
dCTIDH: Fast & Deterministic CTIDH
Fabio Campos1, Andreas Hellenbrand2, Michael Meyer3 and Krijn Reijnders4

1 Bonn-Rhein-Sieg University of Applied Sciences, Germany
campos@sopmac.de

2 RheinMain University of Applied Sciences Wiesbaden, Germany
andreas.hellenbrand@hs-rm.de

3 University of Regensburg, Germany
michael@random-oracles.org

4 Radboud University, Nijmegen, The Netherlands
krijn@q1q1.nl

Abstract. This paper presents dCTIDH, a CSIDH implementation that combines two
recent developments into a novel state-of-the-art deterministic implementation. We
combine the approach of deterministic variants of CSIDH with the batching strategy
of CTIDH, which shows that the full potential of this key space has not yet been
explored. This high-level adjustment in itself leads to a significant speed-up. To
achieve an effective deterministic evaluation in constant time, we introduce WOMBats,
a new approach to performing isogenies in batches, specifically tailored to the behavior
required for deterministic CSIDH using CTIDH batching. Furthermore, we explore
the two-dimensional space of optimal primes for dCTIDH, with regard to both the
performance of dCTIDH in terms of finite-field operations per prime and the efficiency
of finite-field operations, determined by the prime shape, in terms of cycles. This
allows us to optimize both for choice of prime and scheme parameters simultaneously.
Lastly, we implement and benchmark constant-time, deterministic dCTIDH. Our
results show that dCTIDH not only outperforms state-of-the-art deterministic CSIDH,
but even non-deterministic CTIDH: dCTIDH-2048 is faster than CTIDH-2048 by
17%, and is almost five times faster than dCSIDH-2048.
Keywords: post-quantum cryptography · isogeny-based cryptography · CSIDH

1 Introduction
At Asiacrypt 2018, Castryck, Lange, Martindale, Panny, and Renes [16] proposed CSIDH,
a commutative isogeny-based key exchange protocol. Since its introduction, CSIDH has
been one of the most interesting post-quantum cryptoschemes, mainly due to its small
public keys (64 bytes in the original NIST Level I parameter set), and its non-interactive
properties. In particular, CSIDH was the first practical post-quantum non-interactive
key exchange (NIKE), which makes it a theoretical post-quantum drop-in replacement
of many Diffie-Hellman type systems. Furthermore, its commutative structure allows
for building more advanced protocols based on CSIDH, such as digital signatures [10],
oblivious transfer [25], or threshold schemes [22].

∗Author list in alphabetical order; see https://www.ams.org/profession/leaders/
CultureStatement04.pdf. This work has been supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) under the projects SASPIT (ID 16KIS1858), QUDIS (ID 16KIS2089), and
6G-RIC (ID 16KISK033).

Date of this document: 2025-01-23.

mailto:campos@sopmac.de
mailto:andreas.hellenbrand@hs-rm.de
mailto:michael@random-oracles.org
mailto:krijn@q1q1.nl
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

2 dCTIDH: Fast & Deterministic CTIDH

Soon after its introduction two important streams of research ignited: the first stream
improves the performance and physical security of CSIDH, by making implementations
secure against timing attacks or fault injections. Such implementations come in three
different flavors: 1) Constant-time implementations require that the runtime of the
algorithm is independent of any secret data, to prevent passive attacks using side-channel
analysis. This is nowadays a standard requirement of any cryptographic software used in
real-world applications. Due to its probabilistic nature, CSIDH is difficult to implement in
constant-time, which led to many approaches [17, 28, 31]. The most efficient implementation
in this area is CTIDH [3], a CSIDH variant with a radically different key space, leveraging
combinatorial advantages over previous approaches. 2) Dummy-free implementations
require that the necessity of operations in the algorithm is independent of secret data, to
provide a first line defense against active attacks, such as fault injections. Most of the above
constant-time implementations rely on dummy operations to achieve the constant-time
property, by adding operations that do not affect the result depending on values in the
secret key. This leads to fault injection attacks [13, 14, 27]. Hence, applications that
require protection against such active attacks require dummy-free implementations of
CSIDH [12, 17]. 3) Deterministic implementations require that the algorithm does not
need access to a reliable source of entropy during the computation, and has a very low
variance in its runtime. For CSIDH, [17] shows that this requires more isogeny degrees
than available in CSIDH-512, and suggests increasing parameters to at least 1500 bits
instead of 512 bits in CSIDH-512. Others have explored deterministic CSIDH for larger
parameters [12]. Section 2 contains a more detailed overview of the available CSIDH
implementations.

The second stream of research focused on cryptanalysis of the hardness of the underlying
isogeny-based security assumption, especially with regard to quantum attacks [9, 11, 18,
33]. Although the discussion around the required parameter sets for quantum-secure
CSIDH has not been settled, recent works such as [18] suggest that it might be required
to go to base fields of at least 2048 bits to achieve quantum security. Although we do
not take a position in this debate, we follow the more recent line of work [12, 18] that
studies CSIDH implementations for large parameters, starting from 2048-bit base fields.
In particular, [12] provides both state-of-the-art implementations for deterministic and
dummy-free CSIDH, named dCSIDH, as well as for general probabilistic CSIDH, using
CTIDH, in large parameters. Their performance evaluation shows that the additional
requirement of a deterministic and dummy-free implementation for dCSIDH compared to
probabilistic and dummy-based CTIDH slows down performance by a factor of ≈ 3 for all
security levels starting from 2048-bit fields.

Our contributions. In this work, we tackle this large gap and present dCTIDH, a deter-
ministic implementation of CTIDH for large parameter sets. Contrary to the results in [12],
we show that deterministic behavior can be achieved without a significant performance hit.
On the contrary, dCTIDH outperforms state-of-the-art probabilistic CTIDH.

1. We provide a new batching technique based on Widely Overlapping Meta Batches
(WOMBats) that allows for an efficient instantiation of deterministic CTIDH. It
combines the approaches of computing multiple isogenies per batch and overlapping
batches. We analyze its properties, describe how to evaluate WOMBats, and how to
efficiently implement dCTIDH in constant time.

2. We explore the choice of prime p and parameters for dCTIDH along two different
dimensions. First, the number n of small odd divisors ℓi dividing p + 1 and the
configuration of WOMBats have an immense impact on the performance of dCTIDH.
Given n, we use a greedy search algorithm to find (locally) optimal WOMBat
configurations. Second, the largest power of two 2f dividing p + 1 has a significant

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 3

impact on the efficiency of low-level Fp-arithmetic, more precisely on the cost of
modular reductions. This leads to an interesting trade-off: choosing fewer isogeny
degrees n leads to worse performance measured in Fp-arithmetic, but allows for
primes with a larger power 2f dividing p + 1, and in turn for faster Fp-arithmetic,
and vice versa. We measure these effects in detail, which allows us to choose optimal
primes and parameters for dCTIDH, and do so for 2048-bit base fields.

3. We implement our dCTIDH instantiation in C, based on the dCSIDH code package [12],
focusing on 2048-bit prime parameters. This allows for a direct comparison to
dCSIDH-2048, and shows that our deterministic CTIDH approach is 4.99 times
faster than dCSIDH-2048. Somewhat surprisingly, our deterministic dCTIDH-2048
implementation outperforms non-deterministic CTIDH-2048 [12] by 17%, setting a
new speed record for large-parameter CSIDH/CTIDH (see Table 1).

Table 1: Performance results of a group action evaluation in total number of Fp-operations
(measured in Fp-multiplications) and in median megacycle count (Mcycles) of 25,000
experiments, performed on an Intel Core i7-6700 (Skylake) CPU.

variant source Fp-mult. Mcycles
CTIDH-2048 [12] 358, 307 1, 695.38
dCSIDH-2048 [12] 1, 542, 704 7, 039.53
dCTIDH-2048-205 This work. 314, 370 1, 430.31
dCTIDH-2048-194 This work. 317, 359 1, 409.47

Availability of software. Our optimized dCTIDH implementation and parameter search
scripts are available at

https://github.com/PaZeZeVaAt/dCTIDH/.

Remark 1. As CTIDH relies crucially on dummy-operations, dCTIDH is not dummy-free, in
contrast to dCSIDH. However, we argue that the benefit of a dummy-free implementation is
limited: Although dummy-freeness prevents some fault injection attacks from the literature,
it does not prevent disorientation fault attacks [4] or side-channel attacks based on curve
detection [15]. Therefore, a truly physical-attack resistant implementation of CSIDH
requires a much wider scope of protection than merely being dummy-free. Nevertheless,
we outline approaches to achieve a dummy-free implementation of dCTIDH in Appendix A,
whose performance loss seems much less severe than when using dCSIDH instead.

Related work. CSIDH is not the only approach to post-quantum NIKEs. By gener-
alizing the class group action construction, SCALLOP [21], SCALLOP-HD [19], and
PEARL-SCALLOP [1] provide another post-quantum cryptographic group action, with
the advantage that the group structure is known. Unfortunately, for equivalent security
sizes, these generalized group actions are a few orders of magnitude slower, and therefore
only seem beneficial where it is crucial to know the group structure.

Two other approaches are Clapoti(s) [32] and ⊗-MIKE [36]. The former provides a new
method to compute the class group action E → E/a using higher-dimensional isogenies,
whereas the latter generalizes the class group action to the module action to provide
a post-quantum NIKE. So far, neither have efficient implementations yet. This work
therefore also serves as a baseline for future implementations of Clapoti(s) and ⊗-MIKE:
We provide a state-of-the-art deterministic version of a CSIDH-based NIKE using realistic
parameters, serving as a reference point of efficiency for future higher-dimensional NIKEs.

Beyond isogeny-based cryptography, the lattice-based Swoosh [24] achieves a post-
quantum NIKE, although it seems that the keys are prohibitively large.

https://github.com/PaZeZeVaAt/dCTIDH/

4 dCTIDH: Fast & Deterministic CTIDH

Outline. Section 2 introduces the necessary background on elliptic curves and isogenies,
and gives an overview of existing CSIDH implementations. Section 3 introduces the
WOMBat batching technique and describes how to instantiate the deterministic dCTIDH
variant. Section 4 describes how to choose parameters for dCTIDH, considering both
optimizing for minimal number of Fp-multiplications, and fast Fp-arithmetic. Section 5
presents our optimized dCTIDH implementation and compares its performance to the prior
state of the art. Appendix A gives an outline on methods towards dummy-free dCTIDH.

2 Preliminaries
In this section, we briefly introduce the mathematical background of CSIDH, and recall
relevant results from the vast literature on efficient constant-time implementations. We
refer to Silverman [37] for a comprehensive introduction to elliptic curves and isogenies.

Isogenies. An isogeny φ : E → E′ is a non-constant morphism between elliptic curves E
and E′, sending ∞E to ∞E′ . An isogeny is uniquely determined by its kernel, which is
a finite subgroup of E, and Vélu’s formulas [39] allow us to compute an isogeny given a
description of its kernel. The degree of an isogeny is the size of its kernel. Isogenies from
E to itself are called endomorphisms, and the set of all endomorphisms forms a ring under
composition and addition, called the endomorphism ring of E.

2.1 CSIDH
Background. Let p be a prime such that p + 1 = 2f · g ·

∏n
i=1 ℓi with small primes ℓi,

2f ≥ 4, and a small odd cofactor g ≥ 1 chosen such that p is prime. In the following, we
will work with the set E of supersingular elliptic curves over Fp, whose endomorphism
ring over Fp, denoted O, is isomorphic to Z[

√
−p]. All curves in E have p + 1 Fp-rational

points, and we have E(Fp) ∼= Z2f × Zg ×
∏n

i=1 Zℓi
.

The main operation in CSIDH can be represented by walks in isogeny graphs GE,ℓi
for

primes ℓi, whose vertices are all curves in E , and edges are Fp-rational ℓi-isogenies. For a
fixed ℓi, each E ∈ E has exactly two neighbors in this graph, i.e., two curves E′ and E′′

that are connected to E by an ℓi-isogeny.
Mathematically speaking, these graphs arise from the class group action of Cℓ(O) on

the set E . In particular, we are interested in the action of certain ideals li and l−1
i , whose

action corresponds to the two paths mentioned above. To evaluate the action of li on
E ∈ E , we compute the ℓi-isogeny φ of kernel E[ℓi] ∩ E[π − 1], where π is the Frobenius
endomorphism. This kernel consists of the group of Fp-rational points of order ℓi, together
with the point at infinity∞ on E. Note that this ℓi-torsion subgroup of E(Fp) is generated
by any Fp-rational point P of order ℓi. The codomain of this isogeny is E′ = li ∗ E.

The evaluation of the action of l−1
i on E corresponds to computing the ℓi-isogeny φ′ of

kernel E[ℓi] ∩ E[π + 1]. Its codomain is E′′ = l−1
i ∗ E. The kernel subgroup consists of ∞

and the points of order ℓi on E with Fp-rational x-coordinates, but whose y-coordinates
are defined over Fp2 . That is, these points lie on the twist of E, which we denote by Et.
Nevertheless, in CSIDH we usually work with x-only arithmetic, and the resulting isogenies
are Fp-rational. Hence, all computations take place over Fp.

This class group action is commutative: Given two ideals li, lj and a curve E ∈ E ,
we have li ∗ (lj ∗ E) = (li · lj) ∗ E = (lj · li) ∗ E = lj ∗ (li ∗ E). Furthermore, we have
li ∗ (l−1

i ∗ E) = l−1
i ∗ (li ∗ E) = E.

CSIDH key exchange. The class group action applied in CSIDH combines the action
of the available l±1. We fix bounds mi ≥ 1 and define ideals as a =

∏n
i=1 l

ei
i with

ei ∈ [−mi, mi]. Hence, such a vector (e1, . . . , en) is the secret key, and can be applied to

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 5

any supersingular curve E ∈ E through a ∗E = (
∏n

i=1 l
ei
i) ∗E. This can be seen as walking

|ei| steps through the isogeny graph GE,ℓi
for each i ≤ n, either with a positive or negative

orientation, depending on the sign of ei.
For the CSIDH key exchange, we pick a starting curve E0 ∈ E . Alice samples a secret

key vector (e1, . . . , en) that corresponds to the ideal a =
∏

lei
i and computes the public

key curve Ea = a ∗ E0. Similarly, Bob samples a secret b and computes the public key
Eb = b ∗ E0. Due to the commutativity of the class group action, Alice can compute
Eba = a ∗ Eb, while Bob computes Eab = b ∗ Ea, and Eba

∼= Eab is the shared secret.

Security of CSIDH. The security of CSIDH relies on the isogeny finding problem: Given
curves E, E′ ∈ E , find an Fp-rational isogeny φ : E → E′, or equivalently an ideal a such
that E′ = a ∗E. The hardness of this problem relies on two parameters: the size of the
key space, determined by the bounds mi, and the size of the class group, which equals the
cardinality of E . Heuristics imply that the latter is roughly √p.

The classical security of CSIDH mainly relies on the size of the key space, under the
assumption that #E is at least of this size. CSIDH-512, the original proposal for NIST
Level I security, uses a 512-bit prime p with 74 ℓi, and mi = 5 for all i, reaching a key
space of size (2 · 5 + 1)74 ≈ 2256. On the other hand, the quantum security of CSIDH is
debated (see, e.g., [9, 33]), and mostly relies on the size of p. Several works analyze the
required sizes of p, where the most conservative choice is to use 4096–bit primes for NIST
Level I [18]. Note that these quantum attacks do not rely on the size of the key space. This
means that we can specify key spaces smaller than √p to balance classical and quantum
security. For large primes p, it then becomes natural to restrict to ei ∈ {−1, 0, 1} when
enough distinct small prime divisors ℓi of p + 1 are available for a large enough key space.

In this work, we do not take a position in the ongoing debate about CSIDH’s quantum
security. However, we follow [12, 18] and focus on deterministic variants. We shall see that
these variants require relatively large primes starting from 2048 bits, although some of our
techniques may apply to smaller parameter sets such as CSIDH-512 too.

2.2 Computing (Chains of) Isogenies
The isogeny φa : E → E/a can be computed as a chain of ℓi-isogenies by the decomposition
a =

∏
lei
i . There are several methods to optimally compute such a chain of isogenies.

We give a brief overview of methods “via the kernel,” as is standard for CSIDH. Other
methods, most notably Clapoti(s) [32], are out of scope for this work.

Vélu’s formulas. The classical work by Vélu [39] shows how to compute an isogeny
φ : E → E/⟨P ⟩ given a description of P ∈ E. For our purposes, P ∈ E(Fp) of order ℓi,
and so these formulas are efficient, allowing us to compute an ℓ-isogeny and evaluate points
in Õ(ℓ). A significant asymptotic improvement to Õ(

√
ℓ) is given by [7] and denoted

√
élu.

This approach outperforms the classical Vélu formulas roughly for ℓ > 89.

Amortizing the cost. To optimize the cost of evaluating the ℓi-isogenies, we can use a
single point P of order p + 1 from which we derive a chain of isogenies, analogous to how
a single point of order 2k can be used to compute a 2k-isogeny efficiently in k isogenies of
degree 2 [23]. That is, by multiplying P ∈ E with the right cofactor, we obtain a point
P ′ ∈ E of order ℓi, from which we derive φ : E → E/⟨P ′⟩ and P ← φ(P) using Vélu’s
formulas. Repeating this, we can evaluate E →

(∏
i∈S li

)
∗ E for a subset S ⊂ [1..n].

This allows us to compute the positive part a+ =
∏

lei
i for those ei > 0 using max |mi|

points of order p + 1. The negative part can be computed similarly, but instead using
points P ∈ Et(Fp) of order p + 1. Specifically, by choosing ei ∈ {−1, 0, +1} we are ensured

6 dCTIDH: Fast & Deterministic CTIDH

Table 2: CSIDH variants targeting NIST Level I (λ = 128), where the second half
assumes the larger sizes required for quantum security. The last three columns describe
whether the variant is constant-time (CT), dummy-free (DF), or deterministic (Det.).
All measurements are given in GCycles and obtained on the same hardware, an Intel Core
i7-6700 (Skylake) CPU.

Variant Size Group Action CT DF Det.
(in bits) (in GCycles)

CSIDH [16] 512 0.114 ✗ ✗ ✗

MCR [28] 512 0.242 ✓ ✗ ✗
OAYT [31] 512 0.188 ✓ ✗ ✗
CTIDH [3] 512 0.124 ✓ ✗ ✗
Dummy-free [17] 512 0.348 ✓ ✓ ✗
Derandomized [17] ≈ 1500 – ✓ ✗ ✓

SQALE [18] 2048 6.209 ✓ ✓ ✗
CTIDH [12] 2048 1.695 ✓ ✗ ✗
dCSIDH [12] 2048 7.039 ✓ ✓ ✓

that we can evaluate E → a ∗E using only two starting points of order p + 1, from now on
denoted P+ ∈ E(Fp) and P− ∈ Et(Fp).

Strategies. Similar to the strategies in SIDH [23], we can improve the performance of a
chain of isogenies by pushing appropriate intermediate points P ′′ through φ : E → E/⟨P ′⟩.
As long as the cost of such an evaluation is cheaper than the cost of the multiplication
required to retrieve φ(P ′′) from φ(P), this decreases the cost of the chain. [20] explores
how to generalize the approach in SIDH for 2k-isogenies to the CSIDH case, where we
have an isogeny chain of degree

∏
ℓi and we must push both positive and negative points.

Finding kernel generators. In the above, we assumed that points of order p+1 are readily
available on any curve E ∈ E . In practice, finding such points is relatively inefficient [34].
Instead, CSIDH implementations usually rely on a probabilistic approach: We sample
random points P+ ∈ E(Fp) resp. P− ∈ Et(Fp) and proceed as if they have order p + 1.
However, for each ℓi | p + 1, we only have a probability of 1− 1/ℓi for the order of P+ to
be divisible by ℓi, and analogously for P−. If we fail to find a suitable kernel generator, we
simply skip the corresponding ℓi-isogeny. The algorithm then repeats as many rounds of
point samplings until all isogeny computations succeeded.

2.3 Constant-time Implementations of CSIDH
The secret key (e1, . . . , en) essentially describes only how many isogenies of a certain
degree need to be performed and in which direction. It is therefore essential that an
implementation does not leak information on either. As the cost of an isogeny heavily
depends on the degree of the isogenies, this is a non-trivial task to perform in constant-time.
We describe the most well-known methods to achieve such constant-time implementations,
separated into three categories. We give a full overview of these different variants and
implementations of CSIDH in Table 2.
Remark 2. Note that the term constant time does not refer to a constant running time,
but to the fact that the running time is independent of secret data. Indeed, constant-time
implementations of CSIDH usually rely on the probabilistic approach to sample points
described above, leading to a variable running time. Nevertheless, if these implementations

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 7

avoid data flow from secret input to branch conditions, array indices or other secret-
dependent behavior, they are considered constant-time.

2.3.1 Dummy-based Implementations

Using dummy operations, we can achieve constant-time behavior by essentially adding
superfluous operations that mask secret information. We list three approaches for dummy-
based constant-time CSIDH, sorted both chronologically and performance-wise.

MCR. Meyer, Campos, and Reith [28] propose to use strictly positive exponents ei ∈
{0, . . . , mi}, and to perform mi − ei dummy ℓi-isogenies to ensure that any evaluation
performs mi isogenies of degree ℓi regardless of the secret key (e1, . . . , en), and that there
is nothing to leak about the orientation: it is always positive. This achieves constant-time
behavior, at the cost of roughly doubled bounds mi compared to “traditional” CSIDH,
and a much larger total number of isogenies,

∑
mi compared to

∑
|ei|.

OAYT. Onuki, Aikawa, Yamazaki, and Takagi [31] improve on the MCR-approach using
two points, both a negative and a positive point, and hide the orientation of an isogeny in
constant time by picking the corresponding positive or negative kernel generator. Thus,
we can use the same bounds mi as “traditional” CSIDH, leading to improved performance
compared to the MCR-approach.

CTIDH. CTIDH [3] takes a rather different approach. Using Matryoshka isogenies [9],
one can disguise an ℓi-isogeny as an ℓ′-isogeny for ℓ′ ≥ ℓi using dummy operations. Thus,
we can take a batch Bi = {ℓi,1, . . . , ℓi,Ni} of degrees and disguise each ℓi,j-isogeny as an
ℓi,Ni

-isogeny. By performing these disguised isogenies, we only leak
∑

j |ei,j | instead of
|ei,j |. By rearranging the key space and choosing bounds Mi per batch Bi, we gain a
significant combinatorial advantage: instead of choosing per degree a number of isogenies
ei, we randomly choose (up to) Mi degrees (with repetition) per batch. As the bound
Mi per batch is public, this achieves constant-time behavior. We explain the algorithmic
details in Section 2.4. To date, CTIDH is the most efficient approach for constant-time
CSIDH.

2.3.2 Dummy-free Implementations

Although the mentioned dummy-based implementations reach constant-time behavior,
they impose vulnerabilities by physical attacks, e.g., fault injections, as demonstrated
by [13]. It depends on the specific use case if this is problematic or not. In order to thwart
this vulnerability, dummy-free implementations provide additional security against such
physical attacks, beyond constant-time behavior. We list two approaches.

Using cancellations. [17] introduces the idea of using isogenies that cancel each other out.
Assuming an even bound mi, and by choosing only even secret exponents ei ∈ [−mi, . . . , mi],
we can always compute the action of lei

i using first ei isogenies in the correct direction,
followed by mi − ei isogenies in alternating directions. As mi − ei is even, the alternating
isogenies effectively cancel each other out. We thus compute mi isogenies of degree ℓi to
compute the action of lei

i without performing dummy isogenies. However, this increases
mi significantly, and there is potentially a physical attack which uses two fault injections
to skip pairs of alternating isogenies.

8 dCTIDH: Fast & Deterministic CTIDH

Unitary secret exponents. SQALE [18] explores large-parameter CSIDH using primes
that allow more than 2 · λ small odd primes ℓi and, therefore, propose to sample secret
exponents ei only from {−1, +1}. This ensures that a secret key a can always be evaluated
by performing precisely one isogeny per degree ℓi. By hiding the orientation of this single
isogeny, we ensure constant-time behavior without using any dummy isogenies.

2.3.3 Deterministic Implementations

Beyond constant-time behavior and security against physical attacks, real-world imple-
mentations often require deterministic behavior, i.e., void of randomness. Deterministic
behavior can be required for a number of reasons, for example, the cost of proper entropy
can be prohibitive, or the risk of random behavior can be deemed too high. Additionally,
the probabilistic point sampling approach prohibits the definition of an upper bound for the
worst-case runtime of the CSIDH action. dCSIDH [12] is a deterministic and dummy-free
variant of CSIDH, using the approach from SQALE [18] and providing full-torsion points
P+ and P− in the public key, among other improvements.1 Thus, there is no need to
probabilistically sample points in the key-agreement phase of CSIDH, since all isogenies can
be computed from the provided P+ and P−. We note that this variant requires to validate
that P+ and P− have full order, to prevent attacks through malicious points. Moreover,
it suffices to represent these point in the public key via a seed of a few bytes, instead of
transmitting the full points. [17] outlines this approach for a derandomized version of
CSIDH, yet using dummy isogenies and without giving details or an implementation.

2.4 Algorithmic Details of CTIDH
In this section, we detail some algorithmic building blocks of CTIDH [3] that will become
relevant in the remainder of this work. As described above, CTIDH distributes the available
factors ℓi into batches Bi = {ℓi,1, . . . , ℓi,Ni

} of size Ni in consecutive order. It fixes a
bound Mi per batch Bi, and samples secret keys such that

∑
j |ei,j | ≤Mi. The CTIDH

algorithm computes exactly Mi isogenies for the batch Bi by filling up with Mi −
∑

j |ei,j |
dummy isogenies. Hence, for a given vector of batch sizes B = (B1, . . . , Bn) and bounds
M = (M1, . . . , Mn), we obtain a key space of size

#KN,M =
n∏

i=1
Φ(Ni, Mi), where Φ(x, y) =

min{x,y}∑
k=1

(
x

k

)
2k

(
y

k

)
.

Evaluating the CTIDH action in constant time then requires to hide the exact degree of
each computed isogeny, i.e., making each isogeny for a batch Bi look equal through the
timing channel. CTIDH achieves this through the following techniques.

Matryoshka isogenies. The cost for computing Vélu or
√

élu isogenies directly depends
on the degree ℓi, with a complexity of Õ(ℓi) resp. Õ(

√
ℓi). For achieving the same number

of operations for isogenies of all degrees ℓi,j within a batch Bi, CTIDH uses the Matryoshka
structure of isogenies, outlined for the Vélu approach in [9]. Given a point of order ℓi, these
formulas essentially evaluate the kernel polynomial hS(x) =

∏
s∈S(x− x([s]P)) at certain

inputs x to compute the codomain and evaluate points, where S = {1, . . . , (ℓi− 1)/2}, and
x(P) denotes the x-coordinate of P . The Vélu formulas thus cycle through the points [s]P
and generate and evaluate hS(X) on the fly, leading to a total cost of Õ(ℓi). It is then
easy to compute an ℓi-isogeny at the cost of an ℓj with ℓj > ℓi, by adding dummy steps to

1Note that [12] also explores CTIDH in large-parameters to give a performance comparison to dCSIDH,
but leaves the analysis of deterministic CTIDH variants as future work. Our work closes this gap by
exploring deterministic CTIDH.

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 9

this loop after reaching the bound (ℓi − 1)/2. Hence, we can compute an isogeny of any
degree within a batch Bi at the cost of the maximal degree ℓi,Ni

.
This approach can be extended to

√
élu isogenies. In these formulas, hS(x) is evaluated

via a baby-step giant-step approach. We equivalently set S = {1, 3, . . . , ℓi− 2}, and split it
into a “box” U × V and a “leftover set” W such that S ↔ (U × V) ∪W . Then hS(x) can
be computed by multiplying the resultant of hU (x) and a polynomial derived from hV (x)
with hW (x). All sets U, V, W can be chosen of size O(

√
ℓi), and the resulting computations

only require Õ(
√

ℓi) operations. Imposing a Matryoshka structure on
√

élu is then easy:
for a batch Bi, we choose U, V optimal for the smallest degree ℓi,1, and W according
to the largest degree ℓi,Ni . Then we use an analogous approach to the Vélu case, and
introduce Matryoshka dummy operations in the computation of the linear part hW (x).√

élu Matryoshka isogenies thus become slightly less efficient due to the non-optimal
choices of U, V, W , and depend on both the largest and smallest degree per batch. We
write Matryoshka[ℓi,ℓj] for such an isogeny using Vélu or

√
élu up to ℓi, depending on

the size of ℓi, and then Vélu for the remaining, possibly dummy, steps up to ℓj . Thus,
Matryoshka[ℓi,ℓj] can be used to perform any isogeny of degree between ℓi and ℓj at the
cost of ℓj . For more details, we refer to [3, 7].

Point multiplications. CTIDH samples points P+ and P−, and multiplies them by
appropriate cofactors to find a kernel generator of order ℓi,j before computing the respective
ℓi,j-isogeny. For efficiency reasons, these multiplications use Differential Addition Chains
(DACs) [5], which compute a precomputed fixed sequence of a doubling and several
differential additions.2 However, the length of these DACs, and therefore the computational
effort for a multiplication by ℓi directly depends on ℓi. Since CTIDH requires to keep the
isogeny degree ℓi,j secret, it requires constant-time multiplications by all factors within a
batch Bi. CTIDH guarantees this by precomputing an optimal DAC for each ℓi,j ∈ Bi, but
potentially padding this DAC with dummy steps, such that multiplication by any cofactor
from Bi requires the same number of operations.

Point rejections. As outlined above, sampling points and multiplying by an appropriate
cofactor to obtain a point of order ℓi has a failure probability of 1/ℓi. Thus, for a batch
Bi = {ℓi,1, . . . , ℓi,Ni

} this point rejection probability varies per degree. To mitigate this,
CTIDH artificially fixes the failure probability to the maximum 1/ℓi,1 by introducing an
additional coin flip of suitable success probability per degree ℓi,j . In particular, after
successfully finding a point of order ℓi,j , the coin flip decides if we artificially reject this
point anyway, in order not to leak information on which point orders have been generated
through the rejection rate. Note that in comparison to traditional CSIDH implementations,
this step requires an additional usage of high-quality randomness.

Using these building blocks, CTIDH proceeds in multiple rounds of sampling points
P+, P−, attempting to compute only one isogeny per batch to prevent secret-dependent
behavior. In total, CTIDH thus requires at least max{Mi} rounds, plus potential extra
rounds in the case of point rejections. The performance of CTIDH relies on a good choice
of batches Bi and bounds Mi. The best way to find such parameters is through a two-layer
greedy approach. For detailed algorithms, we refer to [3].

3 Deterministic CTIDH Using WOMBat Batching
We have seen that CTIDH is probabilistic, using multiple rounds of sampling points and
computing at most one isogeny per batch. This approach is incompatible with the idea

2See [6] for the state of the art on this topic.

10 dCTIDH: Fast & Deterministic CTIDH

of a deterministic action using only one pair of full-order points for limited numbers of
factors ℓi and reasonably large batch sizes. In order to reach deterministic behavior in
CTIDH, we analyze the approaches of multiple isogenies per batch and overlapping batches
in Section 3.1, whose interplay leads to a new batching technique we call WOMBats. In
Section 3.2, we explain how to evaluate WOMBats in constant time, and how to combine
several WOMBats to achieve a deterministic implementation, and in Section 3.3, we show
that our WOMBat approach is compatible with the optimal strategies framework, leading
to optimal performance for given batching parameters. Since techniques like Matryoshka
isogenies strongly rely on dummy operations, we will focus on a dummy-based approach
in this work. However, we describe how to design dummy-free variants of these tools in
Appendix A.

3.1 WOMBats: Widely Overlapping Meta-Batches
Earlier versions of CSIDH [12, 17, 18] analyze the efficiency of a key space with ei ∈
{−1, +1} so that the full group action evaluation E → E/a can be performed with only
two full-order points P+ ∈ E(Fp) and P− ∈ Et(Fp), given at the start. We first show
that such an approach can easily be adapted to CTIDH’s batching technique, massively
decreasing the number of isogenies required, before generalizing this approach.

Multiple isogenies per batch. For each round of point sampling, the original CTIDH
instantiation [3] computes exactly one isogeny per batch to avoid secret-dependent behavior,
e.g., when multiple isogenies of the same degree have to be computed, or when re-trying
to compute isogenies after point rejections. This problem completely vanishes when using
unitary secret exponents: for a batch Bi = {ℓi,1, . . . , ℓi,Ni

} we can compute any number
Mi ≤ Ni of isogenies of distinct degrees through Mi applications of Matryoshka[ℓi,1,ℓi,Ni

].
The key space covered by this batch is then given by

2Mi ·
(

Ni

Mi

)
, resp.

Mi∑
j=0

2j ·
(

Ni

j

)
when allowing dummy isogenies. Especially for large batches, this leads to a combinatorial
effect that allows for reducing the required number of isogenies significantly. We illustrate
this in the following example.

Example 1. Consider dCSIDH-2048 from [12] with a key space of size 2221, using 221
prime factors ℓi, and unitary secret keys restricted to ei ∈ {−1, 1}, therefore computing
exactly one isogeny per degree ℓi in the group action evaluation. If we instead view
{ℓ1, . . . , ℓ221} as a single batch B1, it suffices to pick M1 = 52 to reach a key space of
size 2221, allowing dummy isogenies. Hence, we only need to compute 52 isogenies, using
Matryoshka[ℓ1,ℓ221], instead of 221 isogenies in dCSIDH-2048. However, due to the large
batch size, the cost of Matryoshka[ℓ1,ℓ221] is rather high: in this example, we would have
to compute 52 isogenies at the cost of an ℓ221-isogeny with no use of

√
élu, whereas many

of the ℓi-isogenies in dCSIDH are significantly cheaper and can use
√

élu.

Overlapping batches. A different approach to achieving a deterministic variant of
CTIDH is to use overlapping batches. Assume we have a batch B1 = {ℓ1, . . . , ℓN1}.
Instead of starting B2 at ℓN1+1, we use an overlap of ω1,2 factors. That is, we set
B2 = {ℓN1−ω1,2+1, . . . , ℓN1+N2−ω1,2}, such that ω1,2 factors are included in both batches,
where ω1,2 ≤ min{N1, N2}. In order to always allow for unitary secret keys, we further
require the batch bounds to satisfy M1 + M2 ≤ N1 + N2 − ω1,2, which ensures that we do
not compute multiple isogenies per degree. Compared to distinct batches, this significantly

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 11

improves the combinatorial effect, and therefore reduces the number of isogenies we need
to compute in order to achieve a given key space.

To further increase this effect, it appears promising to not only define two overlapping
batches, but generalize this to multiple overlapping batches. However, this comes with
major restrictions in the sizes of overlaps ωi,j and bounds Mi for all involved batches,
making an analysis in full generality extremely tedious. In the following, we show that
a particular instantiation of this approach is especially promising for the design of a
deterministic CTIDH variant.

Combining both approaches. We combine both approaches—multiple isogenies per batch
and overlapping batches—to achieve an efficient approach for deterministic CTIDH. For
ease of notation, consider the batch B = {ℓ1, . . . , ℓN} and M < N . As described above, we
can compute the required M isogenies of distinct degrees via M calls to Matryoshka[ℓ1,ℓN].
To lower the cost for computing these isogenies, we view B as M overlapping batches B1 =
{ℓ1, . . . , ℓN−M+1}, B2 = {ℓ2, . . . , ℓN−M+2}, . . ., BM = {ℓM , . . . , ℓN}, where each batch has
size N−M +1 and overlaps in N−M degrees ℓi with the previous batch, and the next batch.
For each batch, we then compute exactly one isogeny, running Matryoshka[ℓ1,ℓN−M+1] for
B1, Matryoshka[ℓ2,ℓN−M+2] for B2, and so on, until Matryoshka[ℓM ,ℓN] for BM . It is easy
to see that this covers all possible distributions of M distinct-degree isogenies that could
be prescribed by the secret key: the smallest degree must be included in B1, the second-
smallest degree must be included in B2, and so on. We illustrate this approach in Example 2.
The benefit of this approach is a significant improvement in performance, as we will see
in Example 3.

The above approach uses M overlapping batches to achieve a single ‘meta’-batch. We
define a WOMBat to generalize this approach, which allows us to achieve an efficient
deterministic CTIDH variant.

Definition 1. A Widely Overlapping Meta Batch (WOMBat) is a batchW = {ℓi,1, . . . , ℓi,N}
of size N and bound M , where each ℓi,j ∈ W has exponent ei,j ∈ {−1, 0, 1}. Thus, all
isogenies can be performed by a single full-order point, at a cost of M Matryoshka isogenies
through Matryoshka[ℓi,1,ℓi,N−M+1] up to Matryoshka[ℓi,M ,ℓi,N].

Example 2. As a concrete example, consider the WOMBat W of size N = 10 with prime
degrees {3, 5, 7, 11, 13, 17, 19, 23, 29, 31} and consider the bound M = 5. The smallest
of the five isogeny degrees specified by a secret key must lie between 3 and 17, so we
compute the corresponding isogeny via Matryoshka[3,17], followed by Matryoshka[5,19] for
the second-smallest degree, and so on. This is illustrated in Figure 1.

W = ()3 5 7 11 13 17 19 23 29 31

Matryoshka[3,17]

Matryoshka[5,19]

Matryoshka[7,23]

Matryoshka[11,29]

Matryoshka[13,31]

W(1) = ()3 5 7 11 13 17

W(2) = ()5 7 11 13 17 19

W(3) = ()7 11 13 17 19 23

W(4) = ()11 13 17 19 23 29

W(5) = ()13 17 19 23 29 31

Figure 1: Illustration of a WOMBat W of size N = 10 and bound M = 5, performing
the secret key (0, 1, 0, 1, 1, 0, 0, 1, 1, 0). The computed isogeny per sub-batch W(i) of W is
depicted by a blue square.

12 dCTIDH: Fast & Deterministic CTIDH

Example 3. Recall from Example 1 that our simple deterministic CTIDH approach
required to compute 52 isogenies via Matryoshka[ℓ1,ℓ221]. Instead, we can define a
WOMBat W of size N = 221 and bound M = 52, whose isogenies can be computed
using Matryoshka[ℓ1,ℓ170], Matryoshka[ℓ2,ℓ171], . . . , Matryoshka[ℓ52,ℓ221], significantly im-
proving efficiency. However, each batch is still very wide, resulting in limited usage of√

élu.

Similar to how CTIDH is more effective when using n batches instead of a single large
batch, we may naturally expect an improvement in performance using n disjoint WOMBats
W1, . . . ,Wn instead of the single WOMBat discussed in Example 3. We name this variant
dCTIDH, using and evaluating NW disjoint WOMBats Wi of size Ni and bound Mi. As
discussed above, our approach is deterministic. Furthermore, Section 3.2 will explain how
to evaluate WOMBats in constant time, making dCTIDH constant-time and deterministic.

Key space. The key space of a WOMBat W of size N and bound M is easily calculated
as Ψ(N, M) :=

(
N
M

)
· 2M . Similarly, for NW disjoint WOMBats W1, . . . , WNW , each of

size Ni and bound Mi, the resulting key space is

NW∏
i=1

Ψ(Wi) =
NW∏
i=1

(
Ni

Mi

)
· 2Mi .

We can further allow dummy isogenies, by choosing between 0 and Mi real isogenies per
WOMBat, padded by dummy isogenies to ensure we always perform precisely Mi isogenies
in total per WOMBat. The key space then increases to

NW∏
i=1

Ψdummy(Wi) =
NW∏
i=1

Mi∑
j=0

(
Ni

j

)
· 2j .

3.2 Evaluating a WOMBat
This section analyzes how to evaluate the action of a secret key derived using the WOMBat
approach in constant time. Let a be such a secret key, with (e1, . . . , en) drawn from the
key space with NW WOMBats W1, . . . ,WNW . Let ai denote the part of the secret key
associated to WOMBat Wi = (ℓi,1, . . . , ℓi,Ni

), represented as eWi
= (ei,1, . . . , ei,Ni

).
Assuming we are given a pair of points (Pi,+, Pi,−) of order of the required isogeny, i.e.,

their order is the product of all ℓi,j for which ei,j ̸= 0, Algorithm 1 details a deterministic
evaluation of Wi. Each step in Algorithm 1 can be implemented in constant time, using
similar techniques as in CTIDH [3], as we describe below.

Scalar multiplications. Algorithm 1 involves several scalar multiplications, whose scalars
directly depend on the secret key. However, implementing this in constant time is equivalent
to the case in CTIDH [3]: we compute the maximal DAC length of the factors ℓi,j ∈ Wi,
and use dummy steps if necessary, such that all multiplications [ℓi,j]P for ℓi,j ∈ Wi run
in the same number of steps. Furthermore, the number of necessary multiplications only
depends on the public parameter Mi. Picking the correct DAC and factors ℓi,j requires
constant-time look-ups and swaps. Note that we process the degrees ℓi,j in descending
order, which saves computational effort in Line 9 of Algorithm 1, since multiplications by
large factors are repeated less often.

Isogenies. The Matryoshka isogenies are equivalent to the ones used in CTIDH [3],
hence run in constant time. In our case, the upper and lower bounds vary throughout
Algorithm 1, yet this only depends on the public parameters Mi and Ni. Keeping the actual

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 13

Algorithm 1 WOMBat evaluation EvaluateWombat
Input: WOMBat Wi of size Ni and bound Mi, Montgomery coefficient A of the domain

curve, partial secret key eWi
= (ei,1, . . . , ei,Ni

), points Pi,+, Pi,− of order of the required
isogeny, a list of points pts to be pushed through isogenies.

Output: Montgomery coefficient A of the codomain curve, a list pts of image points.
1: for r = 0 to Mi − 1 do
2: Pick the largest k with ei,k ̸= 0.
3: if ei,k = 1 then
4: K ← Pi,+
5: else
6: K ← Pi,−
7: end if
8: for all j ∈ {1, . . . , k} with ei,j ̸= 0 do
9: K ← [ℓi,j]K

10: end for
11: (A, (Pi,+, Pi,−, pts))← Matryoshka[ℓMi−r,ℓNi−r](ℓi,k, A, K, (Pi,+, Pi,−, pts))
12: (Pi,+, Pi,−)← ([ℓi,k]Pi,+, [ℓi,k]Pi,−)
13: ei,k ← 0
14: end for
15: return (A, pts)

isogeny degree ℓi,k secret works equivalently as in CTIDH. In Algorithm 1 the function
Matryoshka[ℓi,ℓj] takes as input the isogeny degree ℓk that must satisfy ℓi ≤ ℓk ≤ ℓj , the
Montgomery curve coefficient A of the domain curve, a kernel generator K of order ℓk,
and a list of points to be evaluated. It outputs the codomain Montgomery coefficient, and
the list of evaluated points. In a dummy-based implementation, we simply discard the
result of Line 11 in the dummy case.

Point swaps. Algorithm 1 contains an if-branch that depends on the secret key. However,
it is easy to implement this via a simple constant-time point swap depending on the sign
of ei,k. Equivalently, the implementation of CTIDH [3] relies on this technique.

Deterministic CTIDH using WOMBats. Given this action per ai, we easily obtain a
full evaluation E → E/a via Algorithm 2. Given P+ and P− of full order

∏
ℓi, we first

multiply out all unused ℓi, i.e., those ℓi with ei = 0, in constant time as described above.
To achieve this, note that the number of scalar multiplications per WOMBatWi is Ni−Mi,
which is constant and publicly known. We obtain P+, P− both of order

∏
ei ̸=0 ℓi. Then,

per WOMBat Wi = (ℓi,1, . . . , ℓi,Ni), we clear all orders ℓi′,j with i′ ̸= i that have not
been cleared before to get the two points (Pi,+, Pi,−) both of order

∏
ei,j ̸=0 ℓi,j used in

Algorithm 1. While evaluating Wi, we push the original points P+, P− through to use
these for the next WOMBat. All multiplications run in constant time when implemented
as described above.

Finding full-order points. Algorithm 2 assumes two points P+, P− of full order, that is,
of order

∏
ℓi, which are computationally expensive to find.3 For the public key generation

phase, we can simply precompute such points on the starting curve E0 and use them as
system parameters. In the key agreement phase however, this is not possible. To avoid the
costly points sampling in this phase, we can shift this task to the public-key generation
phase: after computing a public key curve Epk, full-order points are sampled and included

3Indeed, this is why most CSIDH implementations use probabilistic point sampling.

14 dCTIDH: Fast & Deterministic CTIDH

Algorithm 2 Deterministic CTIDH action using WOMBats
Input: Montgomery coefficient A of the domain curve, secret key (e1 . . . , en), NW

WOMBats Wi of size Ni and bound Mi, and full-order P+ ∈ E(Fp) and P− ∈ Et(Fp).
Output: Montgomery coefficient A of the codomain curve.

1: for all i ∈ {1, . . . , n} with ei = 0 do
2: P+ ← [ℓi]P+, P− ← [ℓi]P−
3: end for
4: for i = NW to 1 do
5: (Pi,+, Pi,−)← (P+, P−)
6: for j = 1 to i− 1 do
7: for all ℓj,k ∈ Wj with ej,k ̸= 0 do
8: Pi,+ ← [ℓj,k]Pi,+, Pi,− ← [ℓj,k]Pi,−
9: end for

10: (A, P+, P−)← EvaluateWombat(i, A, eWi , Pi,+, Pi,−, P+, P−)
11: end for
12: end for
13: return A

(a) Multiplicative evaluation per WOMBat. (b) Optimal strategy combining WOMBats.

Figure 2: Strategies to evaluate dCTIDH, corresponding to the dCTIDH-2048-205 parameter
set (see Section 5), using a 2048-bit prime p, and 13 WOMBats of differing sizes.

in the public key. To avoid a large increase of public key sizes, we follow the approach
of dCSIDH [12]: instead of directly sampling points (resp. their x-coordinates), we try
small seeds u ∈ Fp and deterministically compute the two points from this seed using the
Elligator sampling approach [8, 9]. In the key agreement phase, we then only have to
expand this seed u via Elligator to get the points P+ and P−. As in dCSIDH, u only
increases the public key size by a few bytes. The points derived from u have order p + 1,
so a user needs to clear the unused cofactor 2f · g as well as the unused factors ℓi for which
ei = 0 (Lines 1-3 in Algorithm 2) before starting the action.

3.3 Using Optimal Strategies
The previous section shows how to evaluate E → E/a by separately evaluating WOMBats,
following the approach of CTIDH. Following Algorithm 1, each WOMBat is evaluated
through a multiplicative strategy. Instead, we could use the optimal strategy framework [20]
to define other strategies per WOMBat, replacing some multiplications by point evaluations.
However, our experiments show that for the relatively small numbers of isogenies per
WOMBat that we will be using, the multiplicative approach is optimal in most cases.

Figure 2a depicts the multiplicative approach, using the code from Chi-Domínguez
and Rodríguez-Henríquez [20]. In a nutshell, each segment of a vertical line is a scalar
multiplication by a factor ℓi and each segment of a horizontal line is a point evaluation

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 15

through an ℓi-isogeny. The algorithm starts in the top left corner, and we need to reach
the lower diagonal of the triangle at each vertical level to generate a point of suitable
order, which generates the next isogeny, i.e., the next horizontal step. At the end of the
algorithm, we reach the upper right corner after computing all corresponding isogenies.
We refer to [20] for more details. Figure 2a visualizes our approach, with each subtriangle
corresponding to the evaluation of a single WOMBat using Algorithm 1, resulting in an
overall multiplication-based evaluation of the 13 distinct WOMBats.

Optimal strategies in dCTIDH. Although the approach of evaluating each WOMBat
separately might make sense intuitively, there is no reason why this approach should
be optimal. Instead, contrary to the CTIDH case, we may also see the full evaluation
E → E/a as a single chain of isogenies that can be evaluated using optimal strategies [20],
which do not necessarily have to be split ‘per WOMBat’. That is, given the points P+, P−,
we can ignore the batching structure by simply using the same multiplicative cost for each
factor ℓi,j within a WOMBatWi. We observe that the series of calls to Matryoshka[ℓi,j ,ℓi,k]
is constant without requiring to prescribe the precise moment they are called, and thus, we
can compute an optimal strategy without restricting to the batching structure. Figure 2b
shows the resulting optimal strategy for the same parameters as in Figure 2a. Indeed, the
optimal approach does not evaluate each WOMBat separately, but even places degrees
of the same WOMBat in separate subtriangles. In our example, the optimal strategy
outperforms the multiplicative approach by 7.5%.

Note that the algorithm still runs in constant time, since the number and size of multi-
plications and calls to Matryoshka are constant, following the explanation in Section 3.2.
We refer to [20] for more details and algorithms for evaluating optimal strategies.

Remark 3. Multiplicative approaches usually benefit from evaluating the corresponding
isogenies in descending order of their degrees [29], while optimal strategies benefit from
swapping this to an ascending ordering [20]. Our analysis takes this into account.

3.4 Key Validation
To ensure no information is leaked on the secret key a during evaluation, public keys must
be validated. This requires two checks: first, that the curve Epk is supersingular, and
second, that the seed u generates two points P+, P− whose order is divisible by all ℓi.
Otherwise, a maliciously crafted public key might contain a seed generating a point P+
whose order is not divisible by, say, ℓ1 = 3. A successful derivation of the shared secret
then leaks that no positive ℓ1-isogeny was performed, hence leaking information on a. This
is in contrast with dCSIDH, which computes an ℓi-isogeny for every ℓi regardless of the
secret key, and hence the order of P+ and P− is verified throughout the computation
E → E/a and does not leak information.

Whenever
∏

ℓi > 4√p, ensuring a point has order at least
∏

ℓi also verifies supersin-
gularity. Thus, for dCTIDH, we only need to verify the second claim: that P+ and P−
have orders divisible by all ℓi. We use Algorithm 4 from [34]: we multiply P+ and P− by
the cofactor (p + 1)/

∏
ℓi to get points P ′

+ and P ′
−, and then compute the reduced Tate

pairing ζ = tL(P ′
+, P ′

−) of degree L =
∏

ℓi, using cubical arithmetic [35]. We then verify
that the result ζ ∈ µL has order precisely L using a product-tree approach, using the fact
that we can apply fast arithmetic using Lucas sequences for such elements [38].

In terms of cost, this requires two Montgomery ladders of log p − log L bits, the
pairing computation of log L bits, and the product-tree verification of length L log L bits.
Montgomery ladders have a well-known cost of 6M + 4S + 12A per bit, whereas the pairing
computation requires both Fp and Fp2 arithmetic, and therefore takes 19M + 4S + 41A
per bit. The product-tree verification requires 1M + 1S per bit. In total, this gives us a

16 dCTIDH: Fast & Deterministic CTIDH

close estimate of the cost of key validation, which comes down to 60, 000 Fp-operations for
dCTIDH using a prime of 2048 bits.

4 Optimal dCTIDH Parameters
While Section 3 presents optimized approaches for evaluating the group action in dCTIDH,
it requires as input a WOMBat batch configuration, i.e., the number NW of wombats Wi

and their sizes Ni and bounds Mi. Optimizing this configuration is a difficult task, and
the main focus of this section.

While for a given prime p, finding WOMBat batching parameters is related to the
approach provided in CTIDH [3], we further need to take into account the choice of p.
Recall that our primes are of shape

p + 1 = 2f · g ·
n∏

i=1
ℓi.

For dCSIDH, choosing p is somewhat trivial, as the number n of distinct prime factors
ℓi is prescribed by the required size 2n of the key space. This is then padded with f as
large as possible to reach the target size of p, and a cofactor g to ensure p is prime. In
contrast, the combinatorial advantage in dCTIDH allows to reach the same key space size
with smaller n, which, in turn, allows for increasing f , the power of 2 dividing p+1, leading
to more efficient Fp-arithmetic. In this section, we analyze in detail how to balance the
two involved dimensions in dCTIDH: the number of WOMBats NW with the associated
optimal batching parameter, which determines the number of Fp-operations, and the size
of n, impacting the efficiency of the Fp-arithmetic. For a concrete treatment, we will limit
to 2048-bit primes p in this section, and note that adapting our search approach to larger
parameters is straightforward.

4.1 Optimizing WOMBat Batches
Given a prime p, we want to optimize the WOMBat batching parameters in terms of a cost
function. We adapt the greedy search from CTIDH [3] to our setting.

Cost function. Analogously to CTIDH, we measure the cost of a group action evaluation
in Fp-operations, given all parameters p, NW , Ni, and Mi. While in CTIDH this cost
function must account for the probabilistic nature of the algorithm, and therefore the
variability of the runtime, this is greatly simplified in dCTIDH. Due to the deterministic
approach and assuming full-order points as input, we can predict the exact number of
operations. For this we use the optimal strategy framework [20] adapted to our context,
to find a (locally) optimal strategy for evaluating the class group action, and output the
number of Fp-operations. Using a fixed ratio between multiplications, squarings, additions,
and inversions, we translate this to an equivalent of Fp-multiplications, i.e., S = M and
ignoring A. Note that we need to add a small overhead to the obtained optimal strategy
cost to account for the scalar multiplications required to clear the cofactors

∏
ei=0 ℓi before

entering the strategy.

Greedy search. Given a prime p, we adapt the multi-layer greedy search from CTIDH [3]
to find optimal batching parameters. To achieve this, we fix the number of WOMBats
NW , and let the upper level of the greedy search algorithm optimize for the best choice
of WOMBat sizes Ni such that

∑
Ni = n. To determine the optimal set of Ni, each

step in this upper layer calls the lower level of the greedy search, which, given the sizes
Ni, searches for the optimal choice of bounds Mi such that we reach a large enough

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 17

key space. In particular, we start with equally distributed Ni and Mi = ⌊Ni/2⌋. The
lower layer optimizes by calling the cost function from above to get precise costs for
the group action evaluation for this specific set of Ni and Mi. The steps the greedy
algorithm takes to optimize in the upper and lower layer are analogous to the CTIDH
greedy implementation [3]. Running this multi-layer greedy search for different numbers of
WOMBats NW then leads to an optimal parameter configuration for the chosen prime p.

Note that this algorithm finds a local minimum, but ideally our goal is to be as close as
possible to the global minimum. To increase the probability of reaching this minimum, we
add a randomization step when selecting the bounds Mi per batch and set Mi = ⌊Ni/2⌋−δ
where δ ∈ {0, . . . , 5} is a random integer. Such a random starting choice might obtain a
different local optimal choice of Mi. Due to the increased search space when running the
greedy search multiple times, we increase the probability for reaching the global minimum
of Fp-multiplications for the given p. However, the results are no longer reproducible
between runs.
Remark 4. Our approach produces two invalid edge cases: 1) when there is no possible
configuration to obtain a large enough key space for the specified number of batches NW ,
and 2) when the resulting parameter set contains empty batches with a bound of Mi = 0.
In the second case, there must be a better parameter set with smaller n and without empty
batches. Therefore, we disregard such configurations.

4.2 Impact of 2-valuation of p + 1 on Performance
While Section 4.1 discusses optimizations at a higher level, this section focuses on the
underlying field arithmetic. Our arithmetic is strongly based on the Karatsuba approach
from [12], which uses the word version of the Montgomery reduction from [2] (see Algo-
rithm 3) for efficient reductions modulo p. The main idea of this approach is to reduce the
number of limbs to be multiplied depending on the cofactor 2f = 2kw+ε, where w is the
word size in bits and ε < w. Note that the complexity of this algorithm is dominated by
the ν multiplications of α2(kw)−w by a single word value r0 (see Line 4 of Algorithm 3).
The combinatorial advantage of dCTIDH enables the value of k to be increased, which leads
to a speedup of the reduction. As indicated in Line 4 of Algorithm 3, increasing k leads
to a multiplication in which the least k − 1 words do not have to be taken into account.
Particularly, increasing k leads to a speedup by saving at least k · ν MULX instructions
and k · ν · 2 ADOX/ADCX instructions compared to the standard Montgomery reduction
(see Algorithm 3 in [2]). We present and discuss the resulting performance figures for our
implementation in Section 4.3. For more details on this Montgomery reduction approach,
we refer to [2].

Algorithm 3 Word version of the Montgomery reduction if p = 2kwα− 1
Input: 0 ≤ a < pβν , where β is the radix with β = 2w, and ν = number of limbs
Output: r = aβ−ν mod p and 0 ≤ r < p

1: r ← a
2: for i = 0 to ν − 1 do
3: r0 ← r mod β
4: r ← (r − r0)/β + r0 × α2(kw)−w

5: end for
6: r′ ← r + (βν − p)
7: if r′ ≥ βν then
8: r ← r′ − β
9: end if

10: return r

18 dCTIDH: Fast & Deterministic CTIDH

Table 3: Benchmarking results for performing an Fp-multiplication for k ∈ {1, . . . , 12}.
Numbers are median clock cycles of 108 executions on a Skylake CPU.

k 1 2 3 4 5 6 7 8 9 10 11 12
4120 4109 4085 4045 4029 3991 3967 3925 3896 3880 3847 3825

4.3 Selecting Parameter Sets
This section combines the search for optimal batches from Section 4.1 with the performance
model from Section 4.2 to find optimal parameter sets for dCTIDH in terms of cycles, for a
prime p of 2048 bits.

As our primes are of the form p + 1 = 2f · g ·
∏

n ℓi, we first look for the optimal number
n of small odd primes ℓi that gives the lowest cost for a group action evaluation in terms
of Fp-multiplications. The lower bound is n = 151, given by the minimal number of ℓi

required to reach a key space of size 2221, and the upper bound is n = 226. This gives
the first dimension of the search space for optimal parameter sets, which directly also
determines the largest power 2f dividing p + 1 that is available: the larger n is, the smaller
2f must be. The second dimension is the number of batches Wi into which we divide the n
small odd primes ℓi, which we range from 1 to 18. This gives us a two-dimensional search
space of 75 · 18 possible configurations. Exploring this search space took about 3 weeks on
an AMD EPYC 7643 running on 192 threads.

In terms of Fp-multiplications. Given the possible configurations, we run the greedy
algorithm described in Section 4.1 to find optimal strategies in terms of Fp-multiplications.
Figure 3 summarizes these results, showing the cost of the best strategy we could find for
n = 226 to n = 151 targeting a key space of size 2221.

The plot highlights several key observations regarding the performance of dCTIDH.
Notably, the action reaches a minimum at n = 205 with 314, 370 multiplications. In the
range from n = 226 to n = 193, the results show minimal divergence, with only 5816
multiplications separating these points. This variation corresponds to less than ±1% of
the average, likely due to the compensating effects of the reduced overhead from unused ℓi

and the increasing number of isogenies, as the number of ℓi decreases.
Starting at n = 186, the plot shows a noticeable upward slope, due to the reduced

number of available ℓi, resulting in fewer and larger batch sizes. Consequently, we see
an increase in overhead due to the wider Matryoshka isogeny bounds. The extrema at
n = 151 represent the upper bound of the observed trend, where only a single WOMBat
can be utilized. This emphasizes the growing inefficiency as the number of ℓi decreases.

In terms of cycles. In terms of CPU cycles, as described in Section 4.2, the size of k
significantly impacts the cost of an Fp-multiplication. The size of k is directly related to
the number n of ℓi, as a larger n allows for fewer bits left for k, assuming a fixed bit size for
the resulting prime p. We thus multiply the number of multiplications obtained by greedy
per configuration by the cycles per multiplication given in Table 3 for k ∈ {1, . . . , 12}. Due
to the optimized arithmetic, we find that this shifts the optimal parameter set from the
one obtained by simply optimizing only the Fp-multiplication count.

Figure 4b shows this effect. The new optimal configuration shifts to the right and is now
at n = 194 with 1.266 Gcycles. Further, the plateau between n = 226 and n = 193 from
Figure 4a transforms into a slight downwards slope as multiplication costs reduce. Up to
n = 177, this scaling compensates for the increasing number of multiplications, maintaining
an overall low cycle count. However, beyond this point, the larger multiplication counts
associated with fewer ℓi overwhelm the benefits provided by the larger 2k-cofactor. This

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 19

160180200220

3

4

5

205

314, 370

M
(1

05
)

(a) Total number of Fp-operations per number of ℓi.

160180200220
1

1.5

2

194

1, 266, 523, 895

C
yc

le
s

(1
09

)

(b) Total number of clock cycles per number of ℓi.

Figure 3: Cost of a group action evaluation using the optimal strategy for n from 226 to
151 in Fp-multiplications and clock cycles. Minima indicated by blue triangles.

tipping point is evident in the plot, where the CPU cycle curve begins to rise steeply,
illustrating the diminishing returns as the number of ℓi decreases further.

Ultimately, the behavior of the curve emphasizes the need to balance the number of ℓi

with the 2-valuation, as indicated by the new optimal configuration at n = 194.

5 Implementation Results
Following the findings of Section 4, this section gives the performance results for our
selected parameters.4

Implementation. As outlined above, we employ optimal strategies for our WOMBat
evaluation, making the dCSIDH [12] code the clear choice as a starting point for our
implementation. We extend the code base using the constant-time strategies discussed in
Section 3.2 and Section 3.3, including Matryoshka isogenies, fixed length multiplications,
and constant-time lookups. In the case of dummy isogenies, we utilize constant-time swaps
to discard the isogeny result. We furthermore add the finite-field speedup from Section 4.2
to our asm-based Karatsuba implementation.

Constant-time verification. In order to be constant-time, we designed each step of our
algorithm without secret-dependent branches and memory accesses. To verify this property
for our implementation, we carried out automatic tests based on the ctgrind [26] library
and the valgrind [30] analysis tool. All tests were completed successfully, indicating that
branches and memory addresses are independent of any secret inputs.

4All benchmarks in this section are performed on an Intel Core i7-6700 (Skylake) CPU running Debian
12 with Hyper-threading and Turbo Boost disabled and compiled with gcc-12.2.0.

20 dCTIDH: Fast & Deterministic CTIDH

Results. Based on the results discussed in Section 4, we implement three configurations.
dCTIDH-2048-226 serves as the baseline, given it uses the same prime and arithmetic as
CTIDH-2048 and dCSIDH-2028. We choose the other configurations, dCTIDH-2048-205
and dCTIDH-2048-194, based on their optimal parameters for multiplications and CPU
cycles. Table 4 summarizes the selection.

Table 4: Parameter overview for dCTIDH-2048 for a key space of 2221 bits. All primes are
of the form p + 1 = 2f · g ·

∏n
i=1 ℓi. dCTIDH-2048-226 uses the prime and arithmetic from

CTIDH-2048 [12], the other two primes use the first n = 205, resp. n = 194, odd primes ℓi.
variant criteria isogenies WOMBats 2-valuation (2f) cofactor (g)
dCTIDH-2048-226 baseline 67 15 264 1
dCTIDH-2048-205 best mults 68 13 264·4 219 · 13 · 17
dCTIDH-2048-194 best cycles 69 12 264·6 23 · 7 · 41

Table 5: Performance results of a group action evaluation in multiplications (M), squarings
(S), and additions (A), and median megacycle count (Mcycles) of 25,000 experiments,
performed on an Intel Core i7-6700 (Skylake) CPU. The column ‘Fp-mult.’ is calculated
using the model S = M, ignoring additions. Bold numbers denote the best performance.

variant M S A Fp-mult. Mcycles
CTIDH-2048 [12] 279, 586 78, 721 – 358, 307 1, 695.38
dCSIDH-2048 [12] 1, 315, 203 227, 501 – 1, 542, 704 7, 039.53
dCTIDH-2048-226 265, 192 50, 572 474, 336 315, 764 1, 497.72
dCTIDH-2048-205 263, 545 50, 825 465, 224 314, 370 1, 430.31
dCTIDH-2048-194 266, 101 51, 258 469, 258 317, 359 1, 409.47

Table 5 summarizes the performance of different dCTIDH-2048 configurations. These
results reveal significant performance improvements through optimized configurations and
key space selection. The effect of selecting a parameter with a larger 2f -cofactor becomes
evident when comparing the performance of dCTIDH-2048-226, dCTIDH-2048-205, and
dCTIDH-2048-194. dCTIDH-2048-205 achieves a 4.5% reduction in cycle count compared to
dCTIDH-2048-226 (1,430.31 Mcycles versus 1,497.72 Mcycles). dCTIDH-2048-194 improves
further, reducing the cycle count by 5.9% compared to dCTIDH-2048-226 (1,409.47 Mcycles
vs. 1,497.72 Mcycles), resp. 1.46% compared to dCTIDH-2048-205, even though both other
configurations require notable lower Fp-operations.

Conclusion. All dCTIDH-2048 configurations significantly outperform dCSIDH-2048, by
a speed-up of up to 4.9 times in Fp-operations and 5.0 times in Mcycles. We gain
improvements of up to 12.2% in Fp-operations and 16.8% in cycles in comparison to
non-deterministic CTIDH-2048. Overall, dCTIDH emerges as the most efficient CSIDH
implementation to date, achieving notable speedups compared to both CTIDH and dCSIDH.

A Towards Dummy-Free CTIDH
We briefly sketch two techniques that may be used to remove dummy operations from
(deterministic) CTIDH. We leave a full treatment of these techniques as future work.

Dummy-free Matryoshka Isogenies. The Matryoshka isogeny, as introduced in [9]
and used in CTIDH [3], uses dummy operations to hide the degree ℓ of the isogeny,
by either multiplying the kernel polynomial hS(x) by a real factor x − x([i]P) when
i ≤ ℓ−1

2 , or performing a dummy multiplication when i > ℓ−1
2 (see Section 2.4). Using

that x([i]P) = x([ℓ− i]P), we can ensure that all multiples x([i]P) have to be correctly

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 21

computed, which ensures that no operation in this computation is ‘dummy’ and leaving
no room for fault-injections. Namely, instead of performing a dummy multiplication
whenever i > ℓ−1

2 , we instead always multiply hS(x) by (x − x([i]P)/2) − α · (x[i]P)/2,
where α = −1 whenever the value of x([i]P) has appeared already for any j < i, and 1
otherwise, computed in constant time. Thus, every multiplication is real and takes the
same cost: the multiplication is by x([i]P) when i ≤ ℓ−1

2 , and by x otherwise. This gives
us a dummy-free variant of the Matryoshka isogeny. However, for technical reasons, the
bounds of each batch need to be carefully reconsidered, as this dummy-free Matryoshka
becomes more expensive for larger batches. Initial experiments suggest only a moderate
increase in cost.

Dummy-free DACs. Recall from Section 2.4 that CTIDH and dCTIDH precompute
optimal DACs for each ℓi,j ∈ Wi and potentially add dummy differential additions to reach
the same length for each DAC. To avoid dummy operations, we can instead fix the maximal
optimal DAC length per WOMBat, and try to precompute (suboptimal) DACs of precisely
this length for each ℓi,j in this batch.5 Our experiments show that this ensures that there
are only minor restrictions to use such DACs on the batching, such as the fact that the
factor 3 cannot be in any batch, and our approach leads to a very minor expected overhead
for scalar multiplications in dummy-free dCTIDH. We dub this approach DACsHUND
(Differential Addition Chains Having Unnecessities Needed for Dummy-freeness). Rough
calculations show that DACsHUNDs are 26% faster per bit than Montgomery ladders for
constant-time cofactor clearance.

References
[1] Bill Allombert, Jean-François Biasse, Jonathan Komada Eriksen, Péter Kutas, Chris

Leonardi, Aurel Page, Renate Scheidler, and Márton Tot Bagi. PEARL-SCALLOP:
Parameter Extension Applicable in Real-Life SCALLOP. Cryptology ePrint Archive,
Paper 2024/1744. 2024. url: https://eprint.iacr.org/2024/1744 (cit. on p. 3).

[2] Jean-Claude Bajard and Sylvain Duquesne. “Montgomery-friendly primes and ap-
plications to cryptography”. In: J. Cryptogr. Eng. 11.4 (2021), pp. 399–415. doi:
10.1007/S13389-021-00260-Z. url: https://doi.org/10.1007/s13389-021-
00260-z (cit. on p. 17).

[3] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange,
Michael Meyer, Benjamin Smith, and Jana Sotáková. “CTIDH: faster constant-time
CSIDH”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021.4 (2021), pp. 351–387.
doi: 10.46586/TCHES.V2021.I4.351-387. url: https://doi.org/10.46586/
tches.v2021.i4.351-387 (cit. on pp. 2, 6–10, 12, 13, 16, 17, 20).

[4] Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz Panny, Krijn
Reijnders, Jana Sotáková, and Monika Trimoska. “Disorientation Faults in CSIDH”.
In: Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part V. Ed. by Carmit Hazay and Martijn
Stam. Vol. 14008. Lecture Notes in Computer Science. Springer, 2023, pp. 310–342.
doi: 10.1007/978-3-031-30589-4_11. url: https://doi.org/10.1007/978-3-
031-30589-4_11 (cit. on p. 3).

5In minor cases, this is not possible: for example, the maximal DAC length to compute a scalar
multiplication by 5 is 4 and cannot be stretched. In this case, we can resort to computing scalar
multiplications by c · ℓi,j , for small c coprime to all other ℓk ≠ ℓi,j , and make sure we do not compute any
other multiple by a factor c′ · ℓi,j during the chain.

https://eprint.iacr.org/2024/1744
https://doi.org/10.1007/S13389-021-00260-Z
https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.46586/TCHES.V2021.I4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-3-031-30589-4_11
https://doi.org/10.1007/978-3-031-30589-4_11
https://doi.org/10.1007/978-3-031-30589-4_11

22 dCTIDH: Fast & Deterministic CTIDH

[5] Daniel J Bernstein. “Differential addition chains”. In: (2006). url: http://cr.yp.
to/ecdh/diffchain-20060219.pdf (cit. on p. 9).

[6] Daniel J. Bernstein, Jolijn Cottaar, and Tanja Lange. Searching for differential
addition chains. Cryptology ePrint Archive, Paper 2024/1044. 2024. url: https:
//eprint.iacr.org/2024/1044 (cit. on p. 9).

[7] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. “Faster
computation of isogenies of large prime degree”. In: ANTS XIV – Proceedings of the
Fourteenth Algorithmic Number Theory Symposium. https://msp.org/obs/2020/4-
1/obs-v4-n1-p04-p.pdf. MSP, 2020 (cit. on pp. 5, 9).

[8] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. “Elligator:
elliptic-curve points indistinguishable from uniform random strings”. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013. Ed. by Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung. ACM, 2013, pp. 967–980. doi: 10.1145/2508859.2516734. url:
https://doi.org/10.1145/2508859.2516734 (cit. on p. 14).

[9] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. “Quantum
Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies”. In: Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May
19-23, 2019, Proceedings, Part II. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11477.
Lecture Notes in Computer Science. Springer, 2019, pp. 409–441. doi: 10.1007/978-
3-030-17656-3_15. url: https://doi.org/10.1007/978-3-030-17656-3_15
(cit. on pp. 2, 5, 7, 8, 14, 20).

[10] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh: Efficient
Isogeny Based Signatures Through Class Group Computations”. In: Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December 8-12,
2019, Proceedings, Part I. Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11921.
Lecture Notes in Computer Science. Springer, 2019, pp. 227–247. doi: 10.1007/978-
3-030-34578-5_9. url: https://doi.org/10.1007/978-3-030-34578-5_9
(cit. on p. 1).

[11] Xavier Bonnetain and André Schrottenloher. “Quantum Security Analysis of CSIDH”.
In: Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part II. Ed. by Anne Canteaut and Yuval
Ishai. Vol. 12106. Lecture Notes in Computer Science. Springer, 2020, pp. 493–522.
doi: 10.1007/978-3-030-45724-2_17. url: https://doi.org/10.1007/978-3-
030-45724-2_17 (cit. on p. 2).

[12] Fabio Campos, Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer,
Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, and Thom Wiggers.
“Optimizations and Practicality of High-Security CSIDH”. In: IACR Communications
in Cryptology 1.1 (2024). issn: 3006-5496. doi: 10.62056/anjbksdja (cit. on pp. 2,
3, 5, 6, 8, 10, 14, 17, 19, 20).

[13] Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hiroshi Onuki, and Marc
Stöttinger. “Trouble at the CSIDH: Protecting CSIDH with Dummy-Operations
Against Fault Injection Attacks”. In: 2020 Workshop on Fault Detection and Tolerance
in Cryptography (FDTC). IEEE, 2020, pp. 57–65. doi: 10.1109/FDTC51366.2020.
00015 (cit. on pp. 2, 7).

http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
https://eprint.iacr.org/2024/1044
https://eprint.iacr.org/2024/1044
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf
https://msp.org/obs/2020/4-1/obs-v4-n1-p04-p.pdf
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.62056/anjbksdja
https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1109/FDTC51366.2020.00015

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 23

[14] Fabio Campos, Juliane Krämer, and Marcel Müller. “Safe-Error Attacks on SIKE
and CSIDH”. In: Security, Privacy, and Applied Cryptography Engineering - 11th
International Conference, SPACE 2021, Kolkata, India, December 10-13, 2021,
Proceedings. Ed. by Lejla Batina, Stjepan Picek, and Mainack Mondal. Vol. 13162.
Lecture Notes in Computer Science. Springer, 2021, pp. 104–125. doi: 10.1007/978-
3-030-95085-9_6. url: https://doi.org/10.1007/978-3-030-95085-9_6
(cit. on p. 2).

[15] Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger. “Patient
Zero & Patient Six: Zero-Value and Correlation Attacks on CSIDH and SIKE”. In:
Selected Areas in Cryptography - 29th International Conference, SAC 2022, Windsor,
ON, Canada, August 24-26, 2022, Revised Selected Papers. Ed. by Benjamin Smith
and Huapeng Wu. Vol. 13742. Lecture Notes in Computer Science. Springer, 2022,
pp. 234–262. doi: 10.1007/978-3-031-58411-4_11. url: https://doi.org/10.
1007/978-3-031-58411-4_11 (cit. on p. 3).

[16] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory
and Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part III. Ed. by Thomas Peyrin and Steven D.
Galbraith. Vol. 11274. Lecture Notes in Computer Science. Springer, 2018, pp. 395–
427. doi: 10.1007/978-3-030-03332-3_15. url: https://doi.org/10.1007/
978-3-030-03332-3_15 (cit. on pp. 1, 6).

[17] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De
Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith. “Stronger and Faster
Side-Channel Protections for CSIDH”. In: Progress in Cryptology - LATINCRYPT
2019 - 6th International Conference on Cryptology and Information Security in Latin
America, Santiago de Chile, Chile, October 2-4, 2019, Proceedings. Ed. by Peter
Schwabe and Nicolas Thériault. Vol. 11774. Lecture Notes in Computer Science.
Springer, 2019, pp. 173–193. doi: 10.1007/978-3-030-30530-7_9. url: https:
//doi.org/10.1007/978-3-030-30530-7_9 (cit. on pp. 2, 6–8, 10).

[18] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco
Rodríguez-Henríquez. “The SQALE of CSIDH: sublinear Vélu quantum-resistant
isogeny action with low exponents”. In: Journal of Cryptographic Engineering (2021).
doi: 10.1007/s13389-021-00271-w (cit. on pp. 2, 5, 6, 8, 10).

[19] Mingjie Chen, Antonin Leroux, and Lorenz Panny. “SCALLOP-HD: Group Action
from 2-Dimensional Isogenies”. In: Public-Key Cryptography - PKC 2024 - 27th
IACR International Conference on Practice and Theory of Public-Key Cryptography,
Sydney, NSW, Australia, April 15-17, 2024, Proceedings, Part III. Ed. by Qiang Tang
and Vanessa Teague. Vol. 14603. Lecture Notes in Computer Science. Springer, 2024,
pp. 190–216. doi: 10.1007/978-3-031-57725-3_7. url: https://doi.org/10.
1007/978-3-031-57725-3_7 (cit. on p. 3).

[20] Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. “Optimal strategies
for CSIDH”. In: Advances in Mathematics of Communications (2020). doi: 10.3934/
amc.2020116 (cit. on pp. 6, 14–16).

[21] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp
Merz, Lorenz Panny, and Benjamin Wesolowski. “SCALLOP: Scaling the CSI-FiSh”.
In: Public-Key Cryptography - PKC 2023 - 26th IACR International Conference
on Practice and Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10,
2023, Proceedings, Part I. Ed. by Alexandra Boldyreva and Vladimir Kolesnikov.
Vol. 13940. Lecture Notes in Computer Science. Springer, 2023, pp. 345–375. doi:

https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.1007/978-3-031-58411-4_11
https://doi.org/10.1007/978-3-031-58411-4_11
https://doi.org/10.1007/978-3-031-58411-4_11
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/978-3-031-57725-3_7
https://doi.org/10.1007/978-3-031-57725-3_7
https://doi.org/10.1007/978-3-031-57725-3_7
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116

24 dCTIDH: Fast & Deterministic CTIDH

10.1007/978-3-031-31368-4_13. url: https://doi.org/10.1007/978-3-031-
31368-4_13 (cit. on p. 3).

[22] Luca De Feo and Michael Meyer. “Threshold Schemes from Isogeny Assumptions”.
In: Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference on
Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020,
Proceedings, Part II. Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas. Vol. 12111. Lecture Notes in Computer Science. Springer, 2020, pp. 187–
212. doi: 10.1007/978-3-030-45388-6_7. url: https://doi.org/10.1007/978-
3-030-45388-6_7 (cit. on p. 1).

[23] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”. In: J. Math. Cryptol. 8.3 (2014), pp. 209–
247. doi: 10.1515/JMC-2012-0015. url: https://doi.org/10.1515/jmc-2012-
0015 (cit. on pp. 5, 6).

[24] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter Schwabe.
“SWOOSH: Efficient Lattice-Based Non-Interactive Key Exchange”. In: 33rd USENIX
Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-
16, 2024. Ed. by Davide Balzarotti and Wenyuan Xu. USENIX Association, 2024.
url: https://www.usenix.org/conference/usenixsecurity24/presentation/
gajland (cit. on p. 3).

[25] Yi-Fu Lai, Steven D. Galbraith, and Cyprien Delpech de Saint Guilhem. “Compact,
Efficient and UC-Secure Isogeny-Based Oblivious Transfer”. In: Advances in Cryp-
tology - EUROCRYPT 2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part I. Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12696.
Lecture Notes in Computer Science. Springer, 2021, pp. 213–241. doi: 10.1007/978-
3-030-77870-5_8. url: https://doi.org/10.1007/978-3-030-77870-5_8
(cit. on p. 1).

[26] Adam Langley. ctgrind. (accessed 2024-11-21). url: https://github.com/agl/
ctgrind (cit. on p. 19).

[27] Jason T. LeGrow and Aaron Hutchinson. “(Short Paper) Analysis of a Strong
Fault Attack on Static/Ephemeral CSIDH”. In: Advances in Information and Com-
puter Security - 16th International Workshop on Security, IWSEC 2021, Virtual
Event, September 8-10, 2021, Proceedings. Ed. by Toru Nakanishi and Ryo Nojima.
Vol. 12835. Lecture Notes in Computer Science. Springer, 2021, pp. 216–226. doi:
10.1007/978-3-030-85987-9_12. url: https://doi.org/10.1007/978-3-030-
85987-9_12 (cit. on p. 2).

[28] Michael Meyer, Fabio Campos, and Steffen Reith. “On Lions and Elligators: An
Efficient Constant-Time Implementation of CSIDH”. In: Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019, Chongqing, China, May 8-10, 2019
Revised Selected Papers. Ed. by Jintai Ding and Rainer Steinwandt. Vol. 11505.
Lecture Notes in Computer Science. Springer, 2019, pp. 307–325. doi: 10.1007/978-
3-030-25510-7_17. url: https://doi.org/10.1007/978-3-030-25510-7_17
(cit. on pp. 2, 6, 7).

[29] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In: Progress in
Cryptology - INDOCRYPT 2018 - 19th International Conference on Cryptology
in India, New Delhi, India, December 9-12, 2018, Proceedings. Ed. by Debrup
Chakraborty and Tetsu Iwata. Vol. 11356. Lecture Notes in Computer Science.
Springer, 2018, pp. 137–152. doi: 10.1007/978-3-030-05378-9_8. url: https:
//doi.org/10.1007/978-3-030-05378-9_8 (cit. on p. 15).

https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1515/JMC-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://www.usenix.org/conference/usenixsecurity24/presentation/gajland
https://www.usenix.org/conference/usenixsecurity24/presentation/gajland
https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1007/978-3-030-77870-5_8
https://github.com/agl/ctgrind
https://github.com/agl/ctgrind
https://doi.org/10.1007/978-3-030-85987-9_12
https://doi.org/10.1007/978-3-030-85987-9_12
https://doi.org/10.1007/978-3-030-85987-9_12
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-05378-9_8

Fabio Campos, Andreas Hellenbrand, Michael Meyer and Krijn Reijnders 25

[30] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavyweight
dynamic binary instrumentation”. In: Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007. Ed. by Jeanne Ferrante and Kathryn S. McKinley.
ACM, 2007, pp. 89–100. doi: 10.1145/1250734.1250746. url: https://doi.org/
10.1145/1250734.1250746 (cit. on p. 19).

[31] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. “(Short
Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points”. In:
Advances in Information and Computer Security - 14th International Workshop
on Security, IWSEC 2019, Tokyo, Japan, August 28-30, 2019, Proceedings. Ed. by
Nuttapong Attrapadung and Takeshi Yagi. Vol. 11689. Lecture Notes in Computer
Science. Springer, 2019, pp. 23–33. doi: 10.1007/978-3-030-26834-3_2. url:
https://doi.org/10.1007/978-3-030-26834-3_2 (cit. on pp. 2, 6, 7).

[32] Aurel Page and Damien Robert. “Introducing Clapoti(s): Evaluating the isogeny
class group action in polynomial time”. In: IACR Cryptol. ePrint Arch. (2023),
p. 1766. url: https://eprint.iacr.org/2023/1766 (cit. on pp. 3, 5).

[33] Chris Peikert. “He Gives C-Sieves on the CSIDH”. In: Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part II. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. Lecture Notes in Com-
puter Science. Springer, 2020, pp. 463–492. doi: 10.1007/978-3-030-45724-2_16.
url: https://doi.org/10.1007/978-3-030-45724-2_16 (cit. on pp. 2, 5).

[34] Krijn Reijnders. “Effective Pairings in Isogeny-Based Cryptography”. In: Progress
in Cryptology - LATINCRYPT 2023 - 8th International Conference on Cryptology
and Information Security in Latin America, LATINCRYPT 2023, Quito, Ecuador,
October 3-6, 2023, Proceedings. Ed. by Abdelrahaman Aly and Mehdi Tibouchi.
Vol. 14168. Lecture Notes in Computer Science. Springer, 2023, pp. 109–128. doi:
10.1007/978-3-031-44469-2_6. url: https://doi.org/10.1007/978-3-031-
44469-2_6 (cit. on pp. 6, 15).

[35] Damien Robert. Fast pairings via biextensions and cubical arithmetic. Cryptology
ePrint Archive, Paper 2024/517. 2024. url: https://eprint.iacr.org/2024/517
(cit. on p. 15).

[36] Damien Robert. The module action for isogeny based cryptography. Cryptology ePrint
Archive, Paper 2024/1556. 2024. url: https://eprint.iacr.org/2024/1556 (cit.
on p. 3).

[37] Joseph H Silverman. The arithmetic of elliptic curves. Vol. 106. Springer, 2009
(cit. on p. 4).

[38] Martijn Stam. “Speeding up subgroup cryptosystems”. Doctoral Dissertation. Tech-
nische Universiteit Eindhoven, 2003 (cit. on p. 15).

[39] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus de l’Académie
des Sciences de Paris, Séries A 273 (1971), pp. 238–241 (cit. on pp. 4, 5).

https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://eprint.iacr.org/2023/1766
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-031-44469-2_6
https://doi.org/10.1007/978-3-031-44469-2_6
https://doi.org/10.1007/978-3-031-44469-2_6
https://eprint.iacr.org/2024/517
https://eprint.iacr.org/2024/1556

	Introduction
	Preliminaries
	CSIDH
	Computing (Chains of) Isogenies
	Constant-time Implementations of CSIDH
	Algorithmic Details of CTIDH

	Deterministic CTIDH Using WOMBat Batching
	WOMBats: Widely Overlapping Meta-Batches
	Evaluating a WOMBat
	Using Optimal Strategies
	Key Validation

	Optimal dCTIDH Parameters
	Optimizing WOMBat Batches
	Impact of 2-valuation of p+1 on Performance
	Selecting Parameter Sets

	Implementation Results
	Towards Dummy-Free CTIDH

