the following variation of Equation (5):

r̃v(r′) =
∑

k=(k1,...,kd)∈({0,1}log N )d, j∈{0,1}log T

ẽq(r′, j) ·

(
d∏

ℓ=1

r̃aℓ(kℓ, j)

)
· Ṽal(k). (6)

The right hand side of Equation (6) has degree three in each variable of k exactly as in Equation (5), but
the degree in each variable of j increases from 3 in Equation (5) to 2 + d. This degree increase raises the
prover’s time to O(K + d2 ·T ). In Appendix C, we give a variation of Shout that reduces the prover’s runtime
dependence of d from quadratic to linear. It comes with worse constant factors, and hence concretely offers
an improvement only for d ≥ 8. We suspect that additional improvements for large values of d are possible.

Shout for gigantic, structured tables. In fact, for ”structured” tables (including all of those arising in
the Jolt zkVM), we can invoke the sparse-dense sum-check protocol [STW24, Appendix G] to nearly remove
the dependence on K. If K is very large (i.e., K ≈ TC for C > 1) the sum-check prover can in fact be
implemented in time O(CK1/C + CT ) = O(CT ). We further explain how to generalize the sparse-dense
sum-check protocol to achieve a similar time bound for proving that all committed addresses are correct
one-hot encodings of values in {0, 1, . . . ,K − 1}.
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Remark 1 (The relationship between Shout and Generalized-Lasso). Shout with d = logK (the largest
possible value of d) is roughly equivalent to running the Generalized-Lasso protocol of [STW24], but using
“Spark-naive” [Set20, Section 7.1] instead of Spark [Set20, Section 7.2] as the sparse polynomial commitment
scheme to commit to the one-hot encodings of addresses (see also [STW24, Appendix D] for an overview of
Spark-naive).

Indeed, Spark-naive commits to the binary representation of each address (i.e., the index of each non-zero
entry of the sparse vector being committed). This is very similar to what Shout does when d = logK.

What’s going on is that Shout has the prover commit to addresses using the one-hot encoding of the digits of
the address when represented in base K1/d. Spark-naive represents addresses in base-2 (i.e., binary), which
matches the base used by Shout when d = logK. Prior works like Spark-naive do not use one-hot encodings.
However, the standard encoding and one-hot encoding of a value almost coincide for base-2: in both cases
each bit in the binary representation of an address is represented in the encoding with one or two bits.

Setting d in Shout to its maximum value of logK minimizes the number of committed bits for the prover,
leading to the fastest possible commitment computation when using a binary-field hashing-based commitment
scheme like Binius [DP23, DP24]. However, the downsides of taking d this big outweigh the advantages: the
prover time “outside of committing” is superlinear (i.e, at least O(T logK) field multiplications) and the
proof size is somewhat big (i.e, O(log2(K) + log(T ) log(K)) field elements).

The fastest prover in Shout (as well as short proofs) is obtained by taking d to be as small as possible, subject
to the appropriate constraints.

2.6 Overview of Twist

Recall that there are 2T memory operations, which alternate between reads and writes (say, with the first
operation being a read). It is convenient to number both the read-cycles and the write-cycles from 0 up to T .

A first attempt. We first explain a somewhat naive approach to memory-checking, which has high costs,
before explaining how to lower the costs.

Recall the memory has size K, and let [K] = {0, . . . ,K − 1}. We can have the prover commit to the value,
Val(k, j) of every register k ∈ [K] for every cycle j ∈ [T ]. We do have to find a way to ensure that the
committed values are actually correct, i.e., that the committed value Val(k, j) is indeed the value most
recently written to register k when cycle j is executed. We address how to do this later in our overview.

Once the Val(k, j) values are committed and confirmed to be correct, one can force rvj to equal the value
stored in cell raj at cycle j by confirming that∑

k∈[K]

ra(k, j) · Val(k, j) = rv(j) for all cycles j ∈ [T ]. (7)

If register k is the (unique) register read at cycle j, then ra(k, j) = 1 and ra(k′, j) = 0 for all k′ ≠ k with
k′ ∈ {0, 1}logK , and Equation (7) is therefore satisfied if and only if rv(j) = Val(k, j), i.e., the value returned
by the read at cycle j equals the value stored in register k at that cycle. To check that these constraints are
satisfied, the verifier picks a random r′ ∈ Flog T , and the sum-check protocol is applied to confirm that:

r̃v(r′) =
∑

(k,j)∈{0,1}log K×{0,1}log T

ẽq(r′, j) · r̃a(k, j) · Ṽal(k, j). (8)

Indeed, the right hand side is multilinear in r′ and agrees with the left hand side at all r′ ∈ {0, 1}log T if
and only if Equation (7) is satisfied. Hence, the right hand side and left hand side are equivalent as formal
polynomials if and only if Equation (7) is satisfied, and up to soundness error log(T )/|F| it suffices to check
equality at a single random point r′ ∈ Flog T .
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We call this invocation of sum-check the read-checking sum-check. It is very similar to the core Shout PIOP
(Section 2.5.2). It is not quite as structured as the sum-check instance arising in Shout, but we are nonetheless
able to show how to implement the prover in O(K + T logK) time, an exponential improvement in the
dependence on K compared to a naive O(KT )-time prover implementation. We do this by leveraging two
properties. First, that ra(k, j) is sparse: only T out of kT of its entries are non-zero. Second, that when
moving from cycle j to j + 1, only one entry of Val(k, j) changes (namely, the register written at cycle j).

At the end of the read-checking sum-check, the verifier needs to evaluate r̃v at a random point rcycle ∈ Flog T ,

Ṽal at a random point (raddress, rcycle) ∈ FlogK × Flog T , and ẽq at (r′, rcycle) ∈ Flog T × Flog T . The ẽq
evaluation can be computed by the verifier directly in O(log T ) time. The verifier can obtain the evaluations

of r̃v and Ṽal from the commitments to these polynomials.

The key performance issue with the above proposal is the cost of committing to the vector Val(k, j) (or more

precisely, its multilinear extension Ṽal). This vector specifies all register values at all cycles means committing
to K non-zero values per cycle. Even for very small memories like K = 32, this alone is more expensive than
Spice, which commits to only 7 small values per read and 8 per write.

Enter increments: virtual polynomials to the rescue. To avoid this, we use an idea implicit in
many works involving the sum-check protocol, and explicit in Binius, which refers to the notion of “virtual
polynomials” [DP23]. These are polynomials that are not committed by the prover, but that the verifier
can “pretend” are committed. We already discussed virtual polynomials in Section 2.2, in the context of

evaluating the multilinear polynomials r̃af and w̃af (which specify addresses via a single field element rather
than one-hot encoding).

In more detail, if the sum-check protocol is applied to a polynomial derived from p, then at the end of
the sum-check protocol the verifier has to evaluate p at a random point r. If p were committed with a
polynomial commitment scheme, then p(r) could be provided by the prover along with a proof that the
provided evaluation is correct.

However, if p is expensive to commit to directly, the prover will not want to commit to p. The idea of virtual
polynomials is to have the prover commit to p indirectly as follows. Suppose there is some alternative ℓ-variate
polynomial q, which is cheaper to commit to than p, and moreover for any input r to p, it holds that:

p(r) =
∑

x∈{0,1}ℓ

q(x).

Then when the verifier needs to evaluate p(r), it can simply apply the sum-check protocol to q, at the end of
which it needs to evaluate q(r). Since q was committed by the prover, the prover can provide this evaluation
directly.

In the case of Twist, the polynomial p(k, j) = Ṽal(k, j) is expensive to commit to directly, since it requires

committing to K non-zero values per cycle j. Instead, let us define the polynomial q(k, j) = Ĩnc(k, j) as the
(multilinear extension of) the increments of Val. Here, we define the increment of register k at cycle j ∈ [T ]
to be the difference between the register’s value at cycle j vs. cycle j − 1. In other words,

Inc(k, j) := Val(k, j + 1)− Val(k, j) = wa(k, j) · (wv(k, j)− Val(k, j)) . (9)

Here, the final equality holds by the following reasoning. If register k is not written at cycle j, then
wa(k, j) = 0, and that forces Inc(k, j) to 0 per the right hand side of Equation (9). While if register k is
written at cycle j, then wa(k, j) = 1, and the right hand side of Equation (9) forces Inc(j) to be the difference
between wa(k, j), i.e., the value written at cycle j, and Val(k, j), the value stored at that cell at the start of
the cycle.

The key point is that, since only one register is written per cycle j, Inc(k, j) is non-zero for only one register
k. Moreover, since registers contain 32-bit values, the one non-zero increment at each cycle j is “small” (i.e.,
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in {−232 − 1, . . . , 232 − 1}), and hence fast to commit to. This makes Ĩnc roughly K times cheaper to commit

to than Ṽal.

Giving the verifier query-access to Ṽal. But now we run into the key issue arising from the use of
virtual polynomials: recall that at the end of the zero-check for correctness of read operations, the verifier

has to evaluate Ṽal(raddress, rcycle) for a random point

(raddress, rcycle) ∈ FlogK × Flog T . (10)

Since Ṽal is not committed directly, it is not obvious how the verifier can obtain this evaluation. The way to
do it is to apply the sum-check protocol to the following equation:

Ṽal(raddress, rcycle) =
∑

j′∈{0,1}log T

Ĩnc(raddress, j
′) · L̃T(j′, rcycle). (11)

We call this the Ṽal-evaluation sum-check. Here, LT is the multilinear extension of the function the so-called
less-than function, which takes as input two binary strings j′, j ∈ {0, 1}log T and outputs 1 if and only if the
integer represented by j′ is strictly less than the integer represented by j. One can check that Equation (11)
holds because the right hand side is multilinear in the variables of raddress and rcycle, and agrees with the
right hand side whenever (raddress, rcycle) ∈ {0, 1}logK × {0, 1}log T , owing to the fact that the value of any
register k at time j is the sum of the increments for that register at all cycles j′ < j.

At the end of the Ṽal-evaluation sum-check, the verifier needs to evaluate Ĩnc at a random point and L̃T at a

random point. The former evaluation can come from the commitment to Ĩnc, while the latter the verifier can
perform on its own in time O(log T ) (see Section 3.2 for details).

The remaining issue. We have deferred until now discussion of how to ensure that each value Val(k, j) is
the actual value stored in register k at cycle j. Given that Val(k, j) is in fact implicitly specified by Inc(k, j)

per Equation (11), this problem manifests as ensuring that the committed polynomial Ĩnc indeed equals (the
multilinear extension of) the correct increments, per the definition in Equation (9).

To check this, we apply the zero-check PIOP once again, to confirm that indeed for all k ∈ {0, 1}logK and
j ∈ {0, 1}log T ,

Inc(k, j) = wa(k, j) · (wv(j)− Val(k, j)) .

This involves the verifier picking a random r′ ∈ FlogK and r′′ ∈ Flog T and applying the sum-check protocol
to confirm that

Ĩnc(r′, r′′) =
∑

(k,j)∈{0,1}log K×{0,1}log T

ẽq(r′, k) · ẽq(r′′, j′) ·
(
w̃a(k, j)(w̃v(j)− Ṽal(k, j))

)
. (12)

We call this the write-checking sum-check.

At the end of the write-checking sum-check, the verifier needs to evaluate each of Ĩnc, w̃a, w̃v, and Ṽal each

at a random point. Since Ĩnc, w̃a and w̃v are committed by the prover already, the required evaluations

of these polynomials can be obtained directly from the prover. The evaluation of Ṽal can be obtained via

another invocation of the Ṽal-evaluation sum-check. In fact, by running the read-checking and write-checking

sum-check instances in parallel, we can ensure only one evaluation of Ṽal is needed, and hence we only need

to run the Ṽal-evaluation once.

Summary of the protocol. Twist had to address three issues:

• How to “implicitly commit” to Ṽal given that explicitly committing to Ṽal would be expensive (requiring
K committed non-zero values per cycle).
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• How to confirm that Ṽal actually assigns the correct value to each register at each cycle, given the
committed sequence of write operations specified by w̃a, and w̃v. In other words, how to make sure the
prover processed all the writes correctly.

• How to ensure that each read operation (specified by the committed polynomial r̃a and the virtual
polynomial r̃v) returns the correct value. In other words, how to make sure the reads were processed
correctly.

The first issue was addressed by committing to the increments Ĩnc rather than to Ṽal. Committing to Ĩnc is

cheap because Ĩnc is sparse and its non-zero entries are small.

The second issue (checking writes) was addressed via the write-checking sum-check (Equation (12)).

The third issue (checking reads, and giving the verifier query access to the virtual polynomial r̃v) was addressed
by the read-checking sum-check (Equation (8)).

At the end of the read-checking and writing-checking sum-checks, the verifier has to evaluate Ṽal at a random

point. This is addressed via the Ṽal-evaluation sum-check (Equation (11)). This equation expresses the

necessary Ṽal evaluations in terms of Ĩnc as per Equation (11).

2.7 Other benefits and implications

Improved soundness error. Offline memory-checking techniques introduce soundness error at least
(T +K)/|F| where T is the number of memory operations proven and K is the size of the memory, thanks to
the grand product in Equation (1) introducing a univariate polynomial in the random field element r, of
degree Θ(T +K). Meanwhile, the method of one-hot addressing has soundness error of only log(TK)/|F|.

This difference is not important when working over 256-bit prime order fields, as required by most standard
elliptic curves. However, there may be contexts where it is relevant. For example, consider elliptic curves
defined over extensions of 64-bit prime fields and targeted at a security level of 128 bits [SSS22]. To keep as
much of the prover’s work as possible over a relatively small subfield (thereby keeping the field operations
relatively fast), SNARK designers will want to choose the value r from Equation (1) at random from a 128-bit
subfield (i.e., a degree-2 extension of the 64-bit base field). However, if the memory size K is, say, one billion,
this will lead to only at most 98 bits of security, due to the soundness error of at least 230/2128 = 2−98.
Processing a trillion cycles (equivalent to a couple of minutes of single-threaded compute on a modern laptop),
at least without invoking SNARK recursion, would lead to an even lower security level, of 2−88. The method
of one-hot addressing, by contrast, achieves over 120 bits of security in these settings.

Benefiting from small memories and locality. Modern CPUs can make random accesses to a large
memory. But they also have smaller, faster memories. At the extreme end are registers, which are very fast
memory cells directly accessible to the processor. In contrast, offline memory checking techniques are not
substantially more efficient when applied to small memories. That is, the cost of proving T reads and writes
into a memory of size K is roughly O(T +K) committed values and field operations, and hence this cost
is about the same for all all K ≤ T . In other words, zkVM provers do not currently enjoy the benefits of
small, fast memories like registers or caches, the way actual CPUs do. The cost profile of Twist matches
that of actual CPUs much more closely. For starters, the smaller the memory, the smaller the parameter
d can be in both Twist and Shout, and the smaller d is, the lower the commitment costs and prover field
multiplications in both Twist and Shout. Furthermore, the Twist prover (appropriately implemented, see
Section 8 for details) performs many fewer field multiplications for local memory accesses–reads and writes to
memory cells that were recently read from or written to.

The closer the prover cost profile of zkVMs matches that of actual CPUs, the more likely it is that existing
compilers (optimized for actual CPUs rather than SNARK provers) lead to fast zkVM proving. In other words,
Twist and Shout offer a strong counterpoint to a prevailing belief that it is better for zkVM performance to
design “SNARK-friendly” VMs, rather than using mature toolchains for existing VMs like RISC-V that were
not designed with SNARK proving in mind.
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2.8 Appropriate settings of d

How to set d when using elliptic curve commitments. When applying Twist and Shout with an
elliptic curve commitment scheme, there are multiple tools at the protocol designer’s disposal to control
commitment key size. One is the precise choice of polynomial commit scheme. For example, Dory has
square-root sized commitment key, while HyperKZG is linear-sized commitment key. So using Dory rather
than HyperKZG helps to control commitment key size. Of course, the choice of Dory comes with its own
costs, such as concretely larger polynomial evaluation proofs and the need to do (in addition to MSMs) a
multi-pairing of size

√
n when committing to a polynomial of size n.

Another tool is the ability to reduce commitment key size by any desired factor k at the cost of increasing
commitment size from one group element to k (see Section 3.1.1 for details).

As a separate and complementary tool, we also introduced the parameter d to Twist and Shout themselves.
If one uses parameter d with Dory as the commitment, the commitment key size is Θ

(
(K1/d · T )1/2

)
when

proving T accesses to a memory of size K. If one uses parameter d and HyperKZG as the commitment, the
commitment key size is Θ(K1/d · T ).

Generally speaking, for commitment schemes based on elliptic curves, one wants to set d as small as possible
subject to the constraint that the commitment key is not too large for the prover to generate and store (the
key must be big enough to commit to d vectors of length N = K1/d).

How to set d when using hashing-based commitments. For commitment schemes based on hashing
over binary fields like Binius, one also wants to set d as small as possible, but subject to a very different
constraint. Since 0s are not free to commit to with hashing-based schemes, the key constraint is ensuring
that committing is sufficiently fast. The larger d is, the faster it is to commit to addresses in Twist and Shout
with a binary-field hashing-based commitment scheme, but the more work the prover does in the sum-check
protocol (and the larger the proof size). Hence, with hashing-based commitment schemes, d should be chosen
large enough that committing to addresses in Twist and Shout is not the prover bottleneck, but no larger.

For illustration, we now discuss how one can set d in various applications covering the gamut of memory
sizes, from tiny to large.

Application 1: K = 32, T = 220. Recall that zkVMs today break CPU executions into “shards” consisting
of roughly 219 cycles each. Also, the RISC-V ISA has 32 registers, with each cycle reading two registers and
writing to one. Hence, one important application is to K = 32 with T ≈ 221. In this case, setting d = 1
in Twist and using HyperKZG leads to a commitment key (powers-of-tau SRS) containing 32 · 221 = 226

group elements. This is smaller than some powers-of-tau SRSes that have already been generated (which
have contained up to 229 powers of tau21), though it does require GBs of prover storage. Per Section 3.1.1,
one can further lower SRS size, say to 221, by increasing the size of the commitment from one group element
to 25 = 32 group elements. Or one could keep the commitment size at one group element, but use d = 2,
obtaining an SRS size of only about 211 group elements.

With a hashing-based commitment scheme over GF(2128) like Binius or FRI-Binius [DP23, BCF+24] or Blaze
[BCF+24], the key issue to address is not commitment key size, but rather the time cost of committing
to each address (as 0s are not free to commit to with these schemes). For this application, the memory is
sufficiently tiny that one can set d = 1 and maintain small commitment costs. This requires the prover to
commit to 32 values in {0, 1} per address. Four such addresses could be packed into a single GF(2128) before
committing.

Application 2: K = 220, T = 220. This captures VMs with several MBs of main memory (alternatively, it
captures typical L2 or even L3 cache sizes on modern CPUs). With HyperKZG, one cannot take d = 1, as
this would lead to an SRS of size KT = 240. However, setting d = 4 is feasible, leading to an SRS size of
K1/d · T = 225 with address commitments consisting of d = 4 group elements. As above, this SRS size can be
driven lower with a further increase in commitment size. Using Dory instead of HyperKZG, one can take

21See for example https://github.com/privacy-scaling-explorations/perpetualpowersoftau.
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d = 1, leading to a commitment key of size 2 ·
√
KT = 221 group elements in a pairing-friendly group (220

from G1 and 220 from G2).

As discussed in Section 1, d = 4 is also a reasonable setting in this application if using a hashing-based
multilinear commitment scheme over GF(2128), such as Binius or FRI-Binius [DP23, BCF+24] or Blaze
[BCF+24]. Then each each address is specified by dK1/d = 4 · 220/4 = 27 = 128 bits, which can all be packed
into a single GF(2128) field element before committing.

Application 3: K = 230, T = 232. We anticipate that techniques for controlling prover space without
invoking SNARK recursion [NT25] will eventually enable efficient non-recursive proving of T = 230 or more
RISC-V cycles. K = 230 corresponds to giving the VM about 4 GBs of main memory (RAM).

Applying Twist to prove T = 232 memory accesses is incompatible with commitment schemes like HyperKZG
requiring a linear-size SRS. But with Dory, one could set d = 2 and obtain a commitment key of size
2 ·
√
K1/d · T ≈ 226 group elements. This could be further lowered per Section 3.1.1 at the cost of increasing

the size of the commitments.

Application 4: K = 264, T = 220 (structured read-only memory). This captures “primitive instruction
execution” lookups in Jolt. With HyperKZG, one could set d = 8 and have address commitments consist
of 4c = 32 group elements. This would lead to an SRS with K1/d/4 · T = 226 group elements, which is
significantly smaller than some powers-of-tau SRSes that have been generated today. With Dory, setting
d = 4 would lead to a (transparently generated) commitment key of size just 2

√
K1/d · T = 2 · 218 = 219. One

could even take d = 2, which would give a commitment key of size 227, and this key size could be further
reduced at the cost of larger commitments per Section 3.1.1.

If using a hashing-based commitment scheme over GF(2128), a reasonable setting of d is 16. Then the number
of bits in each committed address is d ·K1/d = 16 · 264/16 = 256 bits. These can be packed into two GF(2128)
field elements before committing.

2.9 Additional discussion

2.9.1 Pros and cons of Dory

Dory is an especially attractive choice of polynomial commitment scheme for combination with Twist and
Shout. This is primarily because it is a curve-based commitment scheme Implementations with a sublinear-size
commitment key, and this helps keep the parameter d in Twist and Shout small (which in turn ensures very
few committed values, and minimal field work for the prover). Implementations of Dory exist22, but Dory
has not seen wide deployment to date. We briefly discuss the downsides of Dory that are the likely reasons it
hasn’t been widely deployed, and argue that these aspects of Dory do not preclude its use in contexts where
its cost profile is particularly valuable. We believe Twist and Shout offer the most compelling such context to
date.

One potential downside of Dory is that when committing to a polynomial of size N , computing the
commitments involves (in addition to

√
N multi-exponentiations of size

√
N , which is roughly equivalent

in cost to other elliptic curve commitment schemes like KZG or HyperKZG, Bulletproofs/IPA, etc.), a
multi-pairing of size

√
N . For small values of N the multi-pairing can be a prover bottleneck. But for

moderate-to-large values of N , this will not be the case. Indeed, a pairing evaluation is equivalent in cost to
at most about 4000 group operations, and multi-pairings also benefit from a “Pippenger’s speedup” meaning
a multi-pairing of size

√
N is actually a factor of pip ≈ (1/2) log(N) faster than

√
N independent pairings.

This means that if Shout is applied (even with d = 1) to, say, T ≥ 222 memory operations, the multi-pairing
will not be a prover bottleneck, as the multi-pairing will be equivalent in cost to 4000 ·

√
T/pip≪ 222 group

operations, while the MSMs involved in the commitment will cost this much or more. Furthermore, for
any t > 1, Dory can be configured so the multi-pairing is only of size

√
N/t, at the cost of increasing the

commitment key size to t
√
N .

22https://github.com/yacovm/DualDory
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Another aspect of Dory that may be construed as a downside is that its proofs consists of 6 logN elements of
the target group of a pairing-friendly group, translating to roughly a dozen KBs. This is still much smaller
than the proof size of hashing-based commitment schemes like FRI. And proof size can be reduced via
SNARK composition.

A final potential downside of Dory is verifier time: verifying Dory evaluation proofs requires (logarithmically
many) scalar multiplications in the target group of a pairing-friendly elliptic curve, and these can be slow, as,
naively implemented, target group operations are about 6 times slower than G1 operations. If this indeed
turns out to be a significant verifier cost, there are multiple possible mitigations. First, as with proof size,
verifier time can be reduced via SNARK composition. Second, even short of SNARK composition, one could
outsource the target group operations to the prover using, say, data parallel variants of the GKR protocol
[GKR15, Tha13]. Third, there has been recent progress on speeding up target-group operations in BLS12-381,
at least on high-end consumer CPUs.23 Such techniques could keep Dory’s verification time from becoming
problematic even in the absence of SNARK composition or outsourcing verification.

We expect the benefits of Dory in the context of Twist and Shout (especially controlling commitment key size
while keeping d small) to outweigh any downsides.

Section 9.2.3 contains yet more discussion of Dory’s costs and how it works.

2.9.2 Twist and Shout design philosophy

The design of Twist and Shout reflects a philosophy that leverages the unique strengths of the sum-check
protocol to achieve high prover performance. Below, we highlight key aspects of this approach and its broader
implications for SNARK design.

Barely paying for zeros: a superpower of sum-check (and elliptic curve commitments). The
method of one-hot addressing leans heavily on the ability of elliptic-curve commitment schemes to commit to
0-values for “free” (i.e., committing to a vector incurs prover costs proportional to its sparsity, i.e., number of
non-zeros, not its length). The method also works well with hashing-based commitments over binary fields
such as Binius [DP23, DP24], since such schemes ensure that it is cheap to commit to values known a priori
to reside in {0, 1}. Importantly, these commitment schemes “pack” many small values into a single field
element, and later use use the sum-check protocol to relate the packed field elements to unpacked ones.

Indeed, committing very quickly to 0s (or small values in general) is not enough on its own to get a fast
SNARK prover. Also essential is the ability of the sum-check protocol to allow the prover to avoid paying
field operations to process 0-values. This appears difficult or impossible to achieve with polynomial IOPs
based on univariate polynomials. This is because the number of non-zero evaluations of various “quotient
polynomials” arising in polynomial IOPs based on univariate polynomials grows with the degree of the
polynomials regardless of how sparse they are. These non-zero quotient evaluations increase prover work.
This prover cost is in addition to 0s contributing significantly to commitment time for popular univariate
hashing-based polynomial commitments like FRI [BBHR18].

Twist and Shout are new examples in a growing body of work showing that the “free 0s” cost profile of
elliptic-curve-based commitments opens up a rich design space enabling highly performative SNARKs. This
body of work offers a strong counterpoint to the widespread view that SNARKs using elliptic curves—due to
their use of 256-bit fields—are less performative than alternatives that rely only on hashing-based commitment
schemes.

Indeed, the Jolt RISC-V zkVM implementation24 already extensively leverages this property of elliptic curves
(even without yet incorporating Twist and Shout). For example, Jolt forces the prover to evaluate primitive
instructions correctly by performing lookups into “subtables” of size 216. There are over a dozen subtables
used across all primitive instructions, but each instruction only accesses a handful of the subtables. This is
loosely analogous to how RISC-V has 32 registers but each cycle only two are read and one is written. The
way Jolt handles the subtable lookups today is analogous to how Twist and Shout handle registers: For each

23https://github.com/mratsim/constantine/pull/485
24https://github.com/a16z/jolt
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cycle, the Jolt prover commits to a vector of binary flags indicating for each subtable whether or not it is
actually accessed at that cycle. If not, the Jolt prover is free to commit to only 0s for all values “capturing”
the lookup into that subtable for that cycle. This is analogous to how Twist and Shout commit to a 0 for each
register that is not accessed in a given cycle (and on writes, Twist, additionally commits to a 0-increment for
each register that is not accessed).

Similar techniques leveraging “free 0s” have also recently been exploited in Nebula [AS24], a collection of
techniques for efficiently applying folding schemes in a zkVM context.

Going fully multilinear. The technical ethos underlying our work is that SNARKs based on the sum-
check protocol and multilinear polynomials, rather than univariate polynomials (and establishing quotient
relationships between them), are best for prover speed. In sum-check-based zkVMs like Jolt, there is one place
today where univariate polynomials still arise: permutation-checking via Lipton’s trick (see Equation (1)),
which is the central component of offline memory-checking procedures and other key SNARK components.
This entails treating the two vectors to be permutation-checked as the roots of a univariate polynomial and
evaluating that polynomial at a random point via a grand product argument. Twist and Shout replace this
source of “univariate-ness” with the sum-check protocol, eliminating grand product arguments completely.

2.9.3 Integrating Jolt (with Twist and Shout) with folding schemes

As described in the Jolt paper [AST24] and implemented in code as of this writing, Jolt is a “monolithic”
SNARK, meaning that it produces a proof of execution of a fixed number of CPU cycles at once. We now
discuss how to extend Jolt to prove any number of CPU cycles. Here, we assume that Jolt is instantiated
with an additively homomorphic commitment scheme such as HyperKZG [ZSC24] or Zeromorph [KT23].

We focus on a simple approach, which we refer to as “naive folding”, that composes Jolt (with Twist and
Shout) with a folding scheme such as Nova [KST22]. There are alternatives to “naive folding”, which are
more efficient but require additional design and engineering: distill reductions in protocols such as Twist and
Shout and directly construct folding schemes for virtual machine executions, offering a folding-centric route
to constructing zkVMs (see NeutronNova [KS24b] and Nebula [AS24] for more details).

Details of naive folding. We restrict our attention to Nova here because using a more advanced folding
scheme than Nova does not immediately provide significant benefits for naive folding. However, the description
applies if we replace Nova with another similar scheme.

Recall that Nova [KS24b] is a proof system (also called an IVC scheme) that proves incremental computations
of the form y = F (ℓ)(x), where F is a possibly non-deterministic polynomial time computation, x is the initial
input, and y is the output after ℓ > 0 iterations. The proof is produced in an incremental fashion: the prover
takes as input a proof of i iterations of F and updates it to produce a proof of i+1 iterations of F . Crucially,
the prover’s work, the proof size, and the verifier’s work do not grow with the number of iterations executed.
Internally, Nova is built using a simple primitive called a folding scheme, which reduces the task of checking
two NP instances of certain size n to the task of checking a single NP instance of size n.

Suppose that Jolt is modified to prove a certain pre-determined number of CPU cycles n starting from a
given register and memory state S and ending with a given register and memory state S′. Then given a
program that executes for N CPU cycles (without loss of generality, assume that N is a multiple of n), we
can break the execution of the program into ℓ = N/n “shards”, and have Jolt produce ℓ separate proofs,
one per shard. Each proof attests to the correct execution of the CPU for n cycles transitioning state from
S to S′. When using Twist, this requires commiting to the state of memory and registers at the end of
shard, which requires time linear in memory size for each shard to prove that S′ is consistent with committed
increments. Note that approaches such as Nebula [AS24] do not incur this O(M) costs for each shard, where
M is the size of memory and register state. They only incur this cost at the end of N cycles. Obtaining a
similar performance profile with Twist remains open.

We then write a function F in Nova that verifies a single Jolt proof. F also needs to ensure that the
register state and memory state are consistent from shard-to-shard. This can be done by making F output
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commitments to memory and register state, which are provided as part of Jolt’s proof of a shard. Furthermore,
F can then check that the starting state of a Jolt proof (for shard i where i > 1) is consistent with the ending
state of prior shard i− 1 by comparing commitments provided at shard i (as part of Jolt proof for shard i)
with outputs provided by F at shard i− 1. In Nova, the output of a shard is automatically fed as input to
the next shard. We could then have the prover feed the ℓ Jolt proofs it produced to ℓ sequential steps of
Nova’s IVC scheme. This produces a single Nova proof attesting to the correct execution of ℓ shards of the
program’s execution, which in turn proves the correct execution of N CPU cycles.

The upshot is that this composition of Jolt with Nova allows it scale to prove any number of CPU cycles
while benefiting from the prover-memory-efficiency properties of Nova. Note that we only need to fix a value
of n and we do not need to fix a particular value for N . In other words, with this design, the prover can
pause its VM and resume it at any time to execute additional cycles.

An optimization to defer polynomial evaluation arguments. Recall that a Jolt proof consists of three
components: (1) multilinear polynomial commitments, (2) sum-check proofs, and (3) polynomial evaluation
arguments to prove the evaluation of committed polynomials at a random point chosen over the course of the
sum-check protocol. In the description above, F verifies both the sum-check proofs and polynomial evaluation
proofs arising from “monolithic” Jolt. We now discuss an optimization that allow the Jolt prover to defer
producing polynomial evaluation proofs. This optimization is particularly attractive because polynomial
evaluation arguments are particularly expensive for the prover. For example, with HyperKZG and Zeromorph,
for a polynomial of size m (i.e., a multilinear polynomial with logm variables) the prover must compute
several MSMs of size m and the scalars in the MSMs are random. Furthermore, with Shout and Twist, the
committed polynomials are slightly superlinear in size. For example, they are of size m = T ·K1/d, where
T is the number of CPU cycles proven in a shard, K is the size of memory, and d is a parameter. So, it is
important to avoid proving evaluations of those polynomials for every shard.

Instead of producing a polynomial evaluation proof, the Jolt prover outputs an instance-witness pair (and the
Jolt verifier outputs an instance) in the Rpolyeval relation [KS24a, Definition 21]. In a nutshell, an instance in
this relation is of the form u = (C, x, y) and a witness is a polynomial w = P . A witness is satisfying if P is
a multilinear polynomial, C is a commitment to P , and that P (x) = y.

These instances can be folded using a small variant of HyperNova’s multi-folding scheme, which we now
sketch. The “running” instance is a single instance in the Rpolyeval relation and the “incoming” instances
(which are produced via a Jolt proof) are rerandomized so that they all share the same evaluation point.
This is analogous to how HyperNova rerandomizes running instances in its multi-folding scheme for CCS by
running the sum-check protocol. Once all the instances share the same evaluation point, all instances can be
folded into a single instance with a simple random linear combination.

With this folding scheme in place, F would simply fold instance-witness pairs in Rpolyeval (present in a Jolt
proof) into a running instance. This requires representing HyperNova’s folding scheme verifier in F , which
involves verifying a sum-check proof and taking a weighted sum of k commitments, where k is the number
of instance-witness pairs folded per Jolt proof. The prover does incur O(m) = O(T ·K1/d) field operations
in the folding scheme. This is tolerable in our setting as long as we set d sufficiently large to ensure that
the cost contribution from this component is smaller than the cost to generate a Jolt proof of a shard. For
example, with K = 230 memory cells (representing several GBs of memory), we can set d = 4 or d = 8.

With this optimization, Jolt+Nova’s IVC proof includes a Nova proof and a single instance-witness pair
(u,w) in Rpolyeval. In addition to verifying Nova’s IVC proof, the Jolt+Nova verifier will have to verify the
validity of that instance-witness pair. Alternatively, the prover can replace the instance-witness pair (u,w)
with (u, π), where π is a polynomial evaluation argument proving the knowledge of a witness satisfying u and
the verifier would validate π in addition to validating a Nova proof.
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3 Technical preliminaries

3.1 Prover costs in elliptic-curve-based SNARKs

Cost of field operations. On modern CPUs, multiplying two elements of a 256-bit prime field using
Montgomery multiplication costs between 40 and 80 CPU cycles. Field additions for such fields are an order
of magnitude cheaper.

Elliptic curve commitments. In order to understand the advantages of the method of increments, it is
necessary to explain the prover cost profile in SNARKs that use elliptic curve commitments. Three points
are paramount: (1) committing to 0s is “free” (2) commitment to “small” values is faster than committing to
“big values”, and (3) under appropriate conditions, we can “ignore” the cost of computing evaluation proofs.
Details follow.

Let ℓ = log(n) and p be an ℓ-variate multilinear polynomial over a field F. Let G be a cryptographic group
with scalar field equal to F.

With elliptic-curve-based polynomial commitment schemes, the commitment to an ℓ-variate multilinear
polynomial p is simply a multi-exponentiation of size n = 2ℓ, namely:∏

xi∈{0,1}ℓ

gyi

i , (13)

where yi = p(xi) is the evaluation p at input xi ∈ {0, 1}ℓ. (In this paper, we treat G as a multiplicative
group, so the product in Equation (13) refers to the group operation.) Here, each gi ∈ G is an element of
the commitment key, a publicly known vector of group elements of length n = 2ℓ that is needed to produce
commitments.

Equation (13) is also referred to as a Pedersen vector commitment, with the vector at hand being the
exponents in Equation (13), i.e., the vector y of evaluations of p as its input ranges over {0, 1}ℓ. Accordingly,
we will often refer to the procedure of committing to p as “committing to n = 2ℓ values”, those values being
the entries of y.

Commitment costs. The “smaller” the yi values, the faster it is to compute the commitment in Equation
(13). Specifically, using Pippenger’s bucketing algorithm, for any desired B ≪ n, roughly one group operation
is incurred for each yi ∈ {0, 1, . . . , B}, two group operations are incurred for each yi ∈ {B + 1, . . . , B2}, and
in general c group operations are required for each yi ∈ {Bc−1 + 1, . . . , Bd}. In other words, committing to a
c log(n)-bit value yi requires about c group operations.

Accordingly, in order to understand the cost of committing to a vector, it is not enough to analyze the length
of the committed vector, one must also analyze how big or small the vector’s values are.

Notice in particular that if yi = p(xi) = 0, then gyi

i = 1, and hence the multi-exponentiation in Equation (13)
is unaffected by the i’th term. This means that committing to 0s is free for the prover, in the sense that any
0-values that are committed do not alter the commitment whatsoever.

We refer to the number of non-zero entries of y as the sparsity of p and of y. The above means that the time
to commit to p and y depend only on the sparsity, and not the ambient dimension n = 2ℓ. The ambient
dimension of y does factor into other prover costs, discussed shortly, but not into the time required to compute
the commitment.

Another important special case is an exponent yi = 1. The total contribution to the commitment of all such
exponents can be computed with exactly one group operation per entry i with yi = 1, as this contribution is:∏

i : yi=1

gi.

Pippenger’s bucketing algorithm achieves an amortized cost of very close to one group operation per committed
value in {2, . . . , B}, but not exactly one. The smaller B is relative to the length n of the committed vector y

29



(or more precisely, the number of entries of y outside of {0, 1}), the closer the amortized cost of commitment
is to one group operation per value yi in {2, . . . , B}.

Not only is it fast to commit to small positive values via Equation (13), it is also fast to commit to “small
negative values”, i.e., values in {−Bd, . . . ,−1}. To do this, one can in preprocessing invert each element of
the original commitment key, so that the commitment key becomes (g1, . . . , gn, h1, . . . , hn), where hi = g−1

i .
Then committing to a negative value yi can be done by committing to the positive value −yi using group
element hi in place of gi. The Twist prover will need this in order to commit to “increments” quickly, since
increments can be negative.

The cost of computing evaluation proofs. While commitment time depends only on the sparsity of p
when using elliptic-curve-based polynomial commitment schemes, committed 0s are not literally free. They
do affect the time required to compute evaluation proofs.

Specifically, if the committed vector y has length n, then evaluation proofs for multilinear polynomial
commitment schemes like HyperKZG and Zeromorph require the prover to compute commitments to (i.e.,
multi-exponentiations over) a vector v of length n with random entries (in fact, several such vectors). If y
is sparse and only contains small values, committing to v as required in the evaluation proof is potentially
orders of magnitude more expensive than merely committing to y. This is because v is not sparse, nor are its
entries small.

Furthermore, if using HyperKZG or Zeromorph, committed 0s also affect the size of the “powers-of-tau”
SRS [KZG10] used by these commitment schemes. Specifically, to commit to an ℓ-variate multilinear
polynomial with these schemes, one needs an SRS of size 2ℓ regardless of the sparsity of the committed
polynomial.

Fortunately, both of the above issues (large evaluation proof computation time, and large SRS) can be
addressed by the standard amortization technique described next.

3.1.1 Amortizing the cost of computing evaluation proofs via homomorphism

Elliptic curve commitment schemes automatically come with extremely powerful amortization properties for
evaluation proofs that render this concern moot, at least so long as n is not too much bigger than m. For
example, let ℓ = ℓ1 + ℓ2. Rather than committing to p directly, instead commit to 2ℓ1 different ℓ2-variate
multilinear polynomials, where for each z ∈ {0, 1}ℓ1 , the z’th committed polynomial is gz(x) = p(z, x).

Suppose the verifier requests the evaluation p(r, r′) for r ∈ Fℓ1 and r′ ∈ Fℓ2 . The verifier on its own can, via
homomorphism, compute a commitment to the ℓ2-variate polynomial g(x) = p(r, x), and the prover merely
needs to provide an evaluation proof for g(r2). Computing this evaluation proof is roughly 2ℓ1 times cheaper
than computing an evaluation proof if p had been committed directly.

The downside of this technique is that the commitment size grows by a factor of 2ℓ1 , and the verifier has
to perform 2ℓ1 group exponentiations25 to homomorphically compute the commitment to g(x) = p(r, x). In
many contexts, this is an acceptable increase in verifier costs even for 2ℓ1 in the dozens or hundreds. For
example, HyperKZG and Zeromorph evaluation proofs require the verifier to do a couple of dozen group
exponentiations regardless, so having the verifier do an extra couple of dozen exponentiations at most doubles
verifier costs. And SNARK verifiers do more than merely process commitments, so doubling the verifier’s
costs to process commitments may mean less than a doubling of total verifier costs.

Even more powerful amortization via folding. A related reason that the cost of polynomial evaluation
proofs can often be ignored is the use of folding schemes. Folding schemes are closely related to the above
amortization procedure, except that by invoking recursion, they avoid the 2ℓ1 -factor increase in verifier costs.

Here is a sketch what folding schemes can accomplish in the context of zkVMs. Say a prover wants to
prove it ran a RISC-V program correctly for C cycles. To bound the prover’s memory usage, one can split
the computation up into, say, C/S shards each consisting of S cycles. One can apply a zkVM to prove

25More precisely, a multi-exponentiation of length 2ℓ1 .
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correct execution of each shard separately, and then use folding techniques to recursively aggregate the proofs.
Specifically, represent the zkVM verifier (minus verification of polynomial evaluation proofs, as such claims
can be “accumulated” similar to the above example, rather than verified directly) via a constraint system like
R1CS. Then proving that one knows a valid proof for each of the C/S shards is equivalent to proving that
one knows satisfying assignments for C/S instances of the constraint system, one per shard. One can apply
an efficient folding procedure such as Nova [KST22] to obtain a single “folded” instance of the constraint
system such that knowledge of a satisfying assignment to the folded instance is equivalent to knowledge of a
satisfying assignment of all C/S original instances. Section 2.9.3 provides more details.

The key point for our purposes is that in this setting, only a single polynomial evaluation needs to be provided,
for a polynomial whose size is proportional to the size of a single shard.26 That is, by breaking the CPU’s
execution into C/S shards and applying folding, one obtains a roughly (C/S)-fold reduction in the cost of
computing an evaluation proof, compared to if the entire C-cycle CPU execution was proved in a monolithic
fashion.

For the reasons above, it is often reasonable to ignore the computation of polynomial evaluation proofs when
analyzing SNARK prover costs. Henceforth in this work, we do this.

Comparison to sparse polynomial commitment schemes. Readers may wonder about the relationship
between the discussion above and the notion of sparse polynomial commitment schemes such as Spark [Set20].
These are polynomial commitment schemes that enable the prover to efficiently commit to an ℓ-variate
multilinear polynomial p in time proportional to the number T of inputs x ∈ {0, 1}ℓ such that p(x) ̸= 0.
We refer to T as the sparsity of p. Haven’t we just asserted that a simple Pedersen vector commitment
achieves exactly this property, and also that the cost of evaluation proofs can be ignored due to amortization
techniques? Doesn’t that mean that any elliptic-curve based polynomial commitment scheme immediately
gives a sparse polynomial commitment scheme?

The answer is that sparse polynomial commitment schemes like Spark are generally targeted at settings where
n = 2ℓ is so much larger than the sparsity T that the cost of computing evaluation proofs cannot be ignored,
even given the excellent amortization properties described above.

For example, the situation where n = T 2 naturally arises in SNARKs for R1CS or circuit satisfiability, and
this is the setting that motivated the development of Spark (and also arises in our study of SNARKs for
non-uniform constraint systems, see Section 9). In the zkVM context, n turns out to equal K · T where K is
the size of the memory being checked. There are two potential differences between our setting and Spark’s:

• We are interested in settings where T is in the millions or billions or larger (in a zkVM context, T
corresponds roughly to the number of cycles in the VM’s execution), but where K may (or may not) be
much smaller. For example, in the setting of RISC-V registers, K is just 32. This is a setting where the
cost of evaluation proofs can definitely be ignored due to amortization, but this this may not be the
case if n ≥ T 2 as considered in Spark.

• Spark is a polynomial commitment scheme for arbitrary sparse polynomials. Whereas, Twist and Shout
do not need to commit to arbitrary sparse polynomials, but rather to polynomials whose evaluations
can be viewed as a K × T matrix that have exactly one non-zero entry per row. Nonetheless, we show
in Section 9.3.1 that Shout indirectly yields a general sparse polynomial commitment scheme, a major
improvement over Spark that we call Spark++.

3.1.2 An analytic cost model: relating group operations to field operations

When committing to a multilinear polynomial p defined over field F using an elliptic curve group G, F will
always be the scalar field of G, which is why we can interpret evaluations of p as exponents of group elements
in Equation (13). Elements of G correspond to pairs of elements (x, y) in a different field B called the

26This ability to avoid having the prover produce a polynomial evaluation proof for each shard, and avoid recursively proving
that it verified such a proof, is a key benefit of folding schemes compared to the “brute force recursion” [Tea22, COS20] that is
used today by all zkVMs that avoid elliptic curves.
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base field of G. And group operations are naturally defined in terms of base field operations. Specifically,
multiplying two group elements together typically requires about 6 base-field multiplications [GW20a].

Despite the fact that B and F are different fields, often operations in B and F have the same cost. For
example, if the elliptic curve is BN254, both field implementations involve 256-bit Montgomery arithmetic
[Mon85]. This allows us to directly relate the cost of group operations to F-operations: a single operation in
G has roughly the same cost as 6 multiplications in F. We ignore the cost of field additions, as in 256-bit
fields they are an order of magnitude cheaper than field multiplications.

Some pairing-friendly curves, like BLS12-381, have a larger base field than scalar field (e.g., the base field is
381 bits for BLS12-381 while the scalar field is only 256 bits). For these fields and curves, the method of
increments is still attractive relative to memory-checking techniques. This is because the method of increments
has substantially lower commitment costs compared to memory-checking techniques (by commitment costs,
we mean the number of group operations required to commit to data). And the bigger the base field of the
elliptic curve group, the more expensive those group operations are.

Summary of our analytic cost model. On CPUs, we consider a 256-bit field multiplication to be 40-80
times more expensive than a native multiplication of two 64-bit data types [MvOV01, Chapter 14]. We
consider a group operation (often called a group addition, using additive-group terminology) to be roughly 6
times as expensive as a field operation [GW20a]. We treat small committed values as costing exactly one
group operation (see Section 2.1, especially Footnote 7, and Section 3.1 for discussion). We treat random
values as costing about 11 group operations to commit to (as this is an optimistic bound on the runtime of
Pippenger’s algorithm at realistic input sizes [EHB22]). We ignore field additions, as well as multiplications
by small constants such as 2, since 2x can be computed with a single addition: 2x = x+ x.

A scalar multiplication (aka group exponentiation) by an arbitrary field element is equivalent in cost to roughly
400 group operations via the standard double-and-add algorithm, and a pairing evaluation is equivalent in
cost to roughly 10 scalar multiplications.

Caveats. Of course, any such cost model will only approximately match actual system performance.
Different cryptographic groups have different base field sizes, and real hardware is complicated (e.g., some
operations are memory-bound rather than compute bound). However, the above approximate costs are
carefully informed by examination of how field operations and group operations are actually computed, as
well as by microbenchmarks.

Any inaccuracies in our cost model generally understate our improvements over prior works. For example,
we treat all small committed values as costing exactly one group operation, when in fact committing to a
1-value truly requires one group operation, and committing to larger-but-still-small values is somewhat more
expensive. Since our protocols commit to more 1-values and fewer larger-but-still-small values than prior
work, this cost model understates our speedups.

3.2 Multilinear extensions

Our treatment of multilinear extension polynomials, polynomial commitment schemes, and SNARKs is
standard and taken verbatim from Setty and Thaler [STW23].

An ℓ-variate polynomial p : Fℓ → F is said to be multilinear if p has degree at most one in each variable. Let
f : {0, 1}ℓ → F be any function mapping the ℓ-dimensional Boolean hypercube to a field F. A polynomial
g : Fℓ → F is said to extend f if g(x) = f(x) for all x ∈ {0, 1}ℓ. It is well-known that for any f : {0, 1}ℓ → F,
there is a unique multilinear polynomial f̃ : F→ F that extends f . The polynomial f̃ is referred to as the
multilinear extension (MLE) of f .

A basic fact about multilinear polynomials is the following.

Fact 3.1. Let p : Fn → F be any multilinear polynomial. Then for any c ∈ F and any x′ ∈ {0, 1}n−1,

p(c, x′) = (1− c) · p(0, x′) + c · p(1, x′). (14)
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Proof. The right and left hand sides of Equation (14) are both multilinear polynomials and are easily seen
to evaluate to the same value whenever (c, x′) ∈ {0, 1} × {0, 1}n−1. Since {0, 1}n is an interpolating set for
multilinear polynomials, the left hand side and right hand side of Equation (14) must be equal for all c ∈ F
(and any x′ ∈ Fn−1 as well).

The right hand side of Equation (14) can be computed with a single field multiplication, as it equals
p(0, x′) + c · (p(1, x′)− p(0, x′)).

A particular multilinear extension that arises frequently in the design of interactive proofs is the ẽq is the
MLE of the function eq : {0, 1}s × {0, 1}s → F defined as follows:

eq(x, e) =

{
1 if x = e

0 otherwise.

An explicit expression for ẽq is:

ẽq(x, e) =
s∏

i=1

(xiei + (1− xi)(1− ei)) . (15)

Indeed, one can easily check that the right hand side of Equation (15) is a multilinear polynomial, and that if
evaluated at any input (x, e) ∈ {0, 1}s × {0, 1}s, it outputs 1 if x = e and 0 otherwise. Hence, the right hand
side of Equation (15) is the unique multilinear polynomial extending eq. Equation (15) implies that ẽq(r1, r2)
can be evaluated at any point (r1, r2) ∈ Fs × Fs in O(s) time.27

Another multilinear extension that we will make use of is the MLE of the less-than function. Given any
vector j = (j1, . . . , jlog T ) ∈ {0, 1}log T , define

int(j) =

log T∑
i=1

2i−1 · ji.

That is, int(j) is the integer whose binary representation is j. Then define

LT(j′, j) =

{
1 if int(j′) < int(j)

0 otherwise.

It was shown in [STW24, Appendix G, see Equation 58 on Page 56] that L̃T can be evaluated at any input
(r′, r) ∈ Flog T × Flog T with O(log T ) field operations. See also Appendix B.

Multilinear extensions of vectors. Given a vector u ∈ Fm, we will often refer to the multilinear
extension of u and denote this multilinear polynomial by ũ. ũ is obtained by viewing u as a function mapping
{0, 1}logm → F in the natural way28: the function interprets its (logm)-bit input (i0, . . . , ilogm−1) as the
binary representation of an integer i between 0 and m− 1, and outputs ui. ũ is defined to be the multilinear
extension of this function.

27Throughout this manuscript, we consider any field addition or multiplication to require constant time.
28All logarithms in this paper are to base 2.
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Multilinear Lagrange interpolation. An explicit expression for the MLE of a vector u ∈ Fm is as
follows:

ũ(x) =
∑

y∈{0,1}log m

uy · ẽq(y, x).

Indeed, it is easily checked that the right hand side of the above equality is multilinear in x, and for any
x ∈ {0, 1}logm the right hand side equals ux. Hence, the right hand side is the unique multilinear extension
of u.

For each y ∈ {0, 1}logm, the multilinear polynomial

x 7→ ẽq(y, x) =

logm∏
i=1

(yixi + (1− yi)(1− xi))

is called the yth multilinear Lagrange basis polynomial.

The following lemma is well-known [VSBW13].

Lemma 1 (Vu et al. [VSBW13]). Given as input a point r ∈ Flogm, it is possible to evaluate all Lagrange
basis polynomials at r using only m field multiplications. Given a vector u ∈ Fm, it is possible to compute
ũ(r) with 2m field multiplications.

Proof. For i = 1, . . . ,m, define Ai to be the array of length 2i, with entries indexed by x ∈ {0, 1}i, such that
Ai[x] = ẽq(x, r1, . . . , ri). Then

Ai+1[x, 1] = ri ·Ai[x]

and
Ai+1[x, 0] = (1− ri) ·Ai[x] = Ai[x]−Ai+1[x, 1].

Alogm contains the desired evaluations. The total cost to compute Alogm is 1 + 2 + · · · + m/2 = m
multiplications. See [Rot24] for an alternative algorithm.

Given a vector u ∈ Fm, ũ(r) is simply the inner product of u with Alogm. This inner product can be computed
with m field multiplications (on top of the m required to compute Alogm).

3.3 The sum-check protocol

Let g be some ℓ-variate polynomial defined over a finite field F. The purpose of the sum-check protocol is for
prover to provide the verifier with the following sum:

H :=
∑

b∈{0,1}ℓ

g(b). (16)

To compute H unaided, the verifier would have to evaluate g at all 2ℓ points in {0, 1}ℓ and sum the results.
The sum-check protocol allows the verifier to offload this hard work to the prover. It consists of ℓ rounds,
one per variable of g. In round i, the prover sends a message consisting of di field elements, where di is the
degree of g in its i’th variable, and the verifier responds with a single (randomly chosen) field element. If the
prover is honest, this polynomial (in the single variable Xi) is∑

(bi+1,...,bℓ−1)∈{0,1}ℓ−i

g(r0, . . . , ri−1, Xi, bi+1, . . . , bℓ−1). (17)

Here, we are indexing both the rounds of the sum-check protocol and the variables of g starting from zero
(i.e., indexing them by {0, 1, . . . , ℓ − 1}), and r0, . . . , ri−1 are random field elements chosen by the verifier
across rounds 0, . . . , i− 1 of the protocol.

The protocol has perfect completeness, and soundness error
(∑ℓ

i=1 di

)
/|F|. The verifier’s runtime is

O
(∑ℓ

i=1 di

)
, plus the time required to evaluate g at a single point r ∈ Fℓ. In the typical case that di = O(1)
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for each round i, this means the total verifier time is O(ℓ), plus the time required to evaluate g at a single
point r ∈ Fℓ. This is exponentially faster than the 2ℓ time that would generally be required for the verifier to
compute H. See [AB09, Chapter 8] or [Tha22, §4.1] for details.

Review of linear-time sum-check proving. Suppose the sum-check protocol is applied to compute∑
x∈{0,1}n ẽq(r′, x) · g(x) for some fixed r′ ∈ Fn, where

g(x) =

ℓ∏
i=1

pi(x), (18)

and where each pi is multilinear. Let N = 2n. The standard linear-time sum-check prover algorithm
[CTY11, Tha13] has the prover begin by storing arrays A1, . . . , Aℓ each of size N with entries indexed by
{0, 1}n, where Ai(x) stores pi(x). The prover also stores an array B containing all evaluations ẽq(r, x) as x
ranges over {0, 1}n. It is known how to build this array with N field multiplications in total.

In round m of the sum-check protocol, for each c′ ∈ {0, 1, 2, . . . , ℓ+ 1}, the must compute

sm(c′) =
∑

y∈{0,1}n−m

eq(r′, r1, . . . , rm−1, c
′, y)g(r1, . . . , rm−1, c, y), (19)

where sm is the degree-(ℓ+ 1) univariate polynomial sent by the sum-check prover in round ℓ.

Accordingly, the sum-check prover at the start of each round m makes sure that Ai stores pi(r1, . . . , rm−1, y)
as y ranges over {0, 1}n−(m−1). By Fact 3.1, the following procedure suffices to ensure this. At the end of
each round m, when the verifier selects that round’s random challenge rm ∈ F, the sum-check prover updates
each entry Ai(y) for y ∈ {0, 1}n−m to:

Ai(y)← pi(r1, . . . , rm, y) = (1− rm) · pi(r1, . . . , rm−1, 0, y) + rm · pi(r1, . . . , rm−1, 1, y)

= Ai(0, y) + rm · (Ai(y, 1)−Ai(y, 0)) . (20)

We refer to this procedure as the prover binding the m’th variable to rm. A similar update is performed on
the array B of evaluations ẽq(r′, r1, . . . , rm, y).

Given the Ai arrays at each round m, the prover can evaluate g(r1, . . . , rm−1, c
′, y) for the ℓ + 2 relevant

points c′ and all y ∈ {0, 1}n−m with ℓ− 1 field multiplications per point. Multiplying g(r1, . . . , rm−1, c
′, y)

by the value ẽq(r′, r1, . . . , rm−1, c
′, y) (which is easily derivable from the array B without additional general

field multiplications) costs an additional field multiplication per point, and this counts all field operations
needed to compute the quantities appearing in Equation (19).

Hence, the prover’s total work across all rounds of the sum-check protocol is ℓ ·N field multiplications across
all binding operations for the arrays A1, . . . , Aℓ, plus 2N operations to compute and then bind the B array,
plus ℓ · (ℓ+ 2) ·N field multiplications across all rounds to compute the prover’s messages given the arrays
A1, . . . , Aℓ. That is

(ℓ2 + 3ℓ+ 2)N

field multiplications in total.

Recent optimizations have brought this cost down. Dao and Thaler [DT24] show how to effectively eliminate
the 2N operations required to build and bind the B array of ẽq evaluations. And it’s well-known that
the prover need not consider the evaluation point c′ = 1 in each round because when the prover is honest,
sm(1) = sm−1(rm−1)− sm(0). On top of this, Gruen [Gru24] effectively showed that the evaluation point
ℓ+ 1 can be omitted as well (see Section 3.6.1 for details). Combining these optimizations, the number of
field multiplications performed by the prover falls to roughly

(ℓ2 + ℓ) ·N.
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3.4 SNARKs and commitment schemes

SNARKs We adapt the definition provided in [KST22].

Definition 3.1. Consider a relation R over public parameters, structure, instance, and witness tuples. A
non-interactive argument of knowledge for R consists of PPT algorithms (G,P,V) and deterministic K,
denoting the generator, the prover, the verifier and the encoder respectively with the following interface.

• G(1λ)→ pp: On input security parameter λ, samples public parameters pp.

• K(pp, s)→ (pk , vk): On input structure s, representing common structure among instances, outputs the
prover key pk and verifier key vk.

• P(pk , u, w)→ π: On input instance u and witness w, outputs a proof π proving that (pp, s, u, w) ∈ R.

• V(vk, u, π)→ {0, 1}: On input the verifier key vk, instance u, and a proof π, outputs 1 if the instance
is accepting and 0 otherwise.

A non-interactive argument of knowledge satisfies completeness if for any PPT adversary A

Pr

 V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk , vk)← K(pp, s),
π ← P(pk , u, w)

 = 1.

A non-interactive argument of knowledge satisfies knowledge soundness if for all PPT adversaries A there
exists a PPT extractor E such that for all randomness ρ

Pr

 V(vk, u, π) = 1,
(pp, s, u, w) ̸∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, π)← A(pp; ρ),
(pk , vk)← K(pp, s),
w ← E(pp, ρ)

 = negl(λ).

A non-interactive argument of knowledge is succinct if the verifier’s time to check the proof π and the size of
the proof π are at most polylogarithmic in the size of the statement proven.

Polynomial commitment scheme We adapt the definition from [BFS20]. A polynomial commitment
scheme for multilinear polynomials is a tuple of four protocols PC = (Gen, Commit,Open, Eval):

• pp← Gen(1λ, ℓ): takes as input ℓ (the number of variables in a multilinear polynomial); produces public
parameters pp.

• C ← Commit(pp, g): takes as input a ℓ-variate multilinear polynomial over a finite field g ∈ F[ℓ]; produces
a commitment C.

• b← Open(pp, C, g): verifies the opening of commitment C to the ℓ-variate multilinear polynomial g ∈ F[ℓ];
outputs b ∈ {0, 1}.

• b ← Eval(pp, C, r, v, ℓ, g) is a protocol between a PPT prover P and verifier V. Both V and P hold a
commitment C, the number of variables ℓ, a scalar v ∈ F, and r ∈ Fℓ. P additionally knows a
ell-variate multilinear polynomial g ∈ F[ℓ]. P attempts to convince V that g(r) = v. At the end of the
protocol, V outputs b ∈ {0, 1}.

Definition 3.2. A tuple of four protocols (Gen, Commit,Open, Eval) is an extractable polynomial commitment
scheme for multilinear polynomials over a finite field F if the following conditions hold.

• Completeness. For any ℓ-variate multilinear polynomial g ∈ F[ℓ],

Pr

{
pp← Gen(1λ, ℓ); C ← Commit(pp, g):
Eval(pp, C, r, v, ℓ, g) = 1 ∧ v = g(r)

}
≥ 1− negl(λ)
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• Binding. For any PPT adversary A, size parameter ℓ ≥ 1,

Pr

 pp← Gen(1λ, ℓ); (C, g0, g1) = A(pp);
b0 ← Open(pp, C, g0); b1 ← Open(pp, C, g1):

b0 = b1 ̸= 0 ∧ g0 ̸= g1

 ≤ negl(λ)

• Knowledge soundness. Eval is a succinct argument of knowledge for the following NP relation given
pp← Gen(1λ, ℓ).

REval(pp) = {⟨(C, r, v), (g)⟩ : g ∈ F[µ] ∧ g(r) = v ∧ Open(pp, C, g) = 1}

3.5 Polynomial IOPs and polynomial commitments

Modern SNARKs are constructed by combining a type of interactive protocol called a polynomial IOP
[BFS20] with a cryptographic primitive called a polynomial commitment scheme [KZG10]. The combination
yields a succinct interactive argument, which can then be rendered non-interactive via the Fiat-Shamir
transformation [FS86b], yielding a SNARK.

Roughly, a polynomial IOP is an interactive protocol where, in one or more rounds, the prover may “send”
to the verifier a very large polynomial g. Because g is so large, one does not wish for the verifier to read a
complete description of g. Instead, in any efficient polynomial IOP, the verifier only “queries” g at one point
(or a handful of points). This means that the only information the verifier needs about g to check that the
prover is behaving honestly is one (or a few) evaluations of g.

In turn, a polynomial commitment scheme enables an untrusted prover to succinctly commit to a polynomial
g, and later provide to the verifier any evaluation g(r) for a point r chosen by the verifier, along with a
proof that the returned value is indeed consistent with the committed polynomial. Essentially, a polynomial
commitment scheme is exactly the cryptographic primitive that one needs to obtain a succinct argument
from a polynomial IOP. Rather than having the prover send a large polynomial g to the verifier as in the
polynomial IOP, the argument system prover instead cryptographically commits to g and later reveals any
evaluations of g required by the verifier to perform its checks.

Costs of some specific polynomial commitment schemes. The following elliptic-curve-based polyno-
mial commitments are of particular interest to us. Two are HyperKZG and Zeromorph [ZSC24, KT23]. These
are homomorphic commitment schemes for multilinear polynomials. The commitment consists of one group
element in a pairing friendly group G1, and committing to an ℓ-variate multilinear polynomial p consists
of applying an MSM to the vector of evaluations of p across all inputs in {0, 1}ℓ. The commitment key is
the powers-of-tau SRS (also used in KZG commitments [KZG10]) of size N = 2ℓ. Evaluation proofs have
logarithmic size and verifying them requires performing two or three pairings and an MSM of logarithmic
size. Computing the evaluation proof requires, for each i = 1, . . . , ℓ, a constant number of MSMs of length 2i

(the scalars in this MSM are random field elements, if the evaluation point is random).

Dory [Lee21] is a transparent elliptic-curve-based polynomial commitment scheme that also uses pairings. An
attractive property of Dory is that its commitment key is sublinear size, consisting of only

√
N elements of G1

and
√
N elements of G2. Committing to an ℓ-variate multilinear polynomial entails performing roughly

√
N

MSMs each of length
√
N (as with HyperKZG and Zeromorph, the scalars the MSMs are applied to comprise

evaluations of p across all inputs in {0, 1}ℓ). In addition, committing requires computing a multi-pairing of
size
√
N .29 Dory has a transparent linear-time pre-processing phase, which produces a verification key of

size just O(logN). Evaluation proofs consist of 6 logN target group elements and verifying them involves
logarithmically many scalar multiplications in the target group.

3.6 Zero-check PIOP

Let g be an ℓ-variate polynomial of, say, constant degree in each variable. The following standard interactive
proof establishes that that g(x) = 0 for all x ∈ {0, 1}ℓ, while requiring the verifier to merely evaluate g at a
single point in Fℓ (after processing a proof consisting of O(ℓ) field elements).

29A multi-pairing of size S is an expression of the form
∏S

i=1 e(ai, bi) where each ai ∈ G1 and bi ∈ G2.
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The verifier picks an input r ∈ Fℓ at random. The prover and verifier apply the sum-check protocol to confirm
that

0 =
∑

x∈{0,1}ℓ

ẽq(r, x) · g(x). (21)

This PIOP is perfectly complete. By a direct application of the Schwartz-Zippel lemma, the soundness error
is ℓ/|F| (plus the soundness error of the sum-check protocol itself).

3.6.1 An optimization of Gruen

Suppose the polynomial g(x) in Equation (21) has degree d in each variable of x. Then ẽq(r, x) · g(x) has
degree d+ 1 in each variable of x. As a consequence, when applying the sum-check protocol to ẽq(r, x) · g(x),
the prover’s message si(X) in each round i is a univariate polynomial of degree d+ 1. This has implications
for prover time: the prover must evaluate si at d+ 2 points, say {0, 1, . . . , d+ 1} (in fact, the evaluation si(1)
can be omitted and/or had “for free” as it is quickly derivable from si(0) and si−1).

Gruen [Gru24, Section 3] shows that the sum-check protocol can be modified so that in each round i the
prover only has to compute a degree-d polynomial s′i, not the degree d+ 1 polynomial si (and si can then be
derived from s′i, in time that depends only on d). This saves the prover the work of evaluating the relevant
polynomial at one point (say, point d+ 1). (Gruen describes his optimization as having the prover send s′i
instead of si, but this requires modifying the standard sum-check verifier so as to process s′i rather than si.
We prefer to leave the standard sum-check verification procedure unchanged).

The idea is roughly to define s′i to “leave out” the contribution of ẽq(r, x) to si when defining s′i. This reduces
the degree of si by one. More precisely, since ẽq(r, x) factors into a product of terms where each term depends
on a single variable, s′i leaves out the contribution of variable i to ẽq(r, x). This contribution is independent
of the other variables still being summed over in round i, so the prover can “add this contribution back in”
(i.e., compute si from s′i) in time independent of the number of terms being summed.

Specifically, if (r1, . . . , ri−1) denotes the randomness chosen by the sum-check verifier in rounds 1, . . . , i− 1,
then recall that

si(c) =
∑

x′∈{0,1}ℓ−i

ẽq(r, r1, . . . , ri−1, c, x
′) · g(r1, . . . , ri−1, c, x

′)

=

i−1∏
j=1

(rjrj + (1− rj)(1− rj))


︸ ︷︷ ︸

call this factor A

· (ric+ (1− ri)(1− c))︸ ︷︷ ︸
call this factor B(c)

∑
x′∈{0,1}ℓ−i

ẽq(ri+1, . . . , rℓ, x
′)g(r1, . . . , ri−1, c, x

′)

︸ ︷︷ ︸
call this factor C(c)

.

The modified polynomial s′i(X) for round i is

s′i(c) = A · C(c).

Crucially, for each c ∈ {0, . . . , d+ 1}, si(c) = s′i(c) ·B(c). Effectively, this modification has removed from the
prover’s message si(c) the degree-1 factor B(c) that the i’th variable of x contributed to the term ẽq(r, x).

The prover can compute s′i(c) for d + 1 points via the standard linear-time sum-check proving algorithm
(Section 3.3). These d+ 1 evaluations fully specify s′i since s′i has degree d rather than d+ 1 (note that, per a
standard observation, the evaluation s′i(0) can be computed in constant time from s′i(1) and si(0)).

So once the prover has computed s′i, in time that depends only on d it can compute si(c) at the d+ 2 points
c ∈ {0, . . . , d+ 1}, thereby fully specifying si.

3.7 One-hot encodings

Fix K and let z ∈ {0, 1, . . .K − 1} ⊆ F. The (one-dimensional) one-hot encoding of z is the unit vector
ez ∈ FK whose z’th entry is 1 and all other entries of which are 0.
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1. P and V have agreed upon a size-K lookup table whose multilinear extension is given by Ṽal
(which we assume to be evaluable in O(logK) time), and P has already committed to a multilinear
polynomial r̃a : FlogK × Flog T → F. P wishes to give the verifier query access to the virtual
polynomial r̃v : Flog T → F, defined as the unique multilinear polynomial satisfying that: for all

j ∈ {0, 1}log T , r̃v(j) =
∑

k∈{0,1}log K r̃a(k, j) · Ṽal(k).
2. V → P: pick the desired evaluation point rcycle ∈ Flog T send it to P.
3. V and P apply the sum-check protocol to compute

r̃v(rcycle) =
∑

k∈{0,1}log K

r̃a(k, rcycle) · Ṽal(k).

4. Let raddress denote the randomness chosen over the course of the sum-check protocol. To perform
V ′s check in the final round of the sum-check protocol, V evaluates the committed polynomial r̃a

respectively at the random point (raddress, rcycle), and V evaluates Ṽal(raddress) directly in O(logK)
time.

Figure 5: The core Shout PIOP when d = 1, assuming the lookup table is MLE-structured (i.e., V can

evaluate Ṽal at a random input in O(logK) time).

Next, let us assume for simplicity that K1/d is an integer. For d > 1, the d-dimensional one-hot encoding of z
refers to the collection of d unit vectors, say v1, . . . , vd, each of lengthK1/d, whose tensor product v1⊗v2 · · ·⊗vd
equals ez. In other words, if we index the K entries of ez by k = (k1, . . . , kd) ∈ {0, . . . ,K1/d − 1}d, then
v1, . . . , vd are the unique unit vectors such that the k’th entry of ez equals

d∏
i=1

vi(ki).

This implies that, if z itself corresponds to (z1, . . . , zd) via the natural bijection between {0, . . . ,K − 1} and
{0, . . . ,K1/d − 1}d, then vi = ezi ∈ {0, 1}K

1/d

for i = 1, . . . , d.

4 The Shout PIOP

This section gives a complete description of the Shout PIOP (both the special case when d = 1 and the case
of general d). We defer until Section 6 an explanation of how to quickly implement the prover in this PIOP.

4.1 A special case: d = 1

4.1.1 Core Shout PIOP for d = 1

Figure 5 contains the core Shout PIOP when d = 1. It is identical to (the first sum-check invocation) in the
Generalized-Lasso protocol [STW24].

Theorem 1. Consider an instance of read-only memory-checking, and assume that for each j ∈ {0, 1}log T ,
r̃a(·, j) is the one-hot representation of the address read at cycle j. Then the PIOP in Figure 5 has perfect
completeness and soundness error (2 log(K) + log(T ))/|F|.

Proof. Since r̃a(·, j) is the one-hot representation of the address read at cycle j, r̃v(j) is indeed the table
value stored at that address if and only if

r̃v(j) =
∑

k∈{0,1}log K

r̃a(k, j) · Ṽal(k). (22)
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Both the left hand side and right hand side of Equation (22) are multilinear polynomials in j. Hence they are
equal as formal polynomials if and only if this equality holds for all j ∈ {0, 1}log T . By the Schwartz-Zippel
lemma, up to soundness error log(T )/|F|, in order to check that the left hand side and right hand side are
the same multilinear polynomial it suffices for V to pick rcycle at random from Flog T and confirm that

r̃v(rcycle) =
∑

k∈{0,1}log K

r̃a(k, rcycle) · Ṽal(k). (23)

Figure 5 applies the sum-check protocol to confirm this. The claim now follows from the completeness and
soundness properties of the sum-check protocol (Section 3.3).

According to our formulation of the memory-checking problem (Section 2.2), one should separately check that
for each j ∈ {0, 1}log T , r̃a(·, j) is indeed the one-hot representation of some address raf(j) ∈ {0, 1, . . . ,K − 1}
that is read at cycle j (and query access to the multilinear polynomial r̃af should be granted to the verifier).
A PIOP for establishing this is given in Section 4.1.2 below.

We describe in Section 6.1 how to quickly implement the prover in core Shout PIOP when d = 1.

4.1.2 Checking correctness of one-hot encodings

Suppose the prover has committed to (the multilinear extension of) a vector ra ∈
(
FK
)T

and is also prepared

to grant the verifier query access to a log(T )-variate multilinear virtual polynomial r̃af. The prover claims

that for each j ∈ {0, 1}log T , r̃af(j) ∈ {0, 1, . . . ,K − 1} and the vector r̃a(·, j) as · ranges over {0, 1}logK ,

equals the one-hot encoding of r̃af(j). We describe a PIOP to check these claims. In other words, the PIOP
allows the verifier to:

• Confirm that r̃a(k, j) ∈ {0, 1} for all k ∈ {0, 1}logK .

• Confirm that r̃a(k, j) equals 1 for exactly one register k ∈ {0, 1}logK .

• Obtain query access to r̃af(j), where the k ∈ {0, 1}logK from the previous bullet is the binary represen-

tation of r̃af(j).

Checking the first bullet. To check the first bullet point, simply apply the zero-check PIOP to confirm
that for all (k, j) ∈ {0, 1}logK × {0, 1}log T ,

r̃a(k, j)2 − r̃a(k, j) = 0. (24)

We will show later (Section 6.3) that the prover in this zero-check PIOP performs only O(K) + 2T field
multiplications.

Checking the second bullet. The second bullet point is equivalent to the following constraint holding for
all j ∈ {0, 1}log T :

1 =
∑

k∈{0,1}log K

r̃a(k, j). (25)

Since the left hand side and right hand side of Equation (25) are both multilinear polynomials in j (in fact,
the left hand side has degree 0), satisfaction of this constraint system implies that ã equals the right hand side
of Equation (27) as formal polynomials (and vice versa). Hence, the entire constraint system can be checked
(with soundness error log(T )/|F|) by having the verifier pick a random r′ ∈ Flog T and confirming that

1 =
∑

k∈{0,1}log K

r̃a(k, r′). (26)
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Since b̃ is multilinear, it is easy to see that, so long as the field characteristic is greater than 2, this sum is in
fact equal to

K · r̃a(2−1, . . . , 2−1, r′),

(see for example [AW09, End of Section 1.4] for reference). And so Equation (26) can be confirmed to hold
by the verifier with a single evaluation query to r̃a, at point (2−1 . . . , 2−1, r′).

This technique does not work over binary fields (where 2−1 is undefined). In that case, one can simply apply
the sum-check protocol directly to compute Equation (26). This has the additional benefit that it lowers the
number of evaluation queries to r̃a performed by the verifier (i.e., by running this sum-check in parallel with
the one used to check the third bullet below, we can ensure that both sum-checks wind up evaluating r̃a at
the same point).

Checking the third bullet. Given the first two bullet points hold, the third bullet point is equivalent to
to the following constraint holding for all j ∈ {0, 1}log T :

ã(j) =
∑

k∈{0,1}log K

log(K)−1∑
i=0

2iki

 · r̃a(k, j). (27)

Since the left hand side and right hand side of Equation (27) are both multilinear polynomials in j, satisfaction
of this constraint system implies that ã equals the right hand side of Equation (27) as formal polynomials
(and vice versa). Hence, the entire constraint system can be checked (with soundness error log(T )/|F|) by
having the verifier pick a random r′ ∈ Flog T and confirming that

r̃af(r′) =
∑

k∈{0,1}log K

log(K)−1∑
i=0

2iki

 · r̃a(k, r′).
The verifier can obtain the evaluation r̃af(r) from the commitment to r̃af. To compute

∑
k∈{0,1}log K

log(K)−1∑
i=0

2iki

 · r̃a(k, r′),
the prover and verifier can apply the sum-check protocol, at the end of which the verifier needs to evaluate
r̃a(r, r′) for a random point (r, r′) ∈ FlogK × Flog T . This evaluation can be obtained by the verifier from the
commitment to r̃a.

Figure 6 provides the entire PIOP. The following theorem is immediate from completeness and soundness of
the sum-check protocol and the discussion above.

Theorem 2. Figure 6 satisfies perfect completeness and has soundness error (6 log(K) + 4 log(T ))/|F|. That
is, if ra(j) is not the one-hot encoding of some value raf(j) ∈ {0, 1, . . . ,K − 1} for all j ∈ {0, 1}log T , or if the

claim that r̃af(r′) = y is false, the verifier will accept with probability at most (2 log(K) + log(T ))/|F|.

Proof. First, suppose that for some j ∈ {0, 1}log T , r̃a(·, j) is not the correct one-hot-representation of some
value in {0, 1, . . . ,K − 1}. Then either r̃a(k, j) ̸∈ {0, 1} for some k ∈ {0, 1}logK , or

∑
k∈{0,1}log K r̃a(k, j) ̸= 1.

We claim this implies that the verifier in Figure 6 rejects with sufficiently high probability.

Observe that the following polynomial g(r, r′) is multilinear:

g(r, r′) =
∑

k∈{0,1}log K , j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)
(
r̃a(k, j)2 − r̃a(k, j)

)
.

Furthermore, if there is any (k, j) ∈ {0, 1}logK ×{0, 1}log T such that r̃a(k, j) ̸∈ {0, 1}, g is not the identically-
zero polynomial. Hence, by the Schwartz-Zippel lemma, with probability at least 1− (log(K) + log(T ))/|F|
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over the random choice of r, r′, Equation (29) fails to hold. In this event, the soundness guarantee of the
sum-check protocol ensures that the verifier rejects within the Booleanity-checking sum-check with probability
at least 1− 3(log(K) + log(T ))/|F|.

Let h(j) =
∑

k∈{0,1}log K r̃a(k, j). h is multilinear in j, and if there is any j ∈ {0, 1}log T for which h(j) ̸= 1,
then h is not the identically-1 polynomial. In this case, by the Schwartz-Zippel lemma, with probability
at least 1 − log(T )/|F| over the random choice of rcycle, 1 = h(rcycle) will fail to hold. In this event, the
soundness guarantee of the sum-check protocol ensures that the verifier will reject in the Hamming weight 1
check will probability at least 1− log(K)/|F|. This completes the proof of the claim.

Finally, suppose that r̃af(rcycle) ̸= y. We claim that r̃af(rcycle) satisfies the the following equality:

r̃af(rcycle) =
∑

k∈{0,1}log K

log(K)−1∑
i=0

2i · ki

 · r̃a(k, rcycle), (28)

Indeed, the right hand side of this equation is multilinear in rcycle and agrees with raf whenever rcycle ∈
{0, 1}log T . Since {0, 1}log T is an interpolating set for multilinear polynomials, the left hand side and right
hand side must be equal as formal polynomials in rcycle.

Hence, if r̃af(rcycle) ̸= y, soundness of the sum-check protocol guarantees that the verifier will reject in the

r̃af-evaluation sum-check invocation with probability at least 1− 2 log(K)/|F|. This completes the proof of
the soundness property stated in the theorem.

Perfect completeness is immediate from perfect completeness of the sum-check protocol, combined with the
following facts:

• If every r̃a(·, j) is a valid one-hot encoding for all j ∈ {0, 1}log T , then r̃a(k, j) ∈ {0, 1} for all (k, j) ∈
{0, 1}log(K) × {0, 1}log T , and hence r̃a(k, j)2 − r̃a(k, j) = 0.

• If every r̃a(·, j) is a valid one-hot encoding for all j ∈ {0, 1}log T , then
∑

k∈{0,1}log K r̃a(k, j) = 1 for

all j ∈ {0, 1}log T , and since the left hand side is a multilinear polynomial in j and {0, 1}log T is an
interpolating set for such polynomials, this implies

∑
k∈{0,1}log K r̃a(k, j) = 1 holds for all j ∈ Flog T .

• Equation (28) holds.

This completes the proof of the theorem.

4.2 Shout for general d

Figure 7 has pseudocode for the core Shout PIOP for a general parameter d, and Figure 8 specifies the PIOP
for proving correctness of d-dimensional one-hot encodings, for general d.

Theorem 3. Figures 7 and 8 satisfy perfect completeness. Assuming each address r̃a(·, j) for j ∈ {0, 1}log T is

indeed the d-dimensional one-hot encodings of some value r̃af(j) ∈ {0, 1, . . . ,K − 1}, Figure 7 has soundness
error at most

((d+ 2) log T + 2 logK) /|F|.

Figure 8 has soundness error at most

(4d log T + 6 logK) /|F|.

That is, the verifier in Figure 7 will reject with overwhelming probability if there is any j ∈ {0, 1}log T such

that r̃v(j) ̸= Ṽal(k), where k ∈ {0, 1}logK is the binary representation of the address whose d-dimensional
one-hot encoding is given by (r̃a1(j), . . . , r̃ad(j)).

Proof. The completeness and soundness of Figure 8 is nearly identical to Theorem 2. The main difference is
that in place of Equation (28), we now invoke that:
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1. As input, P has already committed to a multilinear polynomial r̃a : FlogK×Flog T → F. P claims that

for each j ∈ {0, 1}log T , r̃a(·, j) is the one-hot representation of some value r̃af(j) ∈ {0, 1, . . . ,K−1},
and (optionally) that r̃af(rcycle) = y.

2. V picks r ∈ FlogK and r′ ∈ Flog T at random and sends (r, r′) to P.
3. (Booleanity check): V and P apply the sum-check protocol to confirm that

0 =
∑

k∈{0,1}log K , j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)
(
r̃a(k, j)2 − r̃a(k, j)

)
. (29)

4. Let (r′address, r
′
cycle) ∈ FlogK × Flog T be the randomness chosen over the course of the sum-check

protocol invoked in Line 3.
5. (Hamming weight 1 check): V and P apply the sum-check protocol to confirm that

1 =
∑

k∈{0,1}log K

r̃a(k, r′cycle).

6. (r̃af-evaluation sum-check): In parallel with the sum-check invocation in Line 5, V and P apply
the sum-check protocol to confirm that

y =
∑

k∈{0,1}log K

log(K)−1∑
i=0

2i · ki

 · r̃a(k, rcycle).
Let r′′address be the randomness chosen by the verifier over the course of this sum-check instance.

7. To perform V’s check in the final round of the two sum-checks (Lines 3 and 6), and V’s check in
Line 5, V evaluates ẽq(r, r′address) and ẽq(r′, r′cycle) on its own, and evaluates r̃a(r′address, rcycle), and
r̃a(r′′address, r

′
cycle) with two queries to r̃a. Alternatively, standard techniques can reduce these two

evaluations to a single evaluation of r̃a.

Figure 6: A PIOP for checking that for each j ∈ {0, 1}T , r̃a(·, j) is the (one-dimensional) one-hot representation

of some value r̃af(j) ∈ {0, 1, . . . ,K − 1}. This PIOP also grants the verifier query access to the virtual

polynomial r̃af (i.e., when only r̃a, not r̃af, is sent/committed by the prover).

r̃af(r′cycle) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(r′cycle, j)

 d∑
i=1

log(K)/d−1∑
ℓ=0

2i·log(K)/d+ℓ · ki,ℓ

 · d∏
i=1

r̃ai(ki, j).

This equality holds by the following reasoning. The right hand side is multilinear in r′cycle. Since {0, 1}log T

is an interpolating set for multilinear polynomials, we can conclude that the right hand side and left hand
side are equal as a formal polynomials (and thus agree at all r′cycle ∈ Flog T ) so long as they agree whenever

whenever r′cycle ∈ {0, 1}log T . To see that this is the case, observe that if r′cycle and j are both in {0, 1}log T ,
then ẽq(r′cycle, j) = 0 unless j = r′cycle. In this case, ẽq(r′cycle, j) = 1, while

raf(j) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d

 d∑
i=1

log(K)/d−1∑
ℓ=0

2i·log(K)/d+ℓ · ki,ℓ

 · d∏
i=1

r̃ai(ki, j)

is immediate from the definition of d-dimensional one-hot encodings (Section 3.7).

Similarly, completeness and soundness of Figure 7 is nearly identical to Theorem 1, except that we replace
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1. P and V have agreed upon a size-K lookup table whose multilinear extension is given by Ṽal
(which we assume to be evaluable in O(logK) time). P has already committed to multilinear
polynomials r̃a1, . . . , r̃ad : Flog(K)/d × Flog T → F. P wishes to give the verifier query access to the
virtual polynomial r̃v : Flog T → F, defined as the unique multilinear polynomial satisfying that: for
all j ∈ {0, 1}log T ,

r̃v(j) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k).

2. V → P: pick the desired evaluation point rcycle ∈ Flog T at random and send it to P.
3. (Read-checking for Shout): V and P apply the sum-check protocol to confirm that

r̃v(rcycle) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(rcycle, j)

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k). (30)

4. Let raddress = (r
(1)
address, . . . , r

(d)
address) ∈

(
Flog(K)/d

)d
denote the randomness chosen over the first

log(K) rounds of the sum-check protocol and r′cycle the randomness over the final log T rounds.
To perform V ′s check in the final round of the sum-check protocol, V queries the committed

polynomials r̃a1, . . . , r̃ad respectively at (r
(i)
address, r

′
cycle), and evaluates Ṽal at raddress in O(logK)

time.

Figure 7: The core Shout PIOP with integer parameter d > 1, assuming the lookup table is MLE-structured

(i.e., V can evaluate Ṽal at a random input in O(logK) time).

Equation (23) with

r̃v(rcycle) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(rcycle, j)

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k). (31)

To see that Equation (31) holds, observe that the right hand side is multilinear in rcycle. Since {0, 1}log T is
an interpolating set for multilinear polynomials, to show the equality holds for all rcycle ∈ Flog T , it suffices
to show the right hand side and left hand side agree whenever rcycle ∈ {0, 1}log T . To see this, observe that
ẽq(rcycle, j) = 0 if j ∈ {0, 1}log T unless j = rcycle, in which case ẽq(rcycle, j) = 1. Meanwhile, by the definition

of d-dimensional one-hot encoding of addresses (Section 3.7), r̃v(j) =
(∏d

i=1 r̃ai(ki, j)
)
· Ṽal(k).

4.2.1 A standard optimization for verifier costs: Batching parallel sum-check instances

A standard technique to control proof size when running t > 1 parallel sum-check instances is to instead
apply a single instance of the sum-check protocol to a random linear combination of the t claims. In other
words, the verifier picks z ∈ F at random, sends z to the prover, and then the prover applies the sum-check
protocol a single time, to prove that:

0 =

t∑
ℓ=1

zℓ−1 ·
∑

k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)
(
r̃ai(k, j)

2 − r̃ai(k, j)
)
. (32)

This adds at most t/|F| to the soundness error, and avoids a t-fold increase in proof size. In the context of
Twist and Shout, it can also have prover time benefits (see for example Section 6.3).
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1. As input, P has already committed to multilinear polynomials r̃a1, . . . , r̃ad : FlogK × Flog T →
F. P claims that for each j ∈ {0, 1}T , r̃a1(·, j), . . . , r̃ad(j) is the correct d-dimensional one-hot

representation of some value r̃af(j) ∈ {0, 1, . . . ,K − 1}, and also (optionally) that r̃af(r′cycle) = y.

2. V picks r ∈ Flog(K)/d and r′ ∈ Flog T at random and sends (r, r′) to P. Assuming that r′cycle was
chosen by the verifier at random after r̃a1, . . . , r̃ad and r̃v were committed, then V can set r′ = r′cycle.

3. (Booleanity check): V and P apply the sum-check protocol d times in parallel to confirm that
for i = 1, . . . , d,

0 =
∑

k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)
(
r̃ai(k, j)

2 − r̃ai(k, j)
)
.

4. (Hamming weight 1 check): Let r′′cycle ∈ Flog T be any value chosen at random by V after r̃ai
was committed. For each i = 1, . . . , d, V and P apply the sum-check protocol to confirm that

1 =
∑

ki∈{0,1}log(K)/d

r̃ai(ki, r
′′
cycle).

5. (r̃af-evaluation sum-check): In parallel with the Booleanity check (and the read-checking sum-
check from the core Shout PIOP, see Line 3 of Figure 7), V and P apply the sum-check protocol to
confirm that

y =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(r′cycle, j)

 d∑
i=1

log(K)/d−1∑
ℓ=0

2i·log(K)/d+ℓ · ki,ℓ

· d∏
i=1

r̃ai(ki, j).

Figure 8: A PIOP for checking that for each j ∈ {0, 1}T , r̃a1(·, j), . . . , r̃ad(j) is the correct d-dimensional

one-hot representation of some value r̃af(j) ∈ {0, 1, . . . ,K − 1}, and also granting the verifier query access

to the virtual polynomial r̃af (i.e., enabling only r̃a, not r̃af, to be sent/committed by the prover). Some
hashing-based commitment schemes directly ensure Booleanity of committed values, in which case the
Booleanity check (Line 3) can be omitted.
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1. As input, P has already committed to the multilinear polynomials Ĩnc, w̃v : FlogK × Flog T → F and

r̃a1, w̃a1, . . . , r̃ad, w̃ad : Flog(K)/d × Flog T → F. If the prover is honest, then Ĩnc is the MLE of the

vector Inc defined via Equation (9). Ṽal : FlogK × Flog T is a virtual polynomial that is defined as

Ṽal(k, j) =
∑

j′∈{0,1}log T

Ĩnc(k, j)L̃T(j′, j).

The prover wishes to give the verifier query access to the virtual polynomial r̃v, defined as the
unique multilinear polynomial satisfying that for all j ∈ {0, 1}log T ,

r̃v(j) =
∑

k=(k1,...,kd)∈({0,1}log(K/d))
d

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k, j),

where Ṽal(k, j) is the value stored in register k during cycle j according to w̃a and w̃v.
2. V → P: pick a desired evaluation point r′ ∈ Flog T for r̃v and send it to P. Also pick r ∈ FlogK at

random and send it to P . Then V and P run the following two instances of the sum-check protocol
in parallel:

3. Read-checking sum-check. V and P apply the sum-check protocol to compute

r̃v(r′) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(r′, j) ·

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k, j) (33)

4. Write-checking sum-check. In parallel with the read-checking sum-check, V and P apply the

sum-check protocol to confirm that Ĩnc(r, r′) equals:

∑
k=(k1,...,kd)∈({0,1}log(K)/d)

d
, j∈{0,1}log T

ẽq(r, k) · ẽq(r′, j) ·

((
d∏

i=1

w̃ai(ki, j)

)
·
(
w̃v(j)− Ṽal(k, j)

))
. (34)

5. At the end of the above instances of the sum-check protocol, for random values raddress, rcycle, the

verifier has to evaluate w̃a(raddress, rcycle), w̃v(rcycle), r̃a(raddress, rcycle) and Ṽal(raddress, rcycle). The
w̃a, w̃v, and r̃a evaluations are obtained directly from the commitments to these polynomials. The

Ṽal evaluation is obtained from the Ṽal-evaluation sum-check below.
6. Ṽal-evaluation sum-check. V and P apply the sum-check protocol to compute

Ṽal(raddress, rcycle) =
∑

j′∈{0,1}log T

Ĩnc(raddress, j
′) · L̃T(j′, rcycle).

7. To perform V ′s check in the final round of this sum-check protocol, the verifier has to evaluate Ĩnc

at a random point and L̃T. The verifier computes the L̃T evaluation on its own in O(log T ) time.

The evaluation of Ĩnc is obtained via the commitment to Ĩnc.

Figure 9: The core Twist PIOP for parameter d ≥ 1, ignoring checking correctness of one-hot decompositions
(which is covered in Figure 8).

5 The Twist PIOP

The core Twist PIOP is given in full in Figure 9. The PIOP in this figure is sound assuming that all one-hot
encodings are provided correctly, i.e., that for all j ∈ {0, 1}log T , r̃a(j) are w̃a(j) are the correct d-dimensional

one-hot encodings of some values r̃af(j) and w̃af(j) in {0, 1, . . . ,K − 1}. To confirm this, one can invoke the
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one-hot-encoding-checking PIOP of Figure 8 (replacing r̃ai and r̃af with w̃ai and w̃af as appropriate).

Theorem 4. Figure 9 has perfect completeness and soundness error at most

((2d+ 3) log T + 3 logK) /|F|.

That is, the verifier in Figure 9 will reject with overwhelming probability if the claimed value of r̃v(r′) does
not actually equal r̃v(r′) for the unique multilinear polynomial satisfying that for all j ∈ {0, 1}log T ,

r̃v(j) ̸= Ṽal(k, j), (35)

where k ∈ {0, 1}logK is the binary representation of the address whose d-dimensional one-hot encoding is

given by (r̃a1(j), . . . , r̃ad(j)), and Ṽal(k, j) is the value most recently written to address k prior to the j’th
write operation.

Proof. We begin with the soundness analysis.

Defining some polynomials. Let c̃Inc denote the actual MLE of the “correct” increments (as opposed

to Ĩnc, which denotes the committed multilinear polynomial that is claimed by the prover to equal c̃Inc).
Similarly, let c̃rv denote the MLE of the “correct” values returned by each read operation. Finally, let

c̃Val(k, j) denote the MLE of the “correct” values stored in register k after j − 1 writes have occurred, while

Ṽal(k, j) denotes the multilinear polynomial defined via:

Ṽal(k, j) =
∑

j′∈{0,1}log T

Ĩnc(k, j′) · L̃T(j′, j). (36)

Relationships between these polynomials. Note that for all (k, j) ∈ {0, 1}logK × {0, 1}log T ,

c̃Inc(k, j) =

(
d∏

i=1

r̃ai(k, j)

)(
w̃v(j)− c̃Val(k, j)

)
(37)

(This is not an equality of formal polynomials, since the right hand side is not multilinear in k and j, but the
equality does hold at all inputs in {0, 1}logK × {0, 1}log T ).

In addition,

c̃Val(k, j) =
∑

j′∈{0,1}log T

c̃Inc(k, j′) · L̃T(j′, j). (38)

This is an equality of formal polynomials, since the right hand side is multilinear in k and j and the agrees
with the left hand side pointwise over the interpolating set {0, 1}logK × {0, 1}log T .

Finally, note that

c̃rv(r′) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(r′, j) ·

(
d∏

i=1

r̃ai(ki, j)

)
· c̃Val(k, j). (39)

This too is an equality of formal polynomials. Indeed, the left and side and right hand side are both multilinear
in r′, so we need only confirm that they agree at all r′ in the interpolating set {0, 1}log T . When r′ is in this
set, then ẽq(r′, j) equals 0 unless j = j′, in which case ẽq(r′, j) = 1. And for j = r′, it indeed holds that

c̃rv(r′) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d

(
d∏

i=1

r̃ai(ki, j)

)
· c̃Val(k, j).
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Overview of the soundness analysis. Informally, the soundness analysis proceeds via a three-step
argument:

• The read-checking sum-check correctly grants query access to c̃rv assuming Ṽal = c̃Val.

• The write-checking sum-check makes sure that Ĩnc = c̃Inc, also assuming Ṽal = c̃Val.

• The Ṽal-evaluation sum-check makes sure that Ṽal = c̃Val assuming that Ĩnc = c̃Inc.

As written, the second and third bulletpoints introduce circular assumptions, so the soundness analysis
cannot actually proceed in this manner. Fortunately, the assumption in the third bulletpoint is stronger than

what is actually needed. In order for the Ṽal-evaluation sum-check to ensure that Ṽal(k, j) = c̃Val(k, j) for a

given k ∈ {0, 1}logK and j ∈ {0, 1}log T , one need only assume that Ĩnc(k, j′) = c̃Inc(k, j′) for all j′ such that
LT(j′, j) = 1 (which we’ll henceforth denote by j′ < j as shorthand). This means that we can avoid circular

assumptions in our soundness analysis by focusing on the smallest such j for which Ṽal(k, j) ̸= c̃Val(k, j).

Formal soundness analysis. First, suppose that Ĩnc and c̃Inc are not the same polynomial. Since they are
both multilinear and {0, 1}logK × {0, 1}log T is an interpolating set for multilinear polynomials, this means

there is at least one input (k, j) ∈ {0, 1}logK × {0, 1}log T such that Ĩnc(k, j) ̸= c̃Inc(k, j). Let (k∗, j∗) be one
such input with the smallest possible value of j∗. That is, for all j′ < j∗ and all k ∈ {0, 1}logK , we assume that

Ĩnc(k, j′) = c̃Inc(k, j′). It follows then, by the definition of Ṽal (Equation (36)), that Ṽal(k∗, j∗) = c̃Val(k∗, j∗).
But this means that

c̃Inc(k∗, j∗) =

(
d∏

i=1

r̃ai(k
∗, j∗)

)(
w̃v(j∗)− c̃Val(k∗, j∗)

)
=

(
d∏

i=1

r̃ai(k
∗, j∗)

)(
w̃v(j∗)− Ṽal(k∗, j∗)

)
,

where the first equality holds by Equation (37) and the final equality holds because Ṽal(k∗, j∗) = c̃Val(k∗, j∗).

Since Ĩnc(k∗, j∗) ̸= c̃Inc(k∗, j∗) by assumption, we conclude that

Ĩnc(k∗, j∗) ̸=

(
d∏

i=1

r̃ai(k
∗, j∗)

)(
w̃v(j∗)− Ṽal(k∗, j∗)

)
. (40)

Let

h(k∗, j∗) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(k∗, k) · ẽq(j∗, j) ·

(
d∏

i=1

w̃ai(ki, j)

)
·
(
w̃v(j)− Ṽal(k, j)

)
.

It is easily seen that h(k∗, j∗) equals the right hand side of Expression (40), and hence Ĩnc(k∗, j∗) ̸= h(k∗, j∗).

Since h and Ĩnc are both multilinear polynomials, and they are distinct, the Schwartz-Zippel lemma implies
that with probability at least

1− (log(K) + log(T ))/|F|,

Ĩnc(r, r′) ̸= h(r, r′) when (r, r′) is chosen at random from FlogK × Flog T . By soundness of the sum-check
protocol, in this event the write-checking sum-check verifier rejects with probability at least

1− (d log(T ) + log(K))/|F|.

Thus, if the verifier accepts with probability more than ((d+ 1) log(T ) + 2 log(K))/|F|, then Ĩnc = c̃Inc. We

assume henceforth that indeed Ĩnc = c̃Inc. Then by Equation (38) and soundness of the sum-check protocol
as invoked, we conclude (up to an additional soundness error of 2 log(T )/|F|) that for whatever evaluation
point (raddress, rcycle) on which the Ṽal-evaluation sum-check is invoked, it holds that

Ṽal(raddress, rcycle) = c̃Val(raddress, rcycle). (41)

48



Absorbing 2 log(T )/|F| into the soundness error, we assume henceforth that Ṽal and c̃Val agree at the point

(raddress, rcycle) at which the Ṽal-evaluation sum-check is applied.

It follows by Equation (39) and soundness of the sum-check protocol, the verifier will reject during the
read-checking sum-check with probability at least (d log(T ) + log(K))/|F|). This completes the soundness
analysis.

The total soundness error according to the above analysis is at most ((2d+ 3) log(T ) + 3 log(K))/|F|.

Perfect completeness is an easy consequence of completeness of the sum-check protocol and Equations (37)
and (38). Equation (37) ensures that the write-checking sum-check is perfectly complete and Equation (38)

ensures that the Ṽal-evaluation sum-check is perfectly complete.

6 Fast Shout prover implementation (small memories)

This section explains how to implement the prover in the various invocations of the sum-check protocol in
Shout. Our treatment assumes familiarity with the standard linear-time sum-check prover implementation
[CTY11, Tha13] covered in the preliminaries (Section 3.3). In this section, we are generally focused upon the
case that K = o(T ), and hence we do not seek to avoid additive terms in the prover time of O(K). This is
what we mean by “small” memories in the section title.

Because Shout with d = 1 is a special case, we present the fast prover for d = 1 in Section 6.1. before turning
to the general case (Figures 7 and 8) in Sections 6.2 and 6.3.

6.1 Core Shout prover for d = 1

An algorithm for small or unstructured memories. Recall that the core Shout PIOP prover with
d = 1 (Figure 5) applies the sum-check protocol to prove that

r̃v(rcycle) =
∑

k∈{0,1}log K

r̃a(k, rcycle) · Ṽal(k). (42)

Computing r̃v(rcycle) can be done with 2T field multiplications by first computing a vector E storing ẽq(j, rcycle)
as j ranges over {0, 1}log T [VSBW13] and then computing the inner product of this vector with the vector of
r̃v(j) evaluations as j ranges over {0, 1}log T .

Given E, computing a vector F storing all r̃a(k, rcycle) evaluations for all k ∈ {0, 1}logK can be done with
only additions and lookups into E. Specifically, r̃a(k, rcycle) =

∑
j : r̃a(k,j)=1 ẽq(j, rcycle). Given this array, the

standard linear-time sum-check proving algorithm (Section 3.3) requires 2K field multiplications. Hence, the
total number of field multiplications done by the core Shout PIOP prover is: 2T + 2K.

Theorem 5. The prover in the core Shout PIOP with d = 1 (Figure 5) can be implemented in 2K + 2T field
multiplications.

An algorithm for large, structured memories. If K ≫ T , we would not be happy with the additive
2K factor in the prover runtime above. However, we generally do not expect Shout to be applied with d set
to 1 in this case, as it would either lead to a very large commitment key (in the case of an elliptic curve
commitment) or high time to compute commitments (in the case of a hashing-based commitment scheme,
where 0s are not free to commit to). Still, for completeness, we outline a prover implementation that avoids
this linear-in-K term. This implementation is an immediate consequence of the sparse-dense sum-check
protocol from [STW24, Appendix G].

Indeed, if T ≫ K the vector F above is sparse: only (at most) T of its entries are non-zero. Suppose that
K ≤ T c for some constant c > 0. The sparse-dense sum-check protocol of [STW24, Appendix G] identifies

conditions on Ṽal that guarantee that the prover (in the sum-check protocol invoked to establish Equation
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(42) holds) runs in time O(c · T ). [STW24, Appendix G] also showed that important lookup tables of size 264

arising in Jolt satisfy the necessary structural conditions for this runtime bound to hold. See Section 7.1 for
further details.

6.2 Core Shout prover (general d, small memories)

Recall that the core Shout PIOP for any d ≥ 1 (Figure 7) applies the sum-check protocol to check that

r̃v(rcycle) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(rcycle, j)

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k). (43)

Before the sum-check protocol even beings, the prover must evaluate r̃v(rcycle), which costs 2T field multipli-
cations by Lemma 1. A byproduct of this evaluation is the computation of the following array E∗ with one
entry per j ∈ {0, 1}log T .

E∗ stores ẽq(rcycle, j) for all j ∈ {0, 1}log T . (44)

This array E∗ is also useful later in the protocol.

Turning to the sum-check invocation, we bind the variables of the register k ∈ {0, 1}logK before the variables
of the cycle j ∈ {0, 1}log T .

6.2.1 The first logK rounds of sum-check

The prover’s message in the first logK rounds is independent of d, in the following sense: the prover messages
sent in the first logK rounds is the same if the term

d∏
i=1

r̃ai(ki, j) (45)

in Expression (43) is replaced with the multilinear polynomial r̃a(k1, . . . , kd, j) that takes the same values
as Expression (45) over inputs in {0, 1}logK × {0, 1}log T . This is because the first log(K) rounds of the
sum-check protocol bind variables only the variables in k = (k1, . . . , kd), and Expression (45) has degree
one in the variables of k—it only has degree more than one in the variables of j. So changing the degree of
Expression (43) in j without changing its evaluations over the relevant domain does not alter the sum-check
prover’s message in the first logK rounds.

Hence, for simplicity of notation, let us focus on the case the d = 1 for the first logK rounds.

Our first key observation is that for the first logK rounds, and each register k ∈ {0, 1}logK , each cycle at
which register k is read “contributes identically” to Expression (43). Accordingly, for each register k, we can
“aggregate” together at the start of the protocol all cycles j at which register k is read. Details follow.

A key fact. The following is a key consequence of the fact that ra(k, j) is a unit vector for each cycle j.
Consider the set of values r̃a(r1, . . . , rm, y) as y = (y′mem, ycycle) ranges over {0, 1}log(K)−m × {0, 1}log T . For
any round m ≤ logK, for each ycycle ∈ {0, 1}log T , this set of values is highly structured: there is exactly one
y′mem ∈ {0, 1}log(K)−m for which r̃a(r1, . . . , rm, y′mem, ycycle) is non-zero, and if register k ∈ {0, 1}logK was read
in cycle ycycle, then this non-zero value equals

ẽq((k1, . . . , km), (r1, . . . , rm)). (46)

The prover’s data structures for the first logK rounds. The prover maintains two arrays that initially
store K values and halve in size each round. Let’s call these two arrays A and C.

A[k] initially stores Ṽal(k). And C[k] initially stores

vk :=
∑

j∈{0,1}log T : r̃a(k,j)=1

ẽq(rcycle, j). (47)
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Initializing C costs no field multiplications since each entry of C is a sum of entries of the already-computed
array E∗ (Expression (44)).

At the end of round m, when the verifier sends the prover the random challenge rm, the prover binds the A
and C arrays as in Section 3.3. That is, for each k ∈ {0, 1}log(K)−m, the prover sets

A[k]← (1− rm)A[k, 0] + rmA[k, 1] = A[k, 0] + rm · (A[k, 1]−A[k, 0])

C[k]← (1− rm)C[k, 0] + rmC[k, 1] = C[k, 0] + rm · (C[k, 1]−B[k, 0]).

By Fact 3.1, this ensures that after round m, A[k] stores Ṽal(r1, . . . , rm, k) and

C[k] =
∑

k∗=(k′,k)∈{0,1}m×{0,1}log(K)−m

vk∗ · ẽq(r1, . . . , rm, k′). (48)

Leveraging the data structures. In the middle of round m, for any k ∈ {0, 1}log(K)−m, let us use

A[c′, k]

as shorthand for
(1− c′) ·A[0, k] + c′ ·A[1, k], (49)

and similarly with C in place of A. Then with the above data structures, the following holds. For each
c′ ∈ {0, 2}, the prescribed prover message sm in round m includes sm(c′), which equals:

sm(c′) =
∑

k∈{0,1}log(K)−m

Ṽal(r1, . . . , rm−1, c
′, k)

 ∑
j∈{0,1}log T

ẽq(r′′, j)r̃a(r1, . . . , rm−1, c
′, k, j)

 (50)

=
∑

k∈{0,1}log(K)−m

A[c′, k] · C[c′, k]. (51)

This last equality exploits Fact 3.1, as well as the key fact above, that for each j ∈ {0, 1}log T , r̃a(r1, . . . , rm−1, c
′, k, j)

is non-zero for exactly one value of k ∈ {0, 1}log(K)−m, and per Equation (46), at this k its value is precisely
ẽq(k′, r1, . . . , rm−1, c

′) where k′ is the first m coordinates of the register read at cycle j. By Equation (48),
this means that the quantity in parenthesis in Expression (50) precisely equals C[c′, k].

Thus, we have shown that the prover in the first logK rounds of the sum-check protocol applied to Expression
(43), the prover performs at most 4K multiplications (not counting the construction of E∗ which we already
charged for in the evaluation of r̃v(rcycle)). Here is the accounting:

• K multiplications to bind the A array.

• K to bind the C array.

• 2 ·K across all rounds m to evaluate Expression (51) given these arrays.

6.2.2 The final log T rounds of sum-check

The degree of the univariate polynomial the prover sends in each of the last d rounds is d+ 1, so the prover
time in the last d rounds does grow with d. Nonetheless, for simplicity let us begin by considering the case
d = 1. Let τ = (r1, . . . , rlogK) ∈ FlogK denote the random challenges chosen during the first logK rounds of
Shout’s sum-check protocol invocation. Per Equation (43), the final log T rounds are intended to compute:

Ṽal(τ)
∑

j∈{0,1}log T

ẽq(rcycle, j) · r̃a(τ, j). (52)
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With K field multiplications, the prover can compute an array E of length T whose j’th entry stores r̃a(τ, j)
(as j ranges over {0, 1}log T ). Indeed, per Equation (46), r̃a(τ, j) simply equals ẽq(τ, k) where k ∈ {0, 1}logK

is the register read at cycle j. And it’s known how to compute a size-K array storing all evaluations ẽq(τ, k)
for k ∈ {0, 1}logK with K field multiplications (see Lemma 1). Each entry of E can be computed with one
lookup into this size-K array.

With this array E in hand, as well as the array E∗ computed before round one (see Expression (44)), the
standard linear-time sum-check proving algorithm (Section 3.3) implements the sum-check prover applied to
compute Expression (52) with only about 4T field multiplications: T for binding the array E round-over-round,
T for binding the array E∗ round-over-round, and 2T more for evaluating si(0) and si(2) in each round
i = log(K) + 1, . . . , log(K) + log(T ). In fact, now-standard optimizations [DT24, Gru24] reduce this to 2T ,
as the optimization of [Gru24, Section 3] covered in Section 3.6.1 eliminates the need to evaluate si(2) and
[DT24] eliminates the cost of binding the array E∗. We even discuss below a final optimization that effectively
eliminates the cost of binding E when K = o(T ). That brings the total number of prover multiplications for
the final log T rounds down to only about T when d = 1 and K = o(T ).

An optimization leveraging small memory size. When K = o(T ), the following additional optimization
applies. Since r̃a(τ, j) takes on at most K distinct values across all j ∈ {0, 1}log T , r̃a(τ, rlog(K)+1, . . . , rm, j)

takes on at most K2m distinct values as j ranges over {0, 1}log(T )−m. In fact, each of these K2m values is a
size-2m sum of values from a set S of size K ·2m quantities that can all be computed in O(K2m) time. Namely,
S consists of each of the K distinct values in r̃a(τ, j), times a value of the form ẽq(rlog(K)+1, . . . , rm, j′) as j′

ranges over {0, 1}m. This means that as long as K · 2m ≪ T , we can speed up the task of binding r̃a for each
of the first m rounds. Rather than costing T/2j field multiplications at the end of round j, it can instead
cost O(K · 2m) field multiplications.

General d. For general d > 1, the prover in each of the final log T rounds sends a univariate polynomial
of degree d+ 1. There are also d arrays tracking evaluations of r̃a1, . . . , r̃ad, rather than the single array E
considered above when we focused on the case that d = 1. As long as K1/d = o(T ), the optimization above
that nearly eliminates the cost of binding E applies to binding each of these d arrays.

Thus, when K = o(T ), the prover cost of the final log(T ) rounds for general d is, up to low-order terms, d2T
field multiplications. This simply amounts to applying the standard linear-time sum-check prover algorithm
from Section 3.3, combined with the various optimizations described above.

To summarize the costs:

• 2T field multiplications to bind r̃v(rcycle) and compute the array E∗ in the process.

• 4K additional multiplications to implement the first logK rounds.

• dT multiplications to bind the arrays of r̃a1, . . . , r̃ad evaluations over the final log T rounds. This cost
falls to o(T ) if K1/d = o(T ).

• d2T multiplications given the above arrays to evaluate the prover’s messages over the final log T rounds.

We have established the following theorem.

Theorem 6. For d > 1, the core Shout PIOP prover (Figure 7) can be implemented with (d2 + d+ 2)T +
4K + o(T ) field multiplications. If K1/d = o(T ), this falls to (d2 + 2)T + 4K + o(T ).

6.3 Booleanity-checking and one-hot-encoding-checking

Here is how to efficiently implement the prover in the PIOP of Figure 8 when an additive O(dK1/d) term in
the prover cost is acceptable. When dK1/d is bigger than T , one should instead use our generalization of the
sparse-dense sum-check protocol given later, in Section 7 (that protocol has a much better dependence on K,
but a worse dependence on T , by a significant constant factor).
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Let us start with the Booleanity-checking sum-check invocation (Line 3 of Figure 8), which for each i = 1, . . . , d
applies the sum-check protocol to confirm that

0 =
∑

k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)
(
r̃ai(k, j)

2 − r̃ai(k, j)
)
.

We bind the log(K)/d variables of k first, followed by the log T variables of j.

First log(K)/d rounds. Before the first round, the prover builds arrays B and D of size K1/d and T
respectively, storing the following values:

B stores eq(r, k) for all k ∈ {0, 1}log(K)/d (53)

and
D stores eq(r′, j) for all j ∈ {0, 1}log T . (54)

By Lemma 1, computing B requires K1/d field multiplications, while computing D requires T field multipli-
cations.

Next, consider a specific i from the set {1, . . . , d}. The prover builds an array Ei of size K1/d, indexed by
k ∈ {0, 1}log(K)/d, and such that

Ei[k] = B[k] ·
∑

j∈{0,1}log T : r̃ai(j)=k

D[j]. (55)

This costs an additional K1/d multiplications in total, one per entry of the Ei array. Let Ẽi denote the
multilinear extension of the vector whose k’th entry is Ei[k].

At the end of round m, let r = (r1, . . . , rm) denote the random values chosen by the sum-check prover in
the first m rounds. Via standard binding techniques (Section 3.3), the prover can ensure that at the end
of round m, the array Ei has shrunk length K1/d/2m, and for every k′ ∈ {0, 1}log(K)/d−m, Ei[k

′] stores

Ẽi(r1, . . . , rm, k′). In the middle of round m, as per Expression (49), let us use Ei[c
′, k′] as shorthand for

(1− c′) · Ei[0, k
′] + c′ · Ei[1, k

′].

Recall from Equation (46) that for any round m ≤ log(K)/d, for each ycycle ∈ {0, 1}log T , there is exactly one
y′mem ∈ {0, 1}log(K)/d−m for which r̃a(r1, . . . , rm, y′mem, ycycle) is non-zero, and if register k ∈ {0, 1}logK was
read in cycle ycycle, then this non-zero value equals

ẽq((k1, . . . , km), (r1, . . . , rm)).

The prover can maintain an array F that in round m has size 2m and stores all 2m such values, i.e.,

F stores ẽq((k1, . . . , km), (r1, . . . , rm)) for all (k1, . . . , km). ∈ {0, 1}m (56)

Via standard techniques (see Lemma 1), maintaining F costs K1/d field multiplications across the first
log(K)/d rounds.

Hence, the prover’s message sm in round m ≤ log(K)/d of sum-check satisfies that sm(c) equals:

∑
k′∈{0,1}log(K)/d−m

Ẽi(r1, . . . , rm−1, c, k
′) ·
(
ẽq((k′1, . . . , k

′
m), (r1, . . . , rm−1, c))

2 − ẽq((k′1, . . . , k
′
m), (r1, . . . , rm−1, c))

)
=

∑
k′∈{0,1}log(K)/d−m

Ei[c, k
′] ·
(
F [c, k′]2 − F [c, k′]

)
.
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In round m, the prover has to evaluate sm(c) for all relevant values of c. And given the arrays Ei and F , for
each relevant evaluation point c, the prover can compute its messages in the first log(K)/d rounds with two
field multiplications per vector of the form (c, k′) with k′ ∈ {0, 1}log(K)/d−m (one multiplication to square
F [c, k′] and one to multiply

(
F [c, k′]2 − F [c, k]

)
by Ei[c, k

′′]).

The above description refers to implementing the Booleanity-checking sum-check for a single i. That sum-check
in fact must be applied d times (once for each i = 1, . . . , d). However, a full d-fold cost increase does not
occur, since several arrays can be reused between for all i = 1, . . . , d. This holds in particular for arrays B,
D, and F . It is only the array Ei that differs for i = 1, . . . , d.

In summary, across the first log(K)/d rounds of the sum-check protocol, the prover’s costs are as follows.
First, observe that Gruen’s optimization [Gru24, Section 3] covered in Section 3.6.1 applies to allows the
prover to send only si(c) for c ∈ {0, 2}. Given that only 2 values of c are relevant the prover costs are:

• K1/d field multiplications to build the arrays B.

• T multiplications to build D.

• dK1/d to build the arrays E1, . . . , Ed.

• K1/d to build up the array F across all log(K)/d rounds.

• dK1/d to bind each of the arrays Ei across all log(K)/d rounds.

• 2 · 2 · d ·K1/d field multiplications to evaluate s1(c), . . . , sm(c) across all log(K)/d rounds for relevant
values of c given the arrays F and Ei.

This is (5d+ 2)K1/d + T field operations in total for the first log(K)/d rounds for all d Booleanity-checking
sum-check invocations.

Last log T rounds. The last log T rounds of sum-check are used to compute

ẽq(r, r) ·
∑

j∈{0,1}log T

ẽq(r′cycle, j)
(
r̃ai(r, j)

2 − r̃ai(r, j)
)
. (57)

Given the contents of the size-K1/d array F (Expression (56)) at the end of round log(K)/d, the prover can,
with no further multiplications, construct for each ℓ = 1, . . . , d, an array Gℓ of length T such that

Gℓ[j] = r̃aℓ(r1, . . . , rm, j).

Indeed by Equation (46), if k is the register read at cycle j then

r̃aℓ(r1, . . . , rm, j) = ẽq(k, r1, . . . , rm),

and at the end of round log(K)/d this value is simply equal to F [k].

Given the arrays Gi and D, the standard linear-time sum-check proving algorithm (Section 3.3) implements
the final log(T ) rounds of the sum-check protocol (i.e., applies the sum-check protocol to compute Expression
(57)) with the following costs, for each i = 1, . . . , d.

• T field multiplications to bind the array D across all log T rounds.

• dT field multiplications to bind the arrays G1, . . . Gd across all log T rounds.

• 2 · 2 · d ·T field multiplications suffice to complete the prover’s work once the above arrays are computed.
This holds by the following reasoning.

Let si,m(c) denote the prescribed prover message in each round m = log(K) + 1, . . . , log(T ) of the i’th
sum-check invocation, for c ∈ {0, 2}. Given the arrays D and Gi, 2 · 2 · d · T field multiplications suffice
to evaluate si,m(c) for all relevant values of i, m, and c. Indeed, for each of the d values of i and two
values of c, this accounts for one multiplication to compute

(
r̃ai(r, j)

2 − r̃ai(r, j)
)
for an appropriate

value of the vector j, and one to multiply the result by ẽq(r′cycle, j).
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Hence, without further optimization, the total cost for the prover of the last log T rounds is (5d+ 1)T field
multiplications. Added to the cost of the first logK rounds, this is (5d+2)T +O(dK1/d) field multiplications.
However, further significant further optimizations are possible.

Further optimizations.

• So long as r̃a1, . . . , r̃ad are committed before the core Shout PIOP (Figure 7) commences, one can set
r′ in Figure 8 to rcycle, i.e., share verifier-chosen randomness between the core Shout PIOP and the
one-hot-encoding-checking PIOP. This makes the array D (Expression (54)) built by the Booleanity-
checking prover the same as the array E∗ (Expression (44)) built by the core Shout PIOP prover. This
eliminates T field multiplications from the cost of the Booleanity-checking prover (and thereby renders
the number of prover field multiplications for the first log(K/d) rounds independent of T ).

• The techniques of Dao and Thaler [DT24] directly apply to reduce the cost of binding the array D = E∗

to a low-order number of field multiplications (i.e., O(
√
T ) of them). Ignoring low-order terms, this

eliminates another T field multiplications from the prover’s cost.

• Exactly as in the final log(T ) rounds of the core Shout PIOP (Section 6.2.2), in round log(K)/d+m
of sum-check, the number of distinct values in each array G1, . . . , Gd is at most K2m , and each of
these values is a sum of at most 2m elements of a set of size 2m ·K (and all quantities in this set can
be computed in time O(K2m)). This can be exploited to save most of the T multiplications devoted
to binding each of the arrays G1, . . . , Gd. It also saves the work of squaring G1[c, x

′], . . . , Gd[c, x
′] for

each x′ ∈ {0, 1}log(T )−t in each sum-check round, for each evaluation point c. This is a total of 2dT
multiplications saved in total.

This brings to the total number of prover multiplications for Booleanity-checking down from (5d+ 2)T +
O(dK1/d) to essentially 3dT +O(dK1/d).

r̃af-evaluation sum-check when d = 1 (Line 6 of Figure 6). This is a log(K)-round sum-check protocol.
The prover sends a degree-2 univariate polynomial in each round. It’s easy to make the prover run in time
O(K) once given an E array of length K, that stores at cell k′ ∈ {0, 1}log(K) the value r̃a(k′, r′cycle). Observe
that

r̃a(k′, r′cycle) =
∑

j∈{0,1}log T : r̃a(k′,j)=1

ẽq(j, r′cycle). (58)

Hence, if given an array D′ of size T storing all values of them form ẽq(j, r′cycle) as j ranges over {0, 1}log T , the
array E can be computed with no additional multiplications. D′ can be computed with T field multiplications.

However, if K = o(T ), this procedure can be optimized further to avoid even the T multiplications needed to
build D′, using techniques similar to those in [DT24] that exploit multiplicative structure in the definition of
ẽq (Equation (15)). This is done by avoiding building the “full” size-T array D′, whose sole purpose is to
help initialize the array E. Instead, the prover builds a smaller array D′′ of size T/2ℓ whose definition is
identical to D′ but “leaves out” the last ℓ coordinates of j and r′cycle. Specifically, for each j′ ∈ {0, 1}log(T )−ℓ,
letting r = r′cycle,

D′′[j′]←
log(T )−ℓ∏

m=1

ẽq(rm, j′m).

The prover also builds an array D′′′ of size 2ℓ the “incorporates” the last ℓ coordinates that were left out of
the definition of D′′. That is, for all j′′ ∈ {0, 1}i,

D′′′[j′′]←
i∏

m=1

ẽq(rlog(T )−m+ℓ, j
′′
ℓ ).
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Then, for each register address k′ ∈ {0, 1}K/d, the prover computes 2ℓ quantities, one per j′′ ∈ {0, 1}ℓ,
namely:

vk′,j′′ :=
∑

j=(j′,j′′)∈{0,1}log(T )−ℓ×{0,1}ℓ : : r̃a(k′,j)=1

D′′[j′].

Then recalling from Equation (58) that

D′[k′] =
∑

j∈{0,1}log T : r̃a(k′,j)=1

ẽq(r′cycle, j),

it follows that
D′[k′] =

∑
j′′∈{0,1}ℓ

D′′′[j′′] · vk′,j′′ .

The cost of this protocol for building Ei is T/2
ℓ + 2ℓ+1 field multiplications. Minimizing this quantity, the

cost to compute the array E is O(
√
TK) = o(T ) multiplications.

Hamming-weight-one check for general d (Line 4 of Figure 8). This sum-check (for general d)

is similar to the r̃af-evaluation sum-check for d = 1, but even simpler, as the prover only sends a degree-1

polynomial in each round. Given the arrays Ei computed for the r̃af-evaluation sum-check, the Hamming-
weight-one sum-check prover can be implemented with O(dK1/d) field multiplications if dK1/d = o(T ).

r̃af-evaluation sum-check for d > 1 (Line 5 of Figure 8). Recall that here the sum-check protocol is
applied to compute:

∑
k=(k1,...,kd)∈({0,1}log(K)/d)

d
, j∈{0,1}log T

ẽq(r′cycle, j)

 d∑
i=1

log(K)/d−1∑
ℓ=0

2i·log(K)/d+ℓ · ki,ℓ

 · d∏
i=1

r̃ai(ki, j).

This is similar to the read-checking sum-check in Shout, which was applied to compute:

∑
k=(k1,...,kd)∈({0,1}log(K)/d)

d
, j∈{0,1}log T

ẽq(rcycle, j)

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k).

The only difference is that the r̃af-evaluation sum-check replaces Ṽal(k) with

d∑
i=1

log(K)/d−1∑
ℓ=0

2i·log(K)/d+ℓ · ki,ℓ,

which is the MLE of the function that maps k to int(k).

In applications, one can set the random value rcycle chosen by the verifier before the read-checking PIOP

to equal r′cycle. In this case, the prover in the r̃af-evaluation sum-check can be implemented with only K
field multiplications of additional work, by batching Shout’s core read-checking sum-check instance with the

r̃af-evaluation sum-check per Section 4.2.1. Effectively, at the start of both sum-checks, the prover simply

replaces Ṽal(k) with Ṽal(k) + z · ĩnt(k), where z is randomness used in the standard batching technique of
Section 4.2.1.
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6.4 Cost summary for the combined Shout prover

Suppose dK1/d = o(T ). In this case, recall Section 6.2 gave an upper bound for the core Shout PIOP prover
(Figure 5) of roughly the following number of field multiplications:

(d2 + 2)T.

And Section 6.3 gave an upper bound for the one-hot-encoding-checking PIOP prover (Figure 8) of O(dK1/d)+
3dT when dK1/d = o(T ). Summing the two, when dK1/d = o(T ), the total prover work is at most

(d2 + 3d+ 2) · T.

7 Fast Shout prover for large, structured memories

The sparse-dense sum-check protocol from (Generalized-)Lasso [STW24, Appendix G] is the key tool allowing
the Shout prover to efficiently prove T lookups into (structured) memories of size vastly larger than T .

7.1 Sparse-dense sum-check protocol

7.1.1 Informal Overview

Consider two very large vectors a, b ∈ FN and suppose we want to compute their inner product

⟨a, b⟩ =
N∑
i=1

ai · bi. (59)

Say we want to outsource this work to an untrusted prover using the sum-check protocol. A standard
application would apply the sum-check protocol to the polynomial ã · b̃ where ã and b̃ are the multilinear
extensions of a and b respectively. Note that ã · b̃ is a polynomial in logN variables with degree two in each
variable. The standard linear-time prover implementation of the sum-check protocol in this context (Section
3.3) would require about 4N field operations. However, the prover can be implemented far faster if a and b
are structured in certain ways. [STW24, Appendix G] refers to such a fast prover implementation as the
sparse-dense sum-check protocol.30

Suppose we use two (not necessarily multilinear) extensions â and b̂ of a and b. At the end of round

1, when the first variable gets bound to r1 ∈ F, both â and b̂ become (log(N) − 1)-variate polynomials

â(r1, x2, . . . , xlogN ) and b̂(r1, x2, . . . , xlogN ). The sparse-dense sum-check protocol asks: how do these “new”

polynomials relate to the “old” polynomials â(x1, . . . , xlogN ) and b̂(x1, . . . , xlogN )? In particular, is the
relationship between â(x1, . . . , xlogN ) and â(r1, x2, . . . , xlogN ) largely independent of x2, . . . , xlogN , and

similarly for b̂(x1, . . . , xlogN ) and b̂(r1, x2, . . . , xlogN )? If so, then major optimizations are possible.

Let ri denote the random field element chosen by the sum-check verifier in round i. Suppose that we can
chunk the entries of a and b into two groups, H(0) and H(1), such that when variable one gets bound to r1,
each evaluation â(i) for i ∈ H(0) gets multiplied by the same value (say m0,r1) and similarly each term ai of
a in H(1) gets multiplied by m1,r1 . Suppose further that each term bi of b in H(0) (respectively, H(1)) gets
multiplied by the same value, say v0,r1 and v1,r1 .

Illustrative example. A key example to have in mind is

b̂(x) = ẽq(r′, x),

for some random vector r ∈ FlogN . Then for any x = (k, y) with k ∈ {0, 1} and y ∈ {0, 1}log(N)−1, letting
r−1 denote the last log(N)− 1 coordinates of r, it holds that:

b̂(r1, y)/b̂(k, y) = ẽq(r′1, r1)/ẽq(r
′
1, k).

30To clarify, the term “sparse-dense sum-check protocol” used in [STW24, Appendix G] refers to a fast prover implementation.
The protocol itself (i.e., the checks the verifier does on the prover’s messages) is no different than in the standard sum-check
protocol.
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Hence, letting H0 and H1 denote points in {0, 1}log(N) of the form (0, y) and (1, y) respectively, b̂ satisfies
the informal condition above if we define

v0,r1 = ẽq(r′1, r1)/(1− r′1) (60)

and
v1,r1 = ẽq(r′1, r1)/r

′
1. (61)

Meanwhile, if â is multilinear (i.e., â = â) then by Fact 3.1,

â(r1, y) = (1− r1)â(0, y) + r1â(1, y). (62)

So in this example, we have the following expression for the prescribed prover’s message in round two of
sum-check, where r1 is the random challenge in round 1:

s1(r1) =
∑

y∈{0,1}log(N)−1

ã(r1, y) · b̂(r1, y)

=

 ∑
(0,y) : y∈{0,1}log(N)−1

(1− r1)â(0, y) · b̂(r1, y−1)

+

 ∑
(1,y) : y∈{0,1}log(N)−1

r1â(1, y) · b̂(r1, y−1)


=

 ∑
i∈H(0)

ai · bi · (1− r1) · v0,r1

+

 ∑
i∈H(1)

(1− r1) · ai · bi · r1 · v1,r1

 ,

where v0,r1 and v1,r1 are defined in Equations (60) and (61).

This means that in moving from the sum defining the prover’s claim at the start of round 1 (Expression
(59)) to the sum defining the prover’s claim at the start of round 2, every term aibi for an i ∈ H(0) gets
multiplied by the same factor, namely (1− r1) · v0,r1 , and similarly for every term for an i ∈ H(1). Rather
than performing this multiplication for each term individually, it is much faster to first aggregate (i.e., sum
up) all the terms ai · bi in H(0) and H(1) respectively, and just multiply each aggregated value by the relevant
factor. This costs only two multiplications in total across all terms, rather than one for each of the N terms.

This is the key idea in the sparse-dense sum-check protocol from [STW24, Appendix G]. In round i, there
are 2i relevant groups (one group for each k ∈ {0, 1}i, with the k’th group capturing all terms whose binary
representations begin with k). At the end of round i, when variable i gets round to ri ∈ F, each term within
a group gets multiplied by the same value.

If N is considered too large for linear-in-N prover time to be acceptable, say, because only T ≪ N terms
ai · bi are non-zero, then the sparse-dense sum-check protocol is capable of running in time O(CT ) where C
is any integer such that N ≤ TC .

The sparse-dense sum-check protocol also applies when binding the j’th variable to ri causes each b̂’s value to
change by an additive rather than multiplicative factor that depends only on rj . This is explained in detail
in [STW24, Appendix G]. The canonical example to have in mind here is

b̂(x) =

logN∑
i=1

2i−1xi,

which arises when applying Generalized-Lasso or Shout to a “range-check” table storing all field elements in
{0, 1, . . . , N − 1}. In this case, changing xi from c to ri increases b̂(x) by an additive factor of 2i−1(ri − c).
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7.2 Extension to the Booleanity-checking sum-check when K1/d ≫ T

Overview. Recall that in the Booleanity-checking sum-check (Line 3 of Figure 8), the sum-check protocol
is applied to compute ∑

k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)
(
r̃ai(k, j)

2 − r̃ai(k, j)
)
.

Let us first focus on the “sub-sum” ∑
k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)r̃ai(k, j)
2,

as this is the heart of the protocol.

Let
â(k, j) = r̃ai(k, j)

2

and
b̂(k, j) = ẽq(r, k)ẽq(r′, j).

The treatment of the sparse-dense sum-check protocol in [STW24, Appendix G] assumes â is multilinear, i.e.,
â = ã. This is not the case here, as â is the square of a multilinear polynomial.

Fortunately, r̃ai(k, j) satisfies an “ultrastructured” sparseness property: for each j ∈ {0, 1}log T , there is at
most (in fact, exactly) one k ∈ {0, 1}log(K)/d such that r̃ai(k, j) ̸= 0. Exploiting this property ensures that the
sparse-dense sum-check protocol still applies to the Booleanity-checking sum-check. At a high level, what’s
going on is the following.

The treatment in [STW24, Appendix G] exploited that when â(k, j) is multilinear, Equation (62) holds,
which roughly states that binding the first variable of â to r1 causes the resulting evaluations of â(r1, y) to
be a linear combination of â(0, y) and â(1, y). When â(k, j) = r̃ai(k, j)

2, Equation (62) does not hold, but
something just as nice does: if k is the unique value in {0, 1}log(K)/d with r̃ai(k, j) ̸= 0, then assuming wlog
that the first entry of k is 0, and letting y denote the remaining log(K)/d+ log(T )− 1 entries of (k, j), it
holds that:

r̃a2i (r1, y) = ((1− r1)r̃ai(0, y) + r1r̃ai(1, y))
2
= (1− r1)

2r̃ai(0, y)
2 = (1− r1)

2â(0, y).

In other words, binding variable one to r1 causes â(k, j) to get multiplied by a factor (1 − r1)
2 that only

depends on the first coordinate of k and on r1.

Algorithm details. As in the overview above, let

â(k, j) = r̃ai(k, j)
2

and
b̂(k, j) = ẽq(r, k)ẽq(r′, j)

and suppose we apply the sum-check protocol to compute∑
k∈{0,1}log(K)/d, j∈{0,1}log T

â(k, j) · b̂(k, j). (63)

Let c ≥ 1 be a positive integer such that cK1/(cd) = o(T ). For simplicity, assume log(K)/d is divisible by c.
We will break each k ∈ {0, 1}log(K)/d into c chunks each of size log(K)/(cd), writing

k = (k1, . . . , kc) ∈
(
{0, 1}log(K)/(dc)

)c
.

Similarly, write

r = (r1, . . . , rc) ∈
(
Flog(K)/(dc)

)c
.
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Evaluating all b̂(k, j) values. The first thing the prover needs to do is compute b̂(k, j) for all (k, j) ∈
{0, 1}log(K)/d × {0, 1}log T such that â(k, j) ̸= 0. In Booleanity-checking where b̂(k, j) = ẽq(k, r) · ẽq(j, r′),
this can be done with

(c+ 1) ·K1/(cd) + T

field multiplications as follows. First, the prover computes c+ 1 tables, each of size K1/(dc), storing for each
ℓ ∈ {1, . . . , c}, the values ẽq(rℓ, x) as x ranges over {0, 1}log(K)/(cd), as well as a table storing ẽq(r′, x) as x
ranges over the same domain {0, 1}log T . This requires c ·K1/(dc) + T multiplications in total (by Lemma 1).

Given these tables, for any desired (k, j) ∈ {0, 1}logK × {0, 1}log T , b̂(k, j) can be evaluated with one lookup
into each of the c+ 1 tables followed by c multiplications.

Building a partial sum tree. Before the start of the protocol, the prover builds a “tree of partial sums”.
Specifically, for each k1 ∈ {0, 1}log(K)/(cd), let

L(k1) =
∑

k=(k1,k′)∈{0,1}log(K)/(cd)×{0,1}log(K)/d−log(K)/(cd), j∈{0,1}log T

â(k, j) · b̂(k, j).

The prover builds a binary tree over these leaf values, with each interior node storing the sum of its children.
Note that the tree has 2log(K)/(cd) = K1/(cd) = o(T ) leaves. This step requires (c+ 1)T field multiplications

in total, because there are T non-zero entries of â(k, j) and for each such entry, b̂(k, j) can be computed with
c multiplications and then multiplied by â(k, j) with a single additional multiplication.

Let us index the internal nodes at distance i from the root by {0, 1}i (we will label the root by ∅). This
ensures that the root of the tree, L(∅) computes the entire sum in Expression (63).

Round one message. The round-1 message of the prover can computed via a constant number of field
operations (and inversions) given the values stored at the two children of the root. Indeed,

s1(0) =
∑

k=(0,k′)∈{0,1}×{0,1}log(K)/d−1, j∈{0,1}log T

â(k, j) · b̂(k, j),

and this quantity is equal to L(0) (the left child of the root). Similarly, s1(2) is a constant-time-computable
linear combination of L(0) and L(1):

s1(2) =
(
ẽq(2, 0)2 · ẽq(2, r1) · (1− r1)

−1
)
· L(0) +

(
ẽq(2, 1)2ẽq(2, r1) · r−1

1

)
· L(1).

This equality holds by the following reasoning. For each k = (0, k′) and each j ∈ {0, 1}log T satisfying
r̃ai(k, j) ̸= 0, it holds that r̃ai(k, j) = 1 and r̃ai(2, k

′, j) = ẽq(2, 0)2. Meanwhile,

b̂(2, k′, j) = ẽq((2, k′), r) · ẽq(r′, j) = ẽq(2, r1) · (1− r1)
−1 · b̂(k, j).

Similarly, for each k = (1, k′) and each j ∈ {0, 1}log T satisfying r̃ai(k, j) ̸= 0, it holds that r̃ai(k, j) = 1 and
r̃ai(2, k

′, j) = ẽq(2, 1)2, and

b̂(2, k′, j) = ẽq(2, k′, r) · ẽq(r′, j) = ẽq(2, r1) · r−1
1 · b̂(k, j).

(Even though each round’s sum-check prover message si is a degree-3 univariate polynomial, Gruen [Gru24,
Section 3] shows how a slight modification of the protocol allows the prover to only send si(0) and si(2) in
each round).
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Round two message. At the end of round 1, the verifier sends the random value r1. Similar to round 1,
the prover’s round-2 message is a quickly-computable linear combination of the four values stored at level
two of the tree (grandchildren of the root). Indeed,

s1(0) =
∑

k′∈{0,1}log(K)/d−2, j∈{0,1}log T

â(r1, 0, k
′, j) · b̂(r1, 0, k′, j).

Recall that for each j ∈ {0, 1}log T , the prover can quickly ascertain the unique k′′ ∈ {0, 1}log(T )−1 for which
â(r1, k

′′, j) ̸= 0, and quickly compute the factor mk′
1
(which depends only only r1 and k′1) such that

â(r1, k
′′, j) = m · â(k′, j),

where k′ ∈ {0, 1}logK is the unique vector such that â(k′, j) ̸= 0. Similarly, we have assumed that the prover

can quickly compute the factors v0, v1 (which depend on only r1) such that b̂(r1, 0, k
′, j) = v0 · b̂(0, 0, k′, j)

and b̂(r1, 0, k
′, j) = v1 · b̂(0, 1, k′, j). Hence,

s2(0) = m0v0L(0, 0) +m0v1L(0, 1).

Similarly, s2(2) is a quickly-computable linear combination of the four nodes at distance two from the root:
L(0, 0), L(0, 1), L(1, 0), L(1, 1):

s2(2) = c0,0 · L(0, 0) + c0,1L(0, 1) + c1,0L(1, 0) + c1,1L(1, 1),

where for each k1, k2 ∈ {0, 1},
ck1,k2 = mk1,k2vk1,k2 ,

where
mk1,k2 = ẽq(r1, k1)

2 · ẽq(2, k2)2

and
vk1,k2 = ẽq(k1, r1)

−1 · ẽq(r1, r1) · ẽq(2, r2) · ẽq(k2, r2)−1.

Round i ≤ log(K)/(cd). In general, si(0) and si(2) are each quickly-computable linear combinations of the

nodes at distance i from the root. For example, when â = r̃a2i and b̂(k, j) = ẽq(r, k) · ẽq(r′, j), then:

s2(2) =
∑

k∈{0,1}i

ck · L(k),

where ck = mk · vk, defined as follows:

mk = ẽq(r1, . . . , ri−1, 2, k)
2

and
vk = ẽq(k, (r1, . . . , ri))

−1 · ẽq(r1, . . . , ri, r1, . . . , ri).

Each round i ≤ log(K)/(cd) can be implemented in roughly O(2i) field operations.31

31More precisely, by using a batch-inversion procedure, it’s possible to implement round i in with O(2i) field multiplications
and one inversion.
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Tree-recomputation procedure. The prover performs a tree-recomputation procedure at the end of
round log(K)/(cd). Specifically, the prover computes, for every j ∈ {0, 1}log T , the unique k = (k2, . . . , kc) ∈
{0, 1}(c−1)·log(K)/(cd) such that â(r1, . . . , rlog(K)/c, k, j) ̸= 0, and moreover for this k, the prover can compute

both â(r1, . . . , rlog(K)/c, k, j) and b̂(r1, . . . , rlog(K/c), k, j).

Indeed, by Lemma 1, with K1/(cd) multiplications the the prover can compute ẽq(r1, . . . , rlog(K)/(cd), k
′) for

all k′ ∈ {0, 1}log(K)/(cd). Since â = r̃a2i , each quantity â(r1, . . . , rlog(K)/(cd), k, j) can be identified with a single
lookup into this table followed by a squaring operation. Similarly, for each non-zero â(r1, . . . , rlog(K)/(cd), k, j),

the value b̂(r1, . . . , rlog(K)/(cd), k, j) can also be computed with one multiplication given partial products

computed and stored during the course of the procedure computing b̂(k, j) for all relevant values of (k, j)
while building the partial sum tree prior to the start of round 1. This is 2T +K1/(cd) field multiplications in
total.

Given these quantities, the prover can construct, with T more multiplications, a new partial-sum tree with T
leaves, such that leaf k′ stores∑
k=(k1,k′,k3,...,kc)∈{0,1}log(K)/d, j∈{0,1}log T

â(r1, . . . , rlog(K)/c, k
′, k2, . . . , kc) · b̂(r1, . . . , rlog(K)/(cd), k

′, k2, . . . , kc).

The next log(K)/(cd) rounds proceed analogously to the first log(K)/(cd) rounds, followed by another
tree-recomputation step, and so on until the first log(K)/d rounds are complete.

The final log T rounds can then be implemented exactly as in the case of small memory sizes (Section 6.3).
The total cost for these final log T rounds is 5dT field operations (Section 6.3 implemented those rounds with
only 3dT multiplications, but 2dT multiplications were saved there by exploiting that K1/d = o(T ), which
does not hold here if c > 1).

The full Booleanity-checking sum-check. Recall that the Booleanity-checking sum-check actually
applies the sum-check protocol to compute∑

k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)
(
r̃ai(k, j)

2 − r̃ai(k, j)
)
.

We have explained above how to apply the sum-check protocol to compute∑
k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)r̃ai(k, j)
2. (64)

It suffices to now explain how to apply the sum-check prover to compute∑
k∈{0,1}log(K)/d, j∈{0,1}log T

ẽq(r, k)ẽq(r′, j)r̃ai(k, j), (65)

since in the Booleanity-checking sum-check the prover’s message in each round is just the difference between
the corresponding message for Expressions (64) and (65).

Walking through the algorithm described above for proving Expression (64) and modifying it appropriately for
Expression (65), it is easy to see that the sum-check prover for Expression (65) only needs to do O(cK1/(cd))
additional field multiplications on top of what the prover for Expression (65) does. In other words, “handling”
Expression (65) in addition to Expression (64) does not substantially change the prover cost.

Cost summary for Booleanity-checking when K1/d ≫ T . In total, across all i = 1, . . . , d, the
Booleanity-checking prover performs the following field multiplications:

• c ·K1/(cd) + T multiplications in pre-computation to evaluate ẽq polynomials at appropriate points.

• d(c+ 1)T more multiplications to build the d partial-sum trees prior to round one.

62



• O(dK1/(cd)) to compute the first log(K)/(dc) rounds worth of messages given these trees.

• 3dT+O(dK1/(cd)) field multiplications every time the partial-sum tree is rebuilt and the next log(K)/(cd)
rounds of messages are computed.

• 5dT field multiplications in the final log(T ) rounds.

Since the partial sum tree for each i = 1, . . . , d is rebuilt c− 1 times, this means the prover performs

O(dcK1/(dc)) + (d(c+ 1) + 3d(c− 1) + 5d+ 1)T = O(dcK1/(dc)) + (4dc+ 3d+ 1)T

field multiplications in total.

For example, if c = 2 and d = 2, this is O(K1/4) + 23T field multiplications. This is an appropriate setting
of parameters when K = 264 as arises in Jolt (see Application 4 in Section 2.8), as in this case K1/4 = 216,
which is substantially less than typical values of T .

7.3 Shout’s read-checking sum-check

Recall that the read-checking sum-check within Shout (Line 3 in Figure 7) applies the sum-check protocol to
confirm that r̃v(rcycle) equals: ∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(rcycle, j)

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k). (66)

[STW24, Appendix G] showed that the Ṽal polynomials corresponding to the lookup tables arising in the
Jolt RISC-V zkVM satisfy the conditions necessary to apply the sparse-dense sum-check protocol to compute∑

k∈{0,1}log K

â(k) · Ṽal(k) (67)

for any sparse, multilinear polynomial â. It extends trivially to also handle the case that â takes an additional
log T variables and the sum is over KT terms rather than K, i.e.,∑

(k,j)∈{0,1}log K×{0,1}log T

â(k, j) · Ṽal(k). (68)

To implement the read-checking sum-check prover quickly, we would like to apply the sparse-dense sum-check
protocol to compute ∑

(k,j)∈{0,1}log K×{0,1}log T , k=(k1,...,kd)∈({0,1}log(K)/d)
d

â(k, j) · b̂(k, j),

with â(k, j) = ẽq(rcycle, j) ·
∏d

i=1 r̃ai(ki, j) and b̂(k, j) = Ṽal(k). However, this does not quite map into the

formulation of Expression (68), because
(∏d

i=1 r̃ai(ki, j)
)
does not have degree one in each variable of j

(though it does have degree one in each variable of k1, . . . , kd). Fortunately, this issue is not substantive. Since(∏d
i=1 r̃ai(ki, j)

)
is multilinear with respect to the variables of k1, . . . , kd, we can still apply the sparse-dense

sum-check protocol for the first logK rounds of the read-checking sum-check, and then “switch over” to the
standard linear-time prover algorithm (Section 3.3) for the final log T rounds. If C is an integer such that
K1/C = o(T ), then the resulting total prover cost for the first logK rounds is, up to low-order terms, 2CT
field multiplications.

The final log T rounds of Shout proceed identically to the case of small memories (Section 6.2), requiring d2T
multiplications up to low-order terms.

Remark 2. [STW24, Appendix G] also describes two prover algorithms that are simpler but slower than
the one that uses just 2dcT field multiplications to implement the first logK rounds above. These simpler
algorithms replace 2dc with an O(log2 K) and O(logK) factor respectively. Even these simpler algorithms
may be fast enough for Shout to improve on Lasso as applied in Jolt.
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7.4 The r̃af-evaluation sum-check and Hamming-weight-one check when K ≫ T

As pointed out in Section 6.3, the r̃af-evaluation sum-check of Figure 8 is identical to the read-checking

sum-check in the core Shout PIOP, just with Ṽal(k) replaced with

d∑
i=1

log(K)/d−1∑
ℓ=0

2i·log(K)/d+ℓ · ki,ℓ,

which is the MLE of the function that maps k to int(k). In other words, the r̃af-evaluation sum-check is
equivalent to checking reads into the table whose k’th entry is

∫
(k). As further observed in Section 6.3, in

applications the prover can set rcycle in the core Shout PIOP equal to r′cycle (the random point at which the

verifier wishes to evaluate r̃af via the r̃af-evaluation sum-check). Then running the r̃af-evaluation sum-check
and the read-checking sum-check in a batched manner per Section 4.2.1 is equivalent to replacing the lookup

table Ṽal(k) with Ṽal(k) + z · ĩnt(k). The first logK rounds of the batched sum-check can be implemented by

separately applying the read-checking sum-check to the two tables with MLEs given by Ṽal and ĩnt, with
the latter costing CT + o(T ) multiplications for the prover. The final log T rounds of the batched protocol

are no more expensive than the read-checking sum-check alone, as the value Ṽal(r′′′) in the read-checking
sum-check (where r′′′ is the verifier’s random challenges chosen over the course of the first logK rounds) is

simply replaced in the batched sum-check with Ṽal(r′′′) + z · ĩnt(r′′′).

Hamming weight one check. Checking that each committed address has Hamming weight one (Line 4
of Figure 8) can be directly implemented with O(dK1/d) field multiplications after the prover computes an
array storing ẽq(j, r′′cycle) for all j ∈ {0, 1}log T (which, for appropriate choice of r′′cycle, will have already been

computed elsewhere within Shout). If c > 1 so O(dK1/d) time is not acceptable, the original sparse-dense

sum-check protocol applies with â(k) = r̃ai(k, r
′′
cycle) and b̂ = 1 and achieves cost cT + O(CK1/C) field

multiplications, where C = cd.

7.5 Cost summary for Shout when K ≫ T

In summary, for gigantic structured memories where K1/C = o(T ), the Shout prover incurs the following
costs up to low-order terms:

• 2T multiplications for evaluating r̃v(rcycle) before applying the read-checking sum-check.

•
(
2C + d2

)
T multiplications for the read-checking sum-check.

• (4C + 3d)T for Booleanity checking.32

• CT for the r̃af-evaluation sum-check.

• cT for the Hamming-weight-one-checking sum-check if c > 1.

In total, this is at most
(
7C + d2 + 3d+ c+ 2

)
T multiplications.

8 Fast Twist prover implementation

Recall from Figure 9 that the core Twist PIOP consists of three sum-check invocations: the read-checking

sum-check, the write-checking sum-check, and the Ṽal-evaluation sum-check.

8.1 Ṽal-evaluation sum-check

Let us start by considering the Ṽal-evaluation sum-check, as it is the simplest. This invocation applies the
sum-check protocol to compute:

32Here, we avoid T multiplications by setting r′ = rcycle within the Booleanity-checking sum-check, and thereby reusing a
table of ẽq evaluations between the first bullet and this bullet, same as in Section 6.3.
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∑
j′∈{0,1}log T

Ĩnc(raddress, j
′) · L̃T(j′, rcycle).

We explain in Appendix B that, with 3T/2 field multiplications, the prover can compute a table storing all

evaluations of L̃T(j′, rcycle) as j′ ranges over {0, 1}log T . Similarly, (but more straightforwardly) with 2K

field multiplications, the prover can compute a table storing all Ĩnc(raddress, j
′) evaluations. To do this, one

first builds a size-K table storing all ẽq(raddress, k) evaluations for k ∈ {0, 1}logK , which requires K field

multiplications (see Lemma 1). Given this table, each Ĩnc(raddress, j
′) evaluation is simply the product of an

increment with an entry of the size-K table.

Given the above two tables, the standard linear-time sum-check prover algorithm (Section 3.3) performs
4T additional field multiplications. Hence, total prover time in a straightforward implementation of the

Ṽal-evaluation sum-check is 2K + 5.5 · T field multiplications. In Appendix B.2, we explain how to lower this
to 2K + 4T field multiplications.

8.2 Read-checking and write-checking sum-checks

Achieving a fast prover in the read-checking and write-checking sum-checks requires new techniques. Let us
begin by focusing on the read-checking sum-check, which in the case d = 1 confirms that r̃v(r′) equals:

∑
(k,j)∈{0,1}log K×{0,1}log T

ẽq(r′, j) · r̃a(k, j) · Ṽal(k, j). (69)

8.2.1 Overview

We give two different prover algorithms. One, which we present in Section 8.2.5, achieves O(T log(K)+K+d2T )
prover time. The other, which we call our “local algorithm”, has a worse dependence on d (though the same
worst-case runtime when d = 1) but the following major advantage. Call a memory operation 2i-local if it
accesses for a memory cell that was previously accessed within the last 2i cycles. For our local algorithm, any
2i-local memory access only contributes O(i) field operations to the prover’s work. This is potentially much
less than the worst-case bound of O(logK) field operations per memory operation. Due to the potentially
poor concrete runtime when d > 1, we restrict our description of the local algorithm to the d = 1 case (though
the generalization to d > 1 is straightforward).

The main difference between our two prover algorithms is as follows. In our local algorithm, we bind the log T
variables of the cycle j first, starting with the “low-order” bit j1 of j and proceeding towards the high-order
bit jlog T . Intuitively, this allows the prover to benefit from local memory accesses during the first logK
rounds of sum-check because round i “coalesces” the values at any given register k across a contiguous chunk
of 2i time steps. So, if fewer than 2i distinct registers were read or written during these 2i time steps, then
the prover does less than 2i work to process those time steps in round i. This leads to less than T total
prover work in round i, resulting in a prover time that is less than T logK across those logK rounds. After
round logK, there are only T terms to be summed, and the standard linear-time sum-check achieves O(T )
total time for those rounds (as opposed to O(T ) time per round).

The other algorithm binds the log(K) variables of the register address k first, rather than the log T variables
of j.

8.2.2 Details of the local algorithm for read-checking

Consider the standard linear-time sum-check prover implementation (Section 3.3). Our local-algorithm prover
can be viewed as simply running this standard procedure, but optimized for the specific structure of this
sum-check instance. Recall that for the local algorithm, we restrict our attention to the case that d = 1.
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Tracking increments instead of values. Naively implemented, the standard algorithm requires K · T
space, with the bottleneck being storing all K ·T evaluations of Val(k, j) for k ∈ {0, 1}logK and j ∈ {0, 1}log T .
However, we can avoid this by exploiting the same observation that leads to fast commitments: rather than

explicitly storing all Ṽal(k, j) values for (k, j) ∈ {0, 1}logK × {0, 1}log T , the prover can instead just store, for
each j ∈ {0, 1}log T , the unique register k that was written at cycle j, and the non-zero increment Inc(k, j)
(see Definition 9).

Under this definition, for all k ∈ {0, 1}logN and j ∈ {0, 1}log T ,

Ṽal(k, j) =
∑
j′≤j

Ĩnc(k, j′), (70)

where j′ ≤ j is shorthand for LT(j′, j) = 1, i.e., for j′ being the binary representation of an integer int(j′)
that is strictly less than int(j).

Equation (70) implies that for any j = (r1, . . . , ri, j
′) ∈ Fi × {0, 1}log(T )−i, and any k ∈ {0, 1}logK ,

Ṽal(k, j) =
∑
j′′≤j′

Ĩnc(k, r1, . . . , ri, j
′′). (71)

Indeed, the right hand side is multilinear in k and j. The right hand side also agrees with Ṽal(k, j)
whenever (k, j) ∈ {0, 1}logK × {0, 1}log T : this is because for any fixed (r1, . . . , ri) ∈ {0, 1}i, the vectors
(r1, . . . , ri, j

′′) : j′′ ≤ j′ are precisely (the binary representations of) those integers strictly less than (the
integer whose binary representation is) j = (r1, . . . , ri, j

′). Since the right hand side and the left hand side
are both multilinear and agree at all inputs in the Boolean hypercube, they must be the same multilinear
polynomial.

Since there is only one non-zero increment per cycle, it is an easy consequence of Fact 3.1 that after round i
there are at most 2i non-zero increments per row. In other words:

Fact 8.1. For any fixed j′′ ∈ {0, 1}log(T )−i, there at most 2i registers k ∈ {0, 1}logK for which

Ĩnc(k, r1, . . . , ri, j
′′) ̸= 0.

In round i, for fixed j′ ∈ {0, 1}log(T )−(i−1), let us refer to the vector

{Ṽal(k, r1, . . . , ri−1, j
′) : k ∈ {0, 1}logK}

as row j′ of Ṽal in round i. The prover will proceed iteratively through the rows in lexicographic order,
starting with row 0 and proceeding to row 1.

Per the above, the prover can maintain an array I that in round i stores the following values:

I in round i stores all non-zero evaluations of the form Ĩnc(k, r1, . . . , ri, j
′′) for j′′ ∈ {0, 1}log(T )−i. (72)

Given these increments, the prover can ensure that when processing row j′, it indeed stores in its memory

all K values Ṽal(k, r1, . . . , ri, j
′) as k ranges over {0, 1}logK . By Fact 8.1, this requires T multiplications for

each round i = 1, . . . , logK.

In summary, for the first log(K) rounds of the read-checking sum-check, with T multiplications per round,
the prover can ensure that in each round i, it can iterate over rows j′ one-by-one and when processing row j′

ensure that it has in its memory the K values

Ṽal(k, r1, . . . , ri−1, j
′) : k ∈ {0, 1}logK . (73)
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Computing other necessary arrays and worst-case cost accounting. Via standard techniques (see
Lemma 1), with K field multiplications across all of the first logK rounds, the prover can maintain at each
round i an array A storing all evaluations ẽq(x, r1, . . . , ri) as x ranges over {0, 1}i. Since only one register is
read per cycle, at the end of round i, each row j′′ of r̃a(·, r1, . . . , ri, j′′) has at most 2i non-zero entries, and each
such entry is an entry of this array (this holds because ra(k, j) ∈ {0, 1} for all (k, j) ∈ {0, 1}logK × {0, 1}log T ,
and is similar to Equation (46), which considered the case where m “register variables” rather than i “cycle
variables” were bound to random field elements).

Similarly, with standard techniques, the prover can across all rounds i maintain an array storing all evaluations
ẽq(r′, r1, . . . , ri, j

′′) as j′′ ranges over {0, 1}log(T )−i. This costs 2T field multiplications in total (T to build
the size-T array at the start of the protocol, and T more to bind it round-over-round over the course of the
protocol). These are the arrays (along with I) needed to run the standard linear-time sum-check proving
algorithm described in Section 3.3. However, a significant optimization is possible to avoid these 2T field
multiplications, and more significantly, to also save one field multiplication per relevant evaluation point c for
each of the first logK.

An optimization. The optimizations of Dao and Thaler [DT24] can be adapted to speed up the prover
further.

Specifically, assuming K = o(T ) so
√
KT = o(T ), the prover builds two different arrays of size at most

√
KT ,

defined as follows. Let r′L = (r′1, . . . , r
′
(log(K)+log(T ))/2) and r′R = (r′(log(K)+log(T ))/2+1, . . . , r

′
log T ). The first

array E, at the end of round i, stores the following values:

E stores ẽq(r′L, r1, . . . , ri, j
′′) as j′′ ranges over {0, 1}(log(K)+log(T ))/2−i. (74)

Intuitively, E(j′′) captures the contribution of the “left part” j′′ of a cycle index j = (j′′, j′′′) ∈ {0, 1}log(T )−i

to the value ẽq(r′, r1, . . . , ri, j).

The second array E′, in round i, stores the following values

E′ stores A(x) · ẽq(r′R, j′′′) as x ranges over {0, 1}i and j′′′ ranges over {0, 1}log(T )/2−log(K)/2. (75)

This array captures the combination (i.e., product) of the contribution of j′′′ to eq(r′, r1, . . . , ri, j) and the
value r̃a(k, j) if r̃a(k, r1, . . . , ri, j) ̸= 0, namely ẽq(r1, . . . , ri−1, k1, . . . , ki−1).

For each index j′′ ∈ {0, 1}(log(K)+log(T ))/2−i, the prover maintains an “aggregated value” aggj′′ , initialized to
0. When the prover in round i wants to compute its prescribed message si(c), it sums over all

(k, j) ∈ {0, 1}logK × {0, 1}log(T )−i

such that
r̃a(k, r1, . . . , ri−1, c, j) ̸= 0.

Recall that for each row j ∈ {0, 1}log(T )−i, there are at most 2i such values of k.

For each such pair (k, j), write j = (j′′, c, j′′′) with j′′ ∈ {0, 1}(log(K)+log(T ))/2−(i−1) and j′′′ ∈ {0, 1}log(T )/2−log(K)/2.
The prover uses a constant number of lookups into the arrays E′ and I, followed by a single field multiplication,
to compute

ẽq(r′R, j
′′′) · ẽq(r1, . . . , ri−1, c, k1, . . . , ki−1, ki) · Ṽal(k, r1, . . . , ri−1, c, j),

and adds the result to aggj′′ . This ensures that when all relevant pairs (j, k) have been processed, the
following holds:

si(c) =
∑

j′′∈{0,1}(log(K)+log(T ))/2−i

aggj′′ · ẽq(c, r′i) · E[j′′].

67



Worst-case cost accounting. In total, maintaining the arrays E (Expression (74)) and E′ (Expression
(75)) across the first logK rounds requires O(

√
KT ) = o(T ) field multiplications. Maintaining the array I

(Expression (72)) costs at most 2i · (T/2i) = T multiplications per round, as there are T/2i rows in round i
and computing one row given the previous row requires at most 2i multiplications. This yields a total of
T logK multiplications to maintain the array I over the first logK rounds. We call these (at most) T logK
field multiplications write-induced multiplications.

Given these arrays, the prover in round i = 1, . . . , logK performs at most
(
T/2i

)
· 2i +O(

√
TK) = T + o(T )

field multiplications for each of the relevant evaluation points si(c). Since d = 1, there are two evaluations
points, namely c ∈ {0, 2}. This means there are 2 log(K)T + o(T ) field multiplications, which we call
read-induced multiplications.

In total, this means the first logK rounds of the sum-check protocol applied to Expression (69) incur at most
the following number of field multiplications when d = 1:

3 log(K)T + o(T ).

After round logK, the number of terms being summed has fallen from KT down to T , and the standard
linear-time sum-check proving algorithm (appropriately optimized [DT24, Gru24]) requires at most 6T total
field multiplications to implement all subsequent rounds. In fact, when K = o(T ), this falls to roughly 5T
due to binding of the E array taking much less than T field operations, as in each round i, there are two
different algorithms the prover can choose between to bind E, one taking time 2i, which leverages that at the
start of the protocol E contains only values in {0, 1}, and the other taking time T ·K/2i.

Hence, in total, for small memories the number of prover field multiplications when d = 1 is upper bounded
by roughly:

(3 log(K) + 5)T + o(T ).

8.2.3 A refined time bound for local memory accesses

The dominant term in the (worst-case) time bound for our main prover algorithm is 3 log(K)T field multipli-
cations. This comes from performing 3 multiplications per cycle for each of the first logK rounds. One of

these three multiplications is write-induced : it comes from updating the array I that stores Ṽal evaluations:
there are only T/2i “rows” of such evaluations stored in round i, but computing one row given the previous
row can require 2i field multiplications. This means that every write operation, in the worst case, contributes
one field multiplication per round, for each of the first logK rounds.

The other (at most) two field multiplications per round are read-induced. Each of the T/2i rows of E at
the end of round i has at most 2i distinct values, which means round (i+ 1) incurs at most 2i · (T/2i) field
multiplications per evaluation point. This mans that every read operation, in the worst case, contributes two
field multiplications per round for the first logK rounds.

Refined cost analysis for write-induced operations. At the end of round i, updating the array I
requires at most 2i field multiplications. However, a tighter bound holds. For any j′ ∈ {0, 1}log(T )−i consider
cycles between int(j′) · 2i and (int(j′) + 1) · 2i. These are the cycles whose high-order log(T )− i bits equal j′.
If at most Z distinct registers were written during these cycles, then in round i, computing row j′ of I from
the preceding row requires only Z field multiplications. In particular, if there were D duplicate writes during
these cycles (meaning a write to a register that was already written during these cycles) then Z equals 2i−D.

Refined cost analysis for read-induced operations. Similarly, if there were D “duplicate reads” during
these cycles, then the number of field multiplications in round i due to read operations performed during
these cycles falls from a worst-case bound of 2 · 2i to 2 · (2i −D).

In summary, if a write operation is made to a register that was written 2i cycles previously, then that write
operation does not increase the number of distinct write operations in its chunk of write cycles in any round
after round i. Hence, it only contributes i total multiplications to the prover’s work across all rounds (vs. a
worst-case bound of logK multiplications).
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Similarly, if a read operation is made to a register that was read 2i cycles previously, then that read operation
only contributes 2i total multiplications to the prover’s work across all rounds (vs. a worst-case bound of
2 logK multiplications).

8.2.4 Write-checking sum-check via the local algorithm

Recall from Equation (34) that the write-checking sum-check is applied to compute

∑
k=(k1,...,kd)∈({0,1}log(K)/d)

d
, j∈{0,1}log T

ẽq(r, k) · ẽq(r′, j) ·

((
d∏

i=1

w̃ai(ki, j)

)
·
(
w̃v(j)− Ṽal(k, j)

))
.

Let us focus on the case d = 1. We will separately apply two sum-check invocations, one to compute:∑
k=(k1,...,kd)∈({0,1}log(K)/d)

d
, j∈{0,1}log T

ẽq(r, k) · ẽq(r′, j) · w̃a(k, j) · Ṽal(k, j). (76)

and one to compute ∑
k=(k1,...,kd)∈({0,1}log(K)/d)

d
, j∈{0,1}log T

ẽq(r, k) · ẽq(r′, j) · w̃a(k, j) · w̃v(j). (77)

The sum-check invocation computing Expression (76) is almost identical to the one in the read-checking
sum-check, with the main difference being the ẽq(r, k) factor appearing in each term of the sum. If K2 = o(T ),
this factor can be handled with no major modifications to the read-checking sum-check nor any significant
increase in prover cost, and if K = o(T ) incorporating this factor increases prover costs by at most T
multiplications. Furthermore, since the sum-check for Expression (76) is run in parallel with the read-checking

sum-check, the work to maintain the array I capturing evaluations of Ṽal can be reused within both the
read-checking and writing-checking sum-check.

For the sum-check invocation computing Expression (76), prover costs are kept lowest by binding the variables
of k before the variables of j. Then, if K = o(T ), since w̃v(j) is independent of k, the simple generalization of
the sparse-dense sum-check protocol described in Section 7.3 applies to enable the prover to get through the
first logK rounds with T + o(T ) field multiplications (as would the techniques of Section 6.2 for Shout applied
when K = o(T )). The final log T rounds of sum-check can be implemented via the standard linear-time
proving algorithm (with known optimizations [Gru24, DT24]), and this requires 5T +o(T ) field multiplications.

8.2.5 Alternative algorithm for read-checking and write-checking

We describe an alternative prover implementation for the read-checking sum-check in Twist that performs
O(T ) field operations for each of the first logK rounds. Standard linear-time sum-check prover algorithms
implement the final log T rounds with roughly d2T field multiplications (see Section 6.2.2 for details).

Let us begin with the read-checking sum-check. Recall that for general d > 1, the read-checking sum-check
within Twist is used to confirm that:

r̃v(r′) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(r′, j) ·

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k, j).

We describe the algorithm as if it is sequential, but it is easy to see that a (T/K)-fold parallel speedup is
achievable with at most a constant-factor increase in total prover work, by processing in parallel Θ(T/K)
“chunks” of operations consisting of Θ(K) cycles in each.33

33Bigger parallel speedups are possible at the cost of increased total prover work. Also, sharding described in Section 3.1.1
provides additional opportunities for parallelism beyond whatever parallelism is available when processing a single shard.
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Our algorithm is essentially just the standard linear-time sum-check proving algorithm (Section 3.3), but
optimized to leverage the specific structure of this particular sum-check instance. Specifically, before round
one, the prover computes d+ 2 arrays, say B, C, and A1, . . . , Ad. B has size T , C has size K · T , and and
A1, . . . , Ad have size K1/d · T . As we will see, the prover need not ever explicitly materialize C or A1, . . . , Ad

in their entirety, due to their structure in this particular sum-check instance. But for now let us consider a
naive implementation of the standard algorithm, despite its unacceptably large runtime.

B initially stores all evaluations of ẽq(r′, j) as j ranges over {0, 1}log T . B can be computed with T

multiplications via standard techniques (Lemma 1). C initially stores Ṽal(k, j) for all (k, j) ∈ {0, 1}logK ×
{0, 1}log T . And Aℓ stores r̃aℓ(kℓ, j) for all kℓ ∈ {0, 1}log(K)/d and j ∈ {0, 1}log T . By applying the binding
procedure described in Section 3.3, the prover ensures that at the end of each round ℓ ≤ log(K), C has size

(K · T ) /2ℓ and C[k′, j] = Ṽal(r1, . . . , ri, k
′, j) for all (k′, j) ∈ {0, 1}log(K)−i × {0, 1}log T . Similarly, at the end

of each round i ≤ log(K)/d, A1[k
′, j] = r̃a1(r1, . . . , ri, k

′, j) for all k′ ∈ {0, 1}log(K)/d−i and j ∈ {0, 1}log T ,
and similarly Aℓ halves in size during each of rounds (ℓ− 1) · log(K)/d+ 1, . . . , ℓ log(K/d).

The above naive implementation of the standard linear-time algorithm is extremely wasteful because it ignores
the following structure in the arrays C and A1, . . . , Ad.

• At the end of any given round i, for fixed j ∈ {0, 1}log T , let us refer to all entries of C of the form
C[k′, j] for some k′ ∈ {0, 1}log(K)−i as the j’th row of C. Then any two adjacent rows differ in at most
one entry. This is because at most one address gets written in each cycle.

• At the end of any given round i, any given row of Aℓ has exactly one non-zero entry (see Equation (46)
for details).

Avoiding spending K1/d · T time and space processing Aℓ. Per the second bullet, our prover will
store, for each row of Aℓ, merely the index k of the non-zero entry in that row, and the associated value of
that entry. In fact, it’s not even necessary to store that value: in round (ℓ− 1) · log(K)/d+ i, there are only
2i distinct values in the array Ai (see Equation (46) for what those values are), so the prover merely needs to
store a lookup table of size 2i storing those values and that lookup table can be shared amongst all the rows.
The first i bits of the index k of the non-zero entry in a given row specify the appropriate index in the lookup
table storing the associated non-zero value.

Avoiding spending KT time and space processing C. Per the first bullet, the prover will not explicitly
store C. Rather, in each round i+ 1, the prover will iteratively generate each row of C and “process” that
row’s contributions to the prescribe round-i message.

In more detail, via repeated application of Fact 3.1, one easily derives that for any k′ ∈ {0, 1}log(K)−i and
any j ∈ {0, 1}log T ,

C[k′, j] =
∑

k′∈{0,1}i

Ṽal(k′′, k′, j) · ẽq(k′′, r1, . . . , ri). (78)

Suppose that k = (k′′, k′) ∈ {0, 1}i × {0, 1}log(K)−i is the (binary representation of) the address written at
cycle k. Let next(j) be the binary representation of the “next” row, i.e., of int(j) + 1. Then by Equation (78),
for any k′′′ ̸= k′, C[k′′′, j] = C[k′′′, next(j)]. That is, the only column that differs between rows j and next(j)
is column k′ (i.e., k′ is the column whose trailing log(K)− i bits equal those of the binary representation of
the register that was written at cycle j).

Moreover, recall from the Twist PIOP that the increment Inc(k, j) is the difference between the value stored
at register k at cycle j + 1 vs. cycle j. Then if k = (k′′, k′) is the cell written at cycle j,

C[k′, (j)]− C[k′, j] = Inc(k, j) · ẽq(k′′, r1, . . . , ri). (79)

And via standard techniques (see Lemma 1) the prover can, with K field operations across all of the first
logK rounds, build an array that in round i stores all values of the form ẽq(k′′, r1, . . . , ri) as k

′′ ranges over
{0, 1}i.
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Hence, putting all of the above together, the prover can, in each round i = 1, . . . , logK of the read-checking
sum-check, iterate one-by-one over all cycles j ∈ {0, 1}log T , and ensure at all times that it has in its memory
the j’th row of C, i.e., C[k′, j] as k′ ranges over {0, 1}log(K)−i+1. By Equation (79), the total number of field
multiplications needed to accomplish this is T per round.

Total prover costs. To get through the first logK rounds of the read-checking sum-check, the prover
incurs the following costs.

• T field multiplications to build the array B of ẽq(r′, j) evaluations.

• O(dK1/d) multiplications to maintain the arrays A1, . . . , Ad.

• T logK +O(K) to maintain the array C throughout.

• If one directly applies the standard linear-time sum-check prover, then given the above arrays, the
prover incurs 4 field multiplications per row j ∈ {0, 1}log T per round. Here, 4 comes from there being
two relevant evaluation points c ∈ {0, 2} in each of these rounds, and two multiplications needed for
each of them (one to multiply an entry of C by an evaluation of the relevant array Aℓ for that round,
and another to multiply the result by the ẽq(r′, j) value for that row j).

However, the optimization adapted from [DT24] that applied to the local algorithm also applies here.
Roughly, this entails replacing the array B and the arrays A1, . . . , Ad with 2d

√
KT -sized arrays (two

per Ai). This eliminates the T multiplications needed to build B and one of the two multiplications
per evaluation point c.

Hence, if K = o(T ), the first logK rounds of Twist’s read-checking sum-check require 3 log(K)T + o(T )
field multiplications of the prover. The last log T rounds require (d2 + 2d+ 1)T field multiplications via the
standard linear-time sum-check algorithm (Section 3.3), appropriately optimized [DT24, Gru24].

Write-checking sum-check. As with the local algorithm, implementing the write-checking sum-check
prover is similar to the read-checking case. The situation is actually nicer in the case of the alternative
algorithm. In the local algorithm, we applied two separate sum-checks, one to compute Expression (76) and
another to compute Expression (77), even though the verifier is in fact merely interested in the sum of the
two expressions. The reason to split the entire sum into these two “sub-sums” was because Expression (76) is
similar to the sum computed in the read-checking sum-check, and this allowed reuse of some work for the
prover (in particular, this way the array I defined in Expression (72) can be used in both the read-checking
and write-checking sum-checks).

However, some extra costs crept in because the local algorithm binds the variables of j first in the read-checking
(and hence also the sum-check for Expression (76)) while the variables of k are naturally bound first in
the sum-check for Expression (77). Happily, in the alternative algorithm for the read-checking sum-check
(as well as for Expression (76)), the logK variables of k are bound before the log T variables of j. This
means in the context of the alternative algorithm, after the first logK rounds, it is natural to revert to
considering only the sum of Expressions (76) and (77), rather than considering them as separate quantities.
For the final log T rounds, this amounts to the prover simply applying the standard linear-time sum-check
proving algorithm (appropriately optimized [Gru24, DT24]) to compute the following sum, where here we let

r′′′ = (r′′′1 , . . . , r′′′d ) ∈
(
Flog(K)/d

)d
denote the randomness chosen over the course of the first logK rounds of

the read- and write-checking sum-checks:

ẽq(r, r′′′)
∑

j∈{0,1}log T

ẽq(r′, j) ·

((
d∏

i=1

w̃ai(r
′′′
i , j)

)
·
(
w̃v(j)− Ṽal(r′′′, j)

))
.

If K = o(T ), this ensures that the total number of prover multiplications incurred to implement the
write-checking sum-check (on top of the work the prover does in the read-checking sum-check) is at most

(2 log(K) + d2 + 2d+ 2)T.
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8.3 Cost summary

Local algorithm for d = 1. If K = o(T ), then using the local proving algorithm, the entire core Twist
PIOP with d = 1 can be implemented with the following number of field multiplications, up to low-order
terms:

• 4T from the Ṽal-evaluation sum-check.

• (3 log(K) + 5)T from the read-checking sum-check.

• An additional (2 log(K) + 10)T from the write-checking sum-check.

This is at most (5 log(K) + 19)T field operations to process T reads and T writes. For K = 32 = 25, this is
44T field multiplications. For K = 220, it is 119 · T .

However, the costs benefit significantly from locality. For large memories, the dominant term by far is the
5 log(K)T field operations, 3 logK of which can be attributed to each write and 2 logK to each read. If a
write operation is 2i-local, then 3 logK falls to 3i and similarly if a read operation is i-local, then 2 logK
falls to 2i.

Checking correctness of one-hot encodings (Figure 8) for all 2T committed addresses must be done in addition
to the above costs. Per Section 6.3, this costs 6dT +O(dK1/d) field multiplications (up to low-order terms,
all of this extra cost is coming from Booleanity-checking).

The alternative algorithm. The alternative algorithm algorithm has similar (in fact, slightly better)
costs in the worst-case to the local algorithm when d = 1, but generalizes more nicely to d > 1 because it
binds the variables of k before the variables of j, and the degree in the variables of k is independent of d for
all of the polynomials that the sum-check protocol is applied to within Twist. Specifically, the costs are:

• 4T from the Ṽal-evaluation sum-check.

• (3 log(K) + d2 + 2d+ 1)T from the read-checking sum-check.

• An additional (2 log(K) + d2 + 2d+ 2)T from the write-checking sum-check.

In total, this is at most (5 log(K) + 2d2 + 4d+ 4)T field multiplications. For d = 1, this is

(5 log(K) + 10)T,

slightly improving the worst-case bound of the local algorithm of (5 log(K) + 19)T .

9 Faster SNARKs for non-uniform computation

This section describes SpeedySpartan and Spartan++, fast SNARKs for non-uniform circuits. A distinguishing
aspect of both is that they incur minimal commitment costs: the prover simply commits to its witness, and
the rest of the prover’s work is field operations in the sum-check protocol and the cost to prove a polynomial
evaluation (which, for appropriate polynomial commitment schemes, can be sub-linear in the size of the
circuit). This improves significantly on Spartan and BabySpartan (and other prior SNARKs) for non-uniform
circuits.

9.1 Overview

In this overview, let us consider the simple and clean setting of proving satisfiability of an arithmetic circuit
consisting of fan-in two addition and multiplication gates over field F. This treatment extends easily to more
general constraint systems.

Suppose that the circuit has size T and consider two log(T )-variate multilinear polynomials z̃A and z̃B that
respectively capture the left and right inputs to each gate of the circuit and a third polynomial z̃ that captures
the output of each gate. The first two polynomials, z̃A and z̃B are virtual polynomials : they are not explicitly
committed/sent by the SpeedySpartan prover. The third polynomial z̃ is explicitly committed/sent by the
prover.
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Overview of SpeedySpartan. SpeedySpartan applies the sum-check protocol once to confirm that z̃ respects
the operation of its gate. That is, if j ∈ {0, 1}log(T ) is the label of a multiplication gate, then the sum-check
confirms that z̃C(j) = z̃A(j) · z̃B(j), and similarly if j is an addition gate then the sum-check confirms that
z̃C(j) = z̃A(j) + z̃B(j).

At the end of this sum-check, the verifier has to evaluate each of z̃A, and z̃B and z̃ at a random point. Since
z̃ was explicitly committed by the prover, the evaluation of z̃ can be obtained via the evaluation argument
of the polynomial commitment scheme. Since z̃A and z̃B are virtual polynomials the verifier cannot obtain
their evaluations directly. SpeedySpartan applies the sum-check protocol a second time to reduce the task of
computing the necessary evaluations of z̃A and z̃B to the task of evaluating z̃ at single point. In particular,
this second sum-check invocation is simply the Shout read-checking sum-check (see Figure 7). That is, the left
input z̃A(j) to gate j is equal to the value output by some other gate jL, and similarly the right input z̃B(j)
to j is the output of some gate jR. This is the same as a lookup into the table whose entries are given by z̃.
The wires of the circuit (i.e., the identities of the left and right inputs to each gate) determine the addresses
that are looked up. In the context of SpeedySpartan, these addresses depend only on the circuit wires and
hence can be committed (as in Shout) by an honest party in pre-processing. This a complete overview of the
SpeedySpartan protocol.

Overview of Spartan++. Recall that Spartan is a SNARK for R1CS and that SuperSpartan extends it
to CCS [STW23], a generalization of Plonkish, R1CS, and AIR. Spartan++ is essentially just SuperSpar-
tan [STW23], but with an improved sparse polynomial commitment scheme used to commit to “constraint
matrices”. Specifically, if the prover is claiming to know a solution vector z to an R1CS instance

Az ◦Bz = Cz,

(where, unlike in SpeedySpartan, A, B, and C, may have many non-zeros per row), then Spartan has the

multilinear extension polynomials Ã, B̃, and C̃ committed in pre-processing via Spark. In the online phase of
Spartan, the sum-check protocol is applied several times, and at the end of these invocations, the Spartan
verifier needs to evaluate Ã, B̃, and C̃ at a random point r (in the case of CCS, the verifier needs evaluations

of M̃0, . . . , M̃t−1 for a chosen value of t). This evaluation in Spartan is provided by the prover along with a
Spark evaluation proof. Spark uses the Lasso lookup argument internally, to perform lookups into a structured
table storing all multilinear Lagrange basis polynomials evaluated at r. Spartan++ is the same, except we
give a much faster sparse polynomial commitment scheme, based on Shout rather than Lasso. We call this
scheme Spark++. Unlike Lasso, Shout allows the values returned by the to be virtual, which eliminates the
primary bottleneck for the Spark prover (namely, committing to the values returned by the lookups; these
values are random since r is random, and hence very slow to commit to).

9.2 Details of SpeedySpartan

9.2.1 Detailed protocol description

Our presentation below borrows text from BabySpartan [ST23]. Like BabySpartan [ST23], our focus here is
on Plonkish constraint systems. For simplicity and easier adoption, we focus on degree-2 Plonkish, but the
protocol readily applies to arbitrary degree Plonkish with custom gates. In particular, we use the definition
from Plonk [GWC19, §6], which we state below.

Definition 9.1 (Plonkish). Consider a finite field F. Let the public parameters consist of size bounds
m,n, ℓ ∈ N, with ℓ < n. The Plonkish structure consists of: (1) vectors qm, ql, qr, qo, qc ∈ Fm, and (2) a set
of vectors (a, b, c) ∈ [n]m specifying the left, right, and output indices in a vector containing public IO and
witness. An instance x ∈ Fℓ consists of public IO and is satisfied by a witness w ∈ Fn−ℓ if the following holds
for all i ∈ [m]. (ql)i · zai

+ (qr)i · zbi + (qo)i · zci + (qm)i · (zai
· zbi) + (qc)i = 0, where z = (w, x) and zai

denotes the entry of z at index provided by the ith entry of vector a.

Note that Plonkish is a special case of CCS [STW23]. Observe that the vector z can be viewed as a lookup
table and its entries are “looked up” at indices provided by vectors a, b, and c. In the language of CCS, we
can represent these indices as three sparse matrices. Let A,B,C ∈ Fm×n denote those matrices. In particular,
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for all i ∈ [m], the ith row of A (similarly B and C) is the unit vector that encodes the position specified by
the ith entry of vector a (similarly b and c). In other words, each row of A,B,C contains a single non-zero
entry of 1 so that the matrix-vector products Az,Bz,Cz “lookup” the correct entry of z. Thus, we can
express the Plonkish satisfiability check as follows:

ql ◦Az + qr ◦Bz + qo ◦ Cz + qm ◦Az ◦Bz + qc = 0

SpeedySpartan can use any multilinear polynomial commitment scheme. In a preprocessing phase, the verifier
(or other honest party) commits to polynomials that encode the circuit structure (i.e., sparse matrices A,B,C)
using a multilinear polynomial commitment scheme. In the online phase, the prover begins by committing to
its purported witness w̃. The prover then reduces the circuit satisfiability check to claims about evaluations of
w̃ and polynomials committed in the preprocessing phase. Finally, the prover uses the polynomial evaluation
argument of the polynomial commitment scheme to prove those claimed evaluations.

Figure 10 depicts the SpeedySpartan PIOP in full. Below, we describe via prose the resulting SNARK one
obtains by combining the PIOP with a multilinear polynomial commitment scheme.

Preprocessing phase. In a preprocessing step, the verifier (or another trusted party) computes commit-
ments to the multilinear extensions of the matrices A,B,C ∈ Fm×n. Each row in these matrices is a unit
vector, i.e., each row contains a single entry equal to 1 (the rest are zeros). In other words, each matrix
proves the one-hot encodings of m addresses into a table of size n.

For a chosen parameter d ≥ 2, the commitment to each sparse matrix encodes m lookup addresses using
d-dimensional one-hot encodings (Section 3.7). Since this commitment is created by the verifier (or another
trusted party), there is no need to ensure, as part of Shout, that the underlying vectors are one-hot encodings.
That is, Booleanity-checking and additional checks from Figure 8 are not needed. This is analogous to how in
Spartan’s preprocessing step [Set20], there is no need to prove the correctness of timestamps in its use of
offline memory checking procedure.

Online phase. Without loss of generality, let m and n be powers of 2 and that ℓ = n/2. Let s = logm, s′ =
log n. For a purported witness w ∈ Fn−ℓ and public IO x ∈ Fℓ, let z = (w, x) ∈ Fn. We can view the vector z
as a function with the signature {0, 1}s′ → F. Similarly, we can view the sparse matrices A,B,C as functions
with the following signature: {0, 1}m × {0, 1}n → F. Crucially, in our target setting, each row of these sparse
matrices is a unit vector (i.e., there is a single non-zero entry of 1 and the rest are zeros).

For all x ∈ {0, 1}s and M ∈ {A,B,C}, let

z̃M (x) =

 ∑
y∈{0,1}s′

M̃(x, y) · z̃(y)


Also, let

f(x) = (q̃l(x) · z̃A(x) + q̃r(x) · z̃B(x) + q̃o(x) · z̃C(x) + q̃m(x) · z̃A(x) · z̃B(x) + q̃c(x)) (81)

The prover begins by sending a commitment to its purported witness w̃. To check satisfiability, the verifier
selects a random τ ∈ Fs, and applies the sum-check protocol to the polynomial

g(x) = ẽq(τ, x) · f(x),

using it to confirm that

0 =
∑

x∈{0,1}s

g(x).

If z satisfies the constraint system then this equality is guaranteed to hold, and if z does not satisfy the
constraint system then this equality will fail to hold with probability at least 1−O(s)/|F|.We call this the
“Spartan-sum-check” since this sum-check invocation is exactly how Spartan begins [Set20].
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Preprocessing phase. The input to this step includes sparse matrices A,B,C ∈ Fm×n, where each
row of the sparse matrix is a unit vector, and vectors ql, qr, qo, qm, qc ∈ Fm. The preprocessing phase
outputs a set of polynomials for which the verifier has a query access.

• Output (q̃l, q̃r, q̃o, q̃m, q̃c, ãddrA, ãddrB , ãddrC), where for M ∈ {A,B,C}, addrM is the vector of
size m · d · n1/d listing the d-dimensional one-hot encodings of addresses provided in M per Section
3.7 (i.e., viewing each row of M as the one-hot encoding of an address into a lookup table of size

n). ãddrM is sent as d separate polynomials addrM,1, . . . , addrM,d each of size m · n1/d.

Online phase. The prover is given as input a purported witness vector w ∈ Fn−ℓ and a public IO
vector x ∈ Fℓ. The verifier is given as input x ∈ Fℓ.

1. P → V: A purported witness polynomial w̃.
2. V → P: pick τ ∈ Fs at random and send it to P.
3. V ↔ P: Let f be defined as per Equation (81) (degree-2 Plonkish) or (82) (arithmetic circuits). V

and P apply the sum-check protocol to confirm that

0 =
∑

x∈{0,1}s

eq(τ, x) · f(x).

At the end of the sum-check protocol, the verifier is left with checking whether

c = eq(τ, r) · f(r),

where c and r are determined over the course of the sum-check protocol.
4. P → V: Let z = (w, x), and zA = A · z, zB = B · z and zC = C · z. Send vA, vB , vC defined as

follows:

vA ← z̃A(r), vB ← z̃B(r), vC ← z̃C(r).

5. V: Let e = eq(τ, r), and obtain the following values by querying polynomials committed during
pre-processing: vl ← q̃l(r), vr ← q̃r(r), vo ← q̃o, vc ← q̃c. Reject if

c ̸= e · (vl · vA + vr · vB + vo · vC + vm · vA · vB + vc).

6. V ↔ P: Apply the core Shout PIOP with addresses from the preprocessing phase
(addrA, addrB , addrC) to validate claims vA, vB , vC . That is, forM ∈ {A,B,C}, apply the sum-check
protocol to confirm that:

vM =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(r, j)

(
d∏

i=1

ãddrM,i(ki, j)

)
· z̃(k). (80)

This is equivalent to the Shout read-checking sum-check (Equation (30)) to check the claim that
vM = z̃M (r) where z̃M is the MLE of the purported read values (denoted r̃v in Equation (30)), z̃ is

the MLE of the lookup table (denoted Ṽal in Equation (30)), and ãddrM,1, . . . , ãddrM,d together
represent the d-dimensional one-hot encoding of the addresses (denoted r̃a1, . . . , r̃ad in Equation
(30)).

Figure 10: The description of SpeedySpartan PIOP. Let d denote the parameter chosen for Shout.

At the end of this invocation of the sum-check protocol, the verifier has to evaluate z̃A(r), z̃B(r) and z̃C(r),
where r ∈ Fs is a random point chosen over the course of the sum-check protocol. Hence, the invocation of
the sum-check protocol reduced the task of checking that z satisfies the constraint system, to the task of
evaluating the multilinear extensions of zA, zB , and zC each at a random point r ∈ Fs.
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Recall that by design, each row of A,B,C has a single non-zero entry (i.e., viewing z as a lookup table, each
row of A, B, and C is the one-hot encoding of some address of z). So, we invoke the Shout protocol to prove
the desired evaluations of z̃A, z̃B , and z̃C at r. In more detail, by using the Shout read-checking sum-check
(Equation (30)), the prover reduces the claims about z̃A(r), z̃B(r), and z̃C(r) into evaluations claims about
the lookup table z̃ and polynomials committed in the preprocessing phase.34 The prover then proves the
evaluations of these committed polynomials using a polynomial evaluation argument.

Note that multiple invocations of the sum-check protocol and polynomial evaluation arguments, arising from
running Shout for each of z̃A, z̃B , z̃C , can be batched together using standard techniques (see Sections 4.2.1
and 3.1.1 for details).

9.2.2 The special case of arithmetic circuit satisfiability

Arithmetic circuit satisfiability trivially reduces to the following special case of Plonkish:

f(x) = (1− q̃m(x)) · (z̃A(x) + z̃B(x)) + q̃m(x) · z̃A(x) · z̃B(x) (82)

Here, qm(x) = 1 if gate x is a multiplication gate, and equals 0 otherwise. For simplicity and ease of comparing
to prior works, we focus on this special case when assessing the costs of SpeedySpartan

9.2.3 SpeedySpartan: Analysis of costs

Polynomial evaluation proofs and the choice of commitment scheme. SpeedySpartan’s speedups
relative to prior work are largest when polynomial evaluation proofs are not a major contributor to prover
time. There are several reasons this could be the case. One is that SpeedySpartan can be instantiated with a
commitment scheme that comes with very fast evaluation proofs. Another, discussed in Section 3.1.1, is that
in applications where many different instances of (one or more) constraint systems arise, folding techniques
can ensure only a single evaluation proof needs to be produced across all instances.

We now discuss attractive choices of polynomial commitment schemes that lead to fast SpeedySpartan prover
even in settings that are not amenable to folding techniques.

Commitment schemes with fast evaluation proof computation. For fast evaluation proof computa-
tion, the most extreme choice is Hyrax [WTS+18]. In Hyrax, the prover simply performs a linear number
of field multiplications, which are required anyway to compute the requested evaluation. Moreover, if the
committed polynomial is sparse (as is the case in SpeedySpartan), the Hyrax prover’s field work grows linearly
with the sparsity of the polynomial (i.e., the number of non-zeros). More precisely, if M out of N entries of the
committed vector are non-zero, the Hyrax prover’s work during evaluation proof computation is N +O(

√
M)

field multiplications.

This is a perfect fit to ensure a very fast SpeedySpartan prover. On top of this, Hyrax is transparent and
has sublinear (square-root) size commitment key. The downside of Hyrax is that its commitment size and
evaluation proof size are fairly large: they are each

√
N field and group elements where N is the size of the

committed polynomial. In summary, Hyrax is an attractive choice for SpeedySpartan when prover time is a
top priority and sublinear-but-large verifier costs are acceptable.

Another commitment scheme with fast evaluation proof computation is Dory [Lee21]. Indeed, Dory can
be seen as a refinement of both Hyrax and Bulletproofs/IPA [BBB+18, BCC+16], and inherits the fast
evaluation proofs from Hyrax.35 Dory evaluation proofs entail the same field work as in Hyrax evaluation proof
computation, plus some extra cryptographic work that is asymptotically sublinear. This cryptographic work

34More precisely, if z = (w, x) for a public vector x, then the prover commits to w̃, and z̃(r) can be evaluated efficiently with
one evaluation query to w̃. See [Set20, STW23] for details.

35Essentially, the Dory committer uses pairings to commit to a Hyrax commitment, thereby obviating the
√
n commitment

size of Hyrax. For evaluation proofs, the Dory prover uses a protocol reminiscent of Bulletproofs/IPA to succinctly prove that it
(a) knows a Hyrax commitment that opens the Dory commitment and (b) knows a valid Hyrax evaluation proof. It thereby
obviates the

√
n evaluation proof size of Hyrax.
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consists of roughly 16
√
N scalar multiplications in G1 or G2 of a pairing-friendly group, and 6 multi-pairings

of size
√
N/2i for each i = 1, . . . , logN .

Because pairings are concretely expensive (one pairing is equivalent in cost to about 4000 group operations),
these evaluation proofs can be the concrete prover bottleneck (i.e., more expensive than committing or sum-
check-proving in SpeedySpartan) unless N is not too small. This effect is somewhat amplified in SpeedySpartan,
become some polynomials arising in the protocol (which are committed in pre-processing) are of slightly
superlinear size m · n1/d. These polynomials have only m non-zero coefficients, so they do not require
superlinear time to commit to even in pre-processing, but this does mean that the O(

√
N) cryptographic costs

arising in Dory evaluation proof computation apply with N = m · n1/d. So while O(
√
N) = O(

√
m · n1/2d) is

still sub-linear in m and n (and hence evaluation proof computation is asymptotically a low-order prover cost),
it can be a concrete SpeedySpartan prover bottleneck if the circuit is small and the parameter d is small. If
this is the case, per Section 3.1.1 one can always further lower the cost of Dory evaluation proof computation
by a factor of log T with a constant-factor increase in verifier costs, by increasing the commitment size from
one target group element to log T group elements.

Calculations with our analytic cost model (Section 3.1.2) show that Dory evaluation proofs represent a small
fraction of total prover time (at most 30%) so long as m and n are at least 226 and d ≥ 3.

Challenges with HyperKZG or Bulletproofs. HyperKZG [ZSC24] and Bulletproofs/IPA [BCC+16,
BBB+18] have expensive evaluation proof computation, as evaluation proofs require the prover to commit
to a linear number of random field elements. As discussed above, this issue is amplified in the context of
SpeedySpartan because some committed polynomials have size m · n1/d (though they have sparsity only m).
This means the commitment key size when using HyperKZG or Bulletproofs is slightly superlinear m · n1/d,
and the evaluation proofs require committing to O(m · n1/d) random field elements. On top of that, unlike
Hyrax and Dory, the field work required to compute evaluation proofs grows with the size m · n1/d of the
committed polynomial and not only its sparsity m. For these reasons, HyperKZG and Bulletproofs appear to
be poor fits for SpeedySpartan.

Detailed costs for SpeedySpartan. As a running example throughout this section, we consider the case
of d = 2 and Hyrax as the choice of polynomial commitment scheme. This leads to a very fast SpeedySpartan
prover and achieves non-trivial verifier costs of O(m1/2n1/4). In this running example, we set m = n = 224

for concreteness. We also assume that the entries of the witness vector z are all “small” (see Section 2.1) and
hence fast to commit to. This is indeed the case in many applications (where the entries of z often represent
bit or byte decompositions, or 32-bit values).

Size of proving key. When Hyrax (or Dory) is used in SpeedySpartan, the (transparently generated)

commitment key consists of
√
m · n1/d group elements. For example, if m = n = 224 and d = 2, this is only

218 group elements, translating to MBs of space.

Pre-processing. Pre-processing in SpeedySpartan requires committing to 3dm unit vectors each of length
n1/d, plus 5 vectors of length m. With Hyrax, committing to the unit vectors requires dm group operations,
while committing to the other 5 vectors (assuming they have small entries per Section 2.1) requires roughly
5m group operations.

Online phase prover costs. In SpeedySpartan, during the online phase, the prover only commits to the
witness vector z and nothing else (more precisely, the prover commits to the MLE of its purported witness
vector w of length n− ℓ). Thus, if the witness vector contains “small” field elements, then the prover only
commits to small field elements.

Then the SpeedySpartan prover applies the sum-check protocol several times. Once is the Spartan sum-check,
and the other is Shout’s read-checking sum-check, applied to twice in parallel (once for each matrix A and
B). The Spartan sum-check can be implemented with 9m field multiplications. This is the cost of the
standard linear-time sum-check proving algorithm (Section 3.3) combined with optimizations of Dao and
Thaler [DT24] and Gruen [Gru24] (see Section 3.6.1). As a modest additional optimization, we also exploit
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Plonk Plonk BabySpartan SpeedySpartan SpeedySpartan
(small proof) (fast prover) (d = 2) (d = 3)

Committed field elements 8m random 6m random 3m+ n small n small n small
(excluding pre-processing) 3m small 3m small

Field multiplications 54m logm 54m logm 33m+ 24n 19m+ 8n 29m+ 8n
Total field multiplications 54m logm+ 546m 54m logm+ 414m 51m+ 30n 19m+ 14n 29m+ 14n

(approximate)
Total field multiplications 1842 · 220 1710 · 224 81 · 224 33 · 224 43 · 224

(for m = n = 224)

Figure 11: Prover costs for SpeedySpartan compared with two versions of Plonk [GWC19] and BabySpartan
when applied to arithmetic circuits of fan-in two (n is the total witness size and m is the number of constraints
(i.e., n − m is the number of auxiliary, unconstrained inputs). For simplicity we assume m = n when
stating Plonk’s costs. When translating committed field elements to field multiplications, we treat each small
committed field element as costing one group operation, each random committed field element as costing 11
group operations, and each group operation as costing 6 field operations. See Section 3.1.2 for justification of
these translations. The qualitative comparison between protocols is insensitive to these precise choices.

here that qm(x) ∈ {0, 1} for all x ∈ {0, 1}logm. This ensures that binding the array storing qm evaluations
produces only 2O(i) distinct values in round i, which ensures that the prover only incurs 2O(i) multiplications
to bind the array in that round.

Per Theorem 6 with T = m, m = n and d = 3, both invocations of the Shout read-checking sum-check costs
(d2 + 2)m+ 4n+ o(m) field operations. Of these, m field multiplications are devoted to the prover evaluating
z̃A(r) and z̃B(r), which is already done over the course of the Spartan sum-check and accounted for in the
costs reported there. So the actual cost of each of these three invocations is (d2 + 1)m + 4n + o(m). For
d = 2 and m = n, this simplifies to about 9m field multiplications per invocation of Shout, and hence 18m
across both invocations.

In total, the SpeedySpartan prover performs 25m field multiplications across all invocations of the sum-check
protocol.

The SpeedySpartan prover must also provide an evaluation for each committed polynomial. Per the discussion
in Section 9.2.3, we focus on settings where this is not a significant contributor to prover time.

Verifier costs. The proof size is O(d log(n + m)) field elements, plus the polynomial evaluation proof
provided for each committed polynomial. If desired, standard techniques can batch these evaluation proofs
at minimal cost to the prover, ensuring that only a single evaluation proof is provided and verified (see for
example [GLH+24, Section 5]). The verifier’s runtime is O(d log(n+m)) field operations plus the cost of
checking the polynomial evaluation proof(s).

9.2.4 Comparison of SpeedySpartan with Plonk and BabySpartan

Figure 11 reports quantitative prover costs for Plonk, BabySpartan, and SpeedySpartan. The reported costs
apply when these protocols are combined with any elliptic-curve commitment scheme like Hyrax and Dory.
The reported costs also apply to HyperKZG and Bulletproofs/IPA, but these commitment schemes are poor
fits for SpeedySpartan due to high evaluation proof computation time and commitment key size (§9.2.3).

We use the reported costs from Plonk [GWC19]. We omit other natural baselines such as HyperPlonk [CBBZ23]
as BabySpartan is strictly faster than these baselines. For all schemes, we ignore the cost of evaluation
proof computation. This is justified for SpeedySpartan by the discussion above (i.e., we are focused either on
choices of commitment schemes for which this is not a significant prover cost, or settings where this cost is
insignificant for other reasons).

The comparison can be summarized as follows. With d = 2, SpeedySpartan improves over the field multi-
plications performed by the Plonk prover by roughly 50×, and improves the commitment costs by about
75×. For commitment costs, the large improvement comes both because SpeedySpartan commits to about 9×
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fewer field elements than Plonk, and because all of the values committed by the SpeedySpartan prover are
small, while 2/3 of the values committed by the Plonk prover are random (recall from Sections 2.1 and 3.1.2
that random values take an order of magnitude more time to commit to than small ones). SpeedySpartan
with d = 2 improves over the commitment cost of BabySpartan by about 4×, and over the field work of
BabySpartan by about 2×.

With d = 3, the field work of SpeedySpartan increases about 30% relative to d = 2, and the online commitment
costs remain the same. The reason to consider higher values of d is that commitment key size, evaluation
proof size, evaluation proof computation time (in the case of Dory), and pre-processing time all decrease as d
grows.

9.2.5 Obtaining a folding scheme from SpeedySpartan

Like how an “early stopping” (Super)Spartan leads to HyperNova [KS24a], SpeedySpartan leads to a folding
scheme for Plonkish with attractive characteristics: the folding scheme can fold multiple Plonkish instances
defined with respect to Plonkish constraint systems that do not necessarily share the same circuit structure.
Compared to a naive solution that achieves this property, a SpeedySpartan-based solution has far better costs.
In fact, the costs are similar to HyperNova: the prover simply commits to its witness and incurs some field
operations in the sum-check protocol. The verifier circuit size is logarithmic in the circuit sizes, which is
similar to HyperNova’s. We leave it to the future work to improve the size of the verifier circuit with ideas
from NeutronNova to use an early-stopping sum-check protocol [KS24b].

9.3 Details of Spartan++

9.3.1 Spark++: A faster commitment scheme for sparse polynomials

Commitment phase. Let p be a T -sparse multilinear polynomial to be committed. This means p is
a polynomial in ℓ variables, so p has size 2ℓ,but there are only T = o(2ℓ) values of x ∈ {0, 1}ℓ such that
p(x) ̸= 0. Let S = {x ∈ {0, 1}ℓ : p(x) ̸= 0}. For simplicity, let us assume that p(x) ∈ {0, 1} for all x ∈ {0, 1}ℓ;
this is sufficient to give a SNARK for arithmetic circuits, and the below protocol easily extends (with some
increased costs) to eliminate this assumption.

Consider a memory of size K = 2ℓ. Associate each index of memory with an input x ∈ {0, 1}ℓ. For
parameter d ≥ 1, the commitment to p is simple the d-dimensional one-hot encoding of each x ∈ S. That
is, the commitment to p consists of d committed polynomials r̃a1, . . . , r̃ad, where for each j ∈ {0, 1}log T ,
r̃a1(·, j), . . . , r̃ad(·, j) provides the d-dimensional one-hot encoding of the j’th element of S.

If the commitment were computed by an untrusted party, any verifier, before running the evaluation phase,
would need to run the one-hot-encoding-checking PIOP (Figure 6) to ensure that the commitment to p is a
valid list of d-dimensional one-hot encodings. However, in the context of Spartan++, the commitments to
sparse polynomials p are all computed by an honest party and hence these checks can be omitted.

Evaluation phase. Suppose the verifier requests p(r). By multilinear Lagrange interpolation and the
assumption that p(x) ∈ {0, 1} for all x ∈ {0, 1}ℓ, we can write:

p(r) =
∑

k1,...,kd∈{0,1}ℓ/d,j∈{0,1}log T

(
d∏

i=1

r̃ai(ki, j)

)
· ẽq(k, r).

In other words, if we consider the lookup table of size K = 2ℓ whose k’th entry (for k ∈ {0, 1}ℓ) is ẽq(k, r),
and we consider S to be a list of T addresses for lookups into this table, then p(r) is simply∑

j∈{0,1}log T

r̃v(j), (83)

where r̃v is the MLE of the values returned by the lookups.

79



Based on Equation (83), to prove the correct value of p(r), the prover has two options. One is to apply the
sum-check protocol to compute Expression (83), at the end of which the verifier has to evaluate r̃v(r′) for a
random r′ ∈ Flog T . The verifier can then accomplish this using Shout’s read-checking sum-check applied
to the table above. The other option is to observe that Expression (83) equals T · r̃v(2−1, . . . , 2−1) (this
observation also arose surrounding Equation (26) in Section 4.1.2), and apply Shout’s read-checking sum-check
to compute this particular evaluation of r̃v.

Note that the table to which Shout is applied above is MLE-structured. Indeed, for this table Ṽal(k) = ẽq(k, r),
which can clearly be evaluated at any point k ∈ Fℓ in O(logK) = O(ℓ) time, via Equation (15).

Costs. Committing to the sparse polynomial p entails committing to d vectors, each with T 1s and K1/d 0s.
The evaluation phase involves applying Shout to T lookups into a table of size K = 2ℓ. This is a canonical
table to which the sparse-dense sum-check protocol applies (Section 7.1), enabling the Shout prover to run in
time O(CT ) where C is such that K ≤ TC .

9.3.2 Details of Spartan++

Recall that Spartan++ is essentially just SuperSpartan, but with the Spark sparse polynomial commitment
scheme replaced with Spark++. Here, we spell out the details. For ease of exposition, we focus on R1CS (a
special case of CCS) and Spartan (a special case of SuperSpartan).

A special case of R1CS capturing arithmetic circuits. In Spartan++ the prover only commits to
the values (i.e., outputs) w of multiplication gates. If there are M multiplication gates, then w ∈ FM , and
the prover begins the protocol by committing to the multilinear extension w̃.

Let z = (w, x) ∈ Fn where x ∈ Fn−M is public input. Ensuring that w indeed contains the correct value of
every multiplication gate entails proving that z satisfies M rank-one constraints. Specifically, if ai and bi are
the left and right inputs to multiplication gate i, then the i’th constraint is simply

ai · bi = wi.

Let us express this constraint system as Az ◦ Bz = w where A and B are appropriate matrices in FM×n.
Note that, unlike in SpeedySpartan, any particular row of A and B may have many non-zero entries (addition
gates in the circuit lead to non-zero entries in A and B, but addition gates do not increase the number of
rows). Further, notice that all of the non-zero entries of these matrices are equal to 1.

The Spartan++ protocol. In pre-processing, an honest party commits to Ã and B̃ using Spark++.

In the online phase, as in Spartan, the prover first applies the standard zero-check PIOP (Section 3.6) to
confirm that all constraints are satisfied. That is, letting a = Az and b = Bz, the verifier picks a random
r ∈ FlogM and checks that

0 =
∑

x∈{0,1}log M

ẽq(r, x) ·
(
ã(x) · b̃(x)− w̃(x)

)
. (84)

At the end of the sum-check protocol, the verifier has to evaluate ã(r′), b̃(r′), w̃(r′) and ẽq(r, r′) where
r′ ∈ FlogM is the randomness chosen round-over-round during the sum-check protocol. The evaluation w̃(r′)
can be obtained from the commitment to w̃(r′), and ẽq(r, r′) can be computed in O(logM) time. But ã and

b̃ are not committed—they are effectively virtual polynomials. Hence, ã(r′) and b̃(r′) are computed with an
additional application of the sum-check protocol, applied to compute the right hand sides of the following
two expressions for ã(r′) and b̃(r′):

ã(r′) =
∑

j∈{0,1}log n

Ã(r′, j) · z̃(j),

and
b̃(r′) =

∑
j∈{0,1}log n

B̃(r′, j) · z̃(j).
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At the end of these two instances of sum-check (which can be run in parallel and batched per Section 4.2.1),

the verifier needs to evaluate Ã(r′, r′′), B̃(r′, r′′) and z̃(r′′) where r′′ denotes the randomness chosen over the
course of the two parallel sum-check instances. The evaluation z̃(r′′) can be obtained from the commitment

to z̃. The evaluations of Ã and B̃ are obtained via Spark++.

Prover Costs. Assume for simplicity that A and B have the same number of non-zero entries and that
this number is T (T is proportional to total number of gates in the circuit, counting both addition and
multiplication gates).

Given the vectors a = Az and b = Bz, the first sum-check (to compute Expression (84)) costs 5M field
operations (see [DT24] for full details), while the other two sum-check invocations (to compute ã(r′) and

b̃(r′)) together cost M + 5n multiplications. In total this is 6M + 5n multiplications for the prover.

It remains to account for the prover cost of applying Shout. Shout is applied to perform 2T lookups into a
table of size M · n, and this table is amenable to the sparse-dense sum-check protocol (Section 7.1). Hence,
the cost is at most 2(d2 + 4)T field multiplications for the prover.

The prover must also provide one evaluation of each committed polynomial r̃ai. If Hyrax is the commitment
scheme used, this costs T field multiplications for the prover (and no cryptographic operations), with the
field operations needed simply to compute the requested evaluations. If Dory is the commitment scheme
used, then additionally several multi-pairings and scalar multiplications all of size at most

√
(Mn)1/d · T

are also required (see Section 9.2.3 for details of what Dory evaluation proofs entail). Asymptotically this
is a low-order cost relative to the linear field work required in Shout, though concretely it may be a prover
bottleneck unless d is fairly large, say d ≥ 4.

Most applications have a small number of public inputs, and hence n ≈ m. Then the above costs can be
summarized as follows. Ignoring the (asymptotically low-order) costs of computing evaluation proofs, the
Spartan++ prover commits only to the values of all M multiplication gates in the circuit, and performs the
following number of field multiplications:

6M + 5n+ 2(d2 + 5)T ≈ 11M + (2d2 + 10)T.

For d = 4 this translates to about 42 field multiplications per addition gate and 53 per multiplication gate.
This is concretely slower than SpeedySpartan (see Figure 11) though it is interesting that the Spartan++
prover’s commitment costs grow only with M , the number of multiplication gates.

Despite being slower than SpeedySpartan, Spartan++ is about 6× faster than Spartan itself. The cost analysis
for Spartan underlying this comparison is as follows. Recall that Spartan applies Spark to Ã and B̃, and
that Spark applies Lasso internally. In this application of Lasso, the prover commits to 2 random field
elements per non-zero entry of A and B. This translates to about 22 group operations per non-zero, which
is roughly equivalent to 22 · 6 = 132 field operations. On top of the commitment costs, the prover also
performs 24 field operations within Lasso. So this yields 156 field operations per non-zero matrix entry. Since
there are 2T non-zeros between the two matrices, this is about 312T field operations in total to implement
Lasso-within-Spark-within-Spartan. This is about 6× the prover cost of Spartan++ with d = 4.

Disclosures. Justin Thaler is a Research Partner at a16z crypto and is an investor in various blockchain-
based platforms, as well as in the crypto ecosystem more broadly (for general a16z disclosures, see https:

//www.a16z.com/disclosures/.)
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A Overview of offline memory-checking protocols

Read/write memories. For read/write memories, there are two high-level approaches. In the first
approach, which we refer to as reordering-based approach. the prover commits to a re-ordering of the memory
operations (both reads and writes) such that they are grouped by which memory cell is accessed, and ordered
by timestep (i.e., cycle) within each group. Confirming that this “second” committed vector of memory
operations is indeed a reordering of the first amounts to a permutation check. It must be proved that
within each group the memory operations are indeed ordered by timestep. Given this ordering, it is then
relatively straightforward to prove that each write to that cell returns the value most recently written to
that cell. This approach was first implemented in [BSCG+13, WSR+15], but dates back to the much older
work [Rob91, BCGT13]. For proving a permutation check, these old works employ a permutation network
(a technique originally motivated by non-interactivity requirements of the PCP model). The approach was
refined in vRAM [ZGK+18] with the use of interaction to use fingerprinting techniques [Lip89, Lip90] (see
Section 2.3) rather than a permutation network. See also a recent work by Ozdemir et al. [OLB24] that uses
the reordering-based approach.
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The second approach, which we refer to as “reordering-free approach”, was first implemented and made
practical by Spice [SAGL18], building on the older work of Blum et al. [BEG+91]. Spartan [Set20] refined this
approach to use fingerprinting-based multiset equality check, and employed it for proving sparse polynomial
evaluations. This approach is further refined in Jolt [AST24], to use lookup arguments for establishing
timestamp checks in the memory checking algorithm. Recently, Yang and Heath [YH23] describe an approach
that is essentially the same as Spice’s for proving memory operations.

In this approach, the prover does not reorder the memory operations, but commits to some extra data for
each read and write to memory. Specifically, each cell is augmented to store not only a value but a timestamp,
which is returned with each read and updated with each write. Also, each read to memory is followed by a
“dummy write” operation that writes the returned value back to the same cell with the timestamp updated.
Similarly, each write operation is preceded by a “dummy read” operation to that cell. The point of having
the prover commit to this extra data (timestamps, dummy reads, and dummy writes) is that it ensures the
set of “read tuples” (i.e., address, value, timestamp triples) returned by all read operations is a permutation
of the set of all “write tuples” if and only if the value returned by every read operation is indeed the value
most recently written to that cell.

At least as implemented in Jolt, the way that timestamps are computed on write operations in Spice
necessitates range-checking two values. Specifically, Spice maintains a global timestamp gt. At the end of cycle
i, gt is set to i. Here, we use the term cycle to refer to one read operation followed by one write operation,
where one of the two operations is a “dummy” operation as described above.

In Spice, when a read operation returns a value along with timestamp t, the associated write operation (if
the prover is honest) uses timestamp t′ = max{t+ 1, gt+ 1}. Intuitively, the point of using this timestamp
update procedure is to prevent “time travel attacks”, where a cheating prover returns on an early read a
value that will only be written in the future to that cell, and returns on a later read a value that was written
in the distant past to that cell. The timestamp update procedure in Spice forces the timestamps to increase
monotonically as the cycles proceed, preventing this attack.

If the prover is honest, the timestamp t returned by a read operation at cycle i is always less than or equal to
gt = i− 1, and under this guarantee, the prescribed write timestamp t′ simply equals gt+1. To ensure that t
is indeed less than or equal to gt, Jolt confirms that both t itself and gt− t are in the range {0, . . . , T − 1},
where T is (an upper bound on) the total number of cycles that the zkVM is run for.

These “read-timestamp range checks” are implemented in Jolt by applying the Lasso lookup argument [STW24]
to the table {0, . . . , T − 1}. In this application of Lasso, the prover commits to two small values per lookup,
and hence four small values total. These four values also contribute one factor each (so four factors in total)
to a grand product that must be proved within the invocation of Lasso.

Read-only memories and lookup arguments. Lookup arguments refer to protocols that allow a prover
to prove that every value in one vector v is present in some position in another vector called a lookup table t.
The verifier in this protocol holds commitments to both v and t (or, in many cases, t is sufficiently structured
that no commitment to it is needed).

While lookup arguments as typically formulated do not care about the position of the entries in the lookup
table, Lasso [STW24] introduced a generalization of lookup arguments, called indexed lookups, where there
is an additional committed vector a, and the prover must prove that ∀i ∈ [|v|], v[i] = t[a[i]]. For ease of
reference, we refer to traditional lookup arguments as unindexed lookup arguments. Note that indexed lookup
arguments trivially provide unindexed lookup arguments by having the prover provide a commitment to the
vector a as its first message. There are also transformations from unindexed lookup arguments to indexed
lookup arguments (see [STW24] for details). Indexed lookup arguments are equivalent to memory-checking
arguments for read-only memory.

There are many lookup arguments in the literature [BCG+18, GW20b, ZBK+22, PK22, ZGK+22, EFG22,
Hab22, STW24, PH23], and they all rely on fingerprinting techniques described in Section 2.3 to prove that
the lookup relation holds. We now provide details on some of these works.

86



Among these, Lasso [STW24] directly builds on the reordering-free read-write memory approach, specifically
it generalizes the approach in Spartan [Set20], which itself was specialized from the read/write memories in
Spice [SAGL18]. Since the values are only read and never written, some simplifications are possible compared
to the read/write setting solved in Spice: there is no need to perform range checks on timestamps, they can
be simply incremented by 1.

The first explicit (unindexed) lookup argument was given in Arya [BCG+18]. In Arya, the prover commits to
the binary representation of address multiplicities, i.e., the number of times each address is read. The prover
then proves that looked-up values are a permutation of the vector in which each table element is repeated a
number of times equal to its (committed) multiplicity. The approach in Plookup [GW20b] can be viewed
as similar to the reordering-based read-write memory in vRAM, with some simplifications arising from the
unindexed lookup argument setting. In particular, in Plookup, the prover commits to a sorting of the table
entries and looked-up values. The approach in LogUp [Hab22] is similar to plookup [GW20b] except that it
changes the fingerprinting strategy: while plookup uses a grand product, LogUp uses a grand sum of inverses.

A key insight of Lasso [STW24] is that the use of sum-check-based layered grand product arguments [Tha13]
avoids the need to commit to random field elements, resulting in large prover speedups. Inspired by this,
LogUpGKR [PH23] employs a sum-check-based layered grand sum argument to improve the prover efficiency
of LogUp. LogUpGKR can also be viewed as a refinement of the original lookup argument, Arya, in that the
LogUpGKR prover commits only to the multiplicities of each address (unlike Arya, in LogUpGKR, these
multiplicities are each specified via a single field element rather than via its binary representation).

Separately, a line of work starting with Caulk and culminating in cq [ZBK+22, PK22, ZGK+22, EFG22],
seeks lookup arguments in which an expensive pre-processing phase is performed (requiring, e.g., a number of
scalar multiplications that is quasilinear in table size) after which m lookups can be answered in time that
depends only on m and not on table size. However, these solutions are concretely expensive (e.g., cq requires
the prover to commit to seven random field elements per lookup).

B Details of the Ṽal-evaluation sum-check prover

B.1 Computing the Less-Than evaluation table

In the Ṽal-evaluation sum-check in Twist (Figure 9), the prover needs to compute L̃T(j′, r) for all j′ ∈ {0, 1}log T

for r = rcycle ∈ Flog T . Here, L̃T is the multilinear extension of the LT(x, y) function defined in Section 3.2,
which indicates whether or not x is the binary representation of an integer that is strictly less than (the
integer with binary representation given by) y.

We explain here how the prover can do this with only T field multiplications. We use simple, explicit

expressions for L̃T given in [STW24].

Let x = (x1, . . . , xlog T ) and y = (y1, . . . , ylog T ). If x and y are binary representations of integers between 0
and T − 1, we think of xlog T and ylog T as the “low-order bit” of the two binary representations, and x1 and
y1 as the high order bit.

For i = 2, . . . , log T , let x>i = (xi+1, . . . , xlog T ) and x≥i = (xi, . . . , xlog T ). Define

L̃Ti(x, y) = (1− xi) · yi · ẽq(x>i, y>i). (85)

It is easy to see that

L̃T(x, y) =

log T∑
i=1

L̃Ti(x, y). (86)

Note that LTi does not depend on the first (i.e., low-order) i− 1 bits of x. Accordingly, while Equation (85)
expresses LTi as a function of all log T bits of x and y, we can equivalently think of LTi as a function only of
the last log(T )− (i− 1) bits of x and y. We will follow this convention henceforth.
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Suppose the prover has already computed a table Ei defined as follows:

Ei stores all T/2
i evaluations of ẽq(j′>i, r>i) as j

′
>i ranges over {0, 1}log(T )−i. (87)

Suppose further that the prover has also already computed a table Di of size T/2i−1 such that for all
x ∈ {0, 1}log(T )−(i−1),

Di[x] =

log T∑
ℓ=i

L̃Tℓ(x, r≥ℓ). (88)

Via standard observations [VSBW13] (see Lemma 1), the tables Elog(T )−1, . . . , E1 can all be computed with
T/2 field multiplications in total. Furthermore, given table Ei, the table Di (which recall has size 2 · T/2i)
can be computed with just T/2i field multiplications. To see this, observe that the following holds.

Let x = (xi, . . . , xlog T ) ∈ {0, 1}log(T )−(i−1) and let x>i = (xi+1, . . . , xlog T ). Then:

• If xi = 1, Di[x] = Di+1[x>i]. This is because

L̃Ti(x, r≥i) = (1− xi) · ri · ẽq(x>i, r>i) = 0.

• If xi = 0 then Di[x] = Di+1[x>i] + ri · Ei[x>i].

The table D1 is exactly the table we want, containing all T evaluations of L̃T(j′, r) as j′ ranges over {0, 1}log T .
As explained above, D1 can be computed with 3T/2 multiplications in total. T/2 of these are devoted to
computing all of the Ei tables, and an additional T multiplications are devoted to computing all of the Di

tables.

B.2 Optimizing the Ṽal-evaluation sum-check prover further

Consider using the sum-check protocol to compute∑
x∈{0,1}m

L̃T(r′, x) · g(x).

In Twist we are interested in the case where g is multilinear, i.e., where g has degree d = 1 in each variable, so
let us restrict our discussion to that case. We assume that an array storing all evaluations of g over {0, 1}m
is already computed prior to the start of the prover algorithm (i.e., our accounting in this section does not
charge the prover to compute such an array. In Twist, it will cost 2K field operations per Section 8.1).
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Let (r1, . . . , ri−1) denotes the randomness chosen by the sum-check verifier in rounds 1, . . . , i− 1. Then

si(c) =
∑

x′∈{0,1}m−i

L̃T(r′, r1, . . . , ri−1, c, x
′) · g(r1, . . . , ri−1, c, x

′)

=
∑

x′∈{0,1}m−i

 m∑
j=1

(1− r′j) · rj · ẽq(r′>j , (r1, . . . , ri−1, c, x
′)>j)

 · g(r1, . . . , ri−1, c, x
′)

=

 ∑
x′∈{0,1}m−i

i−1∑
j=1

(1− r′j) · rj · ẽq(r′>j , rj+1, . . . , ri−1, c, x
′)

 · g(r1, . . . , ri−1, c, x
′)


+

 ∑
x′∈{0,1}m−i

(1− ri) · c · ẽq(r′>i, x
′) · g(r1, . . . , ri−1, c, x

′)


+

 ∑
x′∈{0,1}m−i

 m∑
j=i+1

(1− r′j) · x′
j−i · ẽq(r′>j , rj+1, . . . , ri−1, c, x

′)

 · g(r1, . . . , ri−1, c, x
′)


=

 ∑
x′∈{0,1}m−i

i−1∑
j=1

(1− r′j) · rj · ẽq(r′>j , rj+1, . . . , ri−1, c, x
′)

 · g(r1, . . . , ri−1, c, x
′)

 (89)

+

 ∑
x′∈{0,1}m−i

(1− ri) · c · ẽq(r′>i, x
′) · g(r1, . . . , ri−1, c, x

′)

 (90)

+

 ∑
x′∈{0,1}m−i

Di+1[x
′] · g(r1, . . . , ri−1, c, x

′)

 . (91)

Here, the first equality invokes Expressions (85) and (86) for L̃T and L̃Ti. The final equality invokes the
definition of Di+1 (Equation (88)), using the shorthand

Di+1[c, x
′] = (1− c) ·Di+1[0, x

′] + c ·Di+1[1, x
′].

Call Expression (89) (i.e., the first sum the final expression) A(c), the second sum (i.e., Expression (90)) B(c)
and and the third sum (i.e., Expression (91)) C(c).

Turning our attention to A(c) +B(c), for each 1 ≤ j ≤ i, let

Qj,i(c) = (1− r′j) · rj ·
i−1∏

z=j+1

ẽq(r′j+1, . . . , r
′
i−1, rj+1, . . . , ri−1) · ẽq(r′i, c).

The prover can, with a constant number of field multiplications per round, maintain the quantity Qi,c :=(∑i
j=1 Qj,i(c)

)
.

Observe that

A(c) +B(c) =

 i∑
j=1

Qj,i(c)

 ∑
x′∈{0,1}m−i

ẽq(r′>i, x
′) · g(r1, . . . , ri−1, c, x

′).

Define

A′(c) =
∑

x′∈{0,1}m−i

ẽq(r′>i, x
′) · g(r1, . . . , ri−1, c, x

′) =
∑

x′∈{0,1}m−i

Ei[x
′] · g(r1, . . . , ri−1, c, x

′),
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where recall that Ei is defined in Equation (87). Then for any point c,

si(c) =

i−1∑
j=1

Qj,i(c)

A′(c) + C(c). (92)

The sum-check prover needs to evaluate si at c ∈ {0, 2}. The prover will store all the intermediate arrays
Dm, Dm−1, . . . and Em, Em−1, . . . , E1 en route to building D1 per Section B.1. (As we will see momentarily,
ultimately the prover does not even need the array D1). Then per the standard linear-time sum-check proving
algorithm (Section 3.3), the prover can compute

C(c) =
∑

x′∈{0,1}m−i

Di+1[x
′] · g(r1, . . . , ri−1, c, x

′),

and
A′(c) = Qi,c ·

∑
x′∈{0,1}m−i

Ei[x
′] · g(r1, . . . , ri−1, c, x

′),

with 2m−i field multiplications each.

In total, across the entire protocol, the prover spends T/2 multiplications to build the arrays Em, . . . , E1,
T/2 additional multiplications to build the arrays Dm, . . . , D2, T multiplications to bind the array storing
evaluations of g, T multiplications to compute C(0) and C(2) across all rounds i given these arrays, and T to
compute A′(0) and A′(2) across all rounds. This is 4T multiplications in total.

C A Shout variation with a linear prover dependence on d

Recall from Equation (30) that Shout simply applies the sum-check protocol to confirm that:

r̃v(rcycle) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j∈{0,1}log T

ẽq(rcycle, j)

(
d∏

i=1

r̃ai(ki, j)

)
· Ṽal(k).

For very large values of d, a nuisance is that the final log T rounds of this protocol cause the prover to incur
roughly d2T field multiplications. Here, we describe an alternative application of the sum-check protocol that
avoids quadratic dependence on d (but has a worse leading constant, and hence is only preferable when d is
very large).

Let j0, j1, . . . , jd each consist of log T variables. Let ẽq(j0, j1, . . . , jd) denote the multilinear extension of the
function that evaluations to 1 if all d+ 1 vectors j0, . . . , jd are equal, and zero otherwise. Then

ẽq(j0, j1, . . . , jd) =

log T∏
i=1

((
d∏

k=0

(1− jk,i)

)
+

(
d∏

k=1

jk,i

))
. (93)

Now, in our modified version of Shout, replace Equation (30) with:

r̃v(rcycle) =
∑

k=(k1,...,kd)∈({0,1}log(K)/d)
d
, j1,...,jd∈{0,1}log T

ẽq(rcycle, j1, j2, . . . , jd)

(
d∏

i=1

r̃ai(ki, ji)

)
· Ṽal(k). (94)

Note that this invocation of the sum-check protocol has log(K) + d log T rounds rather than log(K) + log(T )
rounds in the standard variant of Shout (i.e., applying sum-check to check Equation (30)). However, the
total proof size remains O(log(K) + d log(T )) field elements, as each of the final d log T rounds in the new
variant has the prover send a degree-2 polynomial (whereas in the standard variant the prover sent a degree-d
polynomial in each of the final log T rounds).
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Theorem 7. Shout (Figure (7)) with Equation (30) replaced by Equation (94) is perfectly complete and has
soundness error O((log(K) + d log(T ))/|F|).

Proof. The proof is identical to Theorem 3, except that we must establish that Equation (94) holds. To see
this, observe that the right hand side of Equation (94) is a multilinear polynomial in rcycle. So it suffices to
establish that the right hand side and left hand side agree at all inputs rcycle ∈ {0, 1}log T . Observe that for
any term of the sum on the right hand side, if j1, . . . , jd ∈ {0, 1}log T , then ẽq(rcycle, j1, j2, . . . , jd) = 0 unless

j1 = j2 = · · · = jd = rcycle, (95)

and if this equality does hold then ẽq(rcycle, j1, j2, . . . , jd) = 1.

If Equation (95) does hold, then
(∏d

i=1 r̃ai(ki, ji)
)

= 1 if the register with binary representation k =

(k1, . . . , kd) is read at cycle rcycle, and
(∏d

i=1 r̃ai(ki, ji)
)
= 0 otherwise. Hence, the right hand side equals

Ṽal(k) where k is the register read at cycle rcycle. The result follows.

C.1 Fast prover implementation

First logK rounds. The first logK rounds of this sum-check invocation proceed identically to the standard
variant of Shout (in these rounds, the prover message is no different between the two variants). The reader
may be initially surprised by this because Expression (94) has K · T d terms while Expression (30) only has
K · T terms. However, per the proof of Theorem 7, the factor ẽq(rcycle, j1, j2, . . . , jd) evaluates to 0 over(
{0, 1}log T

)d
unless j1 = j2 = · · · = jd. This means that in the first logK rounds (where only variables of k

are being bound, not variables of j1, . . . , jd), j1, . . . , jd effectively act as a single entity j ∈ {0, 1}log T , and
this leads to the same prover messages as in the original Shout protocol for these rounds.

Final d log T rounds. Let r = (r1, . . . , rd) ∈
(
Flog(K)/d

)d
denote the randomness chosen by the verifier

across the first logK rounds of sum-check. Then the final d log T rounds compute the following sum:

Ṽal(r) ·
∑

j1,...,jd∈{0,1}log T

ẽq(rcycle, j1, j2, . . . , jd)

(
d∏

i=1

r̃ai(ri, ji)

)
. (96)

We bind the first variable of j1, j2, . . . , jd in sequence, followed by the second variable of each, and so on. Let
us call the first d rounds “Stage 1” (i.e., when we bind the first variable of each of j1, j2, . . . , jd), the next d
rounds Stage 2, and so forth.

The key insight for a fast prover. While there are T d terms in Expression (96), round-over-round almost
all of them are zero. Specifically, ẽq(rcycle, j1, j2, . . . , jd) is a product of log(T ) terms, one per variable in each
ji–intuitively, it tests equality of j1, . . . , jd “bitwise”. Since ẽq checks equality of each bit independently, it
turns out that in each round of the protocol, the prover need only consider terms that agree in all but their
first bit. This keeps the total prover time in each round of Stage S to T/2S . Since there are d rounds in each

stage, this is O(
∑log T

S=1 dT/2s) = O(dT ) time in total.

C.1.1 Detailed prover algorithm description for d = 2

To simplify notation, we begin with a description of the prover algorithm in the case d = 2. Further, let
r′ = rcycle.

Consider the first round within Stage i. This is round t = 2(i− 1) + 1 within the final d log T rounds of the
sum-check applied to compute Expression (94), and round t′ = log(K) + t within the entire modified-Shout
protocol.

Let w1 = (w1,1, . . . , w1,i−1) ∈ Fi−1 denote the vector of random values chosen for the first i− 1 coordinates
of j1 across the already-completed i− 1 stages, and similarly let w2 = (w2,1, . . . , w2,i−1).
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Simplifying the prover’s message definition. The prover’s prescribed message st′ in round t′ of our
modified version of Shout satisfies:

st(c) = Ṽal(r) ·
∑

j′1∈{0,1}log(T )−i,j′2∈{0,1}log(T )−i+1

ẽq (r′, (w1, c, j
′
1), (w2, j

′
2)) · r̃a1(r, w1, c, j

′
1) · r̃a2(r, w2, j

′
2).

Clearly, ẽq (r′, (w1, c, j
′
1), (w2, j

′
2)) = 0 unless j′2,>1 = j′1. So this sum simplifies to

Ṽal(r) ·
∑

j′1∈{0,1}log(T )−i,b∈{0,1}

ẽq (r′, (w1, c, j
′
1), (w2, b, j

′
1)) · r̃a1(r, w1, c, j

′
1) · r̃a2(r, w2, b, j

′
1). (97)

For any vector x ∈ Flog T , let x>i denote the last log(T )− i coordinates of x. By Equation (93),

ẽq (r′, (w1, c, j
′
1), (w2, b, j

′
1))=

(
i−1∏
ℓ=1

(r′ℓw1,ℓw2,ℓ + (1− r′ℓ)(1− w1,ℓ)(1− w2,ℓ))

)
· ẽq(r′i, c, b) · ẽq(r′>i, w1,>i, w2,>i).

Hence, letting

C = Ṽal(r) ·

(
i−1∏
ℓ=1

(r′iw1,ℓw2,ℓ + (1− r′ℓ)(1− w1,ℓ)(1− w2,ℓ))

)
, (98)

Expression (97) equals:

C ·
∑

j′1∈{0,1}log(T )−i,b∈{0,1}

ẽq(r′i, c, b) · ẽq(r′>i, j
′
1, j

′
1) · r̃a1(r, w1, c, j

′
1) · r̃a2(r, w2, b, j

′
1). (99)

Furthermore, note that for j′1 ∈ {0, 1}log(T )−i,

ẽq(r′>i, j
′
1, j

′
1) = ẽq(r′>i, j

′
1),

where the polynomial ẽq on the right hand side refers to Equation (15). Hence, Expression (99) equals:

C ·
∑

j′1∈{0,1}log(T )−i,b∈{0,1}

ẽq(r′i, c, b) · ẽq(r′>i, j
′
1) · r̃a1(r, w1, c, j

′
1) · r̃a2(r, w2, b, j

′
1). (100)

Similarly, turning our attention to the prover’s message in round t+ 1,

st+1(c) = C · ẽq(r′i, w1,i, c) ·
∑

j′2∈{0,1}log(T )−i

ẽq(r′>i, j
′
2) · r̃a1(r, w1, r1,i, j

′
2) · r̃a2(r, w2, c, j

′
2). (101)

Prover algorithm and cost accounting for d = 2. Before the final d log T rounds of Shout’s read-checking
sum-check protocol begin, the prover the prover computes and stores log(T ) − 1 arrays Elog(T )−1, . . . , E1,

where Ei contains all evaluations ẽq(r>i, j>i) as j>i ranges over {0, 1}log(T )−i. Also, at the start of these final
log T rounds, the prover will have already computed two arrays, say A1 and A2, that store all evaluations of
the form r̃a1(r

′, j) and r̃a2(r
′, j) as j ranges over {0, 1}log T . As per the standard linear-time sum-check prover

algorithm (Section 3.3), the prover will bind A1 and A2 (see Equation (20)) as appropriate round-over-round.
Per Section 6.2.2, if K1/d = o(T ), the cost of binding these arrays round-over-round is a low-order cost, so we
ignore it in our accounting below.

The prover can maintain the value C from Equation (98) round-over-round with only a constant number of
field multiplications per round.
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During the first round in Stage i, with prover message given by Expression (100). Note that for c = 0,
ẽq(r′i, c, b) = 0 if b = 1, so for c = 0 b = 1 need not be considered at all by the prover. In addition,
ẽq(r′>i, j

′
1) can be obtained with a single lookup into Ei. The prover can compute Expression (100) for c = 0

with 2T/2i + O(1) field multiplications. Expression (100) for c = 2 can be computed with 4T/2i + O(1)
multiplications (twice as many as for c = 0 because both b = 0 and b = 1 must be considered when c = 2).

The prover’s message for second round of Stage i (Expression (101)) requires at most 4T/2i field multiplications,
with 2T/2i required for c = 0 and the same number required for c = 2.

Hence, each stage i = 1, . . . , log(T ) requires 10T/2i field multiplications for the prover. Summing across all
i, this is at most 10T multiplications. Accounting also for the T/2 multiplications to compute the arrays
Elog(T )−1, . . . , E1, in total across all stages i this is 10.5 · T field multiplications.

An optimization when K1/d is o(
√
T ). When K1/d = o(

√
T ), a significant optimization is possible,

similar to the one described in Section 6.2.2 that renders binding the arrays A1 and A2 a low-order cost. At
the start of the final d log T rounds of sum-check, for each ℓ ∈ {1, 2}, r̃aℓ(r, j) takes on only K1/d distinct
values as j ranges over {0, 1}log T . Hence, all possible products of the form r̃a1(r, j1) · r̃a2(r, j2) as j1 and j2
range over {0, 1, 2} × {0, 1}log(T )−1 can be computed and stored in a table of size O(K2/d), thereby saving
the prover the need to incur T field multiplications to compute such quantities arising in Expression (99)
for round log(T ) + 1. Similar optimizations apply for several rounds, with the size of the lookup table of
“pre-computed products of r̃a1 and r̃a2 evaluations” growing (rapidly) round-over-round. After a few rounds,
the lookup tables would have size larger than T and this optimization is no longer helpful.

Depending on how much smallerK1/d is than
√
T , this can save up to about half of the 10T field multiplications

accounted for above. This yields a total number of multiplications of roughly 5.5 · T.

C.1.2 General d: Simplifying the prover’s message definition

Consider the first round in stage i. This is round t′ = log(K) + t where t = d(i− 1) + 1 = di− d+ 1. The
prover’s prescribed message st′ in round t′ satisfies:

st′(c) = Ṽal(r)·
∑

j′1∈{0,1}log(T )−i,j′2,...,j
′
d∈{0,1}log(T )−i+1

ẽq (r′, (w1, c, j
′
1), (w2, j

′
2), . . . , (wd, j

′
d))·r̃a1(r, w1, c, j

′
1)·

d∏
ℓ=2

r̃aℓ(r, wℓ, j
′
ℓ).

Clearly, ẽq (r′, (w1, c, j
′
1), (w2, j

′
2), . . . , (wd, j

′
d)) = 0 unless j′1 = j′2,>1 = · · · = j′d,>1. So this sum simplifies to

si(c) = Ṽal(r) ·
∑

j′1∈{0,1}log(T )−i,b∈{0,1}

ẽq (r′, (w1, c, j
′
1), (w2, b, j

′
1), . . . , (wd, b, j

′
1)) · r̃a1(r, w1, c, j

′
1)

d∏
ℓ=2

r̃aℓ(r, wℓ, b, j
′
1).

(102)

Let

D =

(
i−1∏
z=1

(
r′z

(
d∏

ℓ=1

wℓ,zw2,z

)
+ (1− r′z)

(
d∏

ℓ=1

(1− wℓ,z)

)))
.

By Equation (93), for b ∈ {0, 1},

ẽq (r′, (w1, c, j
′
1), (w2, b, j

′
1), . . . , (wd, b, j

′
1)) = D · ẽq(r′i, c, b) · ẽq(r′>i, j

′
1, j

′
1, . . . , j

′
1).

Hence, letting

C = Ṽal(r) ·D, (103)
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Expression (102) equals:

C ·
∑

j′1∈{0,1}log(T )−i,b∈{0,1}

ẽq(r′i, c, b) · ẽq(r′>i, j
′
1, j

′
1, . . . , j

′
1) · r̃a1(r, w1, c, j

′
1) ·

d∏
ℓ=2

r̃aℓ(r, wℓ, b, j
′
1). (104)

Furthermore, note that for j′1 ∈ {0, 1}log(T )−i,

ẽq(r′>i, j
′
1, j

′
1, . . . , j

′
1) = ẽq(r′>i, j

′
1),

where the polynomial ẽq on the right hand side refers to Equation (15). Hence, Expression (99) equals:

C ·
∑

j′1∈{0,1}log(T )−i,b∈{0,1}

ẽq(r′i, c, b) · ẽq(r′>i, j
′
1) · r̃a1(r, w1, c, j

′
1) ·

d∏
ℓ=2

r̃aℓ(r, wℓ, b, j
′
1). (105)

Similarly, turning our attention to the prover’s message in round M of Stage i, for M = 2, . . . , d− 1, let

C ′ = C · ẽq(r′i, w1,i, w2,i, . . . , wM−1,i, c).

Then

st′+M−1(c) = C ′ ·
∑

j′M∈{0,1}log(T )−i,b∈{0,1}

ẽq(r′>i, j
′
M ) ·

(
M−1∏
N=1

r̃aN (r, wN,i, j
′
M )

)
· r̃aM (r, wM , c, j′M ) ·

(
d∏

ℓ=M+1

r̃aℓ(r, wℓ, b, j
′
M )

)
.

(106)

Finally, for round M = d of Stage i, the prover’s message is:

st′+M−1(c) = C ′ ·
∑

j′M∈{0,1}log(T )−i

ẽq(r′>i, j
′
M ) ·

(
M−1∏
N=1

r̃aN (r, wN,i, j
′
M )

)
· r̃aM (r, wM , c, j′M ). (107)

Prover algorithm for general d. Before the final d log T rounds of Shout’s read-checking sum-check
protocol begin, the prover the prover computes and stores log(T ) − 1 arrays Elog(T )−1, . . . , E1, where Ei

contains all evaluations ẽq(r>i, j>i) as j>i ranges over {0, 1}log(T )−i. Also, at the start of these final log T
rounds, the prover will have already computed d arrays, say A1, A2, . . . , Ad, such that Aℓ stores all evaluations
of the form r̃aℓ(r

′, j) as j ranges over {0, 1}log T . As per the standard linear-time sum-check prover algorithm
(Section 3.3), the prover will bind each Aℓ (see Equation (20)) as appropriate round-over-round.

The prover can maintain the value C from Equation (103) round-over-round with only a constant number of
field multiplications per round.

For each j′M ∈ {0, 1}log(T )−i, the prover can compute(
d∏

ℓ=M+1

r̃aℓ(r, wℓ, b, j
′
M )

)
(108)

for all relevant values of M (i.e., for M = d− 1, d− 2, . . . , 1) with d− 2 multiplications. So that’s (d− 2)T/2i

multiplications in total across all j′M ∈ {0, 1}log(T )−i.

Also, across all d rounds M of Stage i, the prover can also compute(
M−1∏
N=1

r̃aN (r, wN,i, j
′
M )

)
(109)
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with (d− 2) · T/2i multiplications in total.

Given these values, for round M = 1, . . . , d− 1 in Stage i, the prover can compute its message (Expression
(106)) at c = 0 with 2 · T/2i field multiplications and at c = 2 with 4 · T/2i field multiplications (up to
additive O(d) terms). For round d, due to the lack of a sum over b ∈ {0, 1}, the evaluation of the prover’s
message at each of c = 0 and c = 2 takes 2T/2i field multiplications.

Summarizing the costs:

• T/2 to compute the Ei arrays before the start of the final d log T rounds of the sum-check protocol.

• 2(d− 2)T to compute the products in Expression 108 and (109).

• 6(d− 1)T for the first d− 1 rounds of all stages in total.

• 4T for the final round of all stages in total.

The total number is multiplications is therefore

(8d− 5.5)T.

Additional optimizations.

• In the final round of every stage, Gruen’s optimization (Section 3.6.1) applies. Recall that Gruen’s
optimization considers applying sum-check to polynomials of the form ẽq(r′, x) ·g(x) and avoids ẽq(r′, x)
from contributing to the degree of the univariate polynomial st(c) the prover computes in each round t.
This same technique applies to the factor

ẽq(r′i, w1,i, w2,i, . . . , wM−1,i, c) (110)

appearing above in the definition of C ′ and hence Equation (107) capturing the prover’s message in the
final round of stage i. The key property that ensures Gruen’s optimization applies is that all values
other than c appearing in Expression (110) are fixed. In other words, r′i, w1,i, . . . , wM−1,i are not being
summed over in the final round of stage i. Accordingly Expression (107) is a degree-1 polynomial in c
alone. This is all Gruen’s optimization needs in order to apply.

This reduces the 4T multiplications required for the final round of all stages down to 2T . Hence, it
reduces total prover multiplications from (8d− 5.5)T down to

(8d− 7.5)T.

• The optimization that we described in the case of d = 2 that applies when K1/d is o(
√
T ) also applies

for general d. In the context of d > 2, this optimization can be used to save a significant fraction of the
2(d− 2)T multiplications needed to compute the products in Expression 108 and (109). Details follow.

This optimization is primarily applicable when combining Shout with a binary-field hashing-based
commitment scheme like Binius [DP23, DP24] or Blaze [BCF+24], as this is the context in which d
may get set quite large (and hence K1/d quite small) especially when considering gigantic, structured
tables. For instance, if K = 264 then setting d = 16 is natural (see Section 2.8). In this case, K1/d is
just 24 = 16).

Optimization details. For each fixed i = 1, . . . , d, the evaluations r̃ai(r, j) take on only K1/d as j
ranges over {0, 1}log T . Hence, during round log(K) + 1 of the modified-Shout protocol, for any integer
ℓ > 1, the prover can compute lookups tables of size K2/d,K3/d, . . . ,Kℓ/d, with the i’th table storing
all possible products of the form

M∏
v=M−i

rav(r, j), (111)

for j ∈ {0, 1}log T , since there are only Ki/d such values. After this table is computed, the prover can
compute Expression (108) (i.e., the actual quantities of Expression (111) for all T values of j ∈ {0, 1}log T )
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with a single lookup into this table for each j. This saves (ℓ− 1) ·T multiplications. A similar technique
applies for computing Expression (109) in round log(K) + 1, but the i’th table has size 4K2id in this
case, and similarly for computing Expression (108) in round log(K) + 2, and so on.

In the context of K = 264 and d = 16, using a handful of tables each of size at most 220 (i.e., several
dozen MBs of space), this can save 5T multiplications: 3T during the computation of Expression (109)
in round log(K) + 1 with ℓ set to 4, T during the computation of Expression (109) in round log(K) + 1
with ℓ set to 2, and T during the computation of Expression (108) in round log(K) + 1. This brings
the total number of prover field multiplications in this application down to 8d− 12.5T .
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