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Abstract. The adoption of Homomorphic Encryption (HE) and Secure
Function Evaluation (SFE) applications in the real world remains lim-
ited, even nearly 50 years after the introduction of HE. This is particu-
larly unfortunate given the strong privacy and confidentiality guarantees
these tools can offer to modern digital life.
While attempting to incorporate a simple straw-man PSI protocol into
a web service for matching individuals based on their profiles, we en-
countered several shortcomings in current outsourcing frameworks. Ex-
isting outsourced protocols either require clients to perform tasks beyond
merely contributing their inputs or rely on a non-collusion assumption
between a server and a client, which appears implausible in standard web
service scenarios.
To address these issues, we present, to the best of our knowledge, the first
general construction for non-interactive outsourced computation based
on black-box homomorphic encryption. This approach relies on a non-
collusion assumption between two dedicated servers, which we consider
more realistic in a web-service setting. Furthermore, we provide a proof
of our construction within the Universal Composability (UC) framework,
assuming semi-honest (i.e., passive) adversaries.
Unlike general one-sided two-party SFE protocols, our construction addi-
tionally requires sender privacy. Specifically, the sender must contribute
its inputs solely in encrypted form. This ensures stronger privacy guar-
antees and broadens the applicability of the protocol.
Overall, the range of applications for our construction includes all one-
sided two-party sender-private SFE protocols as well as server-based
arithmetic computations on encrypted inputs. Finally, we demonstrate
the practical applicability of our general outsourced computation frame-
work by applying it to the specific use case of Outsourced Private Set
Intersection (OPSI) in a real-world scenario, accompanied by a detailed
evaluation of its efficiency.

Keywords: Homomorphic Encryption (HE) · Secure Function Evalua-
tion (SFE) · Universal Composability (UC) · Outsourced Computation



2 W. Beskorovajnov et al.

1 Introduction

Since the groundbreaking work of Rivest et al. [48], the concept of homomorphic
encryption (HE) has garnered significant attention from the scientific commu-
nity. Despite being relatively straightforward in concept, HE—a specific type of
public key encryption (PKE)— and its relatively low security requirements, offer-
ing IND-CPA or the more recent IND-CPAD security within the well-established
honest-but-curious (passive adversary) model has seen limited adoption in in-
dustry. So far, the technology has not been integrated into widespread practical
use.

A similar issue is evident with multi-party computation (MPC). MPC ap-
plications are highly varied, ranging from secure statistical evaluation and data
mining without exposing personal information [54], to confidential auctions with-
out the need for third-party trust [12], and even training neural networks without
revealing input data [37]. However, despite these diverse applications, MPC has
not yet achieved mainstream adoption.

During our research on a specific variant of outsourced Private Set Inter-
section (PSI), namely outsourced balanced structure-aware PSI, we used induc-
tive reasoning to identify several obstacles related to outsourced computation
based on HE and MPC in general. Structure-aware PSI was initially introduced
in [28], where only Alice’s input was assumed to have a well-known structure,
while Bob’s input remained unstructured and potentially much larger. However,
such an imbalance of inputs is rarely encountered in scenarios where human
or product profiles need to be matched based on a list of private criteria with
a well-defined structure. When considering balanced inputs with a well-known
structure, the PSI protocol effectively reduces to a naive straw-man PSI proto-
col. While simple, it serves as an excellent candidate for a cryptographic protocol
that can be easily explained to a broader audience, facilitating the adoption pro-
cess. Additionally, this protocol suffers from communication bandwidth growing
linearly with the input size. However, if the input size is small and the number
of clients is expected to be limited, this may not be a significant issue. The more
pressing concern is that this protocol remains interactive, requiring both parties
to actively participate in each matching request. Outsourced computation offers
a promising approach to eliminate the interactivity of such protocols.

Significant research [34,39,58,46,40,44,43,56,32,57,51] has been conducted in
recent years to enhance outsourcing frameworks, making them secure and appli-
cable across a wide range of scenarios. Overall, these frameworks fit into three
distinct paradigms: (A) Secret Sharing of the secret key or Multi-Key Homo-
morphic Encryption (MHE) [39,40,46,58,56,44,43], (B) the Server-Client Non-
Collusion Assumption, [34], and (C) outsourced multiparty computation where
clients secret share their inputs to the working servers [32,51,57]. During our
research on outsourcing a balanced structure-aware PSI protocol, we found all
paradigms to be surprisingly unsuitable. The primary obstacle arises in a web
service scenario where we cannot guarantee that all, or even a fraction of, clients
who have outsourced their inputs will ever come online again. This limitation
rules out paradigm (A), as it requires clients to actively participate in certain
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stages of the protocol execution after the outsourcing phase. One could argue
that a threshold scheme might reduce this requirement to a small fraction of
clients. However, consider a web service like an online survey where the clients
either secret-share the secret key of the HE or use an MHE. Even in such a set-
ting, some clients might submit their responses once and never return. In such
a setting, even a threshold scheme becomes impractical.

Paradigm (C) on the other hand is based on multiparty computation where
the workers perform a MPC protocol on the clients’ secret-shared and outsourced
inputs. In this case, the clients only have to secret share their inputs to the
workers and are able to go offline until the output phase. Another advantage
is that clients do not have to be online simultaneously in order to retrieve the
results. However, this approach is still not practical for our use case since the
output clients have to be online while the working servers send their secret-shared
results to the clients in order to get the output clients’ individual results.

Paradigm (B) avoids this functional constraint but introduces another critical
issue: the server-client non-collusion assumption. In a web service scenario, this
assumption is unplausible because the usage threshold must be as low as possible.
Consequently, it becomes almost inevitable for a server administrator to create
their own client, thereby gaining access to the internal state of the client, which
compromises the protocol’s security. An alternative approach is to adopt a non-
collusion assumption that is more plausible in a web service scenario. Yasuda [61]
demonstrated that a non-collusion assumption between well-known servers can
enable an architecture for biometric authentication that aligns well with web
service scenarios like ours. Other notable examples of works explicitly relying
on a server-server non-collusion assumption include the Information-Theoretic
Private Information Retrieval (IT-PIR) protocol by Chor et al. [23], the contact
tracing protocol ConTra Corona by Beskorovajnov et al. [10], and the multi-cloud
storage system by Stefanov et al. [52].

In this work, we take a step toward establishing a third paradigm for out-
sourced computation. This paradigm is designed for protocols that leverage Ho-
momorphic Encryption (HE) and Secure Function Evaluation (SFE) to build se-
cure and efficient applications in web service scenarios based on a non-collusion
assumption between servers. Our main contribution is a transformation of a two-
round two-party secure function evaluation (SFE) protocol into an outsourced
computation protocol. The given SFE protocol is based on homomorphic en-
cryption with the additional requirement that the sender also has to encrypt
its inputs. To demonstrate the security of our approach, we provide a Universal
Composability (UC) proof that extends to the instantiated outsourced protocol.
Additionally, we offer simple criteria that enable concise security analyses, allow-
ing researchers to demonstrate that the instantiated protocol is secure within the
UC framework without requiring a full security proof for the overall construction.

Contribution To the best of our knowledge, we are the first who give a general
construction for non-interactive outsourced computation based on black-box ho-
momorphic encryption. Our main design goal is both reusability of the same
setup (i. e. the key pair of the HE) for several rounds and non-interactiveness of
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the clients after outsourcing their inputs. Additionally we prove our construction
within the Universal Composabillity framework in the presence of semi-honest
(i. e. passive) adversaries. The range of applications covers all one-sided sender-
private SFE protocols and server based arithmetic computation on encrypted
inputs. This set of applications, however, does not cover the ad-hoc computa-
tion of any arbitrary function for the same setup, i. e. key pair, thus the evalu-
ation function cannot be changed after the outsourcing phase. We present our
contribution in the following structure:

– In Section 4 we describe our generic outsourced computation protocol and
the corresponding ideal functionality. Finally, we present the generic theorem
for outsourcing any one-sided two-party sender-private SFE protocol and
provide a brief proof sketch of the universal composability simulation. The
full proof is available in Appendix A.

– In Section 5 we discuss the challenges of instantiating the generic protocol
from the previous section and deploying it in real-world systems.

– In Section 6 we present a particular instantiation of our general framework,
i. e. OPSI and the results of our case study. A separate subsection is dedicated
to related work on OPSI, focusing on enhancing a tutoring service matching
platform with privacy-preserving guarantees. Finally we present evaluation
results of the implementation.

2 Related Work

The notion of outsourcing multi-party computation was established by Kamara
et al. [34]. This was the first work where clients are able to compute a protocol
with the help of a remote server whilst not having to secret share their given
inputs to the servers or letting the clients do some intensive computation. They,
however, only focused on outsourcing the computation to one single entity, and
therefore assumed no collusion between clients and the computing server. Addi-
tionally, they used Yao’s garbled circuits in order to compute a function which
is less efficient than computation using a somewhat homomorphic encryption
scheme. Subsequently, López-Alt et al. [39] proposed a modified construction
using a key-homomorphic encryption scheme. In this setting, each client gener-
ates its own key pair, encrypts its input using their own public key and outsources
their ciphertext to the untrusted server. Due to the key-homomorphic property
of the encryption scheme, the server is able to compute on the ciphertexts pro-
duced by different public keys, resulting in a ciphertext which is decryptable by
the product of the clients’ secret keys. This therefore was the first work in which
the clients did not have to do any computation on the inputs besides encrypting
them and the whole computation could be relayed to the remote server. This
construction was refined in [40] where they defined a new type of homomorphic
encryption scheme, called multi-key HE.

Building on this, a new line of research was established, e. g. [58,46]. Yet, all
works based on [40] rely on the fact that the clients have to bea simoultaniosly
online during the output phase in order to decrypt the result together. This
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reliance was ruled out in [46] where the one-server setting was extended to a
two-server setting while keeping the idea that clients are able to encrypt their
inputs using self-generated key pairs. In [46], Peter et al. gave a two-server con-
struction using the BCP cryptosystem [15]. This cryptosystem is a homomorphic
encryption scheme with the additional property to generate a master secret key,
similar to an attribute based encryption scheme. Using this master secret key,
which is produced in the setup phase in order to generate the public parameters
for key generation, one is able to decrypt any ciphertext that is created with a
public key generated by using the same public parameters. In [46], the master
secret key is held by a semi-honest server S2 that does not interact with the
clients but rather with the other server S1 (and therefore may be viewed as a
trusted execution environment of S1). In order to compute on the clients’ inputs,
the clients produce their own key pair using the public parameters provided by
S2 and outsource their encrypted inputs to S1. S1 then blinds each ciphertext
and sends all blinded ciphertexts to S2 to re-encrypt all ciphertexts under one
single public key. This is done by decrypting each blinded ciphertext and en-
crypting it again under the product of all clients’ ciphertexts. S2 then sends the
re-encrypted ciphertexts to S1 in order to compute on the ciphertexts (which are
now encrypted using the same public key). Lastly, S1 blinds the computational
encrypted result, sends it to S2 in order to re-encrypt it under the clients’ own
public keys and relays the resulting ciphertexts back to S1 in order to send the
clients their encrypted computational result. This involves heavy computation
and communication done by S1 and S2 and is therefore not very efficient. Another
work based on a multi-key homomorphic encryption scheme is the multi-party
framework by Mouchet et al. [44]. In this framework the parties are categorized
as input parties who provide the encrypted inputs, evaluating parties who com-
pute over the encrypted inputs and the receiving party who gets the encrypted
result. Note that an overlap of the different parties’ roles is allowed, e. g. an in-
put party can also be an evaluating party and on the other hand the evaluation
may also be done by a remote server. Briefly described, the protocol works as
follows: the input parties generate their own key pair in order to encrypt their
inputs under their own public key and outsource their encrypted inputs to the
computing parties. Due to the key-homomorphic structure of the used multi-key
homomorphic encryption scheme, the evaluating parties are able to compute the
encrypted result using the encrypted inputs. In the last step, the result is sent
back to the input parties who re-encrypt the result under the receiver’s public
key. The drawback of this framework is that for the re-encryption of the result,
all input parties have to be online due to the internal secret key being additively
shared among the input parties which isn’t desirable in some application scenar-
ios e. g. a platform for finding a possible learning partner based on an outsourced
private section protocol, such as described Section 6. This problem was partially
ruled out in [43] where a threshold multiparty homomorphic encryption scheme
(TMHE) was defined such that only a threshold of t out of N input parties is
needed to re-encrypt the result. [56] constructed a two-server solution based on
[46] with the improvement that no server has to decrypt any ciphertext by using
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proxy re-encryption and can be seen a bit similar to our work. Yet, all research
works based on [40] are merely proven in the real-ideal paradigm.

A different line of research uses MPC in order to delegate the computation of
the clients’ inputs. In this line of research, the servers, there often called workers,
compute in an MPC manner on the clients’ inputs. Therefore those construc-
tions often rely on secret-sharing the clients’ inputs. One example of work within
this line of research is [32] which proved the security of their construction within
the UC framework. Another example is the Trinocchio framework [51] which
is a multi-client verifiable computation protocol. This protocol however is only
proven within the real-ideal paradigm for an honest majority of the servers and
assumed no collusion between servers and clients. [57] propose a two-servers
framework based on the SPDZ protocol [24]. In this protocol, the clients out-
source their inputs via secret sharing to the two servers and the two servers
compute the result based on the SPDZ protocol. Although this protocol is se-
cure against a malicious adversary, the security is merely proven in the real/ideal
paradigm and therefore is only sequentially composable.

3 Preliminaries

In this section, we recap the notations and definitions including frameworks
needed throughout this work.

3.1 Basic Notation

Throughout this work, we denote sets in upper case (e. g. the set M) and elements
of a given set in lower case (e. g. m ∈ M). Vectors are written in boldface (e. g.
v ∈Mn) and its i-th coefficient is denoted as v[i]. Also, we denote the security
parameter as λ. We say a function negl(·) is negligible if for every positive value
c ∈ N and all sufficiently large λ ∈ N it holds that negl(λ) < λ−c. A distribution
ensemble X = {X(λ, a)}a∈D,λ∈N is an infinite sequence of random variables
indexed by a ∈ D for some domain D and λ ∈ N.

Two distribution ensembles X = {X(λ, a)}λ∈N,a∈D and Y = {Y (λ, a)}λ∈N,a∈D

are computaionally insdistinguishable, denoted by X
c
≈ Y , if for every non-

uniform polynomial-time algorithm D there exists a negligible function negl(·)
such that for every n and every a ∈ D

|Pr[D(X(λ, a)) = 1]− Pr[D(Y (λ, a)) = 1]| ≤ negl(λ).

3.2 Homomorphic Encryption Schemes

Definition 1 A homomorphic encryption scheme consists of a tuple of three
algorithms (GEN, ENC, DEC)

– The key generation algorithm (pk, sk)
$← GEN(1λ) takes the security param-

eter λ and produces a random key pair (pk, sk), where sk denoted the secret
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key for decrypting a ciphertext which is held private by the ciphertext receiver
and pk denotes the public key that is used to produce a ciphertext of a given
message.

– The probabilistic encryption algorithm c ← ENC(pk, m) takes a message
m ∈M from the message spaceM and a public key and produces a ciphertext
c ∈ C from the ciphertext space C using some additional randomness.

– The evaluation algorithm co = (C, ek, c1, . . . , cn) takes a circuit C, and eval-
uation key ek and several ciphertexts c1, . . . , cn and evaluates the circuit over
the given ciphertexts, resulting in an output ciphertext co.

– The deterministic decryption algorithm m = DEC(sk, c) takes a ciphertext
c ∈ C from the ciphertext space C and computes the message corresponding
to c.

We require the the two following properties:

– Correctness: For every message m ∈M out of the message space and every
key pair (sk, pk)

$← GEN(1λ) we require that

C(m1, . . . ,mn) = DEC(sk, C(ENC(pk, m1), . . . ,ENC(pk, mn))

for a given circuit C.
– IND-CPA security [29]: Let PKE = (GEN,ENC,DEC) be an encryption

scheme. PKE is said to be indistinguishable under chosen plaintext attacks
(IND-CPA) secure, if for every security parameter λ and every PPT adver-
sary (A,B), its advantage as defined as follows is negligible in λ:

AdvCPA = |Pr[(m0,m1)← A(pk) : B(pk,ENC(pk,m0)) = 1]
−Pr[(m0,m1)← A(pk) : B(pk,ENC(pk,m1)) = 1]| = negl(λ)

Definition 2 (IND − CPAD Security [38]) Let E = (GEN,ENC,DEC,EVAL)
be a public-key homomorphic (possibly approximate) encryption scheme with
plaintext spaceM and ciphertext space C. We define an experiment Exprindcpa

D

b [A],
parameterized by a bit b ∈ {0, 1} and involving an efficient adversary A that is
given access to the following oracles, sharing a common state S ∈ (M×M×C)∗
consisting of a sequence of message-message-ciphertext triplets:

– An encryption oracle OENC(m0,m1) that, given a pair of plaintext messages
m0,m1, computes c← ENCpk(mb), extends the state

S := [S; (m0,m1, c)]

with one more triplet, and returns the ciphertext c to the adversary.
– An evaluation oracle OEVAL(g, J) that, given a function g :Mk →M and a

sequence of indices J = (j1, . . . , jk) ∈ {1, . . . , |S|}k, computes the ciphertext
c← EVALpk(g, S[j1].c, . . . , S[jk].c), extends the state

S := [S; (g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c)]

with one more triplet, and returns the ciphertext c to the adversary, Here
and below |S| denotes the number of triplets in the sequence S, and S[j].m0,
S[j].m1 and S[j].c denote the three components of the j-th elememt of S.
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– A decryption oracle ODEC(j) that, given an index j ≤ |S|, checks whether
S[j].m0 = S[j].m1, and if so, returns DECsk(S[j].c) to the adversary. (If the
check fails, a special error symbol ⊥ is returned.)

The experiment is defined as

ExprindcpaD

b [A](1κ): (sk, pk, ek)← GEN(1κ)
S := []
b′ ← AOENC,OEVAL,ODEC(1κ, pk, ek)
return(b′)

The advantage of adversary A against the IND− CPAD security scheme is

AdvindcpaD [A](κ) = |Pr{Expr
indcpaD

0 [A](1κ) = 1} − Pr{Exprindcpa
D

1 [A](1κ) =
1}|,

where the probability is over the randomness of A and the experiment. The
scheme E is IND-CPAD-secure if for any efficient (probabilistic polynomial time)
A, the advantage AdvindcpaD [A] is negligible in κ.

3.3 Real/Ideal Simulation Paradigm

Since we base our overall outsourced SFE construction on a standalone secure
two-party protocol, we briefly recap its security notion here. Loosely speaking,
the so-called standalone security is a security framework where the security of a
protocol is proved by providing a simulated protocol transcript where the simu-
lator constructing the transcript only gets the inputs of a subset of the parties
(more detailed, it gets the inputs of the corrupted parties) and showing that the
simulated protocol execution is computationally indistinguishable from a real-
world protocol execution between the actual parties. Put more formally, we set up
two different worlds, called the real world, where the actual protocol is computed
by the parties and a subset of the parties is (either semi-honestly or maliciously)
controlled by an adversary, and the ideal world, where the the same function
is computed by an incorruptable Turing machine, called the ideal functionality
interacting with a simulator which is simulating the real-world execution by get-
ting the inputs of the adversarially controlled parties and the function’s output
and generating a protocol transcript (consisting of the simulated messages that
the simulated parties exchanged during the protocol execution) that is supposed
to be indistinguishable from the transcript of the real-world execution. In order
to prove the stated indistinguishability of the transcripts, we have a polynomi-
ally bounded interactive Turing machine, called the distinguisher, which gets all
parties’ inputs, the output and the transcript (which we call the distinguisher’s
view) and decides whether the transcript is generated by either the real-world
interaction between the computing parties or by the simulator interacting with
the functionality. Stated as a definition, we require the following to hold:

Definition 3 Let π be a n-party protocol on inputs x = (x1, . . . , xn) ∈ Xn

and F a functionality. We say that π standalone securely realizes F if for all
polynomially bounded adversaries A a simulator S exists such that:
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IDEALF,S(λ,x)λ∈N,x∈Xn

c
≈ REALπ,A(λ,x)λ∈N,x∈Xn ,

where REALπ,A(λ,x)λ∈N,x∈Xn is A’s view of the real-world protocol execution
and IDEALF,S(λ,x)λ∈N,x∈Xn is S’s view in the ideal world when interacting
with F .

3.4 Universal Composability Framework

Since we want to prove the more restricted UC security of our general outsourced
SFE protocol, we shortly recapture the UC framework by Canetti [16,17]. The
UC framework additionally introduces an interactive Turing machine Z, called
the environment, which has to distinguish the real world execution from the
ideal world simulation by actively communicating with the adversary during
the function computation. Additionally, we define the environment’s view with
an adversary and a function as the input, the exchanged messages between the
corrupted parties and adversary together with the outputs. This restricts the
simulation-based proof since rewinding of the adversary is not possible in this
case. For a formal statement, we recite the simulation paradigm of the UC frame-
work by Canetti.

Definition 4 ([17]) Let π be a n-party protocol on inputs x = (x1, . . . , xn) ∈
Xn and F a functionality. We say that π UC-securely realizes F if for all poly-
nomially bounded adversaries A a simulator S exists such that for every polyno-
mially bounded environment Z:

IDEALF,S,Z(λ,x)λ∈N,x∈Xn

c
≈ REALπ,A,Z(λ,x)λ∈N,x∈Xn ,

where REALπ,A,Z(λ,x)λ∈N,x∈Xn is the environment’s view when interacting
with P1, . . . , Pn and A and IDEALF,S,Z(λ,x)λ∈N,x∈Xn is Z’s view when in-
teracting with F and S.

Additionally, the Universal Composition framework has the property that any
UC-secure protocol can be securely (concurrently) composed with any other UC-
secure protocol. This is the universal composition theorem, which is rephrased
here without proof.

Theorem 1 (UC composition theorem, see [17]) Let F and G be two ideal
functionalities. Further let ρ be a protocol that securely UC-realizes G and let π
be a protocol that securely UC-realizes F . Then the composed protocol ρπ securely
UC-realizes G.

We refer the proof to [17].

4 Formal Modeling of Outsourced Computation

In this section, we present the construction for non-interactive outsourced com-
putation based on black-box homomorphic encryption. To this end we firstly
define the according ideal functionality together with a formal description of a
real protocol. Eventually, we show a concise proof sketch for the security within
the UC framework. The full proof can be found in Appendix A.
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4.1 Ideal Functionality

For our outsourced secure function evaluation framework, we define a function-
ality viewed in Figure 1 that matches the quintessential interactions of partici-
pating parties in real world case studies. This includes the ability of clients to
register to the protocol after setting up the protocol and model the clients’ ac-
tions as separate phases from the actual computation rounds. Furthermore, we
enable the reusability of client’s outsourced inputs across multiple computation
rounds in order to avoid unnecessary communication between clients and servers.

Therefore we split the standard outsourced secure function evaluation func-
tionality into several distinct phases:

Registration First, we integrate a registration phase to the functionality. This
phase is designed for new clients to join a fresh computation round without
setting up a new protocol instance. It reflects the client registration process
in the real world scenario, e. g. on a web service platform clients can register
themselves while the actual protocol instance is already running.

Outsourcing The next two phases are the outsourcing phases for initiators’ and
clients’ inputs. Those are modeled as separate phases apart from the actual
computation phase due to two main reasons: First, we want to model the func-
tionality in such a way that clients don’t have to stay online during the actual
computation round. The second reason is that we want to model the reusability
of a client’s inputs for several computation rounds. This is not guaranteed if the
clients outsource their inputs during the computation phase.

Computation In the computation phase, the ideal functionality FOutComp receives
a trigger from the initiating party PY,j and computes the function f over the
outsourced inputs of all input clients PX,i and the initiator PY,j.

Output The initiator PY,j may may trigger the functionality FOutComp at any
time and query for the computation result, which will be delivered to the client
if it is finished.

The reason for decoupling the computation and output process into two in-
dependent phases is the modeling of a client not always being online during
the computation. This is especially beneficial if the servers have to do complex
computations since the client does not have to be idle during the whole compu-
tation in order to retrieve the round’s computational result. Also, it models the
real-world web service scenario more accurately: In such an application, a client
might send a computation request and go offline after the request is handled.
Then for the result retrieval, the client would request the server when being back
online to check if the computation was finished.
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Functionality FOutComp

Setup The functionality is parameterized with an (m+1)-ary function
f : Xm+1 → Y , and empty lists LP,X and LP,Y . The functionality interacts
with n initiators PY,j for j ∈ [n], m input parties PX,i for i ∈ [m], the calculator
server SC, the decryptor server SD and the simulator S. Additionally, initialize
an empty list RX,Y = ∅ for registered clients

Registration of Client PY,j or PX,i: Whenever a client C sends a message
(register, sid, pid) check whether pid is already in the list RX,Y of registered
parties. If not, send back ok and add pid to RX,Y , else send ⊥.
Outsourcing of PX,i’s input: Whenever receiving the message
(outsource, sid, xi,PX,i) from an input party PX,i, add the entry (PX,i, xi)
to the list of outsourced input parties’ entries LP,X . If there is already an
existing entry (PX,i, xi

′) for the given input, replace the existing input xi
′ with

the new input xi. Additionally send the message (input,PX,i) to S
Outsourcing of PY,j’s input: Whenever receiving the message
(outsource, sid, yj ,PY,j) from an initiator client PY,j, add the entry (PY,j, yj)
to the list of outsourced input parties’ entries LP,Y . If there is already an
exisiting entry for the given input, replace the existing input with the new
input. Send the message (input,PY,j) to S
Protocol Computation:
Upon receiving (start, sid, ssid) from an initiator PY,j, send (ssid,PY,j) to notify
S. If S returns (ssid,PY,j), send a notification (ssid,PY,j) to SC and SD.
Upon receiving (ready, ssid) from SC and SD, retrieve all (xi,PX,i) for i ∈ [m]
from LP,X and (yj ,PY,j) ∈ LP,Y :

– If some (xi,PX,i) has not been stored yet, send (output, xi, fail) to the ini-
tiator PY,j, SC and SD.

– Else, compute z ← f(yj , {xi}i∈[m]) and store (sid, ssid, z). If SD and PY,j

are corrupted, send (result, z) to S, otherwise, send (result, ssid) to S.

Protocol output:
Upon receiving (output?, sid, ssid) from PY,j, check whether some entry
(sid, ssid, z) is stored. If this is the case, forward the message to S, else output
(sid, ssid,⊥) to PY,j. When getting answer ok from S, send (output, ssid, z) to the
initiator PY,j and if PY,j is corrupted additionally to S; else send (output, ssid,⊥)
to the initiator PY,j.

Fig. 1. Outsourced Computation Functionality FOutComp.
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Protocol ΠOutComp

Private inputs: Each initiator PY,j has input yj , where PY = {PY,0, ...,PY,n−1}.
Each input party PX,i ∈ PX has input xi, where PX = {PX,0, ...,PX,m−1}.
Public inputs: Public parameters, an arithmetic circuit f1 and a stand-alone
secure two-round one-sided two-party protocol Π2PC realizing a function
f2 : X × Y → Z.
Outputs: At any round q, PY,j outputs zq ← f2(yj , f1(x1, · · · , xm)).

Initialization of servers SC and SD:
SD generates a fresh random key pair (pk, sk) ← GEN(1λ) and invokes FKRK

with (register, sid, pk, sk) in order to register its generated key pair. SC invokes
FKRK with (retrieve, sid, SD) in order to receive SD’ public key pk.

Registration of Client PY,j or PX,i:
Whenever a new client wants to register itself, it invokes FKRK with
(retrieve, sid, SD) to get the public key pk of SD.

Outsourcing of PX,i’s input:
Whenever an input client PX,i wants to outsource its input xi, it encrypts its
input using SD’s pk to compute cx,i = ENC(pk, xi) and sends (sid, pid, cx,i) to
SC.

Outsourcing of PY,j’s input:
Whenever an initiating client PY,j wants to outsource its input yj , it encrypts
its input using SD’s pk to compute cy,j = ENC(pk, yj). Then it generates a
random mask rj ← M and encrypts it using SD’s pk as cr,j = ENC(pk, rj).
Finally, it sends (sid, pid, cy,j , cr,j) to SC.

Protocol computation:

1. Whenever SC receives a message (start, sid, ssid), it checks whether ssid is
stored yet. If this is the case, it outputs⊥ to PY,j. Otherwise, it stores ssid and
computes ca ← f1({xi}i∈[m]). Afterwards, it follows the sender’s instructions
(i.e. step 2) of the two-party protocol Π2PC: on the values cy,j and ca in order
to retrieve ca′ and masks the computation result cd′ = ca′ + cr,j

2. SC sends (sid, ssid, cd′) to SD, which decrypts d′ ← DEC(sk, cd′) and stores
(sid, ssid, d′).

Output:

1. Whenever PY,j requests SD (output?, sid, ssid), SD checks whether some
(sid, ssid, d′) is stored for given (sid, ssid). If this is the case, it sends
(sid, ssid, d′) to PY,j. Else SD sends (sid, ssid,NotFinished) to PY,j.

2. PY,j unmasks d′ by computing d = d′ − r, follows step 3 in Π2PC on value d
and outputs z.

Fig. 2. Outsourced Computation Protocol ΠOutComp
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4.2 Protocol

The idea of our general outsourced multi-party protocol is to compose an arith-
metic circuit (noted as f1) over the inputs of all input clients, which can be
implemented by a somewhat homomorphic encryption scheme, with a general
function (noted as f2) that can be possibly invoked by a one-sided two-round
standalone two-party sender-private SFE protocol Π2PC applying homomorphic
encryption (a general construction of the two-party sender-private SFE proto-
col can be seen in Figure 3). The overall function f is thus decomposed into
f := f1 ◦ f2, where f1 is secretly computed by SC only and f2 during the execu-
tion of protocol Π2PC. We discuss different variants of f1, f2 later in Section 5.2.
The reason why the required two-party protocol is specifically an SFE but not
a more general MPC protocol is due the fact that the computation of the un-
derlying protocol should be executed within one single computation phase and
cannot be split over several distinct phases, such as commitments.

Compared to the functionality FOutComp, the protocol ΠOutComp shown in
Figure 2 has an additional server setup phase for the decryption server SD to
generate the key pair and sharing the generated public key with the calculation
server SC. In this phase, the decryptor server generates its own key pair and
registers it to the hybrid functionality FKRK, which is defined according to [11]
and can be found in Appendix B, where the key pair is stored and the public
key is distributed to the calculator and each new registered client.

In the client registration phase, each new client invokes FKRK to receive the
decryptor’s public key. In the outsourcing phase, an input client encrypts its in-
put using the decryptor’s public key cx,j = ENC(pk, xj) and sends the ciphertext
to the calculator. An initiator additionally generates a masking value by gener-
ating a one-time-pad r, also encrypts it cr = ENC(pk, r) and sends the encrypted
masking value together with the encrypted input to the calculator.

Each computation round is invoked by an initiator who sends the message
(start, sid, ssid) to the calculator, where ssid is a fresh sub-session id. Then, the
calculator evaluates the arithmetic circuit f1 over the input clients’ inputs ca =
f1(cx,1, ..., cx,n) and follows the instructions of two-party protocol Π2PC for the
sender (i. e. step 2 in Figure 3) in order to compute the encrypted interim result,
which is forwarded to the decryptor afterwards. The decryptor decrypts the
encrypted interim result and stores it for the result retrieval invoked by the
initiator.

In the output phase, the initiator sends the sub-session id ssid to the decryptor
to query the result. The decryptor goes through the stored interim results and
checks whether the computation labeled with the given ssid is already finished.
If not, the decryptor outputs notfinished and the initiator has to talk to the
decryptor at a different time point. Otherwise, the decryptor sends the decrypted
(masked) interim result to the initiator, who removes the masking one-time pad
and follows the last step of the two-party computation protocol (i. e. step 3 in
Figure 3) to compute the final result.
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Protocol Π2PC

Private inputs: The sender party S has input x and auxiliary information
pk for a homomorphic encryption scheme HE and the receiver party R has
input y and has auxiliary information (sk, pk).
Public inputs: Public parameters and an IND-CPA secure somewhat ho-
momorphic encryption scheme HE = (GEN,ENC,DEC) and a set of functions
f, fS , fR : Y ×X → Z with f = fR(y, fS(y,x)) computable by HE
Outputs: R outputs z = f(x,y).

Protocol computation:

1. R encrypts its input cy = ENC(pk,y) and sends (pk, cy) to S.
2. When S receives a message (pk, cy) from R, S encrypts its input vector

cx = ENC(pk,x) and computes cs = fS(cy, cx). S then sends cs to R.
3. When R receives the ciphertext cs, it decrypts cs to z′ = DEC(sk, cs). Then

it evaluates cs to z = fR(z
′,y) and outputs z at the end.

Fig. 3. The standalone secure one-sided sender-private 2-party SFE protocol Π2PC

Underlying Two-Party Protocol The underlying two-party protocol as shown
in Figure 3 used in our outsourced protocol is a non-interactive one-sided two-
party sender-private function evaluation over two inputs, which realizes a sim-
ple functionality described in Figure 4. The only primitive required within our
general construction is an IND-CPAtestD secure somewhat homomorphic en-
cryption scheme. The general protocol structure works as follows: as a global
setup, the receiver (or client) has a key pair of a somewhat homomorphic en-
cryption scheme, the sender (or server) has the respective public key of the HE
scheme. The global setup for both parties consist of the public parameters of the
homomorphic encryption scheme and a composition f = fR(y, fS(y,x)) of the
function f to be computed on. Both functions fS and fR should be computable
by the homomorphic encryption scheme and represent the computation instruc-
tions of both parties: fS is the arithmetic circuit over the encrypted inputs cx
and cy computed by the sender S and fR represents the postprocessing done
by the receiver R over the decrypted interim result z′ and its input y in order
to compute the protocol’s result z. Additionally, the inputs of both parties are
vectors of the same size. In the first step, the receiver encrypts their input using
the public key cy = ENC(pk,y) and sends the encrypted message to the sender.
The sender then encrypts their own input cx = ENC(pk,x) and evaluates a given
arithmetic circuit cs = fS(cy, cx) over the two encrypted inputs and sends the
interim result back to the receiver. The receiver is then able to decrypt the in-
terim result z′ = DEC(sk, cS). Depending on the evaluated function, the receiver
might have to do some post-processing over the interim result in order to get the
function’s result. In this case, the client computes a local function z = fR(z

′,y)
over the interim result z′ and its local input and outputs the given result as the
protocol’s result.
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Functionality F2PC

The functionality is parameterized by a function over two parameters
f : X × Y → Z. The functionality interacts with two parties, the sender S and
the receiver R.

execution

– When getting input set X from S and input set R from R, compute the
result z = f(x, y) and output z to R.

Fig. 4. Two-Party Functionality F2PC.

Sender-Private Property This property stems from the sender contributing its
inputs only in an encrypted form. In general, there are one-sided two-party SFE
protocols which do not require the sender to encrypt their inputs, such as in [18].
However, we require this additional encryption step on the sender’s side since
in our outsourced protocol, the dataset stored in SC is in encrypted form due to
the privacy of the clients. If such a requirement is in place, which is usually the
case for outsourced computation, then protocols such as [18] cannot be used as
is. Every such non-interactive one-sided two-party sender-private secure function
evaluation protocol can be used as an underlying protocol for our general out-
sourced construction, if we make a small modification: The key pair used for the
homomorhic encryption scheme must be a global setup across multiple rounds
(in a single session). This modification does not affect the standalone security of
the underlying protocol, but is merely needed for the proper security reduction
in Appendix A.

4.3 Security

In the following, we give a formal theorem of the security of the overall proto-
col and a short proof sketch. Since the whole communication of all parties is
over ciphertexts using the somewhat homomorphic encryption scheme—except
the communication between the decryptor and the initiator—the simulation is
straightforward since the simulator is either able to extract the correct inputs
(hence we have to require to be in the FKRK-hybrid model) or to simulate a le-
gitimate ciphertext message due to the IND-CPAD security of the homomorphic
encryption scheme. The communication between the decryptor and the initiator
is also simulatable since the message is a legitimate (decrypted) message of the
protocol Π2PC that standalone securely realizes f2 where initiator’s encrypted
input and the output of f1 can be viewed as the the encrypted inputs of Π2PC.

Having the composition of f using f1 and f2 in mind, we are able to show
how one execution round of our protocol ΠOutComp can be transformed into a
standalone one-sided two-party sender-private protocol Π2PC: Merge the input
clients PX,i and the calculator SC into one party (PX,i,SC) and view the output
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encrypted of f1 (which is a circuit evaluation solely over the input clients) as
one encrypted input of f2. Also merge the decryptor SD and the initiator PY,j

into one party (SC,PY,j).
The result is the computation of f2. Stated more formally, we have the fol-

lowing theorem:

Theorem 2 Assume a one-sided two-round two-party sender-private SFE pro-
tocol Π2PC standalone-securely realizing a two-party functionality f2 (viewed in
Figure 4 that bases solely on a somewhat homomorphic encryption scheme, an
arithmetic circuit cf realizing a function f1 using an IND-CPAD secure some-
what homomorphic encryption scheme HE = (GEN, ENC,DEC) and a function
f in FOutComp is defined as f = f1 ◦ f2. Then the protocol ΠOutComp realizes the
functionality FOutComp in the FKRK-hybrid model with static corruption in the
presence of a semi-honest adversary, assuming that the servers SC and SD do
not collude.

Proofsketch Due to page limitations, we only give a rough intuition why the
construction provides the stated security property:

For the whole proof-sketch, we assume the dummy-adversary, which only
forwards corruption commands sent by the environment to the corrupted party
and forwards any messages coming from the corrupted party to the environment.

Corrupted Initiator The communication between a corrupted initiator and other
parties are: In the outsourcing phase with the calculator, where it sends its
inputs to be outsourced; in the computation phase, where it sends a computation
initialization message, but gets no other message and in the output phase, where
it gets the interim result of the computation by solely communicating with the
decryptor, which is the interim result of Π2PC on the initiator’s inputs and the
circuit evaluation f1(x1, . . . , xm) over the input clients’ inputs. In the ideal world,
the simulator is able to setup a key pair on its own by simulating FKRK, extract
the initiator’s (modified) input using the self-generated secret key and compute
the simulation of Π2PC in order to compute a valid message coming from the
decryptor. Note that even if multiple initiators are corrupted, they are not able to
learn more than their inputs and the respective outputs, since each computation
and output phase is computed sequentially, which does not conflict with the
security of the underlying standalone secure two-party protocol Π2PC.

Corrupted Input Client The interaction between a corrupted input client with
the calculator server in the outsourcing phase is the only communication takes
place, where the corrupted input client outsources its (potentially modified)
inputs. In the ideal world, the simulator is therefore able to generate its own
key pair by simulating the hybrid functionality FKRK and is able to extract the
(modified) inputs sent by the environment. Note that even if several input clients
are corrupted, the corrupted parties can not learn more than their given inputs.

Corrupted Initiator and Input Client In the case of a corrupted initiator (or
multiple corrupted initiators) and a corrupted input client (or multiple input
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clients), the corrupted parties still only communicate with the two servers and
therefore are not able to learn the other parties’ inputs other than the outputs
provide. In the ideal world, the simulator is able to use a self-generated key pair
of the HE scheme by simulating the hybrid functionality FKRK and thus able to
extract the (modified) inputs of the corrupted client parties. By the standalone
security of the underlying protocol Π2PC, the simulator is able to follow Π2PC’s
simulation in order to generate an appropriate message sent by the decryptor
to the corrupted initiator. Again, since the given phases are computed only
sequentially, the security of the construction can be reduced to the standalone
security of Π2PC, even if multiple client parties are corrupted.

Corrupted Calculator, Initiators and Input Client In the case of a corrupted
calculator, if additionally some initiators and/or input client are corrupted, the
adversary is not able to gain more information than the corrupted clients’ inputs
and the outputs given to the initiators: Since the calculator does not hold the
secret key for the HE scheme and is only given ciphertexts, the adversary can not
learn more information than the ciphertexts offer by themselves and the inputs,
interim results and outputs of the corrupted parties, even after computing f1 and
following the sender’s part (i. e. step 2) of Π2PC, see Figure 3. In the ideal world,
the simulator is able to extract the corrupted parties’ inputs by simulating FKRK

and generating a key pair on its own on behalf of the simulated FKRK. Since the
corrupted calculator receives all encrypted inputs of all clients (including the
honest ones), the simulator has to produce the encrypted inputs of the honest
clients. Due to the IND-CPAD security of the HE scheme, S can easily fake those
messages by generating some random ciphertexts. If additionally some initiators
are corrupted, the simulator also is able to generate a valid message sent from
the decryptor to the initiator by following the simulation of Π2PC.

Corrupted Decryptor, Initiators and Input Clients In the case of a corrupted
decryptor, if additionally multiple initiators or input clients are corrupted, the
adversary is not able to learn more than the inputs and outputs of the corrupted
clients, since the clients only forward the inputs and the decrypter only receives
the interim results of Π2PC on the encrypted inputs of one initiator’s input and
f1’s evaluation result. Additionally, since the decryptor only gets some message
consisting of a masked evaluation by the calculator, the ability to decrypt the
message does not help the adversary gain more information than the encrypted
counterpart. In the ideal world, the simulator is able to learn Z’s secret key
dedicated for the corrupted decrypter by simulating FKRK and therefore getting
the whole key pair for HE. Since S then holds the secret key, it is able to extract
the corrupted parties’ inputs and due to the standalone security of the underlying
protocol Π2PC, S is able to follow Π2PC simulation instructions to generate a valid
message coming from the honest calculator and to all honest initiators in each
computation and output phase. Since we assume that the decryptor does not
collude with the calculator, the corrupted decryptor is not able to learn the
honest clients’ encrypted inputs.

The whole proof can be seen in Appendix A. □
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5 Instantiations

In this section we will examine the selection of abstract protocol parameters, as
well as some of the more important implicit and explicit assumptions of ΠOutComp,
and their implications for security and privacy.

5.1 IND-CPAD Attacks on HE based Outsourced Computation

The works [38,20] have shown that outsourced computation based on both ap-
proximate and exact lattice-based FHE schemes cannot, in general, be reduced
to the IND-CPAD security of these schemes.

IND-CPAD Attacks The authors describe attacks on various implementations of
CKKS [21], BGV/BFV [13,27,14], and TFHE [22] that result in full secret key
recovery. The attacks in [38] target the differences in approximate evaluations,
while those in [20] exploit the observation that the correctness of exact FHE
schemes is tightly coupled with the noise distribution. This distribution can be
exploited by repeatedly summing ciphertexts of zeros until the output flips to
a 1. Simply put, this makes it possible to compute the exact magnitude of the
noise and, subsequently, recover the secret key. To guarantee security in general,
a strengthening of FHE security is therefore required, which the authors of [38]
introduce as IND-CPAD security. This definition can be achieved through various
means, and determining which measure offers the best trade-off between security
and efficiency is an ongoing debate. However, all proposed measures require con-
trol over the noise distribution during computations. A promising approach is
presented by Alexandru et al. [6], who introduced application-aware homomor-
phic encryption. This approach suggests controlling noise based on the specific
application being computed, rather than assuming worst-case noise consump-
tion. This strategy appears particularly suitable for our outsourcing framework
because the outsourced protocol is restricted to a predefined evaluation function,
which cannot be altered for a specific key pair after its initial setup. Unfortu-
nately, as discussed in [20], this approach introduces an additional challenge in
the engineering of HE-based outsourced computation. Further research is needed
to streamline this process and reduce its susceptibility to errors.

Mitigation Strategies for ΠOutComp We have identified that, although IND-CPAD

security is generally required, there are specific scenarios in our outsourcing
framework where the attack requirements, as described in [38,20], are not met.
Consequently, the attack can be thwarted through organizational measures, and
IND-CPAD security suffices. For exact schemes, the attack requirements corre-
spond to the query types of the IND-CPAD security game:

– (A) Decryption requests
– (B) Evaluation requests
– (C) Encryption requests
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All three types of requests are required to successfully carry out the attack.
In our outsourced computation framework, we have two dedicated parties: the
Calculator (SC) and the Decryptor (SD), who are assumed not to collude with
each other. Additional parties include the Initiating Party (PY,j) and the Input
Client Party (PX,i). These parties can collude either with the Calculator or the
Decryptor, but never with both simultaneously. In section 6, we describe our
outsourced PSI protocol, which plausibly satisfies all the attack requirements if
an adversary successfully corrupts the parties SC, PY,j, and PX,i. Therefore, only
an IND-CPAD secure HE scheme can provide protection in this case.

The first key requirement is that the Calculator must be corrupted, enabling
the issuance of type (B) requests. This scenario is plausible in an honest-but-
curious setting. The second requirement is that some input clients must collude
with the honest-but-curious calculating server, allowing the adversary to issue
encryption requests (C). This is also plausible, as previously discussed, since
non-collusion between a server and a client cannot be reliably assumed in a
web service scenario. The final requirement, however, can only be met if the
adversary (controlling the Calculator and some input clients) also gains access
to the decryption results, which are only visible to the Initiating Party. While
such a scenario is plausible in protocols similar to our OPSI protocol described
in section 6, it is not universally applicable.

One important category of outsourced protocols in our framework that does
not meet all three requirements simultaneously are protocols where the secret
key resides within the Initiating Party. In this case, the Decryptor (SD) and the
Initiating Party (PY,j) effectively become a single party, denoted as (SD,PY,j).
This simplifies the protocol but also increases the need for proper authorization
and authentication measures, as (SD,PY,j) essentially becomes just another client
among many, which, however, is assumed not to collude with SC. Input clients
(PX,i) must then be assured that (SD,PY,j) is not a fake client controlled by
SC.4 5 In this case, the masking procedure can be skipped. One example of
such an application is an online survey or private analytics/aggregations, where
the decryption key resides on the initiating party’s laptop, which creates the
survey/analysis and keeps the final results private.

5.2 Choice of the Outsourced Function f

At the heart of every instantiation of ΠOutComp is the choice of the function f
that will be computed on the encrypted inputs of the input clients PX,i and the
initiating party PY,j. In ΠOutComp, we model the function f as a concatenation
of f1 and f2, i. e., f := f2(yj , f1(x1, · · · , xm)):

4 If SD is instead a dedicated server, this assurance becomes easier to establish, as SD

can act as a well-known global entity trusted by all input clients (PX,i).
5 Additionally, there might be data and communication overhead if an input client’s

data is to be reused across multiple computations initiated by different initiators, as
the same input would need to be encrypted multiple times under different (SD,PY,j)
public keys.
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– f1 is an arithmetic circuit that is efficiently computable using a somewhat
homomorphic encryption scheme and is solely computed on the inputs from
the input clients PX,i

– f2 is a function that we require to be standalone-securely realizable by a
protocol Π2PC from Figure 3 and therefore this function also incorporates
the input from the initiating party PY,j.

This way we are able to reduce the security and privacy of the overall outsourced
protocol in the UC framework to the security and privacy of a simpler protocol
in the standalone setting. We observe multiple cases:

1. Outsourced Arithmetic Circuit Calculation (OACC) case, where f2 := id
2. Outsourced Secure Function Evaluation (OSFE) case, where f2 ̸= id, i. e.,

Π2PC(y, x) = f2(y, x) ̸= (y, x)

– Simple two-party sender-private SFE: Receiver does no post-processing
after the decryption step 3 in Π2PC from Figure 3, i. e., z = z′.

– Proper two-party sender-private SFE: Receiver does non-trivial post-
processing, i. e., z ̸= z′

The OACC case effectively means that the initiating party, PY,j, has no input that
needs to be incorporated into the computation. In this scenario, no additional
proofs are required beyond the IND-CPAD security of the employed homomor-
phic encryption, leading to a secure instantiation of ΠOutComp. The OSFE case
covers all outsourced protocols where the input of the initiating party PY,j must
be integrated into the computation. In this context, we can make two impor-
tant distinctions that may simplify the protocol instantiation process. If the only
task for the the initiator PY,j is to unmask or decrypt the result for the protocol
to successfully terminate, i. e., Π2PC(y, x) = f2(y, x), then the simulation will
succeed for the instantiation ΠOutComp. The most complex case arises when the
receiver is required to perform non-trivial computations after the decryption/un-
masking step. In this case, one must either employ a Π2PC protocol that already
has a standalone simulation-based proof in the literature, or provide this proof
themselves. However, we argue that the current state-of-the-art in SFE protocols
is rich in primitives such as Private Set Intersection, Oblivious Transfer, Private
Information Retrieval, Private Equality Tests, and many others that can be used
as building blocks for a secure instantiation of ΠOutComp. Later in this section,
we will describe a case study involving a non-trivial PSI protocol.

Output Privacy The formulation of privacy requirements in SFE and MPC pro-
tocols is built around the principle that a protocol should not reveal more in-
formation than what can be inferred from the result alone. Any information
about the inputs that can be inferred from the result is usually termed leakage.
A key question that remains unresolved is how to quantify the privacy loss due
to this leakage, and consequently, how to sanitize the result before publication
to limit the leakage to a predetermined, controlled threshold while retaining a
sufficient level of usefulness or utility in the final output. This problem seems to
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be equivalent to the general challenge that has driven anonymization and pri-
vacy research for decades. While this research has yielded numerous solutions for
specific datasets and use cases, a universal solution for privacy definition and a
corresponding sanitization method applicable to any type of information remains
elusive. Currently, Differential Privacy (DP) [26], along with methods like the
exponential mechanism from [41], may appear to offer a potential solution, as DP
can be applied to a wide range of real-world scenarios where information needs to
be sanitized. However, strong indications suggest that this method of quantifying
privacy is not always the optimal choice (see e. g. [8]). Furthermore, even if pri-
vacy is quantified using various flavors of DP—such as ϵ-DP, (ϵ, δ)-DP, Pufferfish
Privacy [36], or Blowfish Privacy [30]—it remains highly debatable how to accu-
rately assess the actual privacy loss that may result from the chosen threshold
according to the specific DP definition used (see e. g. [50]). For these reasons, we
consider extending our protocol ΠOutComp to achieve quantifiable output privacy
to be outside the scope of this work. Similar to the selection of authentication
and authorization mechanisms, where different use cases (even for the same func-
tion f) require different approaches, the choice of an output privacy mechanism
for sanitizing results depends heavily on the specific requirements and real-world
circumstances of the application implementing the protocol.

We recommend that any implementation of an instantiation using a function
f should ensure transparency to input clients about the function f that will be
computed on their inputs. This won’t solve the problem, but it may bolster a
discussion with those directly affected, who may have a better understanding of
how the output of f interferes with their privacy.

6 Outsourced Private Set Intersection

In order to demonstrate how the previous discussions from Section 5 apply to the
design process of cryptographically securing an application using an instantia-
tion of ΠOutComp, we would like to present a case study of our own. The use case
for this study is a web service that matches e. g. learners with learning offering
providers and themselves. This case study has some notable requirements, which
we gathered through interviews with members of the project BIRD6, an initia-
tive aimed at digitalizing education services in Germany. We will first describe
the plain service, without any cryptographic measures beyond secure channels
and authentication, and then outline the requirements this service fails to meet
from the perspective of threat modeling as identified by key members of the
project. Finally, we will explain how a PSI-based protocol can enable the func-
tionality for the matching service, discuss how related work on outsourced PSI
falls short of critical requirements, and show how an instantiation of ΠOutComp

with a strawman PSI protocol successfully meets all security and performance
requirements.

6 https://www.daad.de/en/the-daad/what-we-do/digitalisation/bird/

https://www.daad.de/en/the-daad/what-we-do/digitalisation/bird/
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6.1 Use-Case

The basic architecture consists of a centralized server with low-resource user
clients, i. e., the learners or students, and low-resource education service provider
clients. For brevity, we will limit the use case of education services to student
tutoring services. Therefore, the following search criteria is used for matching of
a learner with a student tutoring service:

– Role: Teacher or Student
– Federal State: Baden-Württemberg, Bavaria, Berlin and others
– School subjects: German, Mathematics, Geography, English, Physics and

others.
– School Type: Primary School, Secondary School and others
– Grade Level: 1 - 13

The basic version of this service can be implemented in a straightforward manner
without the need for special cryptographic measures, provided that secure chan-
nels, proper authentication, and implementation security are ensured. However,
there are certain security requirements that this basic version does not fulfill.
This raises concerns that risks, should they materialize, could lead to significant
reputational damage for the provider. Therefore, additional measures are neces-
sary to enhance the service, addressing these concerns without at the same time
compromising other requirements, such as functionality and performance. Our
choice was a Private Set Intersection protocol since this is a well understood
primitive and there exists a vast body of literature. We provide a summary of
relevant requirements in Appendix D that a PSI protocol should suffice in order
to being usable in our case study. However, we found the literature surprisingly
unsuitable for meeting all of the requirements simultaneously. This observation
motivated an instantiation of ΠOutComp with a strawman PSI protocol that we
will describe later on.

6.2 Related Work on Outsourced PSI

To the best of our knowledge most of the literature focuses on protocols where
only one server is involved and therefore collusion with the only-existing server
is explicitly not assumed. Also many of those protocols are highly interactive.
Interactiveness means that the input clients need to be online more than once
and sometimes at the same time in order to communicate with each other. This
may be useful in other applications, such as when input clients must explicitly
approve their inputs being used together with inputs from specific other clients.
However, in our case, this is not an issue. Also, there are plenty of applications
and use cases with systems that are always online, where the non-interactiveness
may not be a necessary functional requirement. In such cases, the following works
may be more suitable than our work. Such outsourced PSI works are Miyaji et
al. [42] and Wang et al. [59]

A special category of such interactive protocols are multi-key homomorphic
encryption protocols or threshold homomorphic encryption schemes, which in-
herently require clients to be online during the decryption stage and perform
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a collaborative protocol in addition to the communication in the outsourcing
phase, such as in [19,44,9].

The second line of related outsourced PSI constructions assume the non-
collusion between the single server and any client, which we deem dangerous
in the setting of our case study. This is unsurprising, as PSI is an MPC proto-
col originally designed for two or more peer parties. Having a centralized server
with no inputs of its own and no legitimate reason to learn any information
about the output of the PSI can lead to the server learning this information,
due to the collusion with an input client or an initiating client. One could argue
that this, in some way, is detrimental to the original MPC security definition.
As a result, scenarios where adversaries can corrupt both a server and a client
simultaneously are typically excluded, and protection measures for such cases
are usually not described. This leads to many of these protocols relying on the
assumption of non-collusion between server and client, which, as discussed, in-
troduces a single point of failure. However, in real-world settings where the
threshold for client participation should be as low as possible, administrators
of the server infrastructure–who can create accounts themselves and thus ac-
cess a dummy client’s state–could carry out this attack, violating the passive
server-client non-collusion assumption. The following works deliberately do not
consider this attack, such as those by [55,2,3,4,49,1,33,25,53,35].

The remaining works fall into the category of miscellaneous protocols, which
are not suitable for our application or incomparable for various reasons. Many of
these works lack a (simulation-based) proof, despite having theorems described,
making it difficult to compare them in terms of their adversary model. One such
work is by Zheng et al. [62], where they require a dedicated trusted third party,
which is outside the scope of our use case. This argument may seem peculiar
because we require a key registration with knowledge in ΠOutComp, a special-
ized variant of a public key infrastructure, which is itself a trusted third party.
However, we argue that such variants of trusted third parties are more standard
and already widely available in the real-world. While Ali et al. [7] provide an
extensive proof, their threat/adversary model is highly specific. In their model,
the authors distinguish between unauthorized and authorized clients, which is
not applicable to our scenario. Furthermore, they assume a trusted third party,
referred to as a certificate authority (CA), but this differs significantly from the
standard definition. In their case, the CA generates key pairs for the clients,
which is not the case in our key registration with knowledge, as the key genera-
tion is realized within the real protocol by the parties themselves. Given that our
security definition is non-trivial, we exclude works that do not provide a proper
proof, as this hinders a meaningful comparison with our own work, i. e., [47,45]

Overall, we have identified one heuristic that seems to be either having
a partially interactive outsourced PSI protocol that is secure against server-
client collusions, or excluding server-client collusions and, in return, being fully
non-interactive after the outsourcing phase. This is unsurprising, as the server-
client non-collusion assumption allows secret information to be hidden within
the client’s state, which can be used to protect all clients from an honest-but-
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curious server. Our protocol, on the other hand, achieves full non-interactiveness
while also being secure in the case of a server-client collusion, which we consider
more dangerous in our use case than server-server collusions. Also, to the best of
our knowledge, there does not exist one OPSI protocol that was proven within
the UC model but rather in the weaker real-ideal simulation paradigm (a. k. a.
standalone security or sequential composability model).

6.3 One-Sided Two-Party Sender-Private PSI

Functionality F2P−PSI

The functionality is parameterized by the intersection function over two sets
∩ : X × Y → Z with |Z| ≤ min{|X|, |Y |}. The functionality interacts with
two parties, the sender S and the receiver R.

Execution

– When getting input set X from S and input set Y from R, compute the
set Z = X ∩ Y and output Z to R.

Fig. 5. Two-Party Functionality F2P−PSI

We employ the well known strawman PSI protocol. The protocol can be seen
in Figure 6.

Theorem 3 Given an IND-CPAD secure somewhat homomorphic encryption
scheme HE = (GEN,ENC,DEC), the protocol Π2P−PSI securely realizes F2P−PSI

under sequential composition in the presence of a semi-honest adversary A.

For a better understanding we give a short formal proof in Appendix C that
shows the simple protocol to securely realize the functionality F2P−PSI shown in
Figure 5 under sequential composition.

6.4 Outsourced PSI Computation for a Tutoring Service and
Community Platform

In the beginning of this section we talked about the different questions that
should be addressed in order to instantiate ΠOutComp in a secure way. In the
following, we will apply all of these considerations to our case study of PSI and
the use case of tutoring services.

On the choice of f1, f2 The initiating party, PY,j, is an individual, such as a
student, who seeks a suitable tutoring service or another person willing to learn
together. These services, or individuals, serve as the input clients PX,i, meaning
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Protocol Π2P−PSI

Private inputs: The sender party S has input x and auxiliary information pk
for a somewhat homomorphic encryption scheme HE and the receiver party R
has input y and has auxiliary information (sk, pk). Both input vectors follow a
publicly known vector structure for element-wise comparison.
Public inputs: Public parameters of HE
Outputs: R outputs z = x ∩ y.

Protocol computation:

1. R encrypts its input cy = ENC(pk,y) and sends (pk, cy) to S.
2. When S receives a message (pk, cy) from R, S encrypts its input vector

cx = ENC(pk,x), draws a random vector cr ← C from the HE ciphertext
space and computes cS = (cx − cy) · cr; S then sends cS to R.

3. When R receives the ciphertext cS, it decrypts cS to z′ = DEC(sk, cS); Then
it goes elementwise through z′ and checks z′i == 0 for i ∈ [0, · · · , n− 1]. If
this is the case, R adds yi to an initially empty initialized set z and outputs
z at the end.

Fig. 6. the standalone secure 2-party protocol Π2P−PSI

we require a computation that accounts for all inputs including the initiator’s
input. This leads us directly to the outsourced SFE case from ??, since f2 ̸= id.
Referring to the Π2P−PSI protocol in Figure 6, we observe in step 3 that the
receiver must perform non-trivial comparisons after decryption. This confirms
that we are indeed dealing with the proper two-party sender-private SFE case,
where a sound proof for standalone simulation-based security is required. The
relevant theorem is Theorem 3, and the corresponding proof can be found in
Appendix C.

The function f1 on the other hand is a simple aggregation of all ciphertexts
from the input clients PX,i into one or more ciphertexts, depending on the pa-
rameterization and number of clients, in order to compute the result in a SIMD
fashion. Thus, we obtain a secure instantiation of ΠOutComp. The proof for this
instantiation then follows directly from Theorem 2 and Theorem 3.

Output Privacy Our requirement is that the PY,j learns the exact intersection
of their and the input clients’ interests and criteria. Any sanitization applied to
the intersection result would reduce its utility to zero in our setting. Therefore,
we exclude such methods from this case study. Nevertheless, we do not rule out
that there may be other applications of PSI that do not have the same strict
requirements, where such methods could be applicable.

Choice of Parties and the Adversary Model There are multiple architecture op-
tions that minimize the risk of violating the non-collusion assumption between
the providers of SC and SD.
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The best option for SC in this instantiation is a dedicated (honest-but-
curious) third party with sufficient computational capacity to reliably compute
f1 and parts of f2. Given that the plaintext data constitutes a concise catalog of
tutoring services and individuals seeking their services, we do not expect storage
requirements or bandwidth to be significant bottlenecks. Therefore, the operat-
ing costs of SC should primarily be driven by CPU consumption. We propose
that such an operator could be a small or medium-sized company, ideally ded-
icated to providing the sole service of SC, which, as mentioned earlier, would
significantly increase the costs associated with any misbehavior by the entity.

For SD, there are two options, with a preference for the first. Either the oper-
ator of SD is the actual operator of the centralized plain version of the education
services platform, or the SD component is a properly configured TEE within the
operator of SC. In the second case, the operator of SC can also be the actual
operator of the education services platform. However, we advise against this,
as such operators typically lack the necessary expertise to properly configure,
administer, and update SC in line with the latest advancements in the field. The
option of merging SD and PY,j does not work in this scenario, as there are many
different initiators who wish to perform computations over the inputs of the
same input clients.

6.5 Evaluation

The following section presents and discusses the results from the evaluation.

IND-CPAD Attacks For our implementation, we use the BGV scheme
from the Golang library Lattigo7. As of January 8, 2025, the IND-CPAD

attacks (see section 5.1) are not addressed in the library’s. We decided
to keep the evaluation unchanged because the related work discussed
in section 6.2 also did not consider these attacks in their evaluations.
We will use this eprint version to communicate to the developers
the need of addressing these attacks. Once the library releases newer
versions of the BGV implementation with effective countermeasures
in place, we will update this evaluation with metrics based on an
IND-CPAD secure implementation of BGV.

Setup and Parameterization All evaluations were performed on a server with an
AMD EPYC 7763 64-Core Processor, albeit only 1 core was effectively utilized
due to missing parallelization in the benchmark. The benchmark implementa-
tion is available on GitHub.8. Since our protocol involves only one multiplica-
tion, we selected a simple parameter set with a ternary distribution, specifically
log2(N) = 13 and log2(Q) = 58, based on recommendations from [5], achieving a
256-bit security level. Furthermore, our plaintext space, which consists of entries
from matching criteria such as ZIP codes, is sufficiently small to fit within a
7 https://github.com/tuneinsight/lattigo
8 https://github.com/collapsinghierarchy/opsi_sepdutyhe_bench

https://github.com/tuneinsight/lattigo
https://github.com/collapsinghierarchy/opsi_sepdutyhe_bench
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26-bit plaintext modulus. For accommodating larger plaintext spaces that cover
e. g. 256-bit hash values one will have to use a different parameterization or
employ a Chinese Remainder Theorem in order to encode the hash value into
smaller components.

Table 1. Performance metrics for the Calculator, Decryptor, and Initiator averaged
over 100 repetitions. ’Slots’ indicates that these measurements apply to any combina-
tion of the number of clients and the number of criteria per client. For example, 524288
slots can represent the performance of matching 32768 clients, each with 16 criteria,
simultaneously.

Slots Calculator
(w/Aggr.)

Calculator
(w/oAggr.)

Decryptor Initiator

2048 14.71ms 1.02ms 326µs 14µs
4096 26.45ms 1.02ms 323µs 14µs
8192 49.42ms 1.00ms 317µs 13µs
16384 104.76ms 1.99ms 636µs 26µs
32768 248.24ms 3.92ms 1.31ms 68µs
65536 382.02ms 7.76ms 3.25ms 133µs
131072 1.01s 16.22ms 5.22ms 299µs
262144 5.58s 35.17ms 11.87ms 453µs
524288 14.22s 66.59ms 22.34ms 928µs

Table 2. Storage metrics for the Calculator and Initiator given the parameterization
of log2(N) = 13 and log2(Q) = 58.

Slots Storage (Calc.) Storage (Init. mask)
32768 237.58 kB 106.5 kB
65536 475.14 kB 213 kB
131072 950.28 kB 426 kB
262144 1.9 MB 852 kB
524288 3.8 MB 1.7 MB

Evaluation Results and Discussion The results are summarized in Table 1. Over-
all, the results show that the CPU consumption within the calculator grows lin-
early with the number of slots. We have excluded the evaluation of the input
client’s performance, as the overhead involves only a single encryption. The ini-
tiating party, on the other hand, requires slightly more resources than a single
encryption, as it also must sample and encrypt a large mask that matches the
size of the final result. Since the final result includes the complete (randomized)
services catalog and the learning partner register, the mask typically spans mul-
tiple ciphertexts. Readers may wonder why we employ homomorphic encryption
instead of simply transferring the complete catalog in plaintext, which would
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effectively result in a trivial Private Information Retrieval protocol without any
encryption. The reason is that some matching partners may be private individu-
als who do not wish their data to be shared with anyone outside of the matched
parties. Future improvements, however, may focus on reducing the size of the
mask on the initiating party’s side. One such possible improvement is employing
a PRNG to generate the mask from a small seed such that the initiator only has
to store the small seed. The interviews have indicated that the BIRD9 project
consortium anticipates the number of input clients to range between 105 and 106

participants. The evaluations suggest that performance is more than sufficient
for these numbers. Furthermore, the aggregation step significantly reduces stor-
age consumption, leaving bandwidth as the only potential bottleneck. However,
we do not expect the outsourcing phase to occur all at once and thus, we do not
anticipate this bottleneck to pose a significant issue.

7 Conclusion and Future Work

In this work, we proposed a general construction for outsourcing secure func-
tion evaluations without having to assume that no client can collude with one
server and without requiring interactions among the clients. Our protocol fol-
lows the separation of duties principle: Since we assume that the two servers do
not collude, one server, the calculator server, is used for storing the encrypted
outsourced clients’ inputs and calculating the encrypted interim results whereas
the other server, the decryptor, is used for decrypting the interim results. We
employ a mask, only known to the initiating party, in order to prevent the der-
cryptor learning the results. This results in the clients only having to encrypt
their inputs for participating in the computation. We furthermore were able to
prove the security of our construction within the UC framework by only re-
quiring a sequentially composable (i. e. standalone secure) one-sided two-party
secure function evaluation protocol which is based on a somewhat homomorphic
encryption scheme. We also showed the usability of our construction by giving
an instantiation example of a tutoring services platform using Private Set In-
tersection accompanied by an implementation in go and an evaluation of the
implementation’s efficiency.

Since we concentrated on a practical solution secure against passive corrup-
tions, a next step could be in finding a practical solution that is secure against
active adversaries. The simplest solution would be adding zero-knowledge proofs
to each shared message but to the best of our knowledge, zero knowledge proofs
are not yet practically usable in real-world applications. Currently, the func-
tion to be evaluated on is already fixed in the beginning. Therefore it could be
another interesting research direction to find out how to adjust different user-
chosen functions for every computation round such that an ad-hoc computation
over these functions could be realized, similar to the approach by López-Alt et
al. [40].

9 https://www.daad.de/en/the-daad/what-we-do/digitalisation/bird/

https://www.daad.de/en/the-daad/what-we-do/digitalisation/bird/
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Throughout the whole proof, we are assuming the dummy-adversary which
simply forwards in the real-world execution all corruption commands coming
from Z to the corrupted parties and all messages coming from the corrupted
parties back to Z. In the ideal-world execution, S receives all corruption mes-
sages from Z and sends all simulated protocol messages to Z. All inputs to the
simulated functionality FKRK sent by Z are directly provided to S. Additionally,
S provides all (modified) inputs of the corrupted dummy parties (sent by Z)
to the ideal functionality FOutComp and Z receives the outputs from FOutComp

through the dummy parties.

A.1 Corrupted Initiator

In the case of a corrupted initiator PY,j, the constructed simulator S works as
follows:

1. Setup Phase: When getting the message (retrieve, sid,SD) from Z to FKRK,
generate a fresh key pair (sk, pk) ← GEN(1λ) and simulate receiving the
message (retrieve, sid, pk,SD) from FKRK.

2. Outsourcing phase: When receiving a message (outsource, cy,j , cr,j) from PY,j,
extract the input yj and mask rj by decrypting the ciphertexts yj = DEC(sk, yj)
and rj = DEC(sk, rj). Then send yj to FOutComp, store rj and simulate for-
warding the received message to SC.

3. Computation phase: Whenever getting the message (start, sid, ssid) from Z,
it forwards this message to FOutComp.

4. Result retrieval: When getting the message (output?, sid, ssid) from Z, for-
ward this message to FOutComp. Upon receiving back the result z from FOutComp,
follow the instruction of Π2PC’s simulation to compute the message d, then
mask using the extracted r and and simulate receiving d′ = d + r from SD
to A.

The simulatability of the protocol is reduced to the simulatability of the un-
derlying standalone secure protocol Π2PC, since the simulator works exactly the
same when the receiver in Π2PC is corrupted, except masking the input/output
of Π2PC. Therefore assume for the sake of contradiction that there exists an
environment Z that is able to distinguish the real-world protocol execution of
ΠOutComp from the ideal-world simulation. Then we are able to create a non-
interactive distinguisher D that is a able to distinguish a real-world execution of
Π2PC and ideal-world simulation with non-negligible probability by using Z in
order to do the distinguishing work. The constructed D works as follows:

– Emulate a real-world execution of ΠOutComp with Z.
– When starting the first computation round, gather all inputs from all input

clients in order to compute x = f1(x1, · · · , xn), the initiator’s input yj and
the key pair (sk, pk) for the decryptor and feed the challenge protocol Π2PC

with the given inputs and the key pair as R’s auxiliary information and
receive the generated transcript (cr, cs).
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– When PY,j has to get a masked interim result from SD, take the last encrypted
message cS from the challenge transcript, compute d′ = DEC(sk, cS) + r
(where r is the masking value generated by the initiator in the outsourcing
phase) and simulate reveiving d′ from SD

– The other computation rounds are done as in the real-word execution.
– Output whatever Z outputs.

To evaluate D’s advantage in distinguishing a simulated execution of Π2PC from
a real-world execution, let us look at the case where the transcript D received
is the transcript of a real-world execution. In this case D’s output is identically
distributed as Z’s output in the real-world execution.

Now let us look at the case where Π2PC’s transcript is a simulated transcript.
In this case, the simulated message d′ = DEC(sk, cS) + r forwarded to Z is done
accordingly to the simulation of the outsourced overall protocol and therefore the
interaction in this case is the same as in the simulation of the overall outsourced
protocol.Therefore Z’s output is identically distributed as in the ideal-world
simulation.

Following both cases, D outputs ideal with the same probability as Z does.
Since we assume that Z is able to distinguish the real-world execution from the
ideal-world simulation, it follows that D is able to distinguish a real protocol
transcript from a simulated one with the same probability as Z is able to distin-
guish the real-world execution from the ideal world simulation. Since we assume
Z is able to do this with non-negligible probability, this contradicts the assump-
tion that the real-world execution of Π2PC is computationally indistinguishable
from its simulation.

A.2 Corrupted Subset of Input Clients

In the case of corrupted subset of input clients, the constructed S works as
follows:

– In the registration phase, whenever receiving a request (retrieve, sid,SD) from
Z to be delivered to FKRK, generate a fresh key pair (pk, sk)← GEN(1λ) and
simulate receiving it from FKRK.

– Whenever receiving an encrypted outsourcing message cx,i from Z, extract
the corrupted input client’s input xi.

Since the messages in the simulation are simply forwarded, the simulated mes-
sages do not differ from the actual messages sent in the real-world protocol
execution. Therefore the simulation is perfect.

A.3 Corrupted Initiator and Subset of Input Clients

In the case of corrupted initiator and subset of input clients, the simulator works
as follows:

– In the client registration phase, when getting a request (retrieve, sid,SD) from
Z to FKRK, generate a key pair and simulate receiving it from FKRK



36 W. Beskorovajnov et al.

– In the outsourcing phase of the input clients, extract xi the received en-
crypted input cx,i, send xi to FOutComp and simulate sending the encrypted
input to the calculator.

– When getting some encrypted input cy,j and the encrypted mask cr,j from
Z in the outsourcing phase of an initiator, decrypt the ciphertexts and send
the extracted inputs to the functionality and simulate sending the encrypted
input messages to the calculator.

– Output phase: Whenever getting the message (output?, sid, ssid) from Z, for-
ward the request to FOutComp in order to retrieve the result z. Then follow
the last step of the simulation of the underlying Π2PC using z in order to get
a plaintext message d. Then compute d′ = d′ + r and simulate receiving d′

from SD.

The only difference between the messages the simulator generates and the
messages that are shared among the real protocol execution is the messages that
are generated in simulation step 3: In this step, S follows the last simulation
step of the underlying two-party protocol and masks the decrypted simulated
message whereas in the real-world execution the initiator gets the randomized
and masked computation result from the decryptor. Here we have to reduce
the simulatablity of the whole protocol execution to the underlying standalone
secure protocol Π2PC. Therefore assume for the sake of contradiction that there
exists an environment Z that is able to distinguish the real-world execution
from the ideal-world simulation. Then we are able to create a non-interactive
distinguisher D that is a able to distinguish a real-world execution of Π2PC and
ideal-world simulation with non-negligible probability by using Z in order to do
the distinguishing work. The constructed D works as follows:

– Emulate a real-world execution of ΠOutComp with Z.
– When starting the first computation round, gather all inputs from all input

clients in order to compute x = f1(x1, · · · , xn), the initiator’s input yj and
the key pair (sk, pk) for the decryptor and feed the challenge protocol Π2PC

with the given inputs and the key pair as R’s auxiliary information and
receive the generated transcript cd.

– When PY,j has to get a masked interim result from SD, take the last encrypted
message cS from the challenge transcript, decrypt it to d = DEC(sk, cS) and
compute d′ = d+ r (where r is the masking value generated by the initiator
in the outsourcing phase). Then, simulate receiving d′ from SD.

– The other computation rounds are done as in the real-word execution.
– Output whatever Z outputs.

To evaluate D’s advantage in distinguishing a simulated execution of Π2PC

from a real-world execution, let us look at the case where the transcript D
received is the transcript of a real-world execution. In this case D’s output is
identically distributed as Z’s output in the real-world execution.

Now let us look at the case where Π2PC’s transcript is a simulated transcript.
In this case the message d′ = DEC(sk, cS) + r is generated as in the simulation
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and therefore the the interaction as the same as in the simulation. Therefore Z’s
output is identically distributed as in the ideal-world simulation.

Following the both cases, D outputs ideal with the same probability as Z
does. Since we assume that Z is able to distinguish the real-world execution from
the ideal-world simulation, it follows that D is able to distinguish a real protocol
transcript from a simulated one with non-negligible probability, which contra-
dicts the assumption that the real-world execution of Π2PC is computationally
indistinguishable from its simulation.

A.4 Corrupted Calculator (And Corrupted Subset of Initiators and
Input Clients)

In the case of a corrupted calculator, we do not have to differentiate the cases
where a subset of initiators or input clients is corrupted since we have to sim-
ulate the subset of the honest clients either way. Therefore we present a single
simulation: The constructed simulator works as follows:

– In the server initialization phase, when getting the request (retrieve, sid,SD)
from Z to FKRK, generate a fresh key pair, store it and simulate receiving it
from FKRK.

– In the registration phase, when getting a key request (retrieve, sid,SD) from
Z to FKRK, take the stored pk and simulate receiving it from FKRK.

– Whenever getting the encrypted input cy,j and cr,j from Z for a corrupted
PY,j, extract the input yj and mask r from the ciphertexts, send yj to
FOutComp and store (PY,j, r).

– Whenever getting a message (input, sid, ssid,PY,j) from FOutComp for an honest
PY,j, draw two random ciphertexts yj and rj from the ciphertext space and
simulate receiving it from the honest PY,j.

– Whenever getting the message (sid, pid, cx,i) from Z for a corrupted PX,i to
SC, decrypt cx,i in order to extract xi = DEC(sk, cx,i), forward xi to FOutComp

and simulate forwarding the received message to SC.
– Whenever getting a message (input,PX,i) from FOutComp, where PX,i is an

honest input client, draw a random ciphertext cx,i from the ciphertext space
and simulate receiving it from PX,i.

– Whenever getting the message (start, sid, ssid, pid) from Z for a corrupted
PY,j, forward the message to FOutComp, follow the calculator’s protocol in-
struction in order to compute cd′ and simulate sending cd′ to SD.

– Whenever getting the message (start, ssid,PY,j) from FOutComp for an honest
PY,j, follow the calculator’s protocol instruction in order to compute cd′ and
simulate sending cd′ to SD.

– Result retrieval: Whenever getting the message (output?, ssid) from Z for a
corrupted PY,j, forward the request to FOutComp in order to get the result
z. Then follow the last simulation step of Π2PC using z to get the last (de-
crypted) message d, compute d′ = d + rj and simulate receiving d′ from
SD.
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There are two general differences between the simulation and the real-word
execution of the protocol:

1. When an honest client (which is either an input client or an initiator) is told
to outsource its input, in the real-word execution the message sent by the
clients consists of the encrypted inputs (plus the encrypted masking value of
the initiator), whereas in the ideal-world simulation message computed by
the simulator consists of random ciphertexts.

2. When a corrupted initiator requests the decryptor for the result, it gets
a message computed accordingly to the real-world protocol whereas in the
simulation, the message generated by the simulator is computed accordingly
to last simulation step of the two-party protocol.

Therefore, we have to differentiate between three hybrid games:

– H0: real-world execution
– H1: H0 with the exception that the ciphertexts cx,i, cy.j and cr,j sent from

all honest clients to SC are encryptions of random values.
– H2: ideal-world simulation

To prove the indistinguishability between the hybrid games H0 and H1, let
us assume for the sake of contradiction that there exists an environment Z ′ that
is able to distinguish the simulation from the real-world execution. Then we are
able to construct an adversary B that is able to break the IND-CPAD security
of the underlying homomorphic encryption. B emulates the real-word execution
with Z ′. The modified emulation works as follows:

– Simulate the real-word execution, with Z ′.
– Initialize an empty set I = {} for the indexes of executed oracle requests

and set i := 0.
– When Z ′ requests FKRK the decryptor’s public key, B forwards the public

key generated by the IND-CPAD game’s challenger to Z ′.
– Whenever an honest client is told to encrypt a given message and outsource

it to the calculator, B sets m0 = xi (or m0 = yj), generates another message
m1 ←M from the message space and sends both messages to the encryption
oracle in order to receive a challenging ciphertext c. Then B forwards c to
Z ′ as it came from the corresponding client. Lastly, B adds the new index
i+ 1 to the set of executed oracle requests I = I ∪ i+ 1 and sets i := i+ 1

– all encrypted inputs given from Z ′ are treated as encryption oracle calls
having m0 = m1, whose encryption is then sent to B. B then increases the
oracle call index by i = i+ 1.

– Whenever an initiator is told to start a computation round, B requests the
evaluation oracle OEVAL with the indices of the encrypted messages by the
clients I ′ ⊆ I in order to receive a challenging ciphertext c. B then forwards
c to Z ′ as coming from SC.

– Whenever a corrupted initiator is told to output a computation result, B
gets the corresponding index j from the computation index list, and queries
the decryption oracle ODEC with j in order to retrieve a plaintext result za. If
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B gets ⊥ from ODEC, it queries the decryption oracle the initator’s input and
mask and computes the calculator’s instructions on the plaintext, resulting
in z′. Finally, B forwards z′a to Z ′ as it came from SD.

– After the emulation, B outputs whatever Z ′ outputs.

Let us analyze B’s advantage of guessing the right bit: Z ′’s probability of guessing
the correct emulation mode is the same probability as B’s probability in guessing
the correct challenge bit. Thus, B wins the IND-CPAD game with the same
probability as the environment correctly distinguishes the real-world execution
from the ideal-world simulation.

Now, let us assume that the hybrid games H1 and H2 are indistinguishable.
Then we are able to construct a distinguisher D that is able to distinguish
the real-world execution of the underlying protocol Π2PC and its ideal-world
simulation with non-neglible probability. The constructed D works as follows:

– Emulate the hybrid game H1 with Z ′.
– Whenever a computation round is started, D gathers all (extracted or ran-

domized) inputs and sends them to the protocol challenger.
– When D gets a communication transcript from the challenger, D computes

the interim message cd′ = cS + cr,j and forwards cd′ .
– When getting the message (output?, sid, ssid), decrypt cd′ to d′ = DEC(sk, cd′)

and simulate receiving d′ from SD.
– After the emulation B outputs whatever Z outputs.

D wins the game whenever it outputs the right guessing bit which is the same bit
Z outputs when distinguishing H2 from H1. Thus, D distinguishes the real-world
communication of Π2PC from the simulated one with the same probability as Z
successfully distinguishes Ha+b+1 and Ha+b. Since Z successfully distinguishes
both worlds with non-negligible probability, D is able to identify a simulated
transcript with non-negligible probability.

A.5 Corrupted Decryptor (And Corrupted Initiators)

The simulation works as follows:

– In the server initialization phase, when getting a key registration message
(register, sid, sk, pk) from SD, store the key pair and simulate forwarding it to
FKRK

– In the client registration phase, when getting a key retrieval request (retrieve,
sid,SD) from PY,j, take the stored pk and simulate receiving it from FKRK.

– In the outsourcing phase of the initiator’s inputs, when the simulator gets
some encrypted messages from Z, it decrypts the ciphertexts in order to
extract the initiator’s input and the initiator’s mask, feeds the functionality
with the extracted input and simulates sending it to the calculator.

– Whenever receiving the instruction (start, sid, ssid) from Z, forward the mes-
sage to FOutComp and simulate forwarding the message to SC. When getting
the result z from FOutComp, follow the last step of the simulation of the un-
derlying Π2PC to get the last encrypted message cd, compute cd′ = cd + cr,j
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using the extracted masking value from the initiator’s outsourcing phase and
simulate receiving cd′ from SC.

– Whenever getting the message (ssid,PY,j) from FOutComp for an honest PY,j,
draw a random message d′ ← M from the message space, encrypt it to
cd′ = ENC(pk, d′). Then store (sid, ssid,PY,j, d

′) and simulate receiving cd′

from SC.
– In the output phase, whenever getting the request (output?, sid, ssid) for a

corrupted PY,j from Z, output z received by FOutComp.
– Whenever getting the message (output, sid, ssid,PY,j) for an honest PY,j from
FOutComp, simulate receiving the message (output?, sid, ssid, pid) from PY,j,
retrieve the stored interim result (sid, ssid,PY,j, d

′) and simulate sending
(sid, ssid,PY,j, d

′) to PY,j.

There are two general differences between the real-world execution and the ideal-
world simulation:

1. For a corrupted initiator, the messages sent in the real-world execution from
the calculator to the decryptor and from the decryptor to the initiator consist
of the calculator’s real-world computation of all clients’ encrypted inputs
and the decrypted and masked interim result d′ whereas in the ideal-world
simulation the messages consist of the two-party protocol’s last simulated
message added with the encrypted initiator’s mask cd′ = cd + cr,j using the
corrupted initiator’s input yj and masking value rj

2. For an honest initiator, the messages sent in the real-world execution from
the calculator to the decryptor and from the decryptor to the initiator consist
of the calculator’s real-world computation of all clients’ encrypted inputs and
the masked interim result whereas in the ideal-world simulation the messages
consist of a random value.

Therefore we have to differentiate three hybrid games:

– H0: The real-world execution
– H1: H0 with the exception that in a computation and output phase initi-

ated by a corrupted initiator, the messages are drawn accordingly to the
simulation of Π2PC

– H2: The ideal world simulation

Let us begin with the indistinguishability between H0 and H1: Here we have
to reduce the indistinguishability to the underlying standalone secure protocol
Π2PC. Therefore assume for the sake of contradiction that there exists an environ-
ment Z that is able to distinguish the real-world execution from the ideal-world
simulation. Then we are able to create a non-interactive distinguisher D that
is a able to distinguish a real-world execution of Π2PC and ideal-world simula-
tion with non-negligible probability by using Z in order to do the distinguishing
work. The constructed D works as follows:

– Emulate a real-world execution of ΠOutComp with Z.
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– When starting the first computation round, gather all inputs from all input
clients in order to compute x = f1(x1, · · · , xn), the initiator’s input and
the key pair for the decryptor and feed the challenge protocol Π2PC with
the given inputs and the key pair (sk, pk) as R’s auxiliary information and
receive the generated transcript.

– When SD has to receive an encrypted masked interim result from SC, take
the last encrypted message cS from the challenge transcript, compute cd′ =
cS + cr,j (where cr,j is the masking value generated by the initiator in the
outsourcing phase) and letting SC send cd′ to SD. Then forward the round’s
result z to Z.

– The other computation rounds are done as in the real-word execution.
– Output whatever Z outputs.

To evaluate D’s advantage in distinguishing a simulated execution of Π2PC from
a real-world execution, let us look at the case where the transcript D received
is the transcript of a real-world execution. In this case D’s output is identically
distributed as Z’s output in the real-world execution.

Now let us look at the case where Π2PC’s transcript is a simulated transcript.
In this case the message cd′ = cS + cr,j is generated as in H1 and hence the
interaction is the same as in H1. Therefore Z’s output is identically distributed
as in H1.

Following both cases, D outputs ideal with the same probability as Z does.
Since we assume that Z is able to distinguish the real-world execution from the
ideal-world simulation, it follows that D is able to distinguish a real protocol
transcript from a simulated one with non-negligible probability, which contra-
dicts the assumption that the real-world execution of Π2PC is computationally
indistinguishable from its simulation.

Next, we show the indistinguishability between H1 and H2: The only differ-
ences between H1 and H2 are the messages the corrupted decryptor gets from
the honest calculator and the honest initiator gets from the corrupted decryptor.
In the real-world execution these messages are the values the calculator evalu-
ates over the encrypted masked inputs, which is a one-time pad whereas in the
simulation those messages are the encryption of some randomly chosen messages
from the message space. Since those values are perfectly indistinguishable, the
execution of H1 is perfectly indistinguishable from the execution of H2.

A.6 Corrupted Decryptor and Corrupted Input Clients

– In the server initialization phase, when getting a key pair registration mes-
sage (register, sid, pk, sk) from Z, store the received key pair (pk, sk) and
simulate receiving it from FKRK.

– When a corrupted input client is told to outsource its input, extract the en-
crypted input and send the extracted input to FOutComp and simulate sending
the encrypted inputs to the calculator.

– Whenever getting the message (result, ssid,PY,j) from FOutComp, draw a ran-
dom value d′, encrypt cd′ = ENC(pk, d′) and simulate receiving cd′ from the
SC.
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– Whenever getting a message (output, ssid,PY,j) from FOutComp, simulate send-
ing d′ to the PY,j.

The indistinguishability of the simulation is based on the information theoretic
security of the initiator’s masking value rj , which is a one-time pad. Therefore the
simulated message is the same as a real-world message. Following this, the real-
world execution is perfectly indistinguishable from the ideal-world simulation.

A.7 Corrupted Initiator, Subset of Input Clients and Decryptor

The constructed simulator works as follows:

– In the server initialization phase, when getting a key pair registration mes-
sage (register, sid, pk, sk) from Z, store the key pair and simulate forwarding
it to FKRK.

– In the client registration phase, whenever getting a public key request (retrieve,
sid, pidSD) from Z, take the stored pk and simulate receiving it from FKRK.

– Whenever getting an outsourcing message cx,i from Z, extract the input xi

from the ciphertext, send xi to FOutComp and simulate sending cx,i to SC.
– As the corrupted PY,j, when receiving the outsourcing message (cy,j , cr,j)

from Z, extract the initiator’s input yj and the mask rj from the ciphertexts
and send the input yj to FOutComp.

– When getting a message (start, ssid) from Z, forward this message to FOutComp

in order to receive the the result z of the current round and follow Π2PC’s last
simulation step of a corrupted receiver in order to get an encrypted message
cs. Then compute cd′ = cs + cr,j and simulate receiving cd′ from SC.

– Result retrieval: When getting the message (output?, ssid) from Z, simulate
sending cd′ to PY,j.

The indistinguishability of the simulation is based on on standalone security of
the underlying protocol Π2PC. To prove this statement we assume an environ-
ment Z that is able to distinguish the real-world protocol from the ideal-world
simulation with non-negligible probability. The simulator is the exact simulator
that is described in Appendix A.5 and also its security analysis is the same.
Therefore we omit the reduction here and refer to Appendix A.5 for the full
reduction proof.

B The Key Registration With Knowledge Functionality

FKRK

Provides:
Key registration with knowledge.
Parameters:



A Formal Treatment of HE Based Outsourced Computation in UC 43

– Function fKey : (sk, pk) 7→

{
true, well-formed key pair
false, otherwise

State:

– Function pReg : mid 7→ (P, sk, pk) of pending registrations.
– Function pRet : mid 7→ (Pi, Pj) of pending retrievals.
– Set R of registered tuples (P, sk, pk).

Behaviour:

– Upon receiving (register, sid, sk, pk) from a party P , draw fresh mid ,
send (register, sid,mid , P, pk) to the adversary A and append mid 7→
(P, sk, pk) to pReg.

– Upon receiving (register ok, sid,mid) from the adversary A, retrieve
(P, sk, pk) := pReg(mid), check
• fKey(sk, pk) = true
• ∄ sk′, pk′ : (P, sk′, pk′) ∈ R
• ∄ P ′, sk′ : (P ′, sk′, pk) ∈ R

and append (P, sk, pk) to R if all checks were successful.
– Upon receiving (retrieve, sid, Pi) from a party Pj , draw fresh mid ,

send (retrieve, sid,mid , Pi, Pj) to the adversary A and append mid 7→
(Pi, Pj) to pRet.

– Upon receiving (retrieve ok, sid,mid) from the adversary A, look up
(Pi, Pj) := pRet(mid) and (Pi, ski, pki) ∈ R. If no such entry exists in
R, set pki := ⊥. Send (retrieved, sid, pki, Pi) to Pj .

Taken from the appendix in [11]. The three checks FKRK performs before finally
registering a parties credentials guarantee that only valid key pairs may be reg-
istered, that each party registers at most one key pair and that no to parties can
share the same public key.

C Two Party PSI Proof

Theorem 4 Given an IND-CPA secure somewhat homomorphic encryption scheme
HE = (GEN,ENC,DEC), the protocol Π2P−PSI securely realizes F2P−PSI under se-
quential composition in the presence of a semi-honest adversary A.

Proof. To show the sequential composability of the protocol Π2P−PSI, it suffices
to show that there exists a simulator S that simulated the interaction between
the two parties without the presence of a distinguishing environment. Therefore
S has to construct a transcript of the interaction between the two parties that
is indistinguishable from the real-world interaction given the corrupted party’s
input and the functionality’s output beforehand. Since we are only dealing with
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passive adversaries, we don’t have to rewind in case the adversary tries to deviate
from the protocol.

Let us begin with the case that the sender is corrupted:
In this case the simulator S is given the input x and no output. Then the

simulator works as follows:

– Generate a fresh key pair (pk, sk) ← GEN(1λ) using the key generation
algorithm GEN. Then draw a random message m′ ← M from HE’s mes-
sage space M, encrypt cy = ENC(pk,y) using the generated public key pk
and simulate receiving the message (pk, cx) from the receiver R. Then draw
a random value r ← M from HE’s message space M. Then encrypt S’s
input cx = ENC(pk,x) and the random value cr = ENC(pk, r), compute
cz′ = (cy − cx) · cr and simulate sending cz′ to R.

The key pair is drawn in an honest manner. Therefore the simulated pk is per-
fectly indistinguishable from a real-world pk generated by the real-world honest
sender. Although the simulated input does not equal S’s actual input, its en-
cryption is computationally indistinguishable from the real input’s encryption
thanks to the IND-CPA security of the homomorphic encryption scheme. Also,
due to the indistinguishability of the ciphertexts, the simulated message sent
to R is also compuationally indistinguishable from the encryption of a message
sent by the real-world corrupted sender. Therefore the simulated transcript is
computationally indistinguishable from the real-world execution.

Then let us continue with the case of a corrupted receiver:
In this case S gets the input y and the output z and has to generate a

simulated interaction between the corrupted R and an honest S which is com-
putationally indistinguishable from the real-world interaction. The simulator S
works as follows:

– Generate a fresh key pair (pk, sk) and encrypt R’s input cy = ENC(pk,y)
using the homomorphic encryption scheme HE and simulate sending the
message (pk, cy) to S.

– In the second simulation step, compute given the output z and R’s input an
interim result z′ by setting z′i = 0 whenever for some j ∈ [0, n] yi = zj and
fill the other indices with randomly drawn values. Then encrypt the result
cz′ = ENC(pk, z′) and simulate receiving the message cz′ .

Now we show that the simulated communication is statistically indistinguishable
from a real-world protocol execution:

The first simulated message sent by the receiver is perfectly simulated since
the simulator draws the key pair in an honest manner, just as real-world receiver
would do. Also the encryption is done as in the real-world protocol. Therefore,
there is no difference between the simulated first message and the real-world first
message exchanged between R and S. In the second simulated message, the sim-
ulator doesn’t get the honest S’s input and therefore is not able to reconstruct
the actual message shared between R and S. Yet, since the non-zero entries of
z′ sent in the real-world protocol have some randomness incorporated, those
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entries are pseudorandom and therefore statistically indistinguishable from uni-
formly chosen random values, as done in the simulation. Therefore the simulated
protocol is statistically indistinguishable from the real-world protocol execution.

D PSI Requirements

In the following, we will limit ourselves to only the most relevant requirements.
Based on our interviews, we have identified the following security requirements.

– SEC1: Information Leakage – The server should not learn the criteria values
(e. g., Role or Federal State)

– SEC2: Passive Attacker Model – We assume a passive attacker model, which
means that we do not expect authorized clients and the service provider to
act actively in a malicious way.
• SEC2.1: We expect the service provider to implement all necessary mea-

sures to secure the service against external attackers, and to ensure
that the client-side code—such as that executed in the browser—and
all communication with the server are not maliciously manipulated by
the provider. However, we consider the risk to be non-negligible that
individuals at the provider with access to data storage may inspect the
stored data, potentially misusing it for purposes not originally intended.

• SEC2.2: We assume that clients do not maliciously manipulate their re-
quests. The risk of clients violating this assumption is deemed negligible.

– SEC3: Clients/Server Collusion Resistance – Based on other requirements,
including minimizing the usage threshold for all clients, we consider the risk
of an insider attacker with access to server-stored data creating their own
clients and inspecting their state to be non-negligible. Augmenting protec-
tions to meet SEC1 and SEC2 must take SEC3 into consideration.

In addition to the previously stated security requirements, we have functional
requirements that will eliminate many of the protocols proposed so far in the
literature on outsourced PSI. Obvious requirements such as correct matching of
learning partners are omitted here.

– FUNC1: Client Activity – Clients should be able to go offline and come
back online freely, without influencing the execution of the protocol.

– FUNC2: Failing Clients and Updates – Clients should be able to modify and
eventually permanently delete their inputs without influencing the execution
and correctness of the protocol.

Finally, there are non-functional requirements that we use to benchmark the
final instantiated protocol.

– NONFUNC1: Server Storage
– NONFUNC2: Response Time for Matching requests
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A centralized version where one trusted server is used to compute the in-
tersections of the clients does not meet any of the security requirements stated
above. Since we assume SEC:2 as an attacker model, the attacker gaining access
to the trusted server is able to read all data stored within the trusted server,
especially the clients’ datasets which are stored in plaintext. This obviously vio-
lates requirement SEC:1. Requirement SEC:2.1 can be not met since even if all
measurements against an external attacker are met, an internal attacker is still
able to gain access to the datasets. This even still holds if there are protection
measurements against malicious attacks, since eavesdropping attacks are usually
not covered by those measures. Also, if we assume SEC:2 as an attacker model,
then the attacker gaining access to the trusted server has again all access to
the plaintext datasets. If a client is able to corrupt the trusted server, then the
adversary learns all outsourced datasets which is the most dangerous threat in
our model. Therefore the model with a trusted server is not fitting for our case.

E Discussion on the Non-Collusion Assumption in the
Real World

In the following, we discuss how attacks that violate the non-collusion assump-
tion might appear in the real world and what protection methods could look
like. We leave, however, the formal treatment of improving the robustness of
our protocol against an attacker corrupting both SC and SD for future work.
We will neither consider an outsider adversary that may penetrate the networks
of the decryptor and calculator and thus violate the non-collusion assumption.
Therefore, we focus on attacks that violate the non-collusion assumption from
the perspective of an insider attacker corrupting different parties, which we deem
as the most dangerous one to our protocol.

The first category refers to attacks involving organizations that operate SC
or SD and knowingly collude with each other—often under the instruction of a
C-level executive—to share data. The motivation for this level of corruption can
vary, as described in detail for the public sector by [31]. From our perspective,
the most important factor driving such collusion is the potential cost to the
organizations if the collusion is uncovered.

Therefore, we propose examining the potential minimal costs that organiza-
tions operating SC or SD may incur if their collusion is uncovered, in order to
assess the risk of violating the non-collusion assumption due to organizational-
level corruption.

If we exclude organizational-level corruption, the only remaining threat to
the non-collusion assumption comes from individual insiders who have access to
the data being processed by SC and SD. The motivations of such individuals can
also be diverse. In our private set intersection (PSI) instantiation, we identified a
particularly realistic threat that underpins our adversary model. This is because
our application of the PSI protocol was aimed at matching learning partners,
which include underage people. This implies a direct risk of data misuse by
individuals within the operating organization who have access to this sensitive
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information. Although our honest-but-curious adversary model accounts for such
attackers within SC or SD, the guarantees break down when these adversaries
collude with each other. In this specific use case, we struggle to identify a scenario
in which two distinct individuals working for different operators at SC and SD
might collude—without knowing each other beforehand-—to misuse the data
of underage individuals for personal gain. Furthermore, even if such individuals
knew each other prior to the protocol’s execution, it is difficult to imagine a
realistic scenario where they would deliberately take jobs at SC and SD with
the intent of colluding in a subsequent step to misuse data concerning underage
children. Moreover, we identified that the reasoning and threat modeling of this
kind of collusion is not possible in general and it strongly depends on the exact
organizations and its employees operating SC and SD.

Ultimately, there remains the following question: What countermeasures can
be deployed to prevent an attack that cannot be fully described in general terms?
We propose to first exam the requirements of such an attack and then implement
countermeasures that can thwart those specific requirements.

A key requirement is the possibility of a passive attack on SC and SD on the
individual level. While our protocol protects against information leakage, addi-
tional countermeasures—some of which may be organizational in nature—could
be implemented to further prevent this type of attack. It is important to dis-
tinguish between protecting against information leakage from an attack and
preventing or tracing the attack itself. Preventive measures typically involve au-
thentication or authorization mechanisms, while tracing measures require secure
logging and effective monitoring of those logs.

Since these measures are highly dependent on the specific circumstances of
the operators of SC and SD, a more detailed discussion falls outside the scope of
this work.

F Choice of Authentication, Authorization and the
Passive Adversary Model of ΠOutComp

When deploying an instantiation in the real world, one will eventually face the
question of how to authorize the input clients PX,i and the initiating clients PY,j.
This issue is not specific to ΠOutComp but applies to any protocol that relies on
the passive adversary model. Without proper authentication and authorization
mechanisms, the system would be vulnerable to trivial denial-of-service attacks
by spamming encrypted inputs. The protocol ΠOutComp does not include any
such protections, and it is implicitly assumed—based on the chosen adversary
model and party setup—-that every input client and initiator participating in
the protocol is authorized and trusted to behave passively (if being corrupted).
This implies that authorization is presumed to occur when a party is granted
access to communicate with SC and SD. At first glance, this might seem as an
unrealistic choice of an adversary model, but there is, from our point of view, a
sound reasoning behind it.
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Consider, for example, a simple survey aggregation scenario, which is one
of the most straightforward instantiations of ΠOutComp. Imagine the participa-
tion link (i. e., communication access with SC) is made publicly available. In
such a case, many people might attempt to cause disruption by submitting con-
trived responses to skew the overall results. We remind the reader that a similar
public-access attempt was made by Microsoft with the chatbot Tay. Microsoft
had to shut down the project within 24 hours because Tay began generating
inappropriate content, as discussed by Wolf et al. [60]. In contrast, many other
chatbots until today have not exhibited similar inappropriate behavior. The key
difference was that Tay was trained in a public setting, while the other chat-
bots were trained in authorized, controlled environments. In the latter setting,
we can reasonably assume that the training data was not intentionally manipu-
lated with malicious intent. This reasoning also applies to the passive adversary
model: while the security of ΠOutComp would be easily compromised in a pub-
lic setting, in an authorized environment, we are able to thwart any remaining
honest-but-curious attacks, which is a typical choice for protocols proven secure
within passive adversary models.

The main takeaway is that ΠOutComp requires proper authentication and au-
thorization for participating clients to ensure that only honest-but-curious clients
are allowed to participate. There are plenty of methods available for this, making
the choice of methods a relatively minor issue. The bigger challenge is to ensure
that participants must be trusted to act in a honest-but-curious way only. If
the latter challenge cannot be addressed with negligible risk, then the applica-
tion intended to be realized by an instantiation of ΠOutComp will not work as
intended.
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