
NTRU+Sign: Compact NTRU-Based Signatures
Using Bimodal Distributions

Joo Woo1, Jonghyun Kim1, Ga Hee Hong1, Seungwoo Lee1,
Minkyu Kim2, Hochang Lee2, and Jong Hwan Park3

1Korea University, Korea, {woojoo0121,yoswuk,hongh,kak5175}@korea.ac.kr
2The Affiliated Institute of ETRI, Korea, {mkkim,lhc254}@nsr.re.kr

3Sangmyung University, Korea, jhpark@smu.ac.kr

January 23, 2025

Abstract

We present a new lattice-based signature scheme, called ‘NTRU+Sign’, using the Fiat-Shamir with
Aborts framework. The proposed scheme is designed based on a novel NTRU-based key structure that fits
well with bimodal distributions, enabling efficiency improvements compared to its predecessor, BLISS.
The novel NTRU-based key structure is characterized by: (1) effectively changing a modulus from 2q
to q, which is different from the existing usage of 2q for bimodal distributions, and (2) drastically re-
ducing the magnitude of a secret key, which directly leads to compactness of signature sizes. We pro-
vide two concrete parameter sets for NTRU+Sign, supporting 93-bit and 211-bit security levels. Using
the technique from GALACTICS (that was suggested as the constant-time implementation of BLISS),
our analysis shows that NTRU+Sign achieves a good balance between computational efficiency and
signature compactness, with constant-time implementation. For instance, at the NIST-3 security level,
NTRU+Sign produces signatures that are significantly smaller than Dilithium and HAETAE, while pro-
viding faster verification speeds. These advantages position NTRU+Sign as a competitive and practical
solution for real-world deployments.

1 Introduction

Lyubashevsky [30, 32] proposed lattice-based signature schemes based on the Fiat-Shamir with Aborts
(FSwA) framework. Their underlying lattice-based identification scheme involves a publicly shared matrix
A ∈ Zn×mq and a public key T = AS mod q, where the secret key S ∈ Zm×k consists of small entries. In
response to a challenge c ∈ Zk, a response z is computed as z = y+Sc, where y ∈ Zm is a small masking
vector sampled from a certain distribution. A verifier checks if the relation Ay = Az − Tc mod q holds.
Unlike the Schnorr identification scheme, the distribution of z remains inherently biased by Sc, leading to
a potential leakage of information about the secret key S. To address this, Lyubashevsky [30, 32] employed
the technique of rejection sampling which outputs a candidate value of z with probability f(z)/(Mg(z)),
where f indicates a target distribution, g indicates a source distribution, andM is a constant. Using rejection
sampling, the source distribution of z is forced to align with the target distribution, effectively removing any
dependency on the secret key S from z.

1

In 2013, Ducas et al. [17] introduced a novel lattice-based signature scheme, BLISS, which leveraged
the so-called bimodal distributions, achieving significantly more compact signature sizes. In BLISS, the
bimodal distributions are characterized by using a random bit b such that z = y + (−1)bSc, where y is
sampled from a discrete Gaussian distribution Dm

σ with standard deviation σ. This construction allowed
the source distribution of z to better align with the target distribution of y, improving the efficiency of
the rejection sampling process. To ensure correctness regarding the usage of (−1)b, BLISS incorporates
arithmetic modifications, such as replacing the modulus q with 2q and changing the key generation algorithm
to satisfy the condition AS = qI mod 2q. These modifications guarantee that Az−qc = Ay+(−1)bASc−
qc = Ay mod 2q, regardless of whether b = 0 or b = 1. While BLISS was considered one of the most
efficient lattice-based signature scheme, its practical implementations revealed significant vulnerabilities to
side-channel timing attacks [9, 11, 21, 35]. Such attacks mainly exploited flaws (from a side-channel attack
perspective) in the implementation of transcendental functions that are necessary for both discrete Gaussian
samplings for y and the rejection sampling process involved in computing f(z)/(Mg(z)).

To address these vulnerabilities, Barthe et al. [7] proposed GALACTICS, a secure implementation of
BLISS that mitigates the side-channel vulnerabilities in [9, 11, 21, 35], while maintaining efficiency compa-
rable to the original implementation. In GALACTICS, polynomial approximations of transcendental func-
tions ensure that all operations related to discrete Gaussian sampling and the computation of f(z)/(Mg(z))
are executed in constant time. Following the basic structure of BLISS, another approach has been made
by HAETAE [13], a module lattice-based signature scheme that uses a uniform hyperball sampling [15].
HAETAE simplifies the rejection sampling process by simply checking if the Euclidean norms of z are suf-
ficiently small within a preset bound, rather than computing f(z)/(Mg(z)) as in BLISS. However, uniform
hyperball sampling requires a large number of discrete Gaussian samplings with a large standard deviation
and high-precision arithmetic, using the polynomial approximation of the exponential function e−x essen-
tially similar to GALACTICS, and involves additional computations such as inverse of square roots and the
ℓ2 norm of a vector, adding computational complexity.

Ducas et al. [19] proposed Dilithium, a lattice-based signature scheme that goes back to the form of z =
y+Sc (that is, avoiding bimodal distributions). Instead of using discrete Gaussian samplings, Dilithium uses
uniform sampling in hypercubes to generate y, significantly simplifying the sampling part. Additionally,
the rejection sampling process is also simplified by checking whether the infinite norm of z is sufficiently
small within a preset bound. Dilithium was later selected by NIST (FIPS 204) as the module-lattice-based
digital signature standard. Although uniform sampling simplifies implementation and makes it easier to
protect against side-channel timing attacks, it results in less compact signatures than BLISS. In theory, it has
been justified by prior work [15], which shows that bimodal Guassian distributions provide better signature
compactness than uniform distributions in hypercubes.

1.1 Our Contribution

The goal of this paper is to revisit BLISS [17] so as to achieve its full potential. We suggest a novel lattice-
based signature scheme, called NTRU+Sign, building upon BLISS by relying on the NTRU problem [26,
27]. At a similar security level, NTRU+Sign achieves more compact signatures and faster verification speeds
than Dilithium, HAETAE, and re-parametrized BLISS. To achieve our goal, we made several new changes
to BLISS.

First, we introduce a novel NTRU-based key structure suitable for bimodal distributions, which elimi-
nates the need for modulus 2q operations by transitioning to modulus q operations. Let R = Z[x]/(xn + 1)
be a polynomial-based ring for the NTRU-based setting. For a public key A ∈ R1×2 and its relevant
signing key S ∈ R2×1, BLISS satisfies the condition of AS = q mod 2q, whereas NTRU+Sign satis-

2

fies the condition of AS = q̂ mod q, where q̂ = 2−1 mod q. In both schemes, signatures are generated
as (z = y + (−1)bSc, c), leveraging bimodal discrete Gaussian distributions. The commitment (corre-
sponding to the identification scheme) uses only the high-order bits of Ay. The key distinction lies in the
verification process. BLISS checks if the high-order bits of Az + cq mod 2q match the commitment, and
NTRU+Sign checks if the high-order bits of Az + cq̂ mod q match the commitment. The verification of
NTRU+Sign succeeds from the following observation. When b = 1, the value z = y − Sc results in
Az + cq̂ = Ay mod q, which satisfies the verification equation. Also, when b = 0, the value z = y + Sc
results in Az + cq̂ = Ay + 2cq̂ = Ay + c mod q. Since the coefficients of the challenge c ∈ R are 0 or
1, the high-order bits of Ay and Ay + c are equal with high probability. Furthermore, the signing process
in NTRU+Sign incorporates an equality check in advance, ensuring this condition holds without requiring
modulus 2q operations.

One of the main challenges in achieving small signature sizes within the FSwA framework is to make
the upper bound of the Euclidean norm of Sc as small as possible. This is crucial because a smaller norm
of Sc results in a source distribution that more closely resembles the target distribution, allowing for a
more compact signature size under a fixed rejection rate. We address this challenge through two key ap-
proaches: (1) Compared to BLISS, the NTRU-based key structure in NTRU+Sign significantly reduces the
magnitude of S itself. For small polynomials f and g in R, the public and signing key pairs of BLISS are
A = (2((2f+1)/g mod q), q−2) and S = (g, 2f+1)T , and this structure has been made in the process of
harmonizing bimodal structure and the classical NTRU problem over q. But, NTRU+Sign can avoid such
artificial structure by setting the public key as A = ((f + q̂)/g mod q, 1), and so the corresponding sign-
ing key S = (g,−f)T has smaller norm than that of BLISS. For example, for polynomials f and g with
coefficients sampled from {−1, 0, 1}, the coefficients of 2f + 1 in BLISS belong to {−1, 1, 3}, leading to
a higher upper bound on ∥S∥ and, consequently, ∥Sc∥. In contrast, NTRU+Sign ensures that the coeffi-
cients of S = (g,−f)T still belong to {−1, 0, 1}. (2) We further tighten the bound on ∥Sc∥ by leveraging
the canonical embedding into Cn, as studied in HAETAE [13]. Compared to BLISS, this significantly im-
proves the estimation of ∥Sc∥, further contributing to the compactness of the signature. Combining these
improvements, NTRU+Sign achieves the smallest upper bound on ∥Sc∥ among comparable schemes. At
the 180-bit security level, for example, the upper bound is 341 for NTRU+Sign, but 1223 for BLISS and
516 for HAETAE. Separately, compared to HAETAE, NTRU+Sign benefits from a more moderate increase
in the Hamming weight τ of c as the security parameter λ increases. Since τ directly affects the upper
bound on ∥Sc∥, this moderate increase is significant. In HAETAE, c is a polynomial with the fixed degree
of 256, and thus τ is required to satisfy

(
256
τ

)
≈ 2λ. In NTRU+Sign, however, τ is determined by

(
n
τ

)
≈ 2λ,

where the polynomial degree n grows with λ. For example, HAETAE requires τ = 80 for λ = 180, while
NTRU+ Sign requires only τ = 36 for λ = 211 when n = 1024.

Lastly, we provide two parameter sets: NTRU+Sign-{512, 1024} based on the rings Zq[x]/(xn+1), tar-
geting 93 bits and 211 bits of security levels, respectively. Table 1 presents a comparison between Dilithium,
HAETAE, and NTRU+Sign in terms of public key sizes, signature sizes, and performance evaluations. Even
at higher security levels, Table 1 demonstrates that NTRU+Sign achieves the shortest signature sizes, com-
pared to Dilithium and HAETAE. For instance, at NIST security level 3 (aiming at 192-bit classical se-
curity), the signature size of NTRU+Sign-1024 is approximately 55% smaller than Dilithium and 35%
smaller than HAETAE. Furthermore, when considering the combined size of the signature and public key,
NTRU+Sign-1024 is about 40% smaller than Dilithium and 15% smaller than HAETAE. All parameter sets
for NTRU+Sign are designed to support efficient Number Theoretic Transform (NTT) operations in their un-
derlying rings. Our reference implementation, based on the open source1 of GALACTICS, ensures constant-

1https://github.com/espitau/GALACTICS

3

https://github.com/espitau/GALACTICS

Table 1: Comparison between Dilithium, HAETAE and NTRU+Sign
Classical
Security

|Sig|
(bytes)

|pk|
(bytes)

|Sig|+|pk|
(bytes)

KeyGen
(K cycle)

Sign
(K cycle)

Verify
(K cycle)

Dilithium-2 123 2, 420 1, 312 3, 732 278 1, 290 302
Dilithium-3 182 3, 293 1, 952 5, 245 506 2, 076 520

HAETAE-120 119 1, 474 992 2, 466 1, 731 7, 785 317
HAETAE-180 180 2, 349 1, 472 3, 821 2, 686 9, 831 606

NTRU+Sign-512 93 751 768 1, 519 975 2, 418 118
NTRU+Sign-1024 211 1, 551 1, 664 3, 215 1, 886 6, 005 204

time implementations of Gaussian sampling and rejection sampling, mitigating potential vulnerabilities to
side-channel attacks. The implementation demonstrates that NTRU+Sign-1024 outperforms HAETAE-180,
achieving 1.5 times faster key generation and signing speeds, and verification speeds approximately 3 times
faster. In terms of signature compactness, we give another comparison with other lattice-based signature
schemes, including re-parametrized BLISS2, G+ G [16], Patronus [5] and Falcon [23] in Section 4.3. Our
results highlight NTRU+Sign as a highly efficient and compact lattice-based signature scheme, establishing a
new benchmark for post-quantum cryptographic applications. Its compactness and computational efficiency
make it a strong candidate for real-world implementation in high-security environments.

1.2 Related Works

Lyubashevsky introduced the first efficient lattice-based signature scheme, using rejection sampling with
uniform distribution in hypercubes [30]. Since then, extensive research has been conducted on lattice-based
signatures under the FSwA framework, focusing on optimizing sampling methods to both achieve signature
compactness and simplify rejection processes. Signature schemes with uniform sampling were refined in
[25, 3], achieving reduced signature sizes. Further progress was achieved by Dilithium [19], which opti-
mized public key sizes through a truncation technique. While uniform sampling over hypercubes simplifies
rejection sampling by utilizing infinite norm bounds, maintaining low rejection rates often necessitates larger
parameters, leading to increased public key and signature sizes.

Gaussian-based signature schemes have also been extensively studied for achieving more compact
signatures. Following Lyubashevsky’s FSwA-based digital signature scheme [32], Ducas et al. presented
Dilithium-G, a variation described in the first ePrint version of [19]. Dilithium-G employed a unimodal
Gaussian distribution. This approach was later optimized by [15] through the analysis of imperfect rejection
sampling using Rényi divergence instead of statistical distance. The adoption of bimodal Gaussian distribu-
tions in BLISS [17] significantly reduced signature sizes. However, the original security analysis of BLISS
resulted in parameter sets that did not meet the claimed security levels under more rigorous analyzes.

Devevey et al. [15] derived generic optimal bounds for two critical metrics: minimal rejection rate and
proof-of-knowledge size compactness. Their results demonstrated that both Gaussian distributions and uni-
form distributions within hyperballs achieve optimal bounds in the bimodal setting. Using this observa-
tion, Cheon et al. [13] proposed HAETAE, a signature scheme based on a bimodal hyperball distribution.

2The original BLISS paper employed a different security analysis, resulting in parameter sets that fail to meet the claimed
security levels under the analysis presented in this paper. To achieve at least 128-bit security, we recalibrated the parameters,
doubling the dimension to 1024 to ensure alignment with modern security standards. Additionally, we conducted an analysis of the
rANS encoding process to estimate the signature size under the revised parameters.

4

HAETAE simplifies rejection sampling to a straightforward Euclidean norm check, achieving compact sig-
nature sizes. However, its hyperball sampling still depends on discrete Gaussian sampling as a subroutine,
which requires high-precision fixed-point arithmetic. This dependency, coupled with additional operations
like inverse square root and ℓ2 norm calculations, introduces notable computational overhead.

An alternative approach to prevent secret value leakage without relying on rejection sampling was intro-
duced by G+ G [16]. This scheme generates signatures following a centered spherical Gaussian distribution,
achieved through the convolution of two distinct Gaussian distributions, each with covariance dependent on
the secret key. The primary advantage of G+ G is its ability to generate signatures without requiring rejec-
tion sampling while ensuring no leakage of secret key information. However, its dependence on Gaussian
sampling related to the secret key can cause potential vulnerabilities against side-channel attacks, and also
need complexity to secure implementation.

Recently, Bambury et al. [5] proposed a new sampler based on uniform sampling within polytopes,
leading to a novel signature scheme Patronus. This approach maintains the simplicity of uniform sampling
while reducing proof-of-knowledge size, thereby decreasing overall signature sizes. Furthermore, the rejec-
tion sampling process is simplified by relying solely on checks involving ℓ1 norm, infinite norm, and ℓ2 norm
in optimized versions, eliminating the need for transcendental function computations. However, Patronus
suffers from significant computational overhead due to the high cost of uniform sampling within polytopes,
and its signature sizes still remain relatively large.

2 Preliminaries

Let {0, 1}∗ denote the set of all binary strings. Let Zq = Z/qZ denote the quotient ring of integers modulo
q. Define R and Rq as the rings Z[x]/(xn+1) and Zq[x]/(xn+1), respectively, where q is a prime and n is
a power of two. Elements inRq are denoted in bold lowercase. Occasionally, elements ofRq that are either 0
or have all coefficients equal to 0 except for a nonzero constant term, such as 1 or q̂, are written in lowercase
rather than bold lowercase. Let Rn,τ denote the set of elements in Rq that have all zero coefficients except
for τ out of n coefficients, which are 1. We have |Rn,τ | =

(
n
τ

)
. For a positive integer k, the centered binomial

distribution (CBD), denoted by ψk, is a distribution over the integers Z, which outputs
∑k

i=1(bi − b′i) using
uniformly and independently sampled bits bi, b′i. For f ∈ Rq, we use the notation ‘f ← ψnk ’ to represent that
each coefficient of f is sampled from ψk. In general, for a probability distribution D, a← D denotes that a
is sampled according to D. For a set S, a← S denotes that a is sampled uniformly at random from S.

For any integer x within the range [0, q) and any positive integer d, x can be uniquely written as x =
[x]d · 2d + [x mod 2d], where [x mod 2d] ∈ [−2d−1, 2d−1) and [x]d = (x − [x mod 2d])/2d to drop
the d least significant bits. These functions can be extended to polynomials, i.e., [f]d =

∑n−1
i=0 [fi]dx

i for
f =

∑n−1
i=0 fix

i. We define the infinite norm of a polynomial f as ∥f∥∞ = max0≤i≤n−1 |fi|. We define
q̂ = 2−1 mod q for an odd prime q, and p = (q − 1)/2d for an integer d satisfying q ≡ 1 mod 2d.
Specifically, given the modulus p, and an integer k ∈ Z, define k′ = k mod p as the unique element k′ such
that −p/2 ≤ k′ < p/2.

Lemma 2.1 (Rejection Sampling [17]). Let V be an arbitrary set, and let h : V → R and f : Zm → R be
probability distributions. If gv : Zm → R is a family of probability distributions indexed by v ∈ V with the
property that there exists a constant M ∈ R such that

∀v ∈ V,∀z ∈ Zm,Pr[M ·gv(z) ≥ f(z) | z ← f] ≥ 1− ϵ,

then the output distributions of the following two algorithms are within a statistical distance of ϵ/M :

5

1. v ← h, z ← gv, output (z, v) with probability f(z)/(M ·gv(z)).

2. v ← h, z ← f , output (z, v) with probability 1/M .

2.1 Discrete Gaussian Distribution

The Gaussian distribution with standard deviation σ ∈ R and center c ∈ R evaluated at x ∈ R is defined by
ρc,σ(x) = exp(−(x− c)2/(2σ2)), and more generally by ρc,σ(x) = exp(−∥x−c∥2/(2σ2)) for x, c ∈ Rn.
The discrete Gaussian distribution over Zn centered at c is defined by Dn

c,σ(x) = ρc,σ(x)/ρc,σ(Zn). When
the center c is 0 or n = 1, we generally omit it from the notation and simply write ρσ(x), Dn

σ(x), Dσ(x).
Identifying R with Zn via coefficient embedding, Dn

c,σ also denotes a probability distribution on R.

2.2 Cryptographic Definitions

We recall the definitions of an identification scheme and a signature scheme.

Definition 2.2. Let X and Y be two finite sets. A canonical identification scheme ID for an NP relation
R ⊆ X × Y is a 3-round interactive proof system between a prover P and a verifier V, with a commitment
set W , challenge set C, and response set Z . The prover holds a pair (x, y) ∈ R, while the verifier only
has x, where the pair (x, y) is generated by a PPT algorithm Gen, called the instance generator. The event
"z =⊥" is called an abort, and its probability β is called the probability of aborting. The prover is written as
P = (P1,P2), and the verifier as V = (V1,V2), with the following specifications:

• P1: (x, y) → (w, st) is a PPT algorithm that takes as input a pair of strings in X × Y and outputs a
commitment w ∈ W and a state st ∈ {0, 1}∗.

• V1: (x,w) → c is a PPT algorithm that takes as input a string x and a commitment w, and outputs a
challenge c ∈ C.

• P2: (x, y, w, c, st) → z is a PPT algorithm that takes as input a pair of strings (x, y), a commitment
w, a challenge c, and a state st, and outputs a response z ∈ Z ∪ {⊥} (we say that P2 aborts if it
outputs ⊥).

• V2: (x,w, c, z)→ b ∈ {0, 1} is a deterministic polynomial-time algorithm that takes as inputs a string
x, a commitment w, a challenge c, and a response z, and outputs a bit b, which represents acceptance
(1) or rejection (0); in the case that z =⊥, it returns 0.

We then recall the two definitions of statistical properties of an identification scheme, which are perfect
accepting honest-verifier zero-knowledge (paHVZK) and the min-entropy of the commitment.

Definition 2.3 (Perfect Accepting Honest-verifier Zero-knowledge [6]). An identification scheme is said to
be paHVZK if there exists a poly-time algorithm Sim that, when given the public key pk, outputs (w, c, z)
with a distribution that is identical to the distribution of a transcript (w, c, z) produced by an honest execution
of the protocol conditioned on z ̸=⊥.

Definition 2.4 (Commitment Min-Entropy [29]). For α ≥ 0, we say that an identification scheme ((P1,P2),
(V1,V2)) with an instance generator Gen has commitment min-entropy α if H∞[w|(w, st) ← P1(x, y)] ≥
α, for all (x, y)← Gen(1λ).

6

Definition 2.5. A digital signature (DS) scheme for a message space M consists of three algorithms:
KeyGen, Sign, and Verify, which are defined as follows:

• KeyGen(λ): The key generation algorithm takes as input a security parameter λ and outputs a public
key and a secret key (pk, sk).

• Sign(sk, µ): The signing algorithm takes as input the secret key sk and a message µ ∈ M, and then
outputs a signature σ.

• Verify(pk, µ, σ): The verification algorithm takes as input the public key pk, a message µ, and a
signature σ, and then outputs 1 if the signature is valid or 0 otherwise.

We say that a signature scheme is (1 − η)-correct if the following condition holds: for all (pk, sk) ∈
KeyGen(λ) and all messages µ ∈M,

Pr
[
Verify(pk, µ, σ) = 1 | (pk, sk)← KeyGen(λ);σ ← Sign(sk, µ)

]
> 1− η(λ)

where η is a negligible function for the security parameter λ.

Definition 2.6 (Unforgeability). Let DS = (KeyGen, Sign, Verify) be a signature scheme. The unforgeability
against chosen-message attacks (UF-CMA) is defined via the following experiment UF-CMAA

DS(λ) between
a challenger C and an adversary A:

1. C runs (pk, sk)← KeyGen(λ) and gives pk to A.

2. A queries the signing oracle Sign(sk, µ) with a message µ.

3. Finally, A outputs a signature σ∗ and a message µ∗ that was not previously queried on the signing
oracle. C returns 1 if Verify(pk, µ∗, σ∗) = 1, and otherwise returns 0 as the output of the game.

The advantage of A in breaking the UF-CMA security of DS is defined as AdvUF-CMA
DS (A) = Pr[UF-

CMAA
DS ⇒ 1]. We say that a signature scheme is UF-CMA secure if, for any polynomial-time adversary A,

we have AdvUF-CMA
DS (A) ≤ ϵ(λ), where ϵ is a function of the security parameter λ.

The unforgeability against no-message attack, denoted by UF-NMA is defined similarly except that the
adversary is not allowed to query any signature per message.

2.3 Hardness Assumptions

The security of our construction is based on the hardness of two lattice problems, namely the NTRU problem
and the BimodalSelftargetRSIS problem.

Definition 2.7 (NTRUn,q,ψ). Let ψ be a distribution over Rq and let q̂ = 2−1 mod q. An adversary A
solving the NTRUn,q,ψ problem has advantage

AdvNTRUn,q,ψ (A) :=
∣∣∣∣ Pr [b = 1| u← Rq; b← A(u)] −
Pr [b = 1| f ,g← ψ; b← A((f + q̂)/g)]

∣∣∣∣ .
When setting h = (f + q̂)/g, the above definition of the NTRU problem involves 2h = (2f + 1)/g.

Recent results [20, 37] show that the inverse of 2h, that is, g/(2f + 1), is also indistinguishable from a
random element in Rq. Thus, it can be inferred that 2h = (2f + 1)/g is also indistinguishable from a
random element in Rq, and so is h, because 2 is coprime to q.

Before introducing a new lattice-based problem, we define the ring version of Short Integer Solution
problem (RSIS) first.

7

Definition 2.8 (RSISn,q,β). Let β > 0 and q be a positive modulus. An adversary A solving the RSISn,q,β
problem has advantage

AdvRSISn,q,β(A) := Pr
[
[1 |a] · y = 0 ∧ 0 < ∥y∥ ≤ β | a← Rq;y ∈ R2

q ← A(a)
]
.

Next, we introduce a new lattice-based problem similar to the SelfTargetMSIS problem [29], which
allows us to directly prove the UF-NMA security of our signature scheme in the Quantum Random Oracle
Model (QROM).

Definition 2.9 (BiomodalSelfTargetRSISH,n,q,β). Let H : {0, 1}∗ → Rn,τ be a cryptographic hash func-
tion, and let q > 0 be an odd modulus. An adversaryA solving the BiomodalSelfTargetRSISH,n,q,β problem
has advantage

AdvBiomodalSelfTargetRSIS
H,n,q,β (A) :=

Pr

[
∥Y∥ < β ∧ ∥Y∥∞ < (q − 2)/4
∧ H([1 |a]·Y + cq̂, µ) = c

∣∣∣∣ a← Rq;

(
Y :=

[
y1

y2

]
, c, µ

)
← A|H⟩(a)

]
where q̂ = 2−1 mod q, (y1,y2) ∈ R2

q , c ∈ Rn,τ , and µ ∈ {0, 1}∗.

Now, we will show that the BiomodalSelfTargetRSIS problem is reduced to the RSIS, assuming that H
is a random oracle. IfA only has classical access toH , then there is a reduction, using the forking lemma [8],
to prove that AdvBiomodalSelfTargetRSIS

H,n,q,β (A) ≈
√

AdvRSISn,q,4β+2
√
τ (B)/Qh, where Qh is the number of classical

queries to H . We give its proof sketch below.
Assume that A is a solver for the BiomodalSelfTargetRSISH,n,q,β problem. Then, B passes the polyno-

mial a from its RSISn,q,4β+2
√
τ instance to A and replies to A’s queries H(w, µ) with a uniformly random

c ∈ Rn,τ . If A returns a solution (Y = [y1 |y2]
T , c, µ) to BiomodalSelfTargetRSISH,n,q,β , then B repro-

grams the "winning" query H([1|a] ·Y+ cq̂, µ) to a different random element c′. The forking lemma states
that A outputs another solution (Y′ = [y′

1|y′
2]
T , c′, µ) with probability 1/Qh. Now, we have{

[1 |a] ·Y + cq̂ = w = [1 |a] ·Y′ + c′q̂

∥Y∥ < β, ∥Y′∥ < β, ∥Y∥∞ < (q − 2)/4, ∥Y′∥∞ < (q − 2)/4.

Thus, we obtain [1 |a] · (Y − Y′) + (c − c′)q̂ = 0. Since q̂ satisfies 2q̂ = 1 mod q by definition, we

derive 2[1 |a] · (Y −Y′) + c − c′ = 0, following that [1 |a] ·
[
2y1 − 2y′

1 + c− c′

2y2 − 2y′
2

]
= 0. The condition

c ̸= c′ mod 2 implies that 2y1 − 2y′
1 + c− c′ is non-zero over R. Since ∥Y∥∞, ∥Y′∥∞ < (q − 2)/4, we

obtain ∥2y1 − 2y′
1 + c− c′∥∞ < q. Therefore, 2y1 − 2y′

1 + c− c′ ̸= 0. Moreover, we have 0 < ∥(2y1 −
2y′

1+c−c′, 2y2−2y′
2)∥ ≤ ∥(2y1−2y′

1, 2y2−2y′
2)∥+∥(c−c′, 0)∥ ≤ ∥2Y−2Y′∥+2

√
τ < 4β+2

√
τ .

This provides an AdvRSISn,q,4β+2
√
τ solution for [1 |a], which is a polynomial vector [2y1 − 2y′

1 + c −
c′ | 2y2 − 2y′

2]
T .

3 Our NTRU+Sign Signature Scheme

3.1 Construction

We present the NTRU+Sign scheme in Figure 1.

8

KeyGen(1λ)

1: f ,g← ψn1
2: if g is not invertible in Rq, then restart
3: S := (g,−f)
4: if N (S) > γ2n, then restart
5: a := (f + q̂)/g ∈ Rq // q̂ = 2−1 mod q
6: pk := a
7: sk := S = (s1, s2)
8: return (pk, sk)

Sign(sk = S, µ)

1: y = (y1,y2)← Dnσ ×Dnσ
2: u := ay1 + y2 ∈ Rq
3: c := H([u]d mod p, µ) ∈ Rn,τ // p = (q − 1)/2d

4: Choose a random bit b← {0, 1}
5: z = (z1, z2) = y + (−1)bSc // zi = yi + (−1)bsic
6: Continue with probability 1/(Mexp(−∥Sc∥2

2σ2)cosh(⟨z,Sc⟩
σ2)) // rejection sampling

7: otherwise restart
8: if [u]d ̸= [u+ (−1)bc]d, then restart // equality check
9: h := [u]d − [u− z2 + (1− b)c]d mod p

10: if ∥(z1, 2dh)∥ > B2, then restart
11: if ∥(z1, 2dh)∥∞ > B∞, then restart
12: return (z1,h, c)

Verify(pk, µ, (z1,h, c))

1: if ∥(z1, 2dh)∥ > B2 then Reject
2: if ∥(z1, 2dh)∥∞ > B∞ then Reject
3: Accept if H([az1 + cq̂ mod q]d + h mod p, µ) = c

Figure 1: Description of NTRU+Sign

9

3.2 Correctness

The Verify algorithm will accept the signature (z1,h, c) for a message µ ∈ {0, 1}∗ to be signed if the
following three conditions hold:

1. ∥(z1, 2dh)∥ ≤ B2,

2. ∥(z1, 2dh)∥∞ ≤ B∞,

3. c = H([az1 + cq̂]d + h mod p, µ).

The first two conditions are guaranteed, because these conditions are already checked by the Sign algorithm
in the same manner. The third one is also guaranteed by the following equations:

az1 + cq̂ = a(y1 + (−1)bs1c) + (y2 + (−1)bs2c) + cq̂ − z2

= u+ (−1)bc(as1 + s2) + cq̂ − z2 (∵ u = ay1 + y2)

= u+ (−1)bcq̂ + cq̂ − z2 (∵ as1 + s2 = q̂)

= u− z2 + (1− b)c.

The last equality can be verified by the fact that: if b = 0, (−1)bq̂ + q̂ becomes 2q̂ = 1 in Rq, and if b = 1,
(−1)bq̂ + q̂ becomes 0 in Rq, which is equal to 1− b for the same bit b ∈ {0, 1}. Now, we can consider the
hint h as being h = [u]d − [u− z2 + (1− b)c]d mod p = [u]d − [az1 + cq̂]d mod p, using the above last
equality. Then, it holds that

[az1 + cq̂]d + h = [az1 + cq̂]d + [u]d − [az1 + cq̂]d mod p

= [u]d mod p,

as required in line 3 of the Verify algorithm.

3.3 Equality Check

Unlike BLISS, the Sign algorithm of NTRU+Sign includes an additional equality check in line 8, which
checks whether or not [u]d = [u+(−1)bc]d. The purpose of this equality check is to conceal the information
of the bit b from the hint h, ensuring that the distribution of h remains the same regardless of the value
of b. More concretely, h is calculated as h = [u]d − [u − z2 + (1 − b)c]d mod p; when b = 0, h =
[u]d − [u− z2 + c]d mod p, and when b = 1, h = [u]d − [u− z2]d mod p. This creates a difference in the
distributions of h based on the choice of b. However, if the condition [u]d = [u+ c]d is met for b = 0, then
it holds that h = [u]d− [u− z2 + c]d = [u+ c]d− [u+ c− z2]d, which has the same distribution as in the
case when b = 1, by setting u′ = u+ c.

Technically, the equality check increases the expected number of the repetition rate M (heuristically) by
(2d/(2d−1))τ times, where (2d−1)/2d is the probability that the equality holds for each coefficient of u 3.
Since c ∈ Rn,τ , only τ coefficients are considered, resulting in a probability of ((2d − 1)/2d)τ for passing
the equality check. Indeed, this probability does not significantly affect the repetition rate. For example, at
the (classical) 211-bit security level (in case of NTRU+Sign-1024), with parameters d = 8 and τ = 36, the
probability is approximately 0.86, leading to an increase in the repetition rate M by a factor of about 1.15.

3It is assumed that the low d bits of u is uniformly distributed.

10

3.4 Rejection Sampling

The rejection sampling of NTRU+Sign, detailed in line 6 of the Sign algorithm, follows the approach used
in BLISS [17]. For the discrete Gaussian distribution D2n

σ with standard deviation σ, the source distribution
is gSc = 1

2D
2n
Sc,σ + 1

2D
2n
−Sc,σ where Sc is computed in line 5 of the Sign algorithm over the space of all

(b,y) where b ← {0, 1} and y ← D2n
σ , whereas the target distribution is the centered discrete Gaussian

distribution D2n
σ , that is, f = D2n

σ . Then, Lemma 2.1 shows that, for a fixed Sc, the computed z in line 5 of
the Sign algorithm should be accepted with probability:

Pz = f(z)
MgSc(z)

= 1
/(

M exp
(
− ∥Sc∥2

2σ2

)
cosh

(
⟨z,Sc⟩
σ2

))
,

where M is a predetermined positive real constant such that, for all possible values of Sc, the inequality
f ≤ MgSc holds with probability 1 (i.e., ϵ = 0 in Lemma 2.1). Indeed, M is the number of repetition
rate, more specifically, repeating from line 1 to 6 in the Sign algorithm. According to [17], it suffices to set
M = exp(1/2α̂2), where α̂ ≤ σ/∥Sc∥. To set an appropriate value M , [17] (and also NTRU+Sign) first
selects an appropriate value α̂ that makes M acceptable, for instance, M = 3.25 or M = 4.28, and next
sets σ to be α̂ · ∥Sc∥, using the equality of σ = α̂ · ∥Sc∥. This indicates that, for a fixed α̂ (and thus M),
reducing the bound on ∥Sc∥ lowers σ, leading to a more compact signature.

3.5 Secret Key Constraint

To bound on ∥Sc∥ tightly, we follow the method of HAETAE [13] based on the canonical embedding into
Cn, which is a classical concept from algebraic number theory. In the canonical embedding, both addition
and multiplication in Rq correspond to their coordinate-wise counterparts in Cn, yielding tight bounds on
geometric quantities such as Euclidean norms and inner products [33]. Under the canonical embedding,
∥Sc∥2 can be represented as ∥Sc∥2 = (

∑n
j=1 ∥S(wj)∥2 · ∥c(wj)∥2)/n, where wj is the 2n-th primitive

root of unity for 1 ≤ j ≤ n. To achieve a tight bound, [13] uses m-largest values of ∥S(wj)∥2 where
m = ⌊n/τ⌋, rather than maxj(∥S(wj)∥2). Additionally, to ensure that the bound holds regardless of the
specific choice of c (i.e., to eliminate the terms related to c), the right-hand side of the equation above is
bounded in a worst-case manner.

Lemma 3.1 ([13]). For any c ∈ {0, 1}n with Hamming weight τ and a secret S ∈ R, the value ∥Sc∥2 is
upper bounded by

τ

n
· N (S) =

τ

n

(m∑
i=0

i-th
max
0≤j<n

∥S(wj)∥2 + r ·
(m+1)-th
max
0≤j<n

∥S(wj)∥2
)

where m = ⌊n/τ⌋, r = n mod τ , and wj’s are the 2n-th primitive roots of unity.

Using this lemma, we obtain a direct upper-bound on ∥Sc∥ by simply fixing N (S) ≤ γ2n in line 4 of
the KeyGen algorithm for some positive real number γ.

3.6 Security Proof

Theorem 3.2 (UF-CMA Security [6]). Assume that NTRU+ident = ((P1,P2), (V1,V2)) is a paHVZK
public-coin identification protocol with probability of aborting β and that the commitment message of the
prover has min-entropy α, described in Figure 2. LetA be any arbitrary adversary against UF-CMA security
of DS = FS[NTRU+ident, H] that issues at mostQh queries to the random oracleH andQs classical queries

11

P1(sk = (s1, s2))

1: y = (y1,y2)← Dnσ ×Dnσ
2: u = ay1 + y2

3: w = [u]d
4: return (W = w, st = (u,y))

V1(pk = a,w)

1: c← U(C)
2: return c

P2(sk = S,w, c, st)

1: b← U({0, 1})
2: z := (z1, z2) = y + (−1)bSc
3: With prob. 1/(Mexp(−∥Sc∥2

2σ2)cosh(⟨z,Sc⟩
σ2)):

4: if [u]d = [u+ (−1)bc]d
5: h := [u]d − [u− z2 + (1− b)c]d mod p
6: if ∥(z1, 2dh)∥ ≤ B2

7: if ∥(z1, 2dh)∥∞ ≤ B∞
8: return (z1,h)
9: else return ⊥

V2(pk, (w, c, z1,h))

1: if ∥(z1, 2dh)∥ ≤ B2, ∥(z1, 2dh)∥∞ ≤ B∞
2: if [az1 + cq̂]d + h = w mod p
3: return Accept
4: return Reject

Figure 2: NTRU+ident protocol

to the signing oracle. Then there exists an adversary B against UF-NMA security of DS with running time
Time(B) ≈ Time(A) +QsTSim such that:

AdvUF-CMA
DS (A) ≤ AdvUF-NMA

DS (B) + 2−α/2+1Qs
1− β

√
Qh + 1 +

Qs
1− β

+ 2−α/2+1(Qh + 1)

√
Qs

1− β
+Qsϵzk.

We recall that an identification scheme ID can be transformed into a digital signature via the Fiat-
Shamir transform, and let FS[ID, H] denote the resulting signature scheme (see [16] for more details). Based
on the analysis of [14], which reduces UF-CMA security to UF-NMA security, we need to show that the
commitment min-entropy α is high and the underlying identification scheme is paHVZK. The underlying
identification, with repetition parameter M ≥ 1, Euclidean norm bound B2 and infinite norm bound B∞ is
given in Figure 2.

3.6.1 paHVZK

In this section, we show that the underlying NTRU+ident scheme from Figure 2 satisfies the paHVZK
property in the non-aborting case. Specifically, we demonstrate that the statistical distance ϵzk between the
output (w, c, z) = (w, c, (z1,h)) distributions of Trans and Sim from Figure 3 is 0, following the approach
used in previous works such as [19, 13, 5].

First, it is straightforward to observe that z1 in the Trans algorithm and z1 in the Sim algorithm are sta-
tistically identical, based on Lemma 2.1 and the analysis in Chapter 3.4. Next, we show that the distribution
of the commitment w in the Trans algorithm and the distribution of w in the Sim algorithm are identical. To
achieve this, we show that the condition in line 7 in the Trans algorithm corresponds to the condition in line

12

Trans(sk = (s1, s2), c)

1: y = (y1,y2)← Dnσ ×Dnσ
2: u = ay1 + y2

3: w = [u]d
4: b← {0, 1}
5: z := (z1, z2) = y + (−1)bSc
6: With prob. 1/(Mexp(−∥Sc∥2

2σ2)cosh(⟨z,Sc⟩
σ2)):

7: if [u]d = [u+ (−1)bc]d
8: h = [u]d − [u− z2 + (1− b)c]d mod p
9: if ∥(z1, 2dh)∥ ≤ B2

10: if ∥(z1, 2dh)∥∞ ≤ B∞
11: return (w, z1,h)
12: else return ⊥

Sim(pk, c)

1: With probability 1/M :
2: z1, z2 ← Dnσ
3: v = az1 + z2 + cq̂
4: if [v]d = [v − c]d
5: h = [v]d − [v − z2]d mod p
6: if ∥(z1, 2dh)∥ ≤ B2

7: if ∥(z1, 2dh)∥∞ ≤ B∞
8: return (w = [v]d, z1,h)
9: else return ⊥

Figure 3: NTRU+ident protocol simulator

5 in the Sim algorithm from Figure 3. Recall that

az1 + z2 + cq̂ =

{
u+ c (if b = 0)
u (if b = 1)

(1)

where u = ay1 +y2. Notably, checking if [az1 + z2 + cq̂− c]d = [az1 + z2 + cq̂]d mod p is equivalent to
checking if [u]d = [u+c]d mod p in case that b = 0 and [u−c]d = [u]d mod p in case that b = 1. In other
words, the equality check simplifies to checking whether [u]d = [u+ (−1)bc]d mod p. Therefore, through
this equality check, we guarantee that w in the Trans algorithm and w in Sim algorithm are identical, as it
always holds that [u]d = [az1 + z2 + cq̂]d mod p for both cases that b = 0 or 1.

Lastly, we need to prove that the distribution of h in the Trans algorithm is identical to that in the Sim.
To do so, we show that the hint h in line 8 of the Trans algorithm corresponds to the hint h in line 5 of
the Sim algorithm (as shown in Figure 3). For b = 1, we observe that [az1 + z2 + cq̂]d − [az1 + cq̂]d =
[u]d − [u − z2]d mod p by equation (1). For b = 0, it follows that [az1 + z2 + cq̂]d − [az1 + cq̂]d =
[u + c]d − [u − z2 + c]d mod p again by equation (1). Given the equality [u]d = [u+ c]d mod p when
b = 0, the latter expression can be rewritten as [u]d − [u − z2 + c]d mod p. In summary, we conclude
[az1+ z2+ cq̂]d− [az1+ cq̂]d = [u]d− [u− z2+(1− b)c]d mod p. This completes the proof, confirming
that the distributions of h in both algorithms are identical.

3.6.2 Commitment Min-Entropy

We claim that the underlying identification scheme has large commitment min-entropy by showing that, for
a given public polynomial a ∈ Rq,

Pr
[
[ay1 + y2]d = w |y1,y2 ← Dn

σ

]
≤
(

2d√
2πσ − 1

)n
∀w ∈ W.

Define T to be the set containing all the elements u such that [u]d = w. By the definition of the function
[·]d, the size of T is at most 2dn. We can rewrite the above probability as

Pr
[
ay1 + y2 ∈ T |y1,y2 ← Dn

σ

]
= Pr

[
y2 ∈ (T − ay1) |y2 ← Dn

σ

]
13

where the equality follows from the fact that the size of the set (T−ay1) is the same as the size of T . Finally,
using

∑
x∈Z ρσ(x) ≥

∫∞
−∞ ρσ(x)dx− 1 =

√
2πσ − 1 [31, Lemma 4.4], we can derive the inequality

Pr
[
y2 = t |y2 ← Dn

σ

]
≤
(

1√
2πσ − 1

)n
for any t ∈ Rq,

which in turn implies the claim. For example, the commitment min-entropyα is at least 989 for NTRU+Sign-
1024.

3.6.3 UF-NMA Security

We prove that NTRU+Sign is UF-NMA secure if the NTRU assumption and BimodalSelfTargetRSIS as-
sumption hold.

Theorem 3.3 (UF-NMA Security). For any quantum adversaryA against the UF-NMA security of NTRU+Sign
making at most Qh quantum hash queries, there exists an adversary B and C such that:

AdvUF-NMA
DS (A) ≤ AdvNTRUn,q,ψ1

(B) + AdvBimodalSelfTargetRSIS
H,n,q,B2+(2d−1+1)

√
n
(C). (2)

Proof. Given an element a ∈ Rq, the adversary C sets a as the public key of the signature scheme and sends
it to A. If the public key pk generated by KeyGen is indistinguishable from uniform over Rq (i.e., if the
NTRUn,q,ψ1 problem is hard), then with probability AdvUF-NMA

DS (A), A will return a signature (z1,h, c) of
some message µ such that ∥(z1|2dh)∥ ≤ B2 satisfying the verification equation

c = H([az1 + cq̂]d + h mod p, µ).

For simplicity, we define the function H ′ such that H(w1, µ) = H ′(w1 · 2d, µ) to accommodate the com-
pression that does not appear in the BimodalSelfTargetRSIS problem. Notice that the difference between H
and H ′ is just a change in the format of the input. The above equality can be rewritten as:

c = H ′(az1 + cq̂ + 2dh+ e+ k mod q, µ) (3)

where e = az1 + cq̂ − [az1 + cq̂]d, ∥e∥∞ ≤ 2d−1, and ∥k∥∞ = 1. The term k is added for the following
reason. Define v1 = [az1 + cq̂]d + h mod p. It can be shown that there exists k such that the following
equation holds over R:

v1 = [az1 + cq̂]d + h+ pk

where all coefficients of k are in {0,±1}. Then we obtain 2dv1 = 2d([az1 + cq̂]d+h+ pk) = az1 + cq̂+
2dh+ e+ 2d · pk. Note that it holds that 2d · p = q − 1. Applying the modulo q operation to both sides, we
derive equation (3).

Equation (3) provides a polynomial vector Y = [2dh+e|z1]T such thatH ′([1|a] ·Y+cq̂, µ) = c where
e = e + k. We can show that ∥Y∥∞ ≤ (q − 2)/4 since the condition ∥(z1, 2dh)∥∞ ≤ B∞ is enforced in
the Sign algorithm, where B∞ ≤ (q − 2)/4− 2d−1 − 1. Next, we note that ∥Y∥ = ∥(2dh+ e+ k, z1)∥ ≤
∥(2dh, z1)∥+ ∥(e, 0)∥ ≤ B2 + (2d−1 + 1)

√
n. This completes the proof.

14

Table 2: Requirements for Parameter Selection

Parameter Requirements

(1) n = 2a for a ∈ N Degree of a polynomial
(2) q ≡ 1 (mod n/2) Modulus for NTT
(3) p = (q − 1)/2d Modulus for hint generation
(4) (2d/(

√
2πσ − 1))n ≪ 2−2λ Commitment entropy

(5)
(
n
τ

)
≥ 2λ Challenge space

4 Parameter Settings

4.1 Concrete Parameters

Table 2 presents several conditions necessary for choosing the parameters for NTRU+Sign. We provide
concrete parameter sets achieving 93 and 211 security bits, with the latter corresponding to NIST level 3, as
shown in Table 3. Both parameter sets meet all the requirements outlined in Table 2.

The sizes of the public keys for NTRU+Sign-{512, 1024} are 768 and 1664 bytes, respectively, calcu-
lated as (n⌈log q⌉)/8 bytes. A signature consists of (z1,h, c), where the high bits of z1 and h are encoded
using range Asymmetric Numeral System (rANS) encoding [22]. Then, the resulting signature size is ap-
proximately (256 + nd + n log2(2πe(σ/2

d)2)/8 bytes, where 256 represents a hash value related to c, nd
represents low bits of z1, and n log2(2πe(σ/2

d)2 represents rANS-encoded values of the high bits of z1
and h. The sizes of the secret keys are 2336 and 5024 bytes for NTRU+Sign-{512, 1024}, respectively.
These are calculated as (3n⌈log q⌉+ 256)/8 bytes, based on the storage of the secret key in NTT format. If
the secret key is not stored in NTT format, the sizes would be 1056 and 2208 bytes for NTRU+Sign-{512,
1024}, respectively, computed as (n⌈log q⌉+ 4n+ 256)/8 bytes.

In the KeyGen algorithm, the process restarts if the generated secret key S satisfiesN (S) > γ2n, where
γ is a pre-defined constant. The constant γ is chosen to ensure that S is accepted with the sk acceptance
rate in Table 3. Specifically, γ is determined in advance by calculating {N (S)} for randomly sampled
secret keys {S}, sorting {N (S)}, and selecting a threshold valueN (S∗) such thatN (S∗) among the sorted
{N (S)} corresponds to the desired sk acceptance rate. Once N (S∗) is selected, γ is computed from the
equation of N (S∗) = γ2n. Using Lemma 3.1, we can establish an upper bound for ∥Sc∥ for secret keys
satisfying N (S) ≤ γ2n. Specifically, Lemma 3.1 states that for any c with Hamming weight τ , the bound
∥Sc∥2 ≤ (τ/n) · N (S) ≤ τγ2 holds. Thus, the upper bound for ∥Sc∥ is computed as γ

√
τ .

4.2 Concrete Security Analysis

As shown above, the security of NTRU+Sign is based on the RSIS problem and the NTRU problem,
specifically relative to AdvBimodalSelfTargetRSIS

H′,n,q,B2+(2d−1+1)
√
n

4 and AdvNTRUn,q,ψ1
. Note that while the Euclidean norm bound,

B = B2+(2d−1+1)
√
n, for RSIS solutions exceeds the modulus q, the infinite norm bound remains below

q, specifically at (q − 2)/4. This ensures that trivial solutions are avoided. To analyze the concrete security
of the above RSIS and NTRU problems, we adapt the concrete security analysis conducted in [13]. The
concrete security strength of the NTRU problem is expected to be similar to the case of Ring Learning with

4By the reduction as shown in Def. 2.9, the security is further reduced to the RSIS problem relative to
AdvRSISn,q,4(B2+(2d−1+1)

√
n)+2

√
τ , but we follow the analysis in [19] to analyze the security of RSIS, i.e., we analyze the concrete

security of AdvRSISn,q,B2+(2d−1+1)
√
n. Here, 2

√
τ is dropped since 2

√
τ is relatively very small compared to 4(B2+(2d−1+1)

√
n).

15

Table 3: Parameter sets for NTRU+Sign-{512, 1024}
Parameter sets 1 2

n Degree of a polynomial 512 1,024
q Modulus 3,329 7,681
τ Hamming weight of c 20 36

⌊log2 |C|⌋ ⌊log2
(
n
τ

)
⌋ 118 221

d # of dropped bits in the commitment 7 8
M Expected # of repetitions for rejection sampling 3.25 4.28
MEq Expected # of repetitions for equality check 1.17 1.15
Mtotal =M ×MEq 3.80 4.92
BSc Upper-bound for Euclidean norm of Sc 169 341
γ sk rejection parameter 37.77 56.71

sk acceptance rate 0.25 0.25
σ Standard deviation of Dσ 110 200
α̂ = σ/BSc 0.61 0.58
α Min-entropy of the commitment 564 989
B2 Verification threshold in Euclidean norm 4,000 10,000
B∞ Verification threshold in infinite norm 766 1,790

NTRU Hardness (Core-SVP)
BKZ block-size b 339 724

Classical Core-SVP 98 211
Quantum Core-SVP 88 186

SIS Hardness (Core-SVP)
BKZ block-size b 320 767

Classical Core-SVP 93 224
Quantum Core-SVP 82 197

Error (LWE) problems, following the methodology outlined in the script of Kyber[10]. To analyze the con-
crete security of the above RSIS and NTRU problems, we employ the BKZ lattice reduction algorithm [12],
which represents the most effective known lattice attack. Various approaches exist to estimate the running
time of BKZ [1, 2, 12]. In general, a Shortest Vector Problem (SVP) solver is the main building block of the
BKZ algorithm. To estimate the number of gates required to solve the RSIS and NTRU problems, as in [13],
we follow the established Core-SVP methodology, which assumes that an SVP oracle is required only once
in a conservative model, regarding the number of SVP oracle calls that the BKZ algorithm makes.

Table 3 presents the concrete security levels for each set of parameters of NTRU+Sign. Our estimates for
the RSIS problem are slightly conservative in that those estimates are calculated under the Euclidean norm
bound B2 + (2d−1 + 1)

√
n, not considering the additional infinite norm bound (q− 2)/4. As noted in [28],

such cryptanalysis likely underestimates the true complexity of the RSIS problem. Because the modulus q
of NTRU+Sign is relatively small compared to the dimension n and the RSIS bound B2 + (2d−1 + 1)

√
n,

we can also use the recent estimator proposed by Ducas et al. [18]. The estimated results are 93 and 214
bits of security for the RSIS problem, which slightly reduces the RSIS hardness, but has no impact on the
overall target security level of NTRU+Sign-{512, 1024}.

16

Table 4: Comparison to previous lattice-based signature schemes

Classical
Security

|Sig|
(bytes)

|pk|
(bytes)

|Sig|+|pk|
(bytes)

Sampling
Distribution

Dilithium-2 123 2, 420 1, 312 3, 732 Hypercube
Dilithium-G-21 118 1, 921 800 2, 721 Gaussian
HAETAE-120 119 1, 474 992 2, 466 Hyperball
G+ G-1202 121 1, 677 1, 472 3, 149 (Convolved) Gaussian
G+ G-5123 85 1, 021 992 2, 013 (Convolved) Gaussian

Patronus-120 120 2, 070 832 2, 902 Polytope
Falcon-512 120 666 897 1, 563 -
BLISS-5124 87 831 896 1, 727 Gaussian

NTRU+Sign-512 93 751 768 1, 519 Gaussian
Dilithium-3 182 3, 293 1, 952 5, 245 Hypercube
Dilithium-G-31 183 2, 462 1, 184 3, 646 Gaussian
HAETAE-180 180 2, 349 1, 472 3, 821 Hyperball
G+ G-1802 178 2, 143 1, 952 4, 095 (Convolved) Gaussian
G+ G-10243 178 1, 769 2, 080 3, 849 (Convolved) Gaussian
Patronus-180 182 2, 575 1, 152 3, 727 Polytope
Falcon-1024 273 1, 280 1, 793 3, 073 -
BLISS-10244 178 1, 836 1, 792 3, 628 Gaussian

NTRU+Sign-1024 211 1, 551 1, 664 3, 215 Gaussian
1 Gaussian version of Dilithium optimized in [15] 2 Module-LWE version of G+ G
3 NTRU version of G+ G 4 BLISS with updated security analysis

4.3 Comparison

Table 4 provides a detailed comparison of signature sizes among recent lattice-based signature schemes.
For comparison with NTRU+Sign, we include FSwA-based schemes [19, 13, 16, 5, 17], including the re-
parametrized BLISS, as well as Falcon [23], which is based on the Hash-and-Sign framework. The results
show that NTRU+Sign achieves the smallest signature size among the FSwA-based schemes at a compa-
rable security level. Notably, NTRU+Sign-1024 achieves this compactness despite targeting a higher clas-
sical security level than most other schemes (excluding Falcon-1024). For example, the signature size of
NTRU+Sign-1024 is approximately 55% smaller than Dilithium-3 and 35% smaller than HAETAE-180.
Moreover, NTRU+Sign-1024 achieves the smallest combined size of the signature and public key among
FSwA-based schemes. Compared to Dilithium-3, the combined size is approximately 40% smaller, and
compared to HAETAE-180, it is approximately 15% smaller. A direct comparison with the re-parametrized
BLISS highlights the significant impact of the modulus change and the novel key structure in NTRU+Sign.

The performance comparison between Dilithium, HAETAE, and NTRU+Sign is summarized in Table 1.
Compared to HAETAE-180, NTRU+Sign-1024 achieves 1.4 times faster key generation and 1.6 times faster
signing speeds. However, compared to Dilithium, NTRU+Sign-1024 is approximately 3.5 times slower for
key generation and 2.8 times slower for signing. This is primarily due to the additional key rejection pro-
cess in the KeyGen algorithm of NTRU+Sign, designed to reduce the norm ∥Sc∥ and optimize rejection
sampling. The performance difference also stems from the efficiency of Dilithium’s uniform hypercube
sampling and its simplified rejection sampling, which relies solely on infinite norm checks.

Notably, the Verify algorithm of NTRU+Sign is 2.5 times faster than Dilithium and 3 times faster than

17

HAETAE. While the verification processes in all three schemes share a similar conceptual foundation, sev-
eral factors contribute to the superior efficiency of NTRU+Sign. Firstly, NTRU+Sign-1024 uses a smaller
modulus, q = 7681(≈ 213), compared to q = 8380417(≈ 223) in Dilithium and q = 64513(≈ 216) in
HAETAE. The smaller modulus enables faster polynomial multiplications. Secondly, unlike Dilithium and
HAETAE, NTRU+Sign does not require re-generating the public matrix A ∈ Rk×ℓq from a public seed
during verification, further reducing computational overhead.

Regarding the Sign algorithm, NTRU+Sign achieves computational improvements over HAETAE pri-
marily due to its use of Gaussian sampling instead of hyperball sampling. Hyperball sampling, while sim-
plifying rejection sampling, inherently relies on discrete Gaussian sampling with extremely large standard
deviations (e.g., 272), high-precision arithmetic, and additional operations such as inverse square root and
ℓ2 norm calculations, all of which introduce significant computational overhead. For example, constant-
time Gaussian sampling in NTRU+Sign-1024 achieves a 43% speedup compared to hyperball sampling in
HAETAE-180. Also, contrary to what is expected, the rejection sampling process of NTRU+Sign-1024 is
about 1.6 times faster than that of HAETAE-180. To perform the rejection sampling process, NTRU+Sign
needs to calculate transcendental function approximations based on GALATICS, whereas HAETAE needs
to compute Euclidean norm. Fortunately, the coefficients of approximated polynomials are precomputed, so
that the rejection sampling process of NTRU+Sign can be done by simple scalar multiplications and shift
operations, using the precomputed coefficients.

5 Performance Analysis

5.1 Reference Implementation

We evaluate the performance of NTRU+Sign-{512, 1024}, using our reference code on a 3.7GHz Intel Core
i7-8700k running Ubuntu 20.04 LTS. Table 1 shows the performance of the KeyGen, Sign, and Verify algo-
rithms of NTRU+Sign-{512, 1024} in comparison to the reference code implementations of Dilithium[19]
and HAETAE [13]. The cycle counts presented in Table 1 are averaged over 10,000 executions of each
respective algorithm. The reference code for NTRU+Sign is publicly available5.

5.2 Implementation Details

5.2.1 Gaussian Sampling

In line 1 of the Sign algorithm in Figure 1, we produce y = (y1,y2), where y1,y2 are polynomials with
coefficients sampled according to a centered discrete Gaussian distribution of relatively large standard de-
viation (σ = 200 for NTRU+Sign-1024). In essence, we start by sampling x from a discrete Gaussian
distribution with a smaller standard deviation σ1 = σ/k where k = 2⌊log2 σ⌋ using a Cumulative Distri-
bution Table (CDT), and next we sample a uniform y ∈ {0, ..., k − 1} and accept the candidate Gaussian
sample r = xk + y with probability exp (−y(y + 2xk)/(2σ2)), following the technique of BLISS [17].
For instance, we use a CDT with σ1 = 200/27 ≈ 1.57 where n = 1024, σ = 200, and k = 27, which
only requires 15 table entries. This CDT implementation stores the cumulative probabilities with 86 bits
of precision. For the rejection sampling with probability exp (−y(y + 2xk)/(2σ2)), we follow the way of
GALATICS to generate a polynomial approximation of exp(x/(2σ2)). Then, under a sufficiently large pre-
cision, an approximated polynomial P I1exp(x) over the interval I1 = [−⌊2σ2⌋, 0] can be used to evaluate a

5https://github.com/KU-Cryptographic-Protocol-Lab/ntruplus_sign

18

https://github.com/KU- Cryptographic-Protocol-Lab/ntruplus_sign

function value at a point x in constant time. Further details on how the polynomial approximation is con-
structed and how closely the approximated polynomial matches the real exponential function can be found
in the appendix A.1.

5.2.2 Rejection Sampling

Explicitly in line 6 of the Sign algorithm in Figure 1, we need to implement the rejection sampling in
constant time. Specifically, we need to sample a bit b̃ from the Bernoulli distribution Bψ with parameter
ψ(z,v) = 1/(M exp (−∥v∥2/2σ2) cosh (⟨z,v⟩)/σ2) where M = exp (1/2α̂2). According to the bit b̃,
the Sign algorithm decides whether or not it proceeds with z. To implement this efficiently, we decompose
the Bernoulli distribution Bψ into the product of Bψ1 and Bψ2 where ψ1(v) = 1/(M exp(−∥v∥2/2σ2))
and ψ2(z,v) = 1/ cosh (⟨z,v⟩/σ2). Following GALATICS, we approximate the functions exp and cosh
with sufficiently close polynomials, and given an input (z,v) we calculate those function values as in the
Gaussian sampling. Further details on constructing these polynomial approximations and the theoretical
justification are provided in Appendix A.2.

5.2.3 Signature Packing

In line of 12 in the Sign algorithm in Figure 1, a signature consists of (z1,h, c), where z1 and h are packed
to reduce the signature size. Indeed, z1 is a polynomial whose coefficients follow a discrete Gaussian distri-
bution with standard deviation σ, and the hint h = [u]d − [u− z2 + (1− b)c]d mod p also nearly follows a
discrete Gaussian distribution that is substantially derived from z2. That is, z1 and h have their coefficients
distributed according to probability distributions that are concentrated around elements with small ℓ2 norms.
Hence, it is not optimal to simply represent coefficients with their binary representations. Instead, we use the
adaptive arithmetic encoding, referred as rANS as described in [22]. This entropic coding method enables
efficient compression by closely matching the signature size to its entropy, while maintaining high perfor-
mance through finite precision integer arithmetic. Our rANS encoding is based on the implementation from
[24], which provides an efficient and practical approach for encoding a signature.

References

[1] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol.
9(3), 169–203 (2015)

[2] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - A new hope. In:
Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016. pp. 327–343. USENIX Association (2016)

[3] Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with
errors. In: Benaloh, J. (ed.) Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the
RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8366, pp. 28–47. Springer (2014). https://doi.org/10.1007/978-3-319-04852-
9_2, https://doi.org/10.1007/978-3-319-04852-9_2

[4] Bai, S., Lepoint, T., Roux-Langlois, A., Sakzad, A., Stehlé, D., Steinfeld, R.: Improved security proofs
in lattice-based cryptography: using the rényi divergence rather than the statistical distance. Journal of
Cryptology 31, 610–640 (2018)

19

https://doi.org/10.1007/978-3-319-04852-9_2

[5] Bambury, H., Beguinet, H., Ricosset, T., Sageloli, É.: Polytopes in the fiat-shamir with aborts paradigm.
In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology - CRYPTO 2024 - 44th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 14920, pp. 339–372. Springer (2024). https://doi.org/10.1007/978-3-
031-68376-3_11

[6] Barbosa, M., Barthe, G., Doczkal, C., Don, J., Fehr, S., Grégoire, B., Huang, Y., Hülsing, A., Lee,
Y., Wu, X.: Fixing and mechanizing the security proof of fiat-shamir with aborts and dilithium. In:
Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual In-
ternational Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part V. Lecture Notes in Computer Science, vol. 14085, pp. 358–389. Springer (2023).
https://doi.org/10.1007/978-3-031-38554-4_12

[7] Barthe, G., Belaïd, S., Espitau, T., Fouque, P., Rossi, M., Tibouchi, M.: GALACTICS: gaussian sam-
pling for lattice-based constant- time implementation of cryptographic signatures, revisited. In: Cav-
allaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November 11-15, 2019. pp.
2147–2164. ACM (2019). https://doi.org/10.1145/3319535.3363223

[8] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma.
In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November
3, 2006. pp. 390–399. ACM (2006). https://doi.org/10.1145/1180405.1180453

[9] Bootle, J., Delaplace, C., Espitau, T., Fouque, P., Tibouchi, M.: LWE without modular reduction and
improved side-channel attacks against BLISS. In: Advances in Cryptology - ASIACRYPT 2018 - 24th
International Conference on the Theory and Application of Cryptology and Information Security, Bris-
bane, QLD, Australia, December 2-6, 2018, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 11272, pp. 494–524. Springer (2018). https://doi.org/10.1007/978-3-030-03326-2_17

[10] Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Seiler, G.,
Stehlé, D.: CRYSTALS - kyber: A cca-secure module-lattice-based KEM. In: 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018.
pp. 353–367. IEEE (2018). https://doi.org/10.1109/EUROSP.2018.00032

[11] Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload - A cache at-
tack on the BLISS lattice-based signature scheme. In: Cryptographic Hardware and Embedded
Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings. Lecture Notes in Computer Science, vol. 9813, pp. 323–345. Springer (2016).
https://doi.org/10.1007/978-3-662-53140-2_16

[12] Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) Ad-
vances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.
Lecture Notes in Computer Science, vol. 7073, pp. 1–20. Springer (2011). https://doi.org/10.1007/978-
3-642-25385-0_1

20

[13] Cheon, J.H., Choe, H., Devevey, J., Güneysu, T., Hong, D., Krausz, M., Land, G., Möller, M., Stehlé,
D., Yi, M.: HAETAE: shorter lattice-based fiat-shamir signatures. IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. 2024(3), 25–75 (2024). https://doi.org/10.46586/TCHES.V2024.I3.25-75

[14] Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis of fiat-shamir with aborts.
In: CRYPTO 2023. Lecture Notes in Computer Science, vol. 14085, pp. 327–357. Springer (2023).
https://doi.org/10.1007/978-3-031-38554-4_11

[15] Devevey, J., Fawzi, O., Passelègue, A., Stehlé, D.: On rejection sampling in lyubashevsky’s signature
scheme. In: ASIACRYPT 2022. Lecture Notes in Computer Science, vol. 13794, pp. 34–64. Springer
(2022). https://doi.org/10.1007/978-3-031-22972-5_2

[16] Devevey, J., Passelègue, A., Stehlé, D.: G+G: A fiat-shamir lattice signature based on convolved gaus-
sians. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023 - 29th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Guangzhou,
China, December 4-8, 2023, Proceedings, Part VII. Lecture Notes in Computer Science, vol. 14444,
pp. 37–64. Springer (2023). https://doi.org/10.1007/978-981-99-8739-9_2

[17] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians.
In: CRYPTO 2013. Lecture Notes in Computer Science, vol. 8042, pp. 40–56. Springer (2013).
https://doi.org/10.1007/978-3-642-40041-4_3

[18] Ducas, L., Espitau, T., Postlethwaite, E.W.: Finding short integer solutions when the modulus is small.
In: Annual International Cryptology Conference. pp. 150–176. Springer (2023)

[19] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-
dilithium: A lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 238–268 (2018). https://doi.org/10.13154/TCHES.V2018.I1.238-268

[20] Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.: A thorough treatment
of highly-efficient NTRU instantiations. In: Boldyreva, A., Kolesnikov, V. (eds.) Public-Key Cryp-
tography - PKC 2023 - 26th IACR International Conference on Practice and Theory of Public-Key
Cryptography, Atlanta, GA, USA, May 7-10, 2023, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 13940, pp. 65–94. Springer (2023). https://doi.org/10.1007/978-3-031-31368-4_3

[21] Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS lattice-based sig-
natures: Exploiting branch tracing against strongswan and electromagnetic emanations in microcon-
trollers. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 1857–1874. ACM (2017).
https://doi.org/10.1145/3133956.3134028

[22] Espitau, T., Tibouchi, M., Wallet, A., Yu, Y.: Shorter hash-and-sign lattice-based signatures. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022. Lecture Notes in Computer Science, vol. 13508, pp. 245–275.
Springer (2022). https://doi.org/10.1007/978-3-031-15979-4_9

[23] Fouque, P., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T., Seiler,
G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier lattice-based compact signatures over NTRU (2017),
available: https://falcon-sign.info/falcon.pdf

21

[24] Giesen, F.: Interleaved entropy coders. CoRR abs/1402.3392 (2014), http://arxiv.org/abs/
1402.3392

[25] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: A signa-
ture scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) Cryptographic Hard-
ware and Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7428, pp. 530–547.
Springer (2012). https://doi.org/10.1007/978-3-642-33027-8_31, https://doi.org/10.1007/
978-3-642-33027-8_31

[26] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: Ntrusign: Digital signa-
tures using the ntru lattice. In: Cryptographers’ track at the RSA conference. pp. 122–140. Springer
(2003)

[27] Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key cryptosystem. In: Proceedings
of the Third International Symposium on Algorithmic Number Theory. pp. 267–288 (1998)

[28] Jeudy, C., Roux-Langlois, A., Sanders, O.: Phoenix: hash-and-sign with aborts from lattice gadgets.
In: International Conference on Post-Quantum Cryptography. pp. 265–299. Springer (2024)

[29] Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of fiat-shamir signatures in the quan-
tum random-oracle model. In: EUROCRYPT 2018. Lecture Notes in Computer Science, vol. 10822,
pp. 552–586. Springer (2018). https://doi.org/10.1007/978-3-319-78372-7_18

[30] Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In:
ASIACRYPT 2009. Lecture Notes in Computer Science, vol. 5912, pp. 598–616. Springer (2009).
https://doi.org/10.1007/978-3-642-10366-7_35

[31] Lyubashevsky, V.: Lattice signatures without trapdoors. Cryptology ePrint Archive, Paper 2011/537
(2011), https://eprint.iacr.org/2011/537

[32] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EU-
ROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 738–755. Springer (2012).
https://doi.org/10.1007/978-3-642-29011-4_43

[33] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography. In: Johansson, T.,
Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-
30, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7881, pp. 35–54. Springer (2013).
https://doi.org/10.1007/978-3-642-38348-9_3

[34] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of LWE search-to-
decision reductions. In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6841, pp. 465–484. Springer (2011). https://doi.org/10.1007/978-3-642-
22792-9_26

[35] Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: Attacking strongswan’s implementa-
tion of post-quantum signatures. In: Thuraisingham, B., Evans, D., Malkin, T., Xu, D. (eds.) Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,.
pp. 1843–1855. ACM (2017). https://doi.org/10.1145/3133956.3134023

22

http://arxiv.org/abs/1402.3392
http://arxiv.org/abs/1402.3392
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-642-33027-8_31
https://eprint.iacr.org/2011/537

[36] Prest, T.: Sharper bounds in lattice-based cryptography using the rényi divergence. In: Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23.
pp. 347–374. Springer (2017)

[37] Zhang, J., Feng, D., Yan, D.: NEV: faster and smaller NTRU encryption using vector decoding. In:
Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023 - 29th International Con-
ference on the Theory and Application of Cryptology and Information Security, Guangzhou, China,
December 4-8, 2023, Proceedings, Part VII. Lecture Notes in Computer Science, vol. 14444, pp. 157–
189. Springer (2023). https://doi.org/10.1007/978-981-99-8739-9_6

23

A Discrete Gaussian and Rejection Sampling

Given a probability distribution D, we denote D̃ as a probability distribution similar to D. Let x ∼ D mean
that x follows the probability distribution D and x ∼̇ D indicate that x follows a probability distribution
similar to D. The relative error of D1 from D2 is defined as

∣∣∣D1
D2
− 1
∣∣∣ = maxx∈supp(D1)

∣∣∣D1(x)
D2(x)

− 1
∣∣∣. For

I ⊆ Z and x ∈ I , let us define DI,σ(x) = ρσ(x)
ρσ(I)

as discrete Gaussian distribution over I with standard
deviation σ and center at 0. For p ∈ [0, 1], let Bp denote a Bernoulli distribution with probability p. For
a, b ∈ R, we define [a, b]θ =

{
x ∈ [a, b] : |x| − ⌊|x|⌋ =

∑θ
i=1 xi2

i, xi ∈ {0, 1}
}

. Similarly, (a, b]θ, [a, b)θ
and (a, b)θ are also defined. For a predicate P, [[P]] returns 1 if P is true, and 0 otherwise. Lastly, we use the
notation f(δ) ∼

δ→0
c ⇐⇒ f(δ) ≈ c only when |δ| ≈ 06.

A.1 Discrete Gaussian

A.1.1 Algorithms

To sample from the discrete Gaussian distribution Dσ, we employ a constant-time discrete Gaussian sam-
pling algorithm whose output distribution closely approximates the target distribution. The constant-time
approximated discrete Gaussian sampler is described in Algorithm 1. Briefly explained, the sampler gen-
erates a nonnegative integer y from an approximated distribution of the nonnegative Gaussian, which is
described in Algorithm 2, and then determines its sign. Here are some relevant parameters:

k = 2⌊log2 σ⌋, σ1 = σ/k, w1 = ⌊τ1σ1⌋.

Algorithm 1 ApproxGσ
Input None
Output y ∈ [−(w1+1)k + 1, (w1+1)k − 1]

1: y ← ApproxG+
σ () // y ∼̇ DZ≥0,σ

2: if y = 0
3: restart with probability 1

2
4: b← U({0, 1})
5: y ← (2b− 1)y
6: return y

The approximated sampler ApproxG+
σ for the nonnegative Gaussian is represented in Algorithm 2. In

broad terms, ApproxG+
σ samples y1 from a discrete Gaussian distribution with a smaller standard deviation

σ1 = σ/k and y0 from the uniform distribution on [0, k−1], and returns y = y1k + y0 conditionally.

6The notation is derived from [36], and approximate values are used for brevity in this paper.

24

Algorithm 2 ApproxG+
σ

Input None
Output y ∈ [0, (w1+1)k − 1]

1: y1 ← ApproxBaseG+
σ1() // y1 ∼̇ DZ≥0,σ1

2: y0 ← U([0, k−1])
3: x← −y0(y0 + 2y1k)
4: b← SampleBernExpI1σ (x) // b ∼̇ Bexp(x/2σ2)

5: if b = 0
6: restart
7: y ← y1k + y0
8: return y

In Algorithm 2, the subroutine ApproxBaseG+
σ1 outputs an integer y1 which is distributed according to a

probability distribution D̃[0,w1],σ1 that can be considered as a θ1-precision version of D[0,w1],σ1 :

D̃[0,w1],σ1(x) =

{⌊
D[0,w1],σ1(x) · 2θ1

⌋
· 2−θ1 , (x ∈ [1, w1])

1−
∑w1

i=1 D̃[0,w1],σ1(i) , (x = 0)

Note that for sufficiently large τ1 = w1/σ1 the output of Algorithm 3 actually is distributed according to
DZ≥0,σ1 . In Algorithm 3, cdt[i] = 2θ1 · Pr[z < i : z ← D̃[0,w1],σ1] for i ∈ [0, w1].

Algorithm 3 ApproxBaseG+
σ1

Input None
Output y1 ∈ [0, w1]

1: u← U([0, 2θ1−1])
2: y1 ← 0
3: for i = 0 to w1 − 1 do
4: y1 ← y1 + [[u > cdt[i]]]
5: return y1

Another subroutine SampleBernExpI1σ (x) of Algorithm 2 describes an approximated version of the
Bernoulli distribution Bexp(x/2σ2) for x ∈ I1. To do this, it uses a polynomial approximation P I1exp(x) of
exp(x/2σ2) over the interval I1. Note that the property of P I1exp(x) necessary to ensure security is described
in following section. As a result, SampleBernExpI1σ (x) returns a bit by comparing a uniform random number
u in [0, 1)ϑ1 and the output of EvaluatePoly[P I1exp, ϑ1](x), which is an approximation of P I1exp(x).

In Algorithm 4, the output of EvaluatePoly[P I1exp, ϑ1](x) provides the ϑ1-bit precision value of P I1exp(x) =∑d
i=0 pix

i where p0 ∈ [0, 1)ϑ1 and pi = p̃i · 2−ℓi , p̃i ∈ [0, 1)ϑ1 , ℓi ∈ N for i = 1, . . . , d. Basically,
P I1exp(x) =

∑d
i=0 pix

i is computed by adapting Horner’s rule as follows:

P I1exp(x) =
(
(((pd · x+ pd−1) · x) + pd−2) · x+ · · ·

)
· x+ p0.

On the other hand, since P I1exp is an approximation of exp(−x), its coefficients are decreasing in the sene that
1 = |p0| ≫ |p1| ≫ · · · ≫ |pd|, i.e, ℓ0 < ℓ1 < ℓ2 < · · · < ℓd. So the coefficients of P I1exp can be expressed as

pi = p̃i · 2−
∑i

j=1 sj , p̃i ∈ [0, 1)ϑ1

25

Algorithm 4 SampleBernExpI1σ (x)

Input x ∈ I1 ∩ Z
Output b ∈ {0, 1}

1: p̂← EvaluatePoly[P I1exp, ϑ1](x) // p̂ ∈ [0, 1]ϑ1
2: u← U([0, 1)ϑ1)
3: if u ≤ p̂
4: return 1
5: return 0

where s1 = ℓ1 and sj = ℓj − ℓj−1 ∈ N for i = 2, . . . , d. Using this representation, the Horner’s rule can be
written as

P I1exp(x) =
(
((p̃d · 2−sd · x+ p̃d−1) · 2−sd−1 · x) + p̃d−2) · 2−sd−2 · x+ · · ·

)
· x · 2−s1 + p0,

and Algorithm 5 adapts this representation as the following sequential execution:

yd = p̃d · x · 2−sd , yd−1 = (yd + p̃d−1) · x · 2−sd−1 , . . . , y1 = (y2 + p̃1) · x · 2−s1 , y0 = y1 + p0.

Actually, Algorithm 5 maintains ϑ1-bit precision during computation using only the integer arithmetic of
a fixed size, which results in computing the approximation of yi. For simplicity, when a polynomial P =∑d

i=0 pix
i and ϑ are given as the parameters of Algorithm 5, we assume that two sequences (p̃i)0≤i≤d, (si)0≤i≤d

satisfying pi = p̃i · 2−
∑i

j=1 sj , p̃i ∈ [0, 1)ϑ for i = 0, . . . , d are given.

Algorithm 5 EvaluatePoly[P I1exp, ϑ1](x)

Input x ∈ I1
Output ỹ ∈ [0, 1)ϑ1

1: ỹd ←
⌊
(p̃d · x) · 2ϑ1−sd

⌉
· 2−ϑ1

2: for i = d− 1 to 1 do
3: ỹi ←

⌊
((ỹi+1 + p̃i) · x) · 2ϑ1−si

⌉
· 2−ϑ1

4: ỹ ← ỹ1 + p0
5: return ỹ

A.1.2 Constraints for Parameters

Let Qsign = 264 be the maximum number of signing queries and define Qgauss =M · 2n ·Qsign. Recall that
k = 2⌊log2 σ⌋, σ1 = σ/k, and w1 = ⌊τ1σ1⌋.

τ1 τ1 is a value used to restrict the support of a discrete Gaussian distribution with a small standard devi-
ation σ1, implemented through the cumulative distribution table (CDT). Specifically, τ1 is set to satisfy the
following condition:

1

1− 2C(τ1)
≤ cg

(
1 +

1

16Qgauss

)
(4)

where cg =
√

1− 1/(25Qgauss) is a constant used for proper scaling to adjust inequalities and is chosen to
be a real number close to 1− 2−47.

26

θ1 θ1 represents the precision required when approximating D[0,w1],σ1 using CDT. According to the way
CDT is used in Algorithm 4, θ1 needs to be set for satisfying R∞(D̃[0,w1],σ1 |D[0,w1],σ1) ≤ 1 + 1

16Qgauss
,

which holds when

2θ1 ≥ w1 · ρσ1([0, w1]) ·
(
cg(1 +

1
16Qgauss

)− 1
)−1 (5)

P I1exp P I1exp is a polynomial approximation for exp
(
− x

2σ2

)
over I1 = (−⌊2σ2⌋, 0]. The required properties

for the approximation polynomial P I1exp are as follows:∣∣∣∣ P
I1
exp(x)

exp(x/(2σ2))
− 1

∣∣∣∣ ≤ 1

22
√

2λQgauss
, (6)∣∣∣∣ exp(x/(2σ2))−P I1

exp(x)

1−exp(x/(2σ2))

∣∣∣∣ ≤ 1

22
√

2λQgauss
(7)

for all x ∈ I1. We find a polynomial satisfying (6) by using the method proposed in GALATICS, and (7) is
checked experimentally.

ϑ1 ϑ1 represents the precision required for evaluating the polynomial P I1exp at x ∈ I1. It needs to satisfy

2ϑ1 ≥ 2
1−exp(−1/2σ2)

√
2λQgauss. (8)

A.1.3 Security

The Rényi divergence of the output distribution of ApproxGσ from DZ,σ is demonstrated using that of the
output distribution of ApproxG+

σ from DZ≥0,σ in Theorem A.1. In simple terms, the divergence is affected
by how closely the approximation polynomial and CDT matches its real ones.

Theorem A.1. Let D̃Z≥0,σ denote the output distribution of ApproxG+
σ in Algorithm 2. If σ satisfies exp(− 1

2σ2) ≤
1− 1

2σ2+1
and τ1, θ1, P I1exp, θgauss, θI1poly satisfy (4), (5), (6), (7), (8), then

R2λ(D̃Z≥0,σ |DZ≥0,σ) ≤ 1 + 1
4Qgauss

.

Proof. The distribution D̃Z≥0,σ differs from the distribution DZ≥0,σ by two aspects due to the operation of
ApproxG+

σ . Let D̂Z≥0,σ be the output distribution of Algorithm 2 when replacing ApproxG+
σ1 with DZ≥0,σ1 ,

and let B̃exp(x/2σ2) be the output distribution of Algorithm 4. Then, by Lemma A.2, the Rényi divergence is
bounded as

R2λ(D̃Z≥0,σ |DZ≥0,σ) ≤ R2λ(D̃Z≥0,σ | D̂Z≥0,σ) ·R∞(D̂Z≥0,σ |DZ≥0,σ)

= R2λ(B̃exp(x/2σ2) | Bexp(x/2σ2)) ·R∞(D̃[0,w1],σ1 |DZ≥0,σ1).

Combining this with Lemma A.9 and Lemma A.3, we have the result:

R2λ(D̃Z≥0,σ |DZ≥0,σ) ≤
(
1 + 1

8Qgauss

)
· c2g
(
1 + 1

16Qgauss

)2
≤ 1 + 1

4Qgauss
.

27

Lemma A.2 ([4, Lemma 2.9]). Let a ∈ [1,∞). For three distributions D1,D2,D3 with Supp(Di) ⊂
Supp(Di+1), we have

Ra(D1 | D3) ≤

{
Ra(D1 | D2) ·R∞(D2 | D3)

R∞(D1 | D2)
a
a−1 ·Ra(D2 | D3) if a ∈ (1,∞)

.

Lemma A.3. Let D̃[0,w1],σ1 be the output distribution of ApproxBaseG+
σ1 in Algorithm 3. If τ1 and θ1 satisfy

1
1−2C(τ1)

≤ cg

(
1 + 1

16Qgauss

)
and 2θ1 ≥ w1 · ρσ1([0, w1]) · c−1

g ·
(
1 + 1

16Qgauss

)−1
,

then

R∞(D̃[0,w1],σ1 |DZ≥0,σ1) ≤ c2g

(
1 + 1

16Qgauss

)2
.

Proof. The result is directly obtained from the following calculations:

R∞(D̃[0,w1],σ1 |DZ≥0,σ1) = max
x∈[0,w1]

D̃[0,w1],σ1(x)

DZ≥0,σ1(x)

≤ max
x∈[0,w1]

D̃[0,w1],σ1(x)

D[0,w1],σ1(x)
· max
x∈[0,w1]

D[0,w1],σ1(x)

DZ≥0,σ1(x)

= R∞(D̃[0,w1],σ1 |D[0,w1],σ1) ·R∞(D[0,w1],σ1 |DZ≥0,σ1)

≤ c2g
(
1 + 1

16Qgauss

)2
where the last inequality comes from Lemma A.4 and Lemma A.6.

Lemma A.4. If 2θ1 ≥ w1 · ρσ1([0, w1]) · c−1
g ·

(
1 + 1

16Qgauss

)−1
, then

R∞(D̃[0,w1],σ1 |D[0,w1],σ1) ≤ cg

(
1 + 1

16Qgauss

)
.

Proof. Recall that R∞(D̃[0,w1],σ1 | D[0,w1],σ1) = max
x∈[0,w1]

D̃[0,w1],σ1
(x)

D[0,w1],σ1
(x) . Then, by the definition of D̃[0,w1],σ1 ,

28

it is trivial that
D̃[0,w1],σ1

(x)

D[0,w1],σ1
(x) < 1 for any x ̸= 0. In addition, one can easily see that

D̃[0,w1],σ1(0)

D[0,w1],σ1(0)
=

(
1−

w1∑
i=1

⌊D[0,w1],σ1(i) · 2
θ1⌋ · 2−θ1

)
· ρσ1([0, w1])

ρσ1(0)

<

(
1−

w1∑
i=1

(
D[0,w1],σ1(i) · 2

θ1 − 1
)
· 2−θ1

)
· ρσ1([0, w1])

=

(
1−

w1∑
i=1

(
D[0,w1],σ1(i)− 2−θ1

))
· ρσ1([0, w1])

= ρσ1([0, w1])−
w1∑
i=1

ρσ1(i) + w1 · 2−θ1 · ρσ1([0, w1])

= 1 + w1 · 2−θ1 · ρσ1([0, w1])

≤ cg

(
1 + 1

16Qgauss

)
.

Lemma A.5 ([34, Section 2.3]). For random n ∈ Z>0, σ ∈ R>0, τ > 1 ∈ R,

ρσ(Zn\{x ∈ Rn : ∥x∥ ≤ τσ
√
n}) < 2C(τ)n · ρσ(Z)n

with C(τ) = τ exp
(
1−τ2
2

)
< 1.

Lemma A.6. If τ1 satisfies 1
1−2C(τ1)

≤ cg

(
1 + 1

16Qgauss

)
, then

R∞(D[0,w1],σ1 |DZ≥0,σ1) ≤ cg

(
1 + 1

16Qgauss

)
.

Proof. Using the inequality that ab <
a−1/2
b−1/2 for a > b > 1, we have

R∞(D[0,w1],σ1 |DZ≥0,σ1) = max
x∈[0,w1]

D[0,w1],σ1(x)

DZ≥0,σ1(x)
=

ρσ1(Z≥0)

ρσ1([0, w1])

≤ ρσ1(Z≥0)− 1/2

ρσ1([0, w1])− 1/2
=

ρσ1(Z)
ρσ1([−w1, w1])

≤ 1

1− 2C(τ1)

≤ cg

(
1 + 1

16Qgauss

)
,

where the second inequality comes from the last holds by Lemma A.5.

29

Lemma A.7. Let P̃ (x) denote the output of Algorithm 5 with parameters P and ϑ. If p̃1 ∈ [12 , 2
s1−log2⌊2σ2⌋),

log2⌊2σ2⌋ − s1 ≤ 1, and ⌈log2⌊2σ2⌋⌉ − si ≤ −1, p̃i ∈ [12 , 1)ϑ for i ∈ {2, . . . , d}, then∣∣∣P̃ (x)− P (x)∣∣∣ ≤ 2−(ϑ+1) and P̃ (x) ∈ [0, 1]ϑ

for all x ∈ I ⊆ [−⌊2σ2⌋, 0].

Proof. Let η = ⌈log2⌊2σ2⌋⌉. For x ∈ I1, we have

|yd − ỹd| =
∣∣∣(p̃d · x) · 2−sd − ⌊(p̃d · x) · 2ϑ−sd⌉ · 2−ϑ∣∣∣

= 2−ϑ ·
∣∣∣(p̃d · x) · 2ϑ−sd − ⌊(p̃d · x) · 2ϑ−sd⌉∣∣∣

≤ 2−(ϑ+1).

Moreover, since p̃d ∈ [12 , 1)ϑ and x ∈ (−2η, 0], we have ⌊(p̃d · x) · 2ϑ−sd⌉ ∈ [−2η+ϑ−sd , 0], which in turn
implies ỹd = ⌊(p̃d · x) · 2ϑ−sd⌉ · 2−ϑ ∈ [−2η−sd , 0] ⊆ [−1

2 , 0]ϑ by η − sd ≤ −1.
Now, let us consider the case that i = d − 1. Given that p̃d−1 ∈ [12 , 1)ϑ and ỹd ∈ [−1

2 , 0]ϑ, we have
ỹd + p̃d−1 ∈ [0, 1)ϑ. As before, letting z̃d−1 = ỹd + p̃d−1, we then have

|yd−1 − ỹd−1| =
∣∣∣(z̃d−1 · x) · 2−sd−1 − ⌊(z̃d−1 · x) · 2ϑ−sd−1⌉ · 2−ϑ

∣∣∣
= 2−ϑ ·

∣∣∣(z̃d−1 · x) · 2ϑ−sd−1 − ⌊(z̃d−1 · x) · 2ϑ−sd−1⌉
∣∣∣

≤ 2−(ϑ+1)

and ỹd−1 ∈ [−1
2 , 0]ϑ by η − sd−1 ≤ −1.

Since ỹi and yi are computed in the same manner under the identical conditions on p̃i and ỹi+1 from
i = d− 1 down to 1, we have |y1 − ỹ1| ≤ 2−ϑ+1, and thus

|P̃ (x)− P (x)| = |y0 − ỹ0| = |(p̃0 + y1)− (p̃0 + ỹ1)| = |y1 − ỹ1| ≤ 2−(ϑ+1).

Since ỹ2 ∈ [−1
2 , 0]ϑ and p̃1 ∈ [12 , 2

s1−log2⌊2σ2⌋), we have ((ỹ2 + p̃1) · x) · 2ϑ−s1 ∈ (−2ϑ, 0], which implies
ỹ1 = ⌊((ỹ2 + p̃1) · x) · 2ϑ−s1⌉ · 2−ϑ ∈ [−1, 0]ϑ. Thus, P̃ (x) = ỹ0 = 1 + ỹ1 ∈ [0, 1]ϑ.

Lemma A.8 ([36, Lemma 3]). Assume that two distributions, D1 and D2, satisfy the following conditions:

− supp(D1) = supp(D2)

− ∃ δ > 0 such that
∣∣∣D1
D2
− 1
∣∣∣ ≤ δ over supp(D1)

Given that a ∈ (1,∞),

Ra(D1 | D2) ≤
(
1 +

a(a− 1)δ2

2(1− δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2
.

30

Lemma A.9. Let P I1exp(x) be a approximate polynomial for exp(x/2σ2) over x ∈ I1 = [−⌊2σ2⌋, 0] satisfy-
ing P I1exp(0) = 1. Assume that 1− exp

(
− 1

2σ2

)
≤ 1

e . If P I1exp(x) satisfies∣∣∣∣ P
I1
exp(x)

exp(x/2σ2)
− 1

∣∣∣∣ ≤ 1

22
√

2λQgauss
and

∣∣∣∣ exp(x/2σ2)−P I1
exp(x)

1−exp(x/2σ2)

∣∣∣∣ ≤ 1

22
√

2λQgauss

for all x ∈ I1 ∩ Z, then

R2λ(B̃exp(x/2σ2) | Bexp(x/2σ2)) ≤ 1 + 1
8Qgauss

where B̃exp(x/2σ2) denote the output distribution of Algorithm 4.

Proof. Note that 1 + 2λδ2

2 ≤ 1 + 1
8Qgauss

⇔ δ ≤ 1

2
√

2λQgauss
. From Lemma A.8, it is enough to show that the

relative error

δ :=

∣∣∣∣ B̃exp(x/2σ2)

Bexp(x/2σ2)
− 1

∣∣∣∣ = max

(∣∣∣∣ B̃exp(x/2σ2)(0)

Bexp(x/2σ2)(0)
− 1

∣∣∣∣ , ∣∣∣∣ B̃exp(x/2σ2)(1)

Bexp(x/2σ2)(1)
− 1

∣∣∣∣)
is bounded by 1

2
√

2λQgauss
.

Let P̃ I1exp(x) denote the output of Algorithm 5 with parametersP I1exp, ϑ1. Note that B̃exp(x/2σ2) = Bexp(x/2σ2)

for x = 0 sinceP I1exp(0) = 1. Now, we only consider the case that x ∈ [−⌊2σ2⌉,−1]. Since |P̃ I1exp(x)− P I1exp(x)| <
1−exp(−1/2σ2)

22
√

2λQgauss
by Lemma A.7 and (8) of ϑ1, we have∣∣∣∣ B̃exp(x/2σ2)(0)

Bexp(x/2σ2)(0)
− 1

∣∣∣∣ = ∣∣∣∣ 1−P̃ I1
exp(x)

1−exp(x/2σ2)
− 1

∣∣∣∣ = ∣∣∣∣ P̃ I1
exp(x)−exp(x/2σ2)
1−exp(x/2σ2)

∣∣∣∣
≤
∣∣∣∣ P̃ I1

exp(x)−P
I1
exp(x)

1−exp(x/2σ2)

∣∣∣∣+ ∣∣∣∣P I1
exp(x)−exp(x/2σ2)
1−exp(x/2σ2)

∣∣∣∣
≤
∣∣∣∣ P̃ I1

exp(x)−P
I1
exp(x)

1−exp(−1/2σ2)

∣∣∣∣+ ∣∣∣∣P I1
exp(x)−exp(x/2σ2)
1−exp(x/2σ2)

∣∣∣∣
≤ 1

22
√

2λQgauss
+ 1

22
√

2λQgauss

and ∣∣∣∣ B̃exp(x/(2σ2))(1)

Bexp(x/(2σ2))(1)
− 1

∣∣∣∣ = ∣∣∣∣ P̃
I1
exp(x)

exp(x/(2σ2))
− 1

∣∣∣∣
≤
∣∣∣∣ P̃

I1
exp(x)

exp(x/(2σ2))
− P

I1
exp(x)

exp(x/(2σ2))

∣∣∣∣+ ∣∣∣∣ P
I1
exp(x)

exp(x/(2σ2))
− 1

∣∣∣∣
≤ e

∣∣∣P̃ I1exp(x)− P I1exp(x)
∣∣∣+ ∣∣∣∣ P

I1
exp(x)

exp(x/(2σ2))
− 1

∣∣∣∣
≤ e(1−exp(−1/2σ2))

22
√

2λQgauss
+ 1

22
√

2λQgauss

≤ 1

22
√

2λQgauss
+ 1

22
√

2λQgauss
.

Then, these two inequalities show that the relative error is bounded by 1

2
√

2λQgauss
.

31

A.1.4 Concrete parameters

The parameters for the constant-time discrete Gaussian sampler are set as follows:

parameter set 1 2
λ 93 211
n 512 1024
Bsc 169 341
σ 110 200

α̂ (= σ/Bsc) 0.61 0.58
M (= exp(1/2α̂2)) 3.25 4.28
k (= 2⌊log2 σ⌋) 26 27

σ1 (= σ/k) 1.71875 1.5625
τ1 9 9

w1 (= ⌊τ1σ1⌋) 15 14
θ1 86 86
ϑ1 58 60
P I1exp Pg512 Pg1024

Table 5: Parameters for constant-time discrete Gaussian sampler

i cdt[i]
0 29,151,226,717,600,037,870,661,691
1 53,763,390,821,665,321,263,532,167
2 68,575,902,413,396,088,331,456,359
3 74,930,580,255,359,372,543,360,029
4 76,873,900,198,393,993,982,160,770
5 77,297,524,641,422,720,945,905,655
6 77,363,351,578,546,129,243,855,570
7 77,370,643,000,298,910,318,530,342
8 77,371,218,714,211,971,522,174,381
9 77,371,251,117,356,994,444,585,424
10 77,371,252,417,387,484,525,835,338
11 77,371,252,454,567,181,491,505,901
12 77,371,252,455,325,137,652,441,583
13 77,371,252,455,336,152,240,596,897
14 77,371,252,455,336,266,338,686,520
15 77,371,252,455,336,267,181,195,263

Figure 4: CDT for parameter set 1

i cdt[i]
0 31,473,435,849,184,983,252,505,562
1 57,118,314,364,810,086,106,862,155
2 70,991,305,743,784,588,362,155,679
3 75,973,866,085,059,201,192,707,076
4 77,161,952,411,522,559,008,139,834
5 77,350,038,384,741,789,294,624,734
6 77,369,807,070,584,075,157,898,075
7 77,371,186,540,301,596,754,123,086
8 77,371,250,448,933,808,020,018,060
9 77,371,252,414,645,652,688,308,441
10 77,371,252,454,787,112,897,757,494
11 77,371,252,455,331,339,114,273,267
12 77,371,252,455,336,237,790,445,107
13 77,371,252,455,336,267,065,046,065
14 77,371,252,455,336,267,181,195,263

Figure 5: CDT for parameter set 2

32

Pg512(x) = ((((((((((8004071744321549
258

· x · 2−19

+ 6144316755720785
258

) · x · 2−19

+ 3070710202578901
258

) · x · 2−17

+ 5162723504379443
258

) · x · 2−18

+ 3817631981177055
258

) · x · 2−17

+ 4934484841355621
258

) · x · 2−18

+ 2733198821433297
258

) · x · 2−19

+ 630792911273043
258

) · x · 2−13

+ 7453705375596337
258

) · x · 2−18

+ 2064281503328677
258

) · x · 2−14

+ 6098097214449223
258

) · x · 2−9

+ 1

Pg1024(x) = ((((((((((1018039829034577
260

· x · 2−21

+ 645870593390651
260

) · x · 2−20

+ 533527473870741
260

) · x · 2−16

+ 5930642997942607
260

) · x · 2−19

+ 7248725463683367
260

) · x · 2−24

+ 241976988139137
260

) · x · 2−17

+ 886151729371391
260

) · x · 2−19

+ 676080313016947
260

) · x · 2−18

+ 825293359306145
260

) · x · 2−19

+ 377789318627941
260

) · x · 2−16

+ 922337203685445
260

) · x · 2−6

+ 1

Figure 6: Polynomial approximation for exp
(
x/2σ2

)
over I1

A.2 Rejection Sampling

A.2.1 Algorithm

Essentially, Algorithm 6 describes a way of sampling bits from the Bernoulli distribution with parame-
ter Ψ(z,v) = 1/(M exp(−∥v∥2/(2σ2)) cosh(⟨z,v⟩/σ2)) where M = exp(1/(2α̂2)). To do this, Al-
gorithm 6 combines two Bernoulli distributions by observing that the Bernoulli distribution BΨ can be
decomposed into the product of BΨ1 and BΨ2 where Ψ1(v) = 1/(M exp(−∥v∥2/(2σ2))), Ψ2(z,v) =
1/ cosh(⟨z,v⟩/σ2).

Algorithm 6 RejectSampleσ,α̂(z,v)

Input z,v ∈ R2 satisfying ∥v∥ ≤ σ/α̂ and |⟨z,v⟩| ≤ β2σ/α̂
Output b ∈ {0, 1}

1: x← ||v||2 − σ2

α̂2 // x ∈ I2 = [−σ2

α̂2 , 0]
2: y ← 2⟨z,v⟩ // y ∈ [−2β2σ/α̂, 2β2σ/α̂]
3: b1 ← SampleBernExpI2σ (x) // b1 ∼̇ Bexp(x/2σ2))

4: b2 ← SampleBernCoshσ(y) // b2 ∼̇ B1/cosh(y/2σ2)

5: return b1b2

SampleBernExpI2σ (x) implements an approximated version of the Bernoulli distribution Bexp(x/(2σ2))

for x ∈ I2, based on the following approximations: for x = x1ĉ+ x0, x0 ∈ I ′2 = (−ĉ, 0],

exp
(
x

2σ2

)
= exp

(
x1c+x1(ĉ−c)+x0

2σ2

)
= 2x1 exp

(
ĉ−c
2σ2

)x1
exp
(
x0
2σ2

)
≈ 2x1(1 + ωx1) · P

I′2
exp(x0)

33

where

ĉ ≈ c = 2σ2 ln(2), exp
(
ĉ−c
2σ2

)x1 ≈ (1 + ωx1), exp
(
x0
2σ2

)
≈ P I

′
2

exp(x0).

In particular, the output of SampleBernExpI2σ (x) is distributed according to the Bernoulli distribution with
parameter similar to 2x1(1+ωx1)·P

I′2
exp(x0). Note that EvaluatePoly[P I

′
2

exp, ϑ2](x0) is described in the Algo-

rithm 5 with parameter P I
′
2

exp and ϑ2.

Algorithm 7 SampleBernExpI2σ (x)

Input x ∈ I2 = [−σ2

α̂2 , 0]
Output b ∈ {0, 1}

1: x1 ← ⌈x/ĉ⌉ // ĉ ≈ 2σ2 ln(2)
2: x0 ← x− x1ĉ // x0 ∈ I ′2 = (−ĉ, 0]
3: p̂0 ← EvaluatePoly[P

I′2
exp, ϑ2](x0)

4: p̂1 ← 2x1(1 + ωx1)
5: p̂← Mul[ϑ2](p̂0, p̂1)
6: u← U([0, 1)ϑ2)
7: if u ≤ p̂ then return 1 else return 0

SampleBernCoshσ(y) implements an approximated version of the Bernoulli distribution B1/ cosh(y/2σ2),
based on the following approximations:

2 cosh
(y
2σ2

)
= exp

(y
2σ2

)
+ exp

(−y
2σ2

)
= 2y1 exp

(
ĉ−c
2σ2

)y1
exp
(y0
2σ2

)
+ 2−y1+1 exp

(
ĉ−c
2σ2

)−y1+1
exp
(−y0−ĉ

2σ2

)
≈ 2y1(1 + y1ω)P

I′2
exp(y0) + 2−y1+1(1 + (1− y1)ω)P

I′2
exp(−y0−ĉ).

where y = y1ĉ + y0, y0 ∈ I ′2. In particular, the output of SampleBernCoshσ(y) is distributed according to
the Bernoulli distribution with parameter similar to

2

2y1(1 + y1ω)P
I′2
exp(y0) + 2−y1+1(1 + (1− y1)ω)P

I′2
exp(−y0−ĉ)

.

Note that up̂ is multiplied with exactly and then compared with 1.

Algorithm 8 SampleBernCoshσ(y)

Input y ∈ [−2β2σ/α̂, 2β2σ/α̂]
Output b ∈ {0, 1}

1: y1 ← ⌈y/ĉ⌉
2: y0 ← y − y1ĉ
3: p̂0 ← EvaluatePoly[P

I′2
exp, ϑ2](−y0 − ĉ)

4: p̂1 ← 2−y1+1(1 + ω(1− y1))
5: q̂0 ← EvaluatePoly[P

I′2
exp, ϑ2](y0)

6: q̂1 ← 2y1(1 + ωy1)
7: p̂← 2−1(Mul[ϑ2](p̂0, p̂1) +Mul[ϑ2](q̂0, q̂1))
8: u← U([0, 1)ϑ2)
9: if up̂ ≤ 1 then return 1 else return 0

34

Mul[ϑ](a, b) returns an approximate value of a · b based on the following approximations:

a · b ≈ ⌊a′ · b′ · 2ϑ⌉ · 2−ϑ+⌊log2 |a|⌋+⌊log2 |b|⌋

where a′ = a · 2−⌊log2 a⌋ ∈ (12 , 1] and b′ = b · 2−⌊log2 b⌋ ∈ (12 , 1]. For a, b ∈ (0, 1), the difference between
Mul[ϑ](a, b) and a · b is bounded by the following inequality:

|Mul[ϑ](a, b)− a · b| =
∣∣∣⌊a′ · b′ · 2ϑ⌉ · 2−ϑ+⌊log2 a⌋+⌊log2 b⌋ − a · b

∣∣∣
= 2−ϑ+⌊log2 a⌋+⌊log2 b⌋ ·

∣∣∣⌊a′ · b′ · 2ϑ⌉ − a′ · b′ · 2ϑ∣∣∣
≤ 2−(ϑ+1)+⌊log2 a⌋+⌊log2 b⌋ ≤ 2−(ϑ+1).

Algorithm 9 Mul[ϑ](a, b)

Input a, b > 0
Output c

1: a′ ← a · 2−⌊log2 a⌋

2: b′ ← b · 2−⌊log2 b⌋

3: c← ⌊a′ · b′ · 2ϑ⌉ · 2−ϑ+⌊log2 a⌋+⌊log2 b⌋

4: return c

A.2.2 Constraints for parameters

δreject, cr,1, cr,2 δreject =
1

26σ2
√
λQreject

< 1, and

cr,1 =
1

2δreject

(
1−

√
1

4δreject(cr,2−5/8)+1

)
< 1, (9)

cr,2 =
1

8δreject

(√
1 + 16δreject − 1

)
< 1. (10)

are small positive constants used for proper scaling to adjust some inequalities. Note that cr,1, cr,2 satisfy
some inequalities such as cr,1 < cr,2 − 5

8 ,

2(1 + 2⌊log2(1+ωζ)⌋)
(
1 +

2·cr,1·δreject
1−2·cr,1·δreject

)2
< 5, (11)

cr,1·δreject
1−2·cr,1·δreject

+
(

cr,1·δreject
1−2·cr,1·δreject

)2
≤ (cr,2 − 5

8) · δreject (12)

where ζ = ⌈ β2
σα̂ ln 2⌉.

ĉ ĉ is an approximate value of c = 2σ2 ln 2, and it is set to satisfy

(ĉ− c)2 ≤ 8σ4

eζ2
· cr,1 · δreject. (13)

ω ω is a approximate value of ĉ−c
2σ2 and satisfies

ĉ− c
2σ2

− ω ≤ 1

e(ζ + 1)
· cr,1 · δreject. (14)

35

P
I′2
exp P

I′2
exp is a polynomial approximation for exp

(
− x

2σ2

)
over I ′2 = (−ĉ, 0], which satisfies∣∣∣∣∣ P

I′2
exp(x)

exp (x/2σ2)
− 1

∣∣∣∣∣ ≤ cr,1 · δreject (15)

for all x ∈ I ′2.

ϑ2 ϑ2 represents the precision required for evaluating the polynomial P I
′
2

exp at x ∈ I ′2. It needs to satisfy

2ϑ2 ≥ (2 · cr,1 · δreject)
−1. (16)

A.2.3 Security

Rényi divergence between the Bernoulli distribution B1/(M exp(−||v||2/2σ2) cosh(⟨z,v⟩/σ2)) and output distribu-
tion of RejectSampleσ,α̂(z,v) is demonstrated by showing how closely the approximation polynomial rep-
resents the exponential and hyperbolic cosine functions. In Theorem A.10, the Rényi divergence is bounded
by demonstrating the bounds of each part.

Theorem A.10. Let B̃Ψ(z,v) be a probability distribution of RejectSampleσ,α̂(z,v) in Algorithm 6. If

P
I′2
exp(x), ĉ and ω satisfy (13), (14), (15), then

R2λ(B̃Ψ(z,v) | BΨ(z,v)) ≤ 1 +
1

4Qreject

for all z,v satisfying ∥v∥ ≤ σ
α̂ , |⟨z,v⟩| ≤ β2σ

α̂ where Ψ(z,v) = 1/(M exp(−∥v∥2/(2σ2)) cosh(⟨z,v⟩/σ2)),
M = exp(1

2α̂2).

Proof. Let us denote the output distributions of SampleBernExpσ(x) in Algorithm 7 and SampleBernCoshσ(y)
in Algorithm 8 as B̃exp(x/2σ2) and B̃1/ cosh(y/2σ2), respectively. Then, by Lemma A.8, the Rényi divergence
is bounded by its relative error.

Letting A =
B̃exp(x/2σ2)(1)

Bexp(x/2σ2)(1)
and B =

B̃1/ cosh(y/2σ2)(1)

B1/ cosh(y/2σ2)(1)
, we have, for x ∈ [−σ2/α̂2, 0],∣∣∣∣ B̃Ψ(z,v)(1)

BΨ(z,v)(1)
− 1

∣∣∣∣ = ∣∣∣∣ B̃exp(x/2σ2)(1)·B̃1/ cosh(y/2σ2)(1)

Bexp(x/2σ2)(1)·B1/ cosh(y/2σ2)(1)
− 1

∣∣∣∣ = |AB − 1|

≤ |A− 1|+ |B − 1|+ |(A− 1)(B − 1)|
≤ 24 · cr,2 · δreject + 26 · c2r,2 · δ2reject

≤ 24 · δreject

where the second inequality from the last comes from Lemma A.12, Lemma A.14, and the last equality

36

holds by (10). Similarly, we have, for x ∈ [−σ2/α̂2, 0],∣∣∣∣ B̃Ψ(z,v)(0)

BΨ(z,v)(0)
− 1

∣∣∣∣ = ∣∣∣∣1−B̃exp(x/2σ2)(1)·B̃1/ cosh(y/2σ2)(1)

1−Bexp(x/2σ2)(1)·B1/ cosh(y/2σ2)(1)
− 1

∣∣∣∣
=

∣∣∣∣ Bexp(x/2σ2)(1)·B1/ cosh(y/2σ2)(1)

1−Bexp(x/2σ2)(1)·B1/ cosh(y/2σ2)(1)

∣∣∣∣ · ∣∣∣∣ B̃exp(x/2σ2)(1)·B̃1/ cosh(y/2σ2)(1)

Bexp(x/2σ2)(1)·B1/ cosh(y/2σ2)(1)
− 1

∣∣∣∣
≤
∣∣∣∣ Bexp(x/2σ2)(1)

1−Bexp(x/2σ2)(1)

∣∣∣∣ · |AB − 1|

≤
∣∣∣ exp(−1/2σ2)
1−exp(−1/2σ2)

∣∣∣ · |AB − 1|

≤
∣∣∣ exp(−1/2σ2)
1−exp(−1/2σ2)

∣∣∣ · 24 · δreject

≤ 25 · σ2 · δreject

where the last inequality holds since exp(1
2σ2) > 1 + 1

2σ2 and
∣∣∣ exp(−1/2σ2)
1−exp(−1/2σ2)

∣∣∣ < 2σ2.

Thus, the relative error between the two distributions are bounded by 25 · σ2 · δreject, which proves the
result by Lemma A.8.

Lemma A.11. Let P̃ I
′
2

exp(x) be the output value of Algorithm 5 with parameters P I
′
2

exp and ϑ2. If P I
′
2

exp(x), ϑ2
satisfies (15), (16), then ∣∣∣∣∣ P̃

I′2
exp(x)

exp (x/(2σ2))
− 1

∣∣∣∣∣ ≤ 2 · cr,1 · δreject

for x ∈ I ′2.

Proof. The result is derived from following inequality:∣∣∣∣∣ P̃
I′2
exp(x)

exp (x/(2σ2))
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣ P̃

I′2
exp(x)

exp (x/(2σ2))
−

P
I′2
exp(x)

exp (x/(2σ2))

∣∣∣∣∣+
∣∣∣∣∣ P

I′2
exp(x)

exp (x/(2σ2))
− 1

∣∣∣∣∣
≤
∣∣∣P̃ I′2exp(x)− P

I′2
exp(x)

∣∣∣+ ∣∣∣∣∣ P
I′2
exp(x)

exp (x/(2σ2))
− 1

∣∣∣∣∣
≤ 2 · cr,1 · δreject,

where the last inequality comes from the (15), (16) and Lemma A.7.

Lemma A.12. Let B̃exp(x/2σ2) be the output distribution of SampleBernExpI2σ (x) in Algorithm 7. If P I
′
2

exp(x),
ĉ, ϑ2 and ω satisfy (13), (14), (15), (16), then∣∣∣∣∣ B̃exp(x/2σ2)(1)

Bexp(x/2σ2)(1)
− 1

∣∣∣∣∣ ≤ 23 · cr,2 · δreject

for all x ∈ I2 =
[
− σ2

α̂2 , 0
]
.

37

Proof. Note that∣∣∣∣∣ B̃exp(x/2σ2)(1)

Bexp(x/2σ2)(1)
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣ B̃exp(x/2σ2)(1)

Bexp(x/2σ2)(1)
−
Bẽxp(x/2σ2)(1)

Bexp(x/2σ2)(1)

∣∣∣∣∣︸ ︷︷ ︸
(∗)

+

∣∣∣∣∣Bẽxp(x/2σ2)(1)

Bexp(x/2σ2)(1)
− 1

∣∣∣∣∣︸ ︷︷ ︸
(⋆)

,

where ẽxp(x/2σ2) = 2x1(1 + ωx1)P̃
I′2
exp(x0). We will prove the result by finding an upper bound of (⋆) and

an upper bound of (∗) respectively, and then by combining them.

Let us define A = 1+ωx1

exp
(
ĉ−c
2σ2

)x1 and B =
P̃

I′2
exp(x0)

exp(x02σ2)
. Then, for x ∈ (−ĉ, 0], we have x1 = 0 and so

(⋆) =

∣∣∣∣∣2x1(1 + ωx1)P̃
I′2
exp(x0)

exp(x/2σ2)
− 1

∣∣∣∣∣ =
∣∣∣∣∣ P̃

I′2
exp(x0)

exp(x0/2σ2)
− 1

∣∣∣∣∣ ≤ 2 · cr,1 · δreject < 23 · (cr,2 − 5
8) · δreject,

where the inequality holds by Lemma A.11 and cr,1 < cr,2 − 5
8 < 1. Moreover, for x = x1ĉ + x0, x0 ∈

(−ĉ, 0], we have

(⋆) ≤

∣∣∣∣∣ 2x1(1 + ωx1)P̃
I′2
exp(x0)

2x1 exp
(
ĉ−c
2σ2

)x1
exp
(
x0
2σ2

) − 1

∣∣∣∣∣
= |AB − 1|
≤ |A− 1|+ |B − 1|+ ∥A− 1||B − 1|
≤ 4 · cr,1 · δreject + 4 · c2r,1 · δ2reject

< 23 · (cr,2 − 5
8) · δreject

where two inequalities from the last come from Lemma A.11, Lemma A.13, and cr,1 < cr,2 − 5
8 < 1.

Since SampleBernExpI2σ (x) computes its value with Mul[ϑ2](), we have

(∗) =

∣∣∣∣∣2x1Mul[ϑ2](1 + ωx1, P̃
I′2
exp(x0))− 2x1(1 + ωx1)P̃

I′2
exp(x0)

2x1 exp
(
ĉ−c
2σ2

)x1
exp
(
x0
2σ2

) ∣∣∣∣∣
≤ e ·

∣∣∣Mul[ϑ2](1 + ωx1, P̃
I′2
exp(x0))− (1 + ωx1)P̃

I′2
exp(x0)

∣∣∣
≤ e · 2−(ϑ2+1)

where the last inequality comes from (1 + ωx1)P̃
I′2
exp(x0) < 1.

Finally, combining these two upper bounds, we have∣∣∣∣∣ B̃exp(x/2σ2)(1)

Bexp(x/2σ2)(1)
− 1

∣∣∣∣∣ ≤ e · 2−(ϑ2+1) + 23 · (cr,2 − 5
8) · δreject

≤ e · cr,1 · δreject + 23 · (cr,2 − 5
8) · δreject < 23 · cr,2 · δreject

where the last inequality comes from cr,1 < 1.

38

Lemma A.13. If ĉ, ω satisfy (13) and (14), then∣∣∣∣∣ 1 + ωx

exp
(
ĉ−c
2σ2

)x − 1

∣∣∣∣∣ ≤ 2 · cr,1 · δreject, (17)∣∣∣∣∣1 + ω(1− x)
exp
(
ĉ−c
2σ2

)1−x − 1

∣∣∣∣∣ ≤ 2 · cr,1 · δreject (18)

for all x ∈ (−ζ, 0] where ζ = ⌈ β2
σα̂ ln 2⌉.

Proof. Note that
∣∣et − (1 + t)

∣∣ ≤ t2

2 for t ∈ (−1, 0] and
∣∣et − (1 + t)

∣∣ ≤ t2

2 e for t ∈ (0, 1). Since x ∈
(−ζ, 0] and 0 < ζ(ĉ−c)

2σ2 < 1, we have∣∣∣∣∣ 1+ωx

exp
(

ĉ−c

2σ2

)x − 1

∣∣∣∣∣ = ∣∣∣exp(ĉ−c2σ2

)x − (1 + ωx)
∣∣∣ · exp(ĉ−c2σ2

)−x
≤
∣∣∣exp(ĉ−c2σ2

)x − (1 + ωx)
∣∣∣ · e︸ ︷︷ ︸

(⋆)

.

Then

(⋆) ≤
(∣∣exp(ĉ−c

2σ2 x
)
− (1 + ĉ−c

2σ2 x)
∣∣+ ∣∣(1 + ĉ−c

2σ2 x)− (1 + ωx)
∣∣) · e

≤
(

1
2

(
ζ(ĉ−c)
2σ2

)2
+
∣∣(1 + ĉ−c

2σ2 x)− (1 + ωx)
∣∣) · e

≤ e
2

(
ζ(ĉ−c)
2σ2

)2
+ eζ

∣∣ ĉ−c
2σ2 − ω

∣∣
≤ 2 · cr,1 · δreject

where the last inequality comes from the (13), (14).
On the other hand, since −1 < (x−1)(ĉ−c)

2σ2 ≤ 0, we have∣∣∣∣∣ 1+ω(1−x)

exp
(

ĉ−c

2σ2

)1−x − 1

∣∣∣∣∣ = ∣∣∣exp(ĉ−c2σ2

)1−x − (1 + ω(1− x))
∣∣∣ · exp(ĉ−c2σ2

)x−1

≤
∣∣∣exp(ĉ−c2σ2

)1−x − (1 + ω(1− x))
∣∣∣︸ ︷︷ ︸

(∗)

.

Then

(∗) ≤
∣∣exp(ĉ−c

2σ2 (1− x)
)
− (1 + ĉ−c

2σ2 (1− x))
∣∣+ ∣∣(1 + ĉ−c

2σ2 (1− x))− (1 + ω(1− x))
∣∣

≤ e
2

(
ζ(ĉ−c)
2σ2

)2
+
∣∣(1 + ĉ−c

2σ2 (1− x))− (1 + ω(1− x))
∣∣

≤ e
2

(
ζ(ĉ−c)
2σ2

)2
+ (ζ + 1)

∣∣ ĉ−c
2σ2 − ω

∣∣
≤ 2 · cr,1 · δreject

where the last inequality also comes from the (13), (14).

39

Lemma A.14. Let B̃1/ cosh(y/2σ2) be the output distribution of SampleBernCoshσ(y) in Algorithm 8. If

P
I′2
exp(x), ĉ, ω, ϑ2 satisfy (13), (14), (15), (16), then∣∣∣∣∣ B̃1/ cosh(y/2σ2)(1)

B1/ cosh(y/2σ2)(1)
− 1

∣∣∣∣∣ ≤ 23 · cr,2 · δreject

for all y ∈
[
− 2β2σ

α̂ , 2β2σα̂
]
.

Proof. Note that∣∣∣∣∣ B̃1/cosh(y/2σ2)(1)

B1/cosh(y/2σ2)(1)
− 1

∣∣∣∣∣ ≤
∣∣∣∣∣ B̃1/cosh(y/2σ2)(1)

B1/cosh(y/2σ2)(1)
−
B
1/c̃osh(y/2σ2)

(1)

B1/cosh(y/2σ2)(1)

∣∣∣∣∣︸ ︷︷ ︸
(∗)

+

∣∣∣∣∣B1/c̃osh(y/2σ2)
(1)

B1/cosh(y/2σ2)(1)
− 1

∣∣∣∣∣︸ ︷︷ ︸
(⋆)

.

We will prove the result by finding an upper bound of (⋆) and an upper bound of (∗) respectively, and then
by combining them.

Let us define c̃osh(y/2σ2) = 2y1 (1+ωy1)P̃
I′2
exp(y0)+21−y1 (1+ω(1−y1))P̃

I′2
exp(−y0−ĉ)

2 and

A =
exp

(
ĉ−c

2σ2

)y1

1+ωy1
, B =

exp
(

y0
2σ2

)
P̃

I′2
exp(y0)

, C =
exp

(
ĉ−c

2σ2

)1−y1

1+ω(1−y1) , D =
exp

(
− y0+ĉ

2σ2

)
P̃

I′2
exp(−y0−ĉ)

.

Then, for y = y1ĉ+ y0, y0 ∈ (−ĉ, 0], we have

(⋆) =

∣∣∣∣∣ exp
(

y

2σ2

)
+exp

(
− y

2σ2

)
2y1 (1+ωy1)P̃

I′2
exp(y0)+21−y1 (1+ω(1−y1))P̃

I′2
exp(−y0−ĉ)

− 1

∣∣∣∣∣
≤

∣∣∣∣∣ exp
(

y

2σ2

)
2y1 (1+ωy1)P̃

I′2
exp(y0)

− 1

∣∣∣∣∣+
∣∣∣∣∣ exp

(
− y

2σ2

)
21−y1 (1+ω(1−y1))P̃

I′2
exp(−y0−ĉ)

− 1

∣∣∣∣∣
=

∣∣∣∣∣ exp
(

ĉ−c

2σ2

)y1
exp

(
y0
2σ2

)
(1+ωy1)P̃

I′2
exp(y0)

− 1

∣∣∣∣∣+
∣∣∣∣∣ exp

(
ĉ−c

2σ2

)1−y1
exp

(
− y0+ĉ

2σ2

)
(1+ω(1−y1))P̃

I′2
exp(−y0−ĉ)

− 1

∣∣∣∣∣
≤ |A− 1|+ |B − 1|+ |(A− 1)(B − 1)|+ |C − 1|+ |D − 1|+ |(C − 1)(D − 1)|.

Since
∣∣ 1
A − 1

∣∣, ∣∣ 1B − 1
∣∣, ∣∣ 1C − 1

∣∣, ∣∣ 1D − 1
∣∣ are less than or equal to 2cr,1δreject by Lemma A.13, Lemma A.11,

we have

(⋆) ≤ 4
2·cr,1·δreject

1−2·cr,1·δreject
+ 2

(
2·cr,1·δreject

1−2·cr,1·δreject

)2
≤ 23 · (cr,2 − 5

8) · δreject

where two inequalities come from Lemma A.15 and (12).
Let us define

E = exp
(
ĉ−c
2σ2

)y1
exp

(y0
2σ2

)
, F = exp

(
ĉ−c
2σ2

)1−y1
exp

(
−y0−ĉ
2σ2

)
,

G = Mul[ϑ2](1 + ωy1, P̃
I′2
exp(y0)), H = Mul[ϑ2](1 + ω(1− y1), P̃

I′2
exp(−y0 − ĉ)),

I = (1 + ωy1)P̃
I′2
exp(y0), J = (1 + ω(1− y1))P̃

I′2
exp(−y0 − ĉ).

40

Since SampleBernCoshσ(y) computes its value with Mul[ϑ2](), we have the following inequalities. Without
loss of generality, we assume y ≥ 0. Then, for y ∈ [0, ĉ), we have y1 = 0 and so

(∗) =

∣∣∣∣∣(exp
(y0
2σ2

)
+ 2F)(P̃

I′2
exp(y0) + 2H − P̃ I

′
2

exp(y0)− 2J)

(P̃
I′2
exp(y0)) + 2H) · (P̃ I

′
2

exp(y0) + 2J)

∣∣∣∣∣
≤

∣∣∣∣∣exp
(y0
2σ2

)
+ 2F

P̃
I′2
exp(y0) + 2J

∣∣∣∣∣ · 2 |H − J |
≤

(∣∣∣∣∣exp
(y0
2σ2

)
P̃
I′2
exp(y0)

∣∣∣∣∣+
∣∣∣∣FJ
∣∣∣∣
)
· 2 |H − J | = (|B|+ |C ·D|) · 2 |H − J |

≤ 2
(
(1 +

cr,1·δreject
1−cr,1·δreject

) + (1 +
2·cr,1·δreject

1−2·cr,1·δreject
)2
)
2−(ϑ2+1)

≤ 5 · 2−(ϑ2+1)

where last two inequalities come from J < 1, Lemma A.11, Lemma A.13 and (11). Moreover, for y ∈
[ĉ, 2β2σ/α̂], we have

(∗) =
∣∣∣∣(2y1E + 21−y1F)(2y1G+ 21−y1H − 2y1I − 21−y1J)

(2y1G+ 21−y1H) · (2y1I + 21−y1J)

∣∣∣∣
=

∣∣∣∣(E + 21−2y1F)(G+ 21−2y1H − I − 21−2y1J)

(G+ 21−2y1H) · (I + 21−2y1J)

∣∣∣∣
≤
∣∣∣∣(E + 21−2y1F)(G+ 21−2y1H − I − 21−2y1J)

I + 21−2y1J

∣∣∣∣
≤
(∣∣∣∣ E

I + 21−2y1J

∣∣∣∣+ ∣∣∣∣ 21−2y1F

I + 21−2y1J

∣∣∣∣) (|G− I|+ 21−2y1 |H − J |
)

≤
(∣∣E
I

∣∣+ ∣∣FJ ∣∣) (|G− I|+ 21−2y1 |H − J |
)
= (|A ·B|+ |C ·D|)

(
|G− I|+ 21−2y1 |H − J |

)
≤ 2

(
1 +

2·cr,1·δreject
1−2·cr,1·δreject

)2 (
2⌊log2(1+ωy1)⌋ + 21−2y1

)
2−(ϑ2+1)

≤ 2
(
1 +

2·cr,1·δreject
1−2·cr,1·δreject

)2 (
1 + 2⌊log2(1+ωζ)⌋

)
2−(ϑ2+1)

≤ 5 · 2−(ϑ2+1)

where ζ = ⌈ β2
σα̂ ln 2⌉ and last four inequalities come from J < 1, Lemma A.11, Lemma A.13, and (11).

Finally, combining these two upper bounds, we have∣∣∣∣∣ B̃1/cosh(y/2σ2)(1)

B1/cosh(y/2σ2)(1)
− 1

∣∣∣∣∣ ≤ 5 · 2−(ϑ2+1) + 23 · (cr,2 − 5
8) · δreject

≤ 5 · cr,1 · δreject + 23 · (cr,2 − 5
8) · δreject < 23 · cr,2 · δreject

where the last inequality comes from cr,1 < 1.

Lemma A.15. If |a− 1| ≤ κ, then
∣∣ 1
a − 1

∣∣ ≤ κ
1−κ .

Proof. From the hypothesis,
∣∣ 1
a

∣∣ ≤ 1
1−κ . Thus, we have

∣∣ 1
a − 1

∣∣ = |a− 1| ·
∣∣ 1
a

∣∣ ≤ κ
1−κ .

41

A.2.4 Concrete parameters

The parameters for the constant time rejection sampling are set as follows:
(Qsign = 264, Qreject =M ·Qsign)

parameter set 1 2
n 512 1024
σ 110 200
ĉ 4397245863/218 58145399841/220

ω 58857/252 41553/252

ϑ2 56 59
P
I′2
exp Pr512 Pr1024

Table 6: Parameters for the constant-time Bernoulli sampler

Pr512(x) = (((((((((((65907013597553883
256

· x · 2−37

+ 50325055043457447
256

) · x · 2−38

+ 13404400374123511
256

) · x · 2−34

+ 49757646361832495
256

) · x · 2−41

+ 1292424452228331
256

) · x · 2−34

+ 3818042287379289
256

) · x · 2−34

+ 9869033955450437
256

) · x · 2−35

+ 10932798581914461
256

) · x · 2−39

+ 630792917896649
256

) · x · 2−33

+ 1863426344390227
256

) · x · 2−32

+ 8257126013350391
256

) · x · 2−33

+ 12196194428898877
256

) · x · 2−30

+ 1

Pr1024(x) = (((((((((((166491802315343951
259

· x · 2−40

+ 206051247573429639
259

) · x · 2−43

+ 22563387418474339
259

) · x · 2−35

+ 553337835353119253
259

) · x · 2−40

+ 380075599106701163
259

) · x · 2−39

+ 463968372140871685
259

) · x · 2−41

+ 123893025271994865
259

) · x · 2−42

+ 14178431944258309
259

) · x · 2−35

+ 173076561948552247
259

) · x · 2−37

+ 422550200075985057
259

) · x · 2−39

+ 193428131138340275
259

) · x · 2−38

+ 118059162071741129
259

) · x · 2−34

+ 576460752303423487
259

Figure 7: Polynomial approximation for exp(x/2σ2) over I ′2 = (−ĉ, 0]

42

	Introduction
	Our Contribution
	Related Works

	Preliminaries
	Discrete Gaussian Distribution
	Cryptographic Definitions
	Hardness Assumptions

	Our NTRU+Sign Signature Scheme
	Construction
	Correctness
	Equality Check
	Rejection Sampling
	Secret Key Constraint
	Security Proof
	paHVZK
	Commitment Min-Entropy
	UF-NMA Security

	Parameter Settings
	Concrete Parameters
	Concrete Security Analysis
	Comparison

	Performance Analysis
	Reference Implementation
	Implementation Details
	Gaussian Sampling
	Rejection Sampling
	Signature Packing

	Discrete Gaussian and Rejection Sampling
	Discrete Gaussian
	Algorithms
	Constraints for Parameters
	Security
	Concrete parameters

	Rejection Sampling
	Algorithm
	Constraints for parameters
	Security
	Concrete parameters

